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Highlights 

 The spatial modeling studies of urban carbon emission in China are reviewed.

 The available data and methods are summarized.

 The strengths and weaknesses of the methods are compared.

 Urban forms can affect urban carbon emissions.

 Future developments will require a finer spatial resolution and urban form data.
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Abstract: 5 

Cities produce over 70% of global carbon emissions and are thus crucial in driving 6 

climate change. Urban carbon emissions may continue to increase especially in those 7 

less-developed countries and regions which are still under rapid urban development. 8 

Policymakers need to find ways to effectively control and reduce carbon emissions. 9 

Thus, spatial modeling methods to map and predict urban carbon emissions have been 10 

developed to meet these needs. This paper examines the progress of the spatial 11 

modeling of carbon emissions and the relationship between urban form and carbon 12 

emissions in China by reviewing more than 100 peer-reviewed journal articles in the 13 

Scopus database. The latest prediction methods and techniques are described in the 14 

paper. Their advantages and limitations are then discussed. 15 

Urban forms have a significant influence on carbon emissions and have been applied in 16 

spatial modeling studies in other countries. However, this review has identified the lack 17 

of urban form data and high-resolution inventories from existing studies in China. 18 

Future developments in the spatial modeling in China should therefore have a fine 19 

spatial resolution and incorporate open and high-quality urban form data, including 20 

urban morphology and land use/land cover.    21 

22 

Keywords: urban carbon emissions, spatial modeling, systematic review, urban form, 23 

China. 24 

1. Introduction25 

Carbon dioxide (CO2) is the principal anthropogenic greenhouse gas (GHG) and the 26 

major cause of climate change (IPCC, 2007). The global atmospheric CO2 27 

concentration has risen from about 280 ppm before industrialization to 409.8  ppm in 28 

2019 (Lindsey, 2020). To achieve the goal of controlling temperatures for climate 29 

change mitigation, carbon emissions need to be significantly reduced (Pachauri et al., 30 

2014). Cities contribute 71%-76% of global carbon emissions from energy activities, 31 

so they are the major focus for carbon emissions mitigation (Pachauri et al., 2014). The 32 

world population from 2012 to 2050 is anticipated to rise mainly in cities according to 33 

the United Nations population estimate (UN DESA, 2018). Global carbon emissions 34 

are foreseen to grow due to the projected urban development. Since urban carbon 35 

emission inventory is the foundation for attempts to mitigate carbon emissions, 36 

policymakers and the scientific community have made significant efforts to establish 37 

carbon emission inventories to deal with climate change. Most previous investigations 38 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://www.editorialmanager.com/jclepro/viewRCResults.aspx?pdf=1&docID=134940&rev=2&fileID=3329273&msid=f0265957-a2a6-457a-98f7-f7d1201743d6
https://www.editorialmanager.com/jclepro/viewRCResults.aspx?pdf=1&docID=134940&rev=2&fileID=3329273&msid=f0265957-a2a6-457a-98f7-f7d1201743d6


2 

 

on emission modeling used production-based statistics at the administrative units level 39 

(e.g. provincial or city level) based on Intergovernmental Panel on Climate Change 40 

(IPCC) or provincial-level Guidelines (Clarke-Sather et al., 2011; Shan et al., 2017). 41 

Although the inventories are authoritative, the spatial variations and the energy 42 

consumption within the administrative unit cannot be revealed, which limits their 43 

further impact on the interdisciplinary actions to climate change mitigation (Cao et al., 44 

2014). 45 

The spatial modeling of urban carbon emissions can facilitate the development of 46 

spatially distributed emission inventories and reveal the spatial patterns within an 47 

administrative unit (Ou et al., 2015b). These inventories can provide a spatial 48 

visualization of the carbon emissions from both production and consumption, enabling 49 

the practical and realistic assessment of emission mitigation, such as identifying the 50 

carbon emission hotspots, energy activities responsible for high emissions, etc. 51 

(Kanemoto et al., 2016). They can also be integrated with other spatial data to facilitate 52 

interdisciplinary cooperation to reduce carbon emissions. Consequently, a variety of 53 

approaches have been developed and used to spatially model the carbon emissions in 54 

different cities (Cai et al., 2018b; Doll et al., 2000; Wang, J. et al., 2014).    55 

China has been industrializing and urbanizing at an accelerating pace since the 56 

beginning of its reform and opening in 1978. The rapid development has unavoidably 57 

caused massive carbon emissions which impeded the sustainable development of China 58 

and impacted the global climate (Paltsev et al., 2012). China has become the country 59 

that emits the highest amount of carbon emissions in the world since 2006 (Netherlands 60 

Environmental Assessment Agency, 2007). Moreover, China’s carbon emissions are 61 

predicted to keep increasing until 2025 as a consequence of the continuous industrial 62 

transformation and economic growth (Zhou et al., 2019). Consequently, the Chinese 63 

government has set ambitious GHG mitigation targets and pledged to be carbon neutral 64 

by 2060 (Wang, 2009; Xinhua, 2020).   65 

 66 

The development of the spatial inventory of carbon emissions can therefore serve as a 67 

cutting-edge tool for governments at different levels to meet China’s timely need for 68 

achieving carbon neutrality. Besides, urban development is a vital element for carbon 69 

emission and its reduction. City planning and space optimization policies, particularly 70 

those targeting urban form, are growingly significant in carbon emissions control and 71 

mitigation (Wang et al., 2015). In order to further develop our knowledge in controlling 72 

and reducing carbon emissions for China, it is necessary to review the past 73 

developments and studies on the spatial modeling of carbon emission to understand 74 

their capabilities, advantages, and limitations. A comprehensive understanding of the 75 

influence of urban forms on carbon emissions is also essential for the implementation 76 

of low carbon strategies in China.  77 

 78 
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Therefore, this study aims to perform a systematic review to synthesize the available 79 

literature on 1) the existing methodologies and data for the spatial modeling of urban 80 

carbon emissions in China, and 2) the relationship between the urban form and carbon 81 

emissions in China. This study is the first one to review the spatial inventories of urban 82 

carbon emissions in China. Previous reviews on CO2 inventories generally focused on 83 

the statistical approach (Chen et al., 2017; Yang et al., 2016). Although they pointed 84 

out the shortcomings of the existing statistical approach in China, this manuscript will 85 

provide new insights and perspectives beyond existing reviews since it investigates the 86 

spatial inventories within a city boundary, which can support the control and mitigation 87 

of carbon emissions regarding urban planning and space optimization strategies. 88 

