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Abstract 31 

Pakistan ranks third in the world in terms of mortality attributable to air pollution, with 32 

aerosol mass concentrations (PM2.5) consistently well above WHO (World Health Organization) 33 

air quality guidelines (AQG). However, regulation is dependent on a sparse network of air quality 34 

monitoring stations and insufficient ground data. This study utilizes long-term observations of 35 

aerosols and trace gases to characterize and rank the air pollution scenarios and pollution 36 

characteristics of 80 selected cities in Pakistan. Datasets used include (1) the Aqua and Terra 37 

(AquaTerra) MODIS (Moderate Resolution Imaging Spectroradiometer) Level 2 Collection 6.1 38 

merged Dark Target and Deep Blue (DTB) aerosol optical depth (AOD) retrieval products; (2) the 39 

CAMS (Copernicus Atmosphere Monitoring Service) reanalysis PM1, PM2.5, and PM10 data; (3) the 40 

MERRA-2 (Modern-Era Retrospective analysis for Research and Applications, Version 2) 41 

reanalysis PM2.5 data, (4) the OMI (Ozone Monitoring Instrument) tropospheric vertical column 42 

density (TVCD) of nitrogen dioxide (NO2), and VCD of sulfur dioxide (SO2) in the Planetary 43 

Boundary Layer (PBL), (5) the VIIRS (Visible Infrared Imaging Radiometer Suite) Nighttime Lights 44 

data, (6) MODIS Collection 6 Version 2 global monthly fire location data (MCD14ML), (7) 45 

population density, (8) MODIS Level 3 Collection 6 land cover types, (9) AERONET (AErosol 46 

RObotic NETwork) Version 3 Level 2.0 data, and (10) ground-based PM2.5 concentrations from air 47 

quality monitoring stations. Potential Source Contribution Function (PSCF) analyses were 48 

performed by integrating with ground-based PM2.5 concentrations and the NOAA (National 49 

Oceanic and Atmospheric Administration) HYSPLIT (Hybrid Single-Particle Lagrangian Integrated 50 

Trajectory) air parcel back trajectories to identify potential pollution source areas which are 51 
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responsible for extreme air pollution in Pakistan. Results show that the ranking of the top 52 

polluted cities depends on the type of pollutant considered and the metric used. For example, 53 

Jhang, Multan, and Vehari were characterized as the top three polluted cities in Pakistan when 54 

considering AquaTerra DTB AOD products; for PM1, PM2.5, and PM10 Lahore, Gujranwala, and 55 

Okara were the top three; for tropospheric NO2 VCD Lahore, Rawalpindi, and Islamabad and for 56 

PBL SO2 VCD Lahore, Mirpur, and Gujranwala. The results demonstrate that Pakistan’s entire 57 

population has been exposed to high PM2.5 concentrations for many years, with a mean annual 58 

value of 54.7 µg/m3, over all Pakistan from 2003 to 2020. This value exceeds Pakistan’s National 59 

Environmental Quality Standards (Pak-NEQS, i.e., <15 µg/m3 annual mean) for ambient air 60 

defined by the Pakistan Environmental Protection Agency (Pak-EPA) as well as the WHO Interim 61 

Target-1 (i.e., mean annual PM2.5 <35 µg/m3). The spatial analyses of the concentrations of 62 

aerosols and trace gases in terms of population density, nighttime lights, land cover types, and 63 

fire location data, and the PSCF analysis indicate that Pakistan’s air quality is strongly affected by 64 

anthropogenic sources inside of Pakistan, with contributions from surrounding countries. 65 

Statistically significant positive (increasing) trends in PM1, PM2.5, PM10, tropospheric NO2 VCD, 66 

and SO2 VCD were observed in ~89%, ~67%, ~48%, 91%, and ~88% of the Pakistani cities (80 67 

cities), respectively. This comprehensive analysis of aerosol and trace gas levels, their 68 

characteristics in spatio-temporal domains, and their trends over Pakistan, is the first of its kind. 69 

Results will be helpful to the Ministry of Climate Change (Government of Pakistan), Pak-EPA, 70 

SUPARCO (Pakistan Space and Upper Atmosphere Research Commission), policymakers, and the 71 

local research community to mitigate air pollution and its effects on human health. 72 

Keywords: MODIS; AOD; CAMS; MERRA-2; PM1; PM2.5; PM10; OMI; NO2; SO2; PSCF; Pakistan  73 
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Highlights:  74 

 Lahore, Gujranwala, and Okara are the most polluted city based on PM2.5 75 

 Jhang, Multan, and Vehari are the most polluted cities based on AOD 76 

 Aerosols, nighttime lights, population, cropland, and fire show same spatial patterns 77 

 Pakistan’s entire population is exposed to long-term PMx (x = 1, 2.5, & 10) 78 

 Pakistan’s air quality is mainly affected by local anthropogenic sources 79 

1. Introduction 80 

With the rapid increase in population and overexploitation of natural resources, air pollution 81 

is a serious global environmental concern. According to the World Health Organization (WHO 82 

2018a), air pollution levels are dangerously high worldwide as 9 out of 10 people breathe polluted 83 

air, and each year 7 million deaths are caused by outdoor and indoor aerosol pollutants. Outdoor 84 

(ambient) air pollution is due to high concentrations of different species including airborne 85 

particulate matter (PM), ozone (O3), nitrogen dioxide (NO2), volatile organic compounds (VOC), 86 

carbon monoxide (CO), and sulfur dioxide (SO2), which have adverse health effects (Mannucci 87 

and Franchini 2017). Although air pollution is a global problem, the latest WHO air quality 88 

database reveals that 97% of affected cities are in low- and middle-income countries with more 89 

than 100,000 inhabitants (WHO 2018b). Air pollution is endemic to Pakistan, being listed among 90 

low- and middle-income countries as well as being the most urbanized of its South Asian 91 

counterparts (77.42 million or 36.37 % of the urban population, with 2.52 % annual growth rate) 92 

(UNDP 2019). Purohit et al. (2013) predicted that under current emission control standards, air 93 
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pollution would decrease life expectancy by more than 100 months by 2030. The Health Effects 94 

Institute (2019) reported that since 1990, Pakistan’s entire population has been exposed to PM2.5 95 

(the integrated dry mass of aerosol particulates with an aerodynamic diameter less than 2.5 µm) 96 

annual mean concentrations of 58 µg/m3 in 2017, levels exceeding WHO Interim Target-1 (i.e., 97 

<35 µg/m3). Pakistan ranks third in the world in terms of mortality attributable to air pollution, 98 

with an annual loss of 128,000 lives (Government of Pakistan 2019). Recently, on October 30, 99 

2019, the Air Quality Index (AQI) was 484 in Lahore (the second-largest city with the highest 100 

urbanization rate of 6.12 percent per annum), well above the threshold of 300 for “hazardous” 101 

level (Amnesty International 2019). The winter of 2019-2020 witnessed a spate of smog, which 102 

compelled authorities in Punjab to close schools for an extended period. The formation of this 103 

smog was fueled by the buildup of anthropogenic aerosols having 65% of sources within Pakistan. 104 

The principal cause for smog formation is NOx, which is emitted primarily from Pakistan's 23.6 105 

million transport vehicles (58%), followed by industry and power, which accounts for 34% of 106 

emissions (Amnesty International 2019; Government of Pakistan 2019; UNDP 2019). According 107 

to the Pakistan Air Quality Initiative (PAQI), Lahore, Peshawar, Islamabad, and Karachi are the 108 

most polluted cities where air quality does not meet WHO air quality guidelines during autumn 109 

and winter (PAQI 2018). Air pollution monitoring throughout Pakistan is challenging due to 110 