Moreover, this study will identify the limitations of the current studies to recommend 89 

future directions of the spatial inventories.  90 

Therefore, the major objectives are determined: 91 

To select and document the relevant and the most up-to-date peer-reviewed journal 92 

articles in the Scopus database; 93 

To identify the key methodologies and developments in the spatial modeling of 94 

carbon emissions; 95 

To explore the relationship between the urban forms and the carbon emissions; 96 

To analyze the strengths and weaknesses of the reviewed spatial models;  97 

To review and discuss their current applications and limitations; 98 

To explore the future needs and trends in the spatial model development.  99 

2. Methodology 100 

Systematic reviews are considered to be the most impartial and efficient method for 101 

analyzing existing scientific research (Haddaway et al., 2015).  Hence, we performed a 102 

systematic review of the research projects and studies on the spatial modeling of 103 

China’s urban carbon emissions. We adopted the procedure of the PRISMA Statement 104 

form (Moher et al., 2009) which has been applied in many urban studies (Asadzadeh et 105 

al., 2017). There are four stages of the PRISMA Statement: Identification, Screening, 106 

Eligibility, and Analysis (Moher et al., 2009).  107 

Under the Identification process, keywords were used to search the literature database 108 

and identify possibly related studies. Scopus was chosen as the search engine in this 109 

study because it focuses on peer-reviewed academic articles and covers a broad scope 110 

of multi-disciplinary fields. Only peer-reviewed articles were identified as relevant 111 

studies in this review.  112 

The identification in this study mainly contains two categories, category 1 is the 113 

searching on spatial modeling of urban carbon emissions in China, category 2 is about 114 

the relationship between urban forms and carbon emissions (Table 1). Keywords A 115 
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contains the keywords that were used for both two categories.  To incorporate all the 116 

available literature in the database, “carbon emissions” and all the synonyms of carbon 117 

emissions such as “CO2 emission” OR “carbon dioxide emission” OR “greenhouse gas 118 

emission” were used in keywords A. Also, the study area “China” was used to limit the 119 

search results.  Keywords B includes the keywords which are only used in one category. 120 

In category 1, the keywords “spatial modeling” OR “mapping” were incorporated into 121 

the search criteria to filter the papers relevant to the development of spatial inventories. 122 

“Urban” OR “city” was also included in the keywords to filter the research focusing on 123 

fossil fuel carbon emissions from transport, business, residential and industrial sectors. 124 

For the searching of literature in category 2, the keyword “urban form” was added to 125 

the searching engine. The identification process based on the selected keywords was 126 

performed for the article title, abstract, and keywords of the papers. Also, this study 127 

covered the most up-to-date literature as of May 2021.  128 

During the process of screening, the acquired literature that is not relevant to this study 129 

was removed by manually checked the titles, abstracts, and keywords. All the obtained 130 

records were screened to exclude duplicate and unrelated documents. Thirdly, all the 131 

records after the previous two steps were examined completely to select the most 132 

relevant results, including the main text and the references. Finally, the necessary 133 

information on the related literature was extracted, processed, and synthesized in the 134 

analysis step.  135 

Table 1. Summary of all the keywords used during the identification phase. 136 

Categories Keywords A Keywords B 

1. Urban carbon emissions

mapping in China

“carbon emission” OR “CO2 

emission” OR “carbon dioxide 

emission” OR “greenhouse gas 

emission” 

AND 

“China”  

AND (“spatial 

modeling” OR 

“mapping”) 

AND (“urban” OR 

“city”) 

2. The relationship between

urban forms and carbon

emissions

AND 

“urban form” 

137 

138 

3. Results139 

3.1 Overall results 140 

After the searching and analysis steps, there are 106 papers in total, where 82 papers 141 

are in category 1 and 24 papers are in category 2. For category 1, the results were mainly 142 

classified based on the methods. It can be found that there are four commonly used 143 

methods: 1) top-down analyses that assign the emissions from a coarse spatial unit to a 144 
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finer resolution; 2) bottom-up models that aggregate the fine emission data such as point 145 

source emissions to the desired spatial grid  (Cai et al., 2018b; Wang, J. et al., 2014); 3) 146 

carbon satellite observations which convert the CO2 concentration from carbon 147 

satellites; and 4) hybrid method involving both bottom-up and top-down approach. For 148 

category 2, the urban form can be described in terms of land use/cover and urban 149 

morphology (Ren et al., 2017). Therefore, the retrieved literature in category 2 was 150 

categorized into the impact of urban morphology and the impact of land use/land cover 151 

characters. 152 

 153 

3.2 top-down method using nighttime lights 154 

3.2.1 data and adjusted indexes 155 

Top-down methods allocate the carbon emissions within a large spatial unit to a high 156 

spatial resolution by adopting some algorithms or proxy data such as land use (Chuai 157 

and Feng, 2019), road length (Song et al., 2020). With the development of remote 158 

sensing techniques,  the nighttime light (NTL) data have been the most frequently used 159 

proxy to distribute the statistical carbon emissions at the jurisdiction level. The NTL is 160 

a kind of satellite observation and derivative product to detect man-made lights, hence 161 

offering a unified, spatially explicit, continuous, and prompt monitoring of the earth's 162 

surface during nighttime (Elvidge et al., 1997; Elvidge et al., 2013). Previous research 163 

has indicated that the NTL data can potentially reflect the socioeconomic conditions 164 

and human activities that are relevant to energy demand (Doll et al., 2000; Small et al., 165 

2005; Sutton et al., 2001). Moreover, there is an assumption that the brightness value 166 

of the NTL is positively correlated to the carbon emissions produced by energy 167 

activities of the same pixel (Han et al., 2018). Hence, the NTL is capable of detecting 168 

urban carbon emission variations in both spatial and temporal dimensions when 169 

combined with statistical emission data.  170 

The Defense Meteorological Satellite Program-Operational Linescan System (DMSP-171 