sparsely distributed air quality monitoring stations, though several remote sensing studies have 111 

been conducted. 112 

Satellite observations provide spatial distributions of column-integrated concentrations 113 

which are related to the near-surface concentrations through meteorological and physico-114 

chemical processes, thus complementing local ground-based observations. Gupta et al. (2013) 115 
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analyzed MODIS (Moderate Resolution Imaging Spectroradiometer) AOD (Aerosol Optical Depth) 116 

retrievals over Lahore and Karachi from 2001 to 2010 and reported higher aerosol loadings near 117 

the city center than outside the city. Tariq et al. (2016) analyzed ground-based and satellite-based 118 

aerosol optical properties over Lahore during intense haze events in October 2013 and reported 119 

crop residue burning and urban-industrial emissions as the main sources of high AOD levels. Bilal 120 

et al. (2016) evaluated the performance of the Aqua-MODIS (MYD04) level 2 aerosol products 121 

over Lahore and Karachi from 2007 to 2013, and recommended the use of Dark Target (DT) and 122 

Deep Blue (DB) algorithms over Karachi and Lahore, respectively, for regional air quality 123 

applications, as these cities have different land cover characteristics and aerosol types. Other 124 

remote sensing studies have been conducted on atmospheric trace gases, such as ozone (O3), 125 

nitrogen dioxide (NO2), sulfur dioxide (SO2), and carbon dioxide CO2, as well as their trends over 126 

time (Khokhar et al. 2016; Khokhar et al. 2015; Tariq and Ali 2015; ul-Haq et al. 2017; ul–Haq et 127 

al. 2014; Ul_Haq et al. 2015). Zhang et al. (2020) conducted the first study of the vertical 128 

distribution of aerosol optical properties over Pakistan using CALIPSO (Cloud-Aerosol Lidar and 129 

Infrared Pathfinder Satellite Observation) data.  130 

Cities are areas of high activity, and every city is a huge source of local anthropogenic aerosols 131 

and trace gases from industrial and human activities, which can impact air quality, visibility, and 132 

alter the physico-chemical properties of the atmosphere at local, regional, and global scales. 133 

Although several studies of AOD and atmospheric trace gases have been conducted over 134 

Pakistan, no study has encompassed different particle fractions (PMx, x = 1, 2.5, and 10) on the 135 

national scale, i.e., the dry mass of ultrafine particles with an aerodynamic diameter less than 1 136 

μm (PM1), 2.5 μm (PM2.5) and 10 μm (PM10). PM1 is part of PM2.5, PM2.5 is part of PM10. It is of 137 
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great importance to identify the cities most affected by different PMx fractions, as they have 138 

different effects on, for instance, health and chemical and physical processes in the atmosphere, 139 

and this is the first study to do so. Moreover, very few studies have investigated the long-term 140 

trends in pollutant concentrations at city level, which can provide additional insights into the link 141 

between concentrations and the changes in emissions. Furthermore, previous studies are not 142 

comprehensive enough to answer questions such as: which are the most and least polluted cities 143 

of Pakistan, and what are the likely pollution sources? Therefore, this study aims (1) to 144 

extensively characterize and rank the extremely polluted cities of Pakistan, considering multiple 145 

sources and aerosol mass fractions, for 80 carefully selected cities, representing almost all major 146 

urban centers of Pakistan, and (2) to identify the likely pollutant sources by performing PSCF 147 

(Potential Source Contribution Function) analysis with the integration of HYSPLIT (Hybrid Single-148 

Particle Lagrangian Integrated Trajectory) back trajectory and ground-based PM2.5 149 

concentrations. This study is based on long-term combined Aqua and Terra (AquaTerra) MODIS 150 

data from 2003 to 2017, OMI (Ozone Monitoring Instrument) data (NO2 and SO2) from 2004 to 151 

2019, CAMS (Copernicus Atmosphere Monitoring Service) reanalysis PM1, PM2.5, and PM10 data 152 

from 2003 to 2019, MERRA-2 (Modern-Era Retrospective analysis for Research and Applications, 153 

Version 2) PM2.5 data from 2003 to 2020, VIIRS (Visible Infrared Imaging Radiometer Suite) 154 

Nighttime Lights from 2012 to 2019, LandScan global population density for 2019, MODIS land 155 

cover type for 2019, MODIS global monthly fire location data from 2003 to 2020, ground-based 156 

PM2.5 concentrations from 2018 to 2020, and AERONET (AErosol RObotic NETwork) AOD 157 

measurements from 2006 to 2017. Detailed information on the data used in this study is provided 158 

in Section 3. 159 
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2. Study Area 160 

Pakistan, with a population of 212.82 million, is the sixth most populous country in the world. 161 

It lies between 23°35′ to 37°05′ North and 60°50′ to 77°50′ East, having a diverse geographical 162 

landscape bordered by China, the Himalayas, India, Afghanistan, Iran, and the Arabian Sea. 163 

Geographically, Pakistan falls into three major regions: the northern highlands, constituting parts 164 

of the Hindu Kush, the Karakoram Range, and the Himalayas; the Indus River basin plain in the 165 

center and east (65% of the total area i.e. 796,096 km2); and the Balochistan Plateau in the south 166 

and west (Government of Pakistan 2019). Administratively, Pakistan has six units: Punjab, Sindh, 167 

Khyber Pakhtunkhwa, Balochistan, Azad Kashmir, and Gilgit Baltistan. Punjab is the most 168 

populous (112.38 million; 53%) administrative unit of Pakistan, followed by Sindh (49.05 million; 169 

23%), Khyber Pakhtunkhwa (36.5 million; 17%), and Balochistan (12.7 million; 6%).  Balochistan 170 

has the largest area (43.6 %), followed by Punjab (25.8%), Sindh (17.7 %), and Khyber 171 

Pakhtunkhwa (12.78%). Sindh is the most urbanized and industrialized administrative unit of 172 

Pakistan with 52% urban population. Islamabad (2.1 million; 1%) Capital Territory (ICT), a rather 173 

small unit in terms of area (0.1 %), is, in fact, the second most urbanized (50.58%) region of 174 

Pakistan, and has an annual urbanization rate of 4.91 %. Currently, 10 cities in Pakistan have a 175 

population of over one million, and 7 have higher per-capita incomes than the national average 176 

(UNDP 2019). The Pakistan economic survey 2018-19 reports a total cropped area of 22.6 million 177 

hectares, and agricultural contributions of 18.5 % to the GDP, compared with 20.3% from the 178 

industrial sector (Government of Pakistan 2019).  179 
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This study covers almost all prominent cities in Pakistan including all administrative units and 180 

their capital cities, and the Capital of the country (Figure 1). In summary, the study area analyzes 181 

23 cities from the most populated administrative unit, Punjab; Khyber Pakhtunkhwa is also well-182 

represented by 19 urban centers; Balochistan is the least populated but the largest administrative 183 

unit, and is represented by 19 cities; 14 other cities exemplify the diversity of Sindh in the South-184 

East, and 5 cities represent the attractive hilly land of Azad Kashmir.  185 



10   186 
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Figure 1: Geographical and administrative map of Pakistan including a list of cities used in the 187 

present study. Cities are characterized using (a) yearly mean CAMS (Copernicus Atmosphere 188 

Monitoring Service) reanalysis PM2.5 concentrations (µg/m3) for the years 2003 and 2020, and 189 