OLS) launched in 1992, is the most widely used NTL data in the spatial modeling of 172 

carbon emissions due to its long time span (Lu et al., 2018; Meng et al., 2014; Shi et 173 

al., 2016; Wang and Li, 2016). Nevertheless, the DMSP data have a few notable 174 

disadvantages (Doll et al., 2000; Elvidge et al., 2010): low spatial resolution of 30 arc 175 

seconds, oversaturation problems on bright lights in urban areas, blooming effect with 176 

the lights scattered from built-up areas into areas without light, etc. These shortcomings 177 

may diminish the correlation between human activities and NTL products (Letu et al., 178 

2010), leading to increased uncertainties in the modeling of carbon emission in certain 179 

regions, especially in large urban cores with strong artificial lighting (Letu et al., 2011; 180 

Raupach et al., 2010). The global radiance calibrated DMSP NTL data have been 181 

developed by the Earth Observation Group in National Oceanic and Atmospheric 182 

Administration’s National Geophysical Data Center (NOAA/NGDC) to solve these 183 
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issues (Ziskin et al., 2010). However, there are only a few images that have been 184 

calibrated so far, limiting the application of time-series analyses of the product (Ma et 185 

al., 2014).  186 

The satellite Visible Infrared Imaging Radiometer Suite onboard the Suomi National 187 

Polar-Orbiting Partnership (NPP-VIIRS) was developed as a brand-new source of NTL 188 

image by the NOAA/NGDC in 2011 (Elvidge et al., 2013). The new NTL data have 189 

several advancements compared to the previous DMSP-OLS product (Elvidge et al., 190 

2013) (Table 2). The spatial grid of the NPP-VIIRS data is finer (15 arc-second). Also, 191 

the NPP-VIIRS product has already been calibrated on the satellite (Elvidge et al., 192 

2013). Moreover, the oversaturation issue does not exist in the NPP-VIIRS due to its 193 

more sensitive day/night spectral band, which can greatly enhance the capability of 194 

identifying artificial lighting (Liao et al., 2013).  195 

Table 2. Characteristics of DMSP-OLS and NPP-VIIRS 196 

Satellite 
Spatial 

resolution 
Bands Period 

Onboard 

calibration 
Saturation 

DMSP-

OLS 

30 arc 

seconds 

Nightlight, 

one thermal 

infrared (10 

um) 

1992-

2013 
No Yes 

NPP-

VIIRS 

15 arc 

seconds 

Nightlight, 

21 additional 

bands 

spanning 

0.4 to 13 um 

2012-

present 
Yes No 

 197 

Recent studies showed the progress of applying the new NPP-VIIRS data in carbon 198 

emission modeling (Cui et al., 2019; Ou et al., 2015a; Zhang et al., 2020). The 199 

comparative findings demonstrate that the NPP-VIIRS data can more precisely 200 

demonstrate the spatial variations of residential carbon emissions than the DMSP-OLS. 201 

The emissions modeled by the NPP-VIIRS have larger values and more detailed spatial 202 

patterns in built-up areas, thus the NPP-VIIRS data are more effective in enhancing the 203 

knowledge of the regional differences of carbon emissions and serving as a benchmark 204 

for decomposing the low-carbon goals into each subunit (Ou et al., 2015a; Zhao et al., 205 

2018). Moreover, some modeling studies have integrated the NPP-VIIRS and the 206 

DMSP-OLS to expand the time span of the NPP-VIIRS (Lv et al., 2020; Zhao et al., 207 

2019). These studies have demonstrated the feasibility and superiority of using the 208 

NPP-VIIRS to model carbon emissions, as well as the possibility to facilitate other 209 

scientific applications that have adopted the DMSP-OLS product.  210 

 211 
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In particular, some studies employed adjusted nighttime light indexes to eliminate the 212 

oversaturation effect of DMSP-OLS by involving vegetation information. Zhang et al. 213 

(2013) established the vegetation-adjusted NTL urban index (VANUI) by integrating 214 

the Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference 215 

vegetation index (NDVI) products with the NTL data (Equation 1). The VANUI is easy 216 

to compute and can characterize changes in light density within urban areas.  Meng et 217 

al. (2017) applied an improved VANUI to model the carbon emissions in China by 218 

incorporating NTL, MODIS NDVI, population density, and a Water-masked map from 219 

ESRI. The findings showed that the proposed improved index can better reveal the 220 

spatial patterns of human activities. The improved index is also helpful to decrease the 221 

modeling error of carbon emissions across different cities and differentiate the 222 

heterogeneity in emissions within a city. The root mean square error (RMSE) of the 223 

improved VANUI model is 5.9% lower than that of the original VANUI model. 224 

 VANUI = (1 − (NDVI))(NTL) Equation 1 

 225 

However, the VANUI, which is calculated based on NDVI, is not effective to capture 226 

the intra-urban change in fast-growing cities because NDVI is less sensitive in built-up 227 

areas with low vegetation coverage (Huete et al., 2002). At the same time, VANUI is 228 

still affected by the blooming problem of the DMSP-OLS product.  229 

Further to the development of VANUI, the enhanced vegetation index (EVI) adjusted 230 

nighttime light index (EANTLI) has been developed (Zhuo et al., 2015). The index is 231 

computed by integrating the MODIS EVI and the DMSP-OLS (Equation 2). Since the 232 

EVI is capable of offering information that is negatively and closely correlated with 233 

features of the urban areas (Liu, X. et al., 2015), it has been confirmed that the index 234 

can be easily used to deal with saturation, identifying the changes of the NTL brightness 235 

value in the built-up areas. Therefore, it is very helpful for analyzing the urban structure 236 

and modeling carbon emissions (Zhuo et al., 2015). Moreover, the accuracy assessment 237 

based on the statistical carbon emission at the city level also shows that EANTLI is not 238 

only suitable and effective for modeling carbon emissions in lighting areas, but also in 239 

non-lighting areas.  240 

 241 

 

EANTLI =

{
 

 1 +（𝑁𝑇𝐿𝑛𝑜𝑟𝑚 − 𝐸𝑉𝐼）

1 −（𝑁𝑇𝐿𝑛𝑜𝑟𝑚 − 𝐸𝑉𝐼）
× 𝑁𝑇𝐿, EVI > 0.01

0, EVI ≤ 0.01

  

Equation 2 

where 𝑁𝑇𝐿  represents the digital number of the NTL data, 𝑁𝑇𝐿𝑛𝑜𝑟𝑚  means the 242 

normalization of 𝑁𝑇𝐿, and 𝐸𝑉𝐼 refers to the EVI data retrieved from MODIS data. 243 