(b) yearly mean AquaTerra MODIS DTB AOD retrievals at 550 nm from 2003 to 2017. Extremely 190 

polluted cities (red color) are defined for PM2.5 > 92.84 (AOD > 0.6) (3rd quartile), highly polluted 191 

cities (brown color) for 45.69 ≤ PM2.5 ≤ 92.84 (0.3 < AOD < 0.6) (between 3rd and 1st quartiles), 192 

and polluted cities (purple color) for PM2.5 < 45.69 (AOD < 0.3) (1st quartile) using descriptive 193 

statistics (Table S1). Cities are not defined as low polluted or clean cities as annual mean PM2.5 194 

concentrations for all cities exceed Pakistan’s National Environmental Quality Standards (Pak-195 

NEQS) for ambient air (<15 µg/m3 annual mean). 196 

3. Dataset 197 

3.1 AERONET Data 198 

The AERONET (AErosol RObotic NETwork) (Holben et al. 1998; Holben et al. 2001) is a global 199 

network of calibrated Sunphotometers coordinated by NASA (National Aeronautics and Space 200 

Administration) which provides regular measurements of spectral AOD at 340 nm, 380 nm, 440 201 

nm, 500 nm, 675 nm, 870 nm, 1020 nm, and 1640 nm, and AE at 340–440 nm, 380-500 nm, 440–202 

675 nm, and 500–870 nm at three levels, i.e., Level 1.0 (unscreened), Level 1.5 (cloud-screened), 203 

and Level 2.0 (cloud-screened and quality-assured), under cloud-free skies (Smirnov et al. 2000) 204 

for every 15 minutes with an uncertainty of 0.01–0.02 (Holben et al. 2001). The present study 205 

used Version 3 Level 2.0 AOD at 500 nm (AOD500) and AE at 440–675nm (AE440–675) (Giles et al. 206 

2019) obtained from the AERONET website (https://aeronet.gsfc.nasa.gov/) for the Lahore 207 

https://aeronet.gsfc.nasa.gov/
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(31.47987ο N, 74.26406ο E) and Karachi (24.94574ο N, 67.13594ο E) sites from 2006 to 2017. The 208 

Lahore and Karachi AERONET sites are located in an urban area, and approximately 20 km away 209 

from the Arabian Sea coast, respectively. 210 

3.2 AquaTerra MODIS Data 211 

In the present study, Aqua and Terra MODIS C6.1 L2 aerosol products at 10 km spatial 212 

resolution are obtained from 2003 to 2017 for Pakistan from the LAADS DAAC 213 

(https://ladsweb.modaps.eosdis.nasa.gov/). The MODIS aerosol product provides DT AOD 214 

retrievals over land and water surfaces (Levy et al. 2013), and DB AOD retrievals only over land 215 

(Hsu et al. 2013). The DT and DB AOD retrievals for different collections are extensively validated 216 

against Sunphotometer (AERONET) measurements at regional (Bilal et al. 2019b; Bilal et al. 2014; 217 

Che et al. 2019; de Leeuw et al. 2018; Fan et al. 2017; Filonchyk et al. 2019; Gupta et al. 2013; He 218 

et al. 2018; Islam et al. 2019; Livingston et al. 2014; Mhawish et al. 2017; More et al. 2013; Nichol 219 

and Bilal 2016; Shen et al. 2018; Shi et al. 2013; Sogacheva et al. 2018; Wang et al. 2017; Wang 220 

et al. 2019; Xiao et al. 2016; Xie et al. 2011) and global scales (Bilal et al. 2018a; Bilal et al. 2017; 221 

Levy et al. 2013; Levy et al. 2010; Mehta et al. 2016; Remer et al. 2013; Sayer et al. 2013; Sayer 222 

et al. 2014; Sayer et al. 2015; Tong et al. 2020). These studies have reported overestimation and 223 

underestimation in DT and DB AOD retrievals respectively, due to error in the estimated surface 224 

reflectance and aerosol scheme used in the inversion methods, but overall their performance is 225 

satisfactory. Previous studies (Bilal et al. 2018a; Bilal and Nichol 2017; Bilal et al. 2017; Bilal et al. 226 

2018b; Mei et al. 2019; Sayer et al. 2014) have also reported different spatial coverage of DT and 227 