Liu et al. (2018) combined the EANTLI with LandScan population data to map the 244 

urban carbon emissions in China. Zhuo et al. (2015) and Zhao et al. (2018) compared 245 
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the accuracies of the VANUI and the EANTLI in mapping carbon emissions. Their 246 

results demonstrated that the EANTLI is capable of detecting significantly more spatial 247 

details within built-up areas than VANUI. Also, the EANTLI is more similar to the 248 

calibrated NTL compared to VANUI. Finally, the EANTLI more accurately predicted 249 

the consumption of  electricity for 166 Chinese prefecture-level cities and the R-squared 250 

value increased by 11.8% in the linear regression model between the predicted 251 

electricity power use and the statistical carbon emission (Zhuo et al., 2015).   252 

 253 

3.2.2 regression models 254 

There are generally two main procedures for downscaling statistical carbon emissions 255 

at the jurisdiction level. The first procedure is data preparation, including the 256 

calculation of statistical carbon emissions at the administrative level from energy 257 

reports, the calibration of the NTL data, and the extraction of urban areas. Secondly, by 258 

establishing the relationship between statistical carbon emissions and NTL, an emission 259 

value is assigned to each pixel of NTL on this basis, and integrated into the urban scale. 260 

Simple regression methods can be utilized to build the linear relationship between NTL 261 

data carbon emissions. For instance, Meng et al. (2014) predicted the urban carbon 262 

emissions for China based on the statistical relationship between the DMSP-OLS 263 

product and provincial carbon emissions. Lu and Liu (2014) adopted the DMSP-OLS 264 

product to acquire an index to represent human activities and verified the assumption 265 

that counties with close carbon emissions would cluster in space. Zhao et al. (2020) 266 

used a linear regression model to map the carbon emissions from 2000 to 2017 and 267 

explored the relationship between CO2 emissions and nighttime land surface 268 

temperature in the Yangtze River Delta (YRD) Region.  269 

The reliability of the simple linear relationship between NTL and statistical emissions 270 

can be weakened by the lack of data verification (Wang, S. et al., 2014). Besides, only 271 

the spatial or temporal relationship can be explored by linear regression models, which 272 

may cause deviations in the modeling of carbon emissions in both space and time 273 

dimensions. Panel data analysis can link the statistical emissions and NTL in 274 

spatiotemporal dimensions simultaneously. Therefore, panel data models have already 275 

been used for carbon emissions estimation (Cui et al., 2019; Han et al., 2018; Shi et al., 276 

2016; Wang and Liu, 2017; Zhang et al., 2021). 277 

 278 

Moreover, the geographical and temporally weighted regression (GTWR) model has 279 

also been used to build the relationship between statistical carbon emissions and NTL 280 

data due to its considerations of spatial and temporal heterogeneity of CO2 emissions. 281 

Using the GTWR and NPP-VIIRS, Zhang et al. (2020)  mapped CO2 emissions from 282 
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coal boilers, thermal power plants, and natural gas boilers in 15 northern provinces from 283 

2012 to 2017 with a  resolution of 5 km × 5 km.  284 

 285 

3.3 bottom-up method 286 

Bottom-up methods to model urban carbon emissions generally integrate emissions at 287 

a point or sectoral level and then allocate the emissions into the designated spatial unit 288 

(Cai et al., 2018b). The relevant studies are summarized in Table 3. 289 

There are some open bottom-up inventories at the facility level, such as the China 290 

Cement Emission database (Liu et al., 2021) and China coal-fired Power plant 291 

Emissions Database (Liu, F. et al., 2015). There are also other studies to develop carbon 292 

emission maps using bottom-up approaches. Zhang et al. (2014) proposed an analysis 293 

framework for carbon emissions estimation based on land use type and examined the 294 

spatial variations of carbon metabolism in Beijing. Household and personal surveys 295 

have also been applied to plot the carbon emissions (Rong et al., 2020; Yang et al., 296 

2015). Wu et al. (2018) established a database for energy use intensity (EUI) from the 297 

Shanghai building energy efficiency monitoring platform for each building function 298 

and mapped the emissions of Shanghai based on the EUI and the building function. 299 

Zhang, R. et al. (2018) deployed a traffic allocation model to simulate traffic in road 300 

networks through a gasoline consumption function, i.e. the User Equilibrium (UE) in 301 

the JICA-STRADA 35 platform (Tscharaktschiew and Hirte, 2010).  With the advances 302 

in big data development, taxi GPS trajectory data from taxi companies have been 303 

adopted to map high-resolution taxi emissions by daily travel (Luo et al., 2017; Xia et 304 

al., 2020; Zhang, J. et al., 2018; Zhao et al., 2017). 305 
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Table 3 Literature on the data used in the bottom-up methods   

Study 

area 

Resolution Transportation 

sector 

Building sector Industrial data Reference 

Shanghai point 1054 household 

surveys (transport 

mode, petrol 

consumption) 

1054 household 

surveys (energy use at 

home and 

demographic 

characteristics) 

No data Yang et al. 

(2015) 

Kaifeng point No data 3895 household 

surveys (energy use 

features, cognition 

and preferences and 

demographic 

characteristics) 

No data Rong et al. 

(2020) 

Beijing 500 m No data Empirical conversion 

coefficients from 

IPCC for commercial 

and residential land 

use type; land-use 

maps of Beijing in the 

government databases 

 

Empirical 

conversion 

coefficients from 

IPCC for industrial 

land use type; land-

use maps of 

Beijing in the 

government 

databases 

 

Zhang et 

al. (2014) 

Shandon

g  

500 m Fleet size, annual 

average vehicle-

traveled distance, 

vehicle age 

No data No data Sun et al. 

(2016) 

Shanghai 100 m No data Building energy use 

from the 2016 

Shanghai Statistical 

Yearbook and public 

building energy 

efficiency monitoring 

platform; building use 

predicted from 

building morphology 

and Point of Interest 

(POI) of the 

OpenStreetMaps  

Shanghai 

Statistical 

Yearbook 

Wu et al. 

(2018) 
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Changzh

ou 

Line (road 

link) 

Origin-Destination 

data from the survey 

of the individual trip 

in Changzhou 

No data No data Zhang, R. 

et al. 

(2018) 

Hangzho

u 

500 m Taxi GPS trajectory 

data for 10,000 

taxis, household 

travel 

questionnaires, POI 

data 

No data No data Xia et al. 

(2020) 

seven 

selected 

districts 

in Wuhan  

500 m Taxi GPS trajectory 

dataset for 6500 

taxis from a taxi 

company, travel 

questionnaires from 

Center for Social 

Survey Research of 

Wuhan University, 

POI data 

No data No data Zhao et al. 

(2017) 

Beijing 100 m Taxi GPS trajectory 

dataset  

No data No data Zhang, J. et 

al. (2018) 

Shanghai 100 m Taxi GPS trajectory 

dataset for 13,675 

taxis from a taxi 

company 

No data No data Luo et al. 

(2017) 
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  1 

3.4 carbon satellite observations  2 

Employing carbon satellites to model urban carbon emissions is another relatively new approach. 3 

Carbon satellites are the key data source for observing regional and global CO2 distributions (Crisp 4 

and Miller, 2010; Yoshida et al., 2011). The CO2 concentration obtained by satellite observations 5 

has the advantages of global coverage, frequent temporal resolution, and uniform observation, thus 6 

the spatiotemporal changes in atmospheric CO2 concentration can be reflected (Yang et al., 2019). 7 

At present, the satellites with public access include the Scanning Imaging Absorption Monitoring 8 

Spectrometer for Atmospheric Chartography (SCIAMACHY) from Europe, Orbiting Carbon 9 

Observatory 2 (OCO-2) and OCO-3 from the USA, the Greenhouse Gases Observing SATellite 10 

(GOSAT) and GOSAT-2 from Japan, and the Chinese carbon dioxide observation satellite (TanSat) 11 

from China (Table 4).  12 

The column-average dry air mole fraction of CO2 (XCO2) enhancements from the satellite 13 

observations are positively correlated with fossil fuel carbon emissions from human activities. 14 

Therefore, the XCO2 can be adopted to quantitatively predict anthropogenic CO2 emissions in a 15 

data-driven way (Yang et al., 2019). For example, Hakkarainen et al. (2016) employed the XCO2 16 

obtained from the OCO-2 to develop the first direct observation of anthropogenic CO2 for the 17 

regions with high pollution including East Asia, central Europe, and the eastern USA.  Yang et al. 18 

(2019) developed a method for modeling fossil fuel CO2 emissions in China by an artificial neural 19 

network based on the XCO2 generated from GOSAT. In order to estimate the CO2 levels in China, 20 

Wang et al. (2011) used the level 3 products of XCO2 obtained from the SCIAMACHY with a 21 

spatial resolution of 0.5◦,  land cover maps, and emission inventories of the Regional emission 22 

inventory in Asia (REAS) dataset. Yang et al. (2018) used the observations from the TanSat 23 

satellite to generate the first Tansat global XCO2 maps. 24 

Table 4. Comparison of the carbon satellites  25 

Satellite Operator Spatial 

resolution  

Temporal 

resolution 

Launch year 

SCIAMACHY ESA 30 × 60 km Every 6 days 2002 

GOSAT JAXA, MOE, and NIES 10.5 km Every 3 days 2009 

GOSAT-2 JAXA, MOE, and NIES 9.7 km Every 6 days 2018 

OCO-2 NASA 1.29 × 2.25km Every 16 days 2014 

OCO-3* NASA 1.29 × 2.25km Every 16 days 2019 

TanSAT CAS 1 ×2 km, 2 ×2 km Every 16 days 2016 

* https://disc.gsfc.nasa.gov/datasets?keywords=OCO-3 26 
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ESA (Envisat, a European Space Agency), JAXA (Japanese Aerospace Exploration Agency), MOE 27 

(the Japanese Ministry of the Environment), NIES (the National Institute for Environmental 28 

Studies), NASA (The National Aeronautics and Space Administration) and CAS (Chinese Academy 29 

of Sciences). 30 

3.5 hybrid method 31 

Hybrid approaches involving both bottom-up and top-down methods have been implemented to 32 

retain the accuracy of the bottom-up method and the efficiency of the top-down method. The 33 

central government and planning departments in China have produced some national spatial 34 

inventories of carbon emission using hybrid methods with open access. For example, the China 35 

High Resolution Emission Database (CHRED) was created by the Chinese Academy for 36 

Environmental Planning (Cai et al., 2018b). Among all the available emission data sources in 37 

China, the CHRED has the finest spatial resolution so far (1 km). The dataset was created primarily 38 

based on point emission sources from the industrial sector and complementary socio-economic 39 

information of Mainland China (Figure 1). Industrial emissions were modeled by the bottom-up 40 

approach, taking advantage of the point emission sources at the facility level containing 41 

approximately 1.5 million enterprises from the First China Pollution Source Census (FCPSC) 42 

dataset. The FCPSC may be China’s first comprehensive census of energy use at the national level. 43 

The FCPSC contains detailed information on fossil fuel consumption and industry location at the 44 

facility level. It also includes district/county-level residential energy consumption. Emissions from 45 

the transport, services, and agricultural sectors of the CHRED were disaggregated from statistical 46 

data using social-economic and urban land use data using top-down approaches. Statistical 47 

emissions from the residential and agricultural sectors at the province level were downscaled 48 

equally to the grid of the corresponding land use type generated from remote sensing imaging and 49 

population data. Finally, the emissions from the different sectors were synthesized into one 50 

database. In addition, Wang, J. et al. (2014) constructed a high spatial-resolution (10 km) map of 51 

carbon emissions for China, with emissions from the industrial and residential sectors also 52 

generated from the FCPSC dataset. Hao (2015) mapped the industrial, enterprise and residential 53 

emissions from the FCPSC dataset, and used weights of road type, population, and land use as 54 

proxy data to disaggregate transportation and agriculture emissions. 55 
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 56 

Figure 1 The framework of the CHRED (Cai et al., 2018b) 57 

 58 

The standardized CHRED framework has been used for cities and regions for more precise and 59 

localized results. Cai and Wang (2013) and Cai and Zhang (2014) established a carbon emission 60 

inventory in Tianjin and Shanghai at a 1 km resolution and discussed the CO2 emissions within 61 

different spatial boundaries. In addition, the emissions within four spatial boundaries were 62 

compared according to the carbon emission maps of Tianjin (Cai and Wang, 2013). Cai used the 63 

same framework to model the carbon emissions for Chongqing (Cai, 2014), Shanghai (Cai and 64 