DB AOD retrievals over land due to differences in their approaches, i.e., pixel selection criteria, 228 

https://ladsweb.modaps.eosdis.nasa.gov/
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estimation of surface reflectance, and the cloud mask. Therefore, a new merged Scientific Data 229 

Set (SDS: AOD 550 Dark Target Deep Blue Combined) was introduced which contains only the 230 

highest quality DT and DB (DTB) AOD retrievals or their average values (Levy et al. 2013). The 231 

purpose of this new dataset is to improve spatial coverage over land (Levy et al., 2013; Sayer et 232 

al., 2014), i.e., to retrieve AOD in the same image for those regions where either the DT or the 233 

DB algorithm does not achieve a successful retrieval (Bilal et al. 2017; Levy et al. 2013). The 234 

merged DTB AOD retrievals have been validated at regional and global scales (Ali and Assiri 2019; 235 

Bilal et al. 2018a; Bilal and Nichol 2017; Bilal et al. 2017; Sayer et al. 2014; Sogacheva et al. 2018). 236 

However, the new customized method-1 (CM1) (Bilal et al. 2017), which is named Simplified 237 

Merge Scheme (SMS) in the later publications (Bilal et al. 2018a; Bilal et al. 2018b), provides 238 

equally consistent data quality with the combined DTB AOD retrievals available in C6.1, but with 239 

significantly improved spatio-temporal coverage.  240 

3.3 CAMS Data 241 

The Copernicus Atmosphere Monitoring Service (CAMS) reanalysis is an atmospheric 242 

composition dataset generated by the European Centre for Medium-Range Weather Forecasts 243 

(ECMWF). The global CAMS model combines satellite-based observations with chemistry-aerosol 244 

modeling using the four-dimensional variational (4D-VAR) data assimilation technique to obtain 245 

the mass concentration of aerosols and trace gases. CAMS uses the MACCity inventory at 0.5° × 246 

0.5° spatial resolution for anthropogenic emissions which covers the period 1960–2010 (Granier 247 

et al. 2011). Detailed information about the model and the emission inventory can be found in 248 

(Flemming et al. 2017; Flemming et al. 2015). In this study, the ground-based mass concentration 249 



14 

of particulate matter, including particles with an aerodynamic diameter of less than 1 µm (PM1), 250 

less than 2.5 µm (PM2.5), and less than 10 µm (PM10) was obtained from the CAMS reanalysis data 251 

for the years 2003 and 2020. PMx (x = 1, 2.5, & 10) data were used at two different spatiotemporal 252 

resolutions, i.e., (i) CAMS global reanalysis dataset at 0.75°  0.75° spatial resolution and 3-hourly 253 

temporal resolution from 2003 to 2020, and (ii) CAMS near-real time dataset at 0.125°  0.125° 254 

spatial resolution and 12-hourly temporal resolution from 2018 to 2020 (Inness et al. 2019). The 255 

PMx data at 0.75° grid size and 3-hourly temporal resolution were used for long-term climatology 256 

and for characterizing extremely polluted cities, whereas, the CAMS near-real time data at 0.125° 257 

grid size and 12-hourly temporal resolution were used for validation against ground-based PM2.5 258 

concentrations obtained from air quality monitoring stations.  259 

3.4 MERRA-2 Reanalysis Data 260 

The MERRA-2 (Modern-Era Retrospective analysis for Research and Applications, Version 2) 261 

atmospheric reanalysis is the latest data released by the NASA GMAO (Global Modeling and 262 

Assimilation Office) in 2017 (Buchard et al. 2017; Randles et al. 2017). The MERRA-2 aerosol 263 

gridded data, i.e., dust, sea salt, sulfate, black carbon, and organic carbon, are simulated with 72 264 

vertical layers from the surface to higher than 80 km using the GEOS-5 (GMAO Earth system 265 

model version 5) model radiatively coupled to the GOCART (Goddard Chemistry Aerosol 266 