Zhang, 2014), and cities in the YRD region (Cai and Wang, 2015), Jing-Jin-Ji (Beijing-Tianjin-65 

Hebei) region (Cai et al., 2018a), and further improved the methodology by utilizing localized 66 

datasets at finer spatial resolutions.  67 

Tsinghua University developed The Multi-resolution Emission Inventory for China (MEIC, 68 

http://meicmodel.org/) (Li et al., 2017; Zheng, B. et al., 2018). The dataset contains the spatial 69 

distribution of ten air pollutants and CO2 in mainland China with the finest grid of 0.25° × 0.25°. 70 

The inventory has 5 sectors, including power, industry, residence, transportation, and agriculture. 71 

The carbon emissions from power, cement, and steel industries are generated from two bottom-up 72 

inventories, i.e., the China Cement Emission database (Liu et al., 2021) and Global Power 73 

Emissions Database (Tong et al., 2018). Important proxy data in the top-down method for 74 

downscaling emissions include population, roads, and power plants. 75 
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76 

Apart from using the standardized framework, localized hybrid methods have also been applied in 77 

many cities. For instance, Dai et al. (2020) produced the carbon emission database for Jinjiang city, 78 

China with a spatial resolution of 30 m and 500 m using a hybrid approach. The industrial 79 

emissions were calculated at the point level by a bottom-up method. Emissions in other sectors 80 

were allocated to the spatial grid based on spatial proxies such as population map, land use, and 81 

NTL data using top-down approaches.  Similar studies have been conducted for Changxing (Liu 82 

et al., 2020) and Shanghai (Zhu et al., 2019) with industrial emissions at point level, road emissions 83 

at street level, and building emissions at the area level. Zhao et al. (2012) used the bottom-up 84 

method to estimate point-level industrial emissions and employed GDP and population to 85 

downscale provincial emissions in China at the resolution of 0.25° × 0.25°. Furthermore, Cai et al. 86 

(2020) adopted the hybrid method for developing the spatial inventory in Hong Kong with a 87 

resolution of 100 m. Industrial and airport emissions were modeled using the bottom-up method. 88 

Urban form and traffic flow were used as proxies for building and traffic emissions respectively 89 

in the top-down approach.  90 

91 

3.6 impacts of urban form on carbon emissions 92 

3.6.1 impacts of urban morphology 93 

It is found that the urban complexity, urban compactness, and urban development patterns are the 94 

major indicators to characterize the urban morphology. The urban complexity represents the extent 95 

of the irregularity of the perimeter of the land lot, and urban compactness reflects the degree of 96 

dispersion or sparseness of the land lot (Makido et al., 2012). Urban development patterns include 97 

different urban development strategies such as the mononuclear pattern or multiple-nuclei pattern 98 

(Ou et al., 2019).  99 

Several studies revealed that the increase in urban complexity has an impact on increasing carbon 100 

emissions (Fang et al., 2015; Ou et al., 2013; Ou et al., 2019; Shi et al., 2020; Shu et al., 2018; 101 

Wang et al., 2019). Results from quite a large number of studies showed the compact urban setting 102 

can lead to low carbon emissions and increase energy efficiency since the transport energy 103 

consumption can be reduced (Chen et al., 2008; Ou et al., 2013; Wang, M. et al., 2017; Wang, S. 104 

et al., 2017; Wang et al., 2019). Meanwhile, there are also studies having negative opinions on 105 

urban compaction since it will increase residential energy consumption (Miao, 2017; Sha et al., 106 

2020; Ye et al., 2015). Li et al. (2018) pointed out that the urban density at the neighborhood level 107 

varies for different types of dwelling units.  108 

There are also some debates on the effect of urbanization patterns on carbon emissions. Some 109 

studies found that polycentric urbanization can improve CO2 emission efficiency (Ou et al., 2013; 110 

Sha et al., 2020). Therefore, they suggested urban development patterns in a decentralized and 111 

polycentric way in order to reduce CO2 emissions. However, Wang, Y. et al. (2014) pointed out 112 

that the transformation to a scattered and polycentric urban form in Beijing could increase driving 113 
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distances, which could cause a significant increase in transport emissions. Also, Wang, S. et al. 114 

(2017) believed that urban development in a multiple-nuclei pattern at the metropolitan level may 115 

not effectively mitigate carbon emissions. A recent study revealed that the impact of urban 116 

development patterns varies for cities under different development stages (Ou et al., 2019).  117 

 118 

3.6.2 impacts of urban land use/land cover 119 

The interplay between carbon emissions and urban land use has also been investigated by previous 120 

studies. Zhang, R. et al. (2018) explored the role of land use planning in reducing carbon emissions 121 

from the transport sector. The construction land use and landscape fragmentation can increase the 122 

carbon emissions at a lower proportion and reduce the emissions at a larger proportion. Residential 123 

and commercial land uses can increase carbon emissions, while green space can decrease carbon 124 

emissions.  However, the impact of industrial land use was found to be not significant in this study. 125 

Xia et al. (2020) found that land use diversity can decrease carbon emissions, while urban 126 

residential density has a positive impact on increasing carbon emissions in Hangzhou. Higher 127 

accessibility to water bodies and green space is also associated with lower carbon emissions (Ye 128 

et al., 2015). Ying et al. (2008) indicated there are significant differences in carbon emissions of 129 

different land use patterns, in which the construction land and cultivated land are the two major 130 

carbon sources, while forest land and grassland are related to low carbon emissions. Land use 131 

change is also found to be associated with high emissions (Zhao et al., 2021). Guan et al. (2019) 132 

investigated the low carbon transport (LCT) in China and concluded that only the land use diversity 133 

may not be capable of changing the LCT mode choice for Chinese cities. Liu et al. (2016) 134 

concluded that residents living in a neighborhood with higher land use mix, public transit 135 

accessibility, and more pedestrian-friendly street design tend to travel in an LCT manner. Shen et 136 

al. (2020) suggested mitigating transport emissions by improving parking availability rather than 137 

land use reconstruction.  138 

 139 

4 Discussions 140 

4.1 cross-comparison of the methods 141 

The characters of the three methods are summarized and compared in this section (Table 5). The 142 

top-down method using NTL data is simple to compute and conduct. Therefore, the approach can 143 

be applied to cities or regions without detailed emission data. Also, the method can be easily and 144 

efficiently applied to large areas as NTL data have global coverage. Therefore, the method has 145 

been widely applied at the regional and national scales for China. The accuracy of the method can 146 

achieve a medium level of 70% to 90%. However, this method cannot perform well in developing 147 

countries since the relationship between the NTL pixel value and carbon emissions is less 148 

significant in developing countries than in developed countries (Doll et al., 2000). This may affect 149 

the accuracy of the top-down method in modeling the carbon emissions in developing countries 150 

with rapid urbanization and industrialization like China. Secondly, previous studies found out that 151 
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the top-down method can cause almost 50% per pixel error rate from DMSP-OLS data, and these 152 

errors are geographically correlated (Rayner et al., 2010). Thirdly, the top-down approach using 153 

NTL is likely to underestimate emissions from transportation and industrial sectors because the 154 

NTL data generally reflect socioeconomic characteristics instead of fossil fuel combustion during 155 

the night, which may not accurately predict the human activities relevant to transport and industrial 156 

process (Ghosh et al., 2010). Moreover, a higher brightness value in the NTL data does not always 157 

indicate higher carbon emissions since electricity generation and electricity consumption often 158 

take place in different areas (Meng et al., 2014). Therefore, the data quality and the existing 159 

workflow of the top-down model still need to be improved to achieve more accurate and 160 

comprehensive estimates of carbon emissions. 161 

Through requiring more detailed data, the bottom-up method usually provides the most accurate 162 

results. In particular, the bottom-up method is mainly implemented by government authorities 163 

because it is suitable for local-scale assessment and therefore favored by governors at the city, 164 

district, community, or household levels. There are also limitations of the method. Firstly, it is 165 

difficult to conduct data collection since it costs extensive time, labor force, and material resources. 166 

This method requires accurate and detailed data about energy consumption, emission sources, and 167 

socioeconomic information, so it cannot be used in cities or regions without such data, especially 168 

for developing countries and regions where such data set is either not publicly available or under 169 

development (Zheng, S. et al., 2018). Second, it is difficult to collect energy, emission, and 170 

socioeconomic data with the same time scale and consistent status. As a consequence, the 171 

applicability and comparability of the method are limited and it can be challenging to develop a 172 

generic way to model the spatial patterns of the carbon emissions across different cities (Jing et 173 

al., 2018). 174 

The carbon satellite approach is capable of developing a comprehensive understanding of urban 175 

carbon emissions with global coverage and frequent temporal resolution. Consistent satellite 176 

observations can be adopted to identify the carbon sources and sinks in both space and time 177 

dimensions. This method is likely to enhance the current emission inventories with the further 178 

development of satellite products. The major shortcoming of this method is the low spatial 179 

resolution, generally greater than 10 km, depending on the sensor. Therefore, it is mostly used at 180 

the global or national levels instead of the city scale at present due to the restrictions in resolution 181 

and accuracy. Also, it is difficult to identify the variations of the magnitude of the emissions in 182 

certain urban areas from the carbon satellite system, as the CO2 signal from the main urban cores 183 

can be spread out and deviated from the emission sources, which may result from the low 184 

resolution as well as atmospheric transmission, mixing and retention (Ou et al., 2015a). With the 185 

improvement of spatial resolution of future carbon satellites, this method can be better exploited 186 

in urban carbon emission modeling.  187 

 188 

Table 5. Cross-comparison of the three methods 189 
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 190 

Methods Top-down method 

from nightlights 

Bottom-up method Carbon satellite 

observation 

Spatial coverage   Global coverage Usually local coverage Global coverage 

Finest spatial resolution  500 m  Point 1 km 

Temporal resolution  Monthly or annual  Usually a single year Weekly, 

monthly, Or 

annual 

Accessibility   Freely available Usually requiring non-

public data 

Freely available 

Accuracy  Medium accuracy 

(70% to 90%) 

Usually most accurate  Low accuracy  

Applications  Regional, national-

scale studies 

Local estimation at the 

city, district, community 

or household levels 

National-scale 

studies 

 191 

4.2 policy implications   192 

In order to recognize the importance of cities in improving energy efficiency and mitigating carbon 193 

emissions, the Chinese government aimed to encourage carbon neutrality strategies and promoted 194 

a low-carbon urban development demonstration project in 5 pilot provinces and cities in 2010 195 

(National Development and Reform Commission of China, 2010).  196 

The understanding of the impact of urban form can therefore be useful in formulating the low-197 

carbon policies for Chinese cities. Fundamentally, a spatial inventory of CO2 emission should be 198 

established for each city as a reference for the investigations on the impact of urban form. The 199 

results from the literature generally favor a regular and continuous urban form for reducing CO2 200 

emissions. Also, the accessibility to greenery and water bodies can help reduce carbon emissions 201 

in urban areas. However, there is yet to be a clear conclusion on the impact of urban compaction, 202 

polycentric spatial development, commercial, and industrial land use. Their influences can vary 203 

significantly among different cities.  So, decision-makers should take serious considerations of 204 

these factors which deserve a detailed investigation and sectoral scrutiny. The studies also 205 

highlighted the importance of balancing the impacts of urban form and the feasibility of optimizing 206 

urban form. China already has high population densities in urban areas, therefore increasing urban 207 

compactness by further densifying the urban population to decrease carbon emissions may not 208 

always be feasible in Chinese cities. Land-use control may reduce emissions in some cities, but it 209 
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usually brings higher costs. However, if policies are executed properly with cooperation across 210 

cities, or induce significant co-benefits, they could be an effective mitigation solution (Leibowicz, 211 

2017).  212 

 213 

4.3 implications from other countries 214 

Urban forms are found to influence the spatial distribution of carbon emissions; urban form data 215 

is therefore essential for constructing a more accurate spatial emission inventory. Some spatial 216 

modeling studies in other countries have already taken urban form data into account. For example, 217 

the United States developed the Vulcan dataset with a 0.1-degree resolution 218 

(http://vulcan.project.asu.edu/research.php.). Carbon emissions from the various sectors including 219 

commercial, industrial, and residential, as well as road and non-road transport were modeled by 220 

the Vulcan dataset (Gurney et al., 2009). The Vulcan dataset was developed by a bottom-up 221 

approach using seven major datasets containing the road networks, spatial information of point 222 

emission sources, the floor and areas of buildings, etc. (Gurney et al., 2009). It is generally 223 

regarded as the most precise carbon emission inventory (Andres et al., 2012).  224 

China can learn from the low-carbon experience of Japan for its carbon emission mitigation for 225 

the following reasons(Ouyang and Lin, 2017). First, the two countries shared similar economic 226 

development experiences (Minami, 2016). Secondly, Japan is recognized as the leading country 227 

for energy conservation and emission control in advance of other countries in the world (Honma 228 

and Hu, 2008; Ouyang and Lin, 2017). Scholars in Japan have developed accurate estimations for 229 

urban carbon emissions. Sharifi et al. (2018) proposed a standardized framework to obtain a 230 

synthetical understanding of urban carbon emissions (Figure 2). The framework synthesized 231 

emissions from the building and transport sectors. The annual carbon emissions of a building can 232 

be determined by the EUI and the building attributes, such as building function and building floor. 233 

For the transport sector, carbon emissions were determined by the energy consumption for each 234 

transport type and the corresponding emission factors. This framework has already been adopted 235 

to map the urban carbon emissions in Shanghai (Wu et al., 2018), and Tokyo (Sharifi et al., 2018).  236 
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 237 

Figure 2 the framework for modeling urban carbon emissions proposed by Sharifi et al. (2018)  238 

The modeling methods in these countries involved high-resolution urban form data such as the 239 

building footprint and location of the point sources to accurately detect the spatial patterns of the 240 

carbon emissions in urban areas. Consequently, the location and the emissions from the various 241 

sources, such as power plants, road networks can be retained. However, most studies in China did 242 

not adopt urban form data due to data availability, and only one study used urban form data (Cai 243 

et al., 2020). The accuracy of carbon emission data in China can be improved by incorporating 244 

urban form as input.  245 

 246 

4.4 future research directions  247 

With the development of urban data science, several future directions of the development of the 248 

spatial inventory can be identified from this review: 249 

Firstly, the spatial modeling studies in China generally used land use data, NTL or population as 250 

the elementary emission sources, ignoring the impacts of urban form. With the development of 251 

urban form extraction techniques (Ren et al., 2019), further work involving high-quality urban 252 

form data in the modeling process is necessary to obtain more accurate spatial patterns of urban 253 

carbon emission for Chinese cities. Also, adopting urban form data in the modeling can support 254 

researchers, urban planners, and policymakers to have in-depth knowledge of the impact of the 255 

urban form and devise corresponding planning strategies. 256 
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Besides, previous data often have a spatial resolution greater than 1 km. Inventories with the finer 257 

spatial resolution are required for more accurate identification of emission hotspots and targeted 258 

planning strategies.  259 

Furthermore, the IPCC method and traffic models are mostly used in the bottom-up method. 260 

Simple linear regression is widely adopted in the top-down approach. Panel data model and GTWR 261 

have also been implemented to account for spatial and temporal heterogeneity. Other machine 262 

learning algorithms such as random forest and artificial neural networks, can explore non-linear 263 

relationships with higher precision and are anticipated to increase the modeling accuracy in further 264 

studies.    265 

 266 

Finally, in the building sector, land use, POI, and household survey are frequently used for spatial 267 

analysis. For the transportation sector, road network, taxi GPS data, vehicle information are the 268 

commonly used spatial data.  Industry locations and point-level energy consumption are generally 269 

used for mapping industrial emissions. Nevertheless, the industry locations and energy activities, 270 

taxi GPS data, vehicle information, and household surveys are generally unavailable for most cities 271 

in China. The lack of a generally applicable method using open data impedes the consistency of 272 

carbon emission estimates and mitigation strategies across different cities. Therefore, an open-data 273 

based standardized methodology is essential for collaborative efforts in carbon emission 274 

assessment and mitigation strategies for global cities.  275 

 276 

 5. Conclusions   277 

In this study, the spatial modeling of urban carbon emissions and the impact of urban form in 278 

China are systematically reviewed and analyzed. The currently available datasets and methods for 279 

spatial modeling are summarized. The common methods include top-down approaches using NTL, 280 

bottom-up analyses, carbon satellite observations, and hybrid methods.  281 

The strengths and weaknesses of the methods were compared to explore the future needs and trends 282 

in the development of spatial models. The top-down method based on the NTL can be implemented 283 

to predict the spatial variations of the regional and national carbon emissions using openly 284 

available data sources, but the accuracy of the product can be influenced by the data quality of the 285 

NTL and the underestimation of the emissions from transport and industrial sector. The bottom-286 

up method has generally been conducted locally by government authorities or planning 287 

departments and has been able to secure accurate carbon emission data. However, the universal 288 

application of this method is limited by data availability. The carbon satellite method is relatively 289 

new. It is simple to implement but its application in urban areas is still limited due to the coarse 290 

spatial resolution.  291 

The urban forms, including urban morphology and land use, are found to affect carbon emissions. 292 

In terms of urban morphology, the increase in the urban complexity can contribute to higher carbon 293 
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emissions, while there are still some discussions on the impacts of urban compaction and the choice 294 

of urban spatial development pattern. The impact of the proportions of land use types varies in 295 

cities under different development stages and sizes. Therefore, the impact of the urban form should 296 

be analyzed for individual cities for a specific and targeted understanding. The policymakers and 297 

urban planners should seriously consider these urban form indicators and develop corresponding 298 

urban design policies in a sensible way.  299 

However, based on the literature, it is found that most studies in China do not consider urban form 300 

data. This may greatly impact the urban carbon emission estimation and management since a 301 

complex urban morphology and high-density urban context can be found in most Chinese cities. 302 

Moreover, the spatial inventories of urban carbon emission in China generally have a low spatial 303 

resolution over 1 km. Urban carbon emission models with a finer resolution are needed for more 304 

accurate urban studies at the neighborhood and building scales. With newly developed urban 305 

morphology extraction technology and machine learning techniques, more accurate inventories of 306 

urban carbon emissions at higher spatial resolutions can be developed by incorporating detailed 307 

data on urban form. Open and high-quality urban form data is also helpful to the development of 308 

a generic method to conduct high-resolution urban carbon emission modeling for global cities.  309 
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