Radiation and Transport) model (Chin et al. 2002; Colarco et al. 2010). For anthropogenic 267 

emissions, MERRA-2 uses the EDGAR-4.2 emission inventory at 0.1° × 0.1° spatial resolution 268 

which covers the period 1970–2008 (Janssens-Maenhout et al. 2013). In this study, the MERRA-269 

2 aerosol gridded data (dust, sea salt, sulfate, black carbon, and organic carbon) at 0. 5° × 0.625° 270 
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spatial resolution from 2018 to 2020 were used. More details about MERRA-2 reanalysis data can 271 

be found in Randles et al. (2017) and Buchard et al. (2017). 272 

3.5 Ground-based PM2.5 Measurements 273 

Ground-based PM2.5 measurements were obtained from two different air quality monitoring 274 

networks. Firstly, PM2.5 data were obtained from 4 air quality stations operated by the US 275 

Consulates in Islamabad, Karachi, Lahore, and Peshawar, and secondly, 54 air quality monitoring 276 

stations operated by PAQI in Lahore (24 stations), Karachi (15), Islamabad (5) Sialkot (3), 277 

Peshawar (2), Rawalpindi (2), Faisalabad (1), Gujranwala (1), and Muridke (1). Due to the lack of 278 

a well-developed and standard air quality network of ground-based PM2.5 measurements, this 279 

study is limited to only these cities for the validation of CAMS and MERRA-2 reanalysis PM2.5 280 

gridded data. PM2.5 concentrations from the US Consulates are measured by beta gauge 281 

attenuation monitors (BAM-1020; Met One Instruments), hereafter referred to as BAM PM2.5 282 

concentrations. To increase social awareness in Pakistan, PAQI provides PM2.5 data using a 283 

nationwide network of low-cost air quality monitors (IQAir AirVisual Pro), hereafter referred to 284 

as LCM PM2.5 concentrations. In this study, LCM and BAM PM2.5 measurements were used for 285 

January 2018–December 2019 and January 2019–February 2021, respectively. More details 286 

about PAQI (LCM) and US Consulates (BAM) PM2.5 data can be found in Shi et al. (2020) and 287 

Mhawish et al. (2020), respectively. 288 
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3.6 OMI Data 289 

The Ozone Monitoring Instrument (OMI) onboard the Aura satellite was launched in July 2004 290 

as a part of the A-Train satellite constellation. OMI is a hyperspectral sensor that measures the 291 

radiation reflected from the earth-atmosphere system, in the wavelength range 250–500 nm and 292 

provides daily global coverage at a spatial resolution of 13 × 24 km2 at nadir. The OMI OMAERUV 293 

algorithm utilizes the sensitivity of near-UV spectral regions to aerosol absorption, and it 294 

retrieves absorbing aerosol optical depth (AAOD) at 388nm (Torres et al. 2013; Torres et al. 2007). 295 

Along with the AAOD, the OMAERUV algorithm also provides an ultraviolet Aerosol Index (UVAI), 296 

AOD, and Single Scattering Albedo (SSA). OMI also retrieves the atmospheric trace gases O3, NO2 297 

and SO2 (Carn et al. 2017; Krotkov et al. 2017; Krotkov et al. 2016; Li et al. 2017; Li et al. 2013; 298 

Veefkind et al. 2006). In this study, OMAERUV version 3 Level 3 daily cloud-screened (cloud 299 

fraction < 30 %) NO2 tropospheric vertical column density (TVCD) (OMNO2e), and SO2 VCD in the 300 

planetary boundary layer (PBL) (OMSO2e) gridded at 0.25° × 0.25° spatial resolution from 2004 301 

to 2019 were used. 302 

3.7 Other Supporting Datasets 303 

Other supporting datasets include (i) annual mean VIIRS nighttime lights data 304 

(https://eogdata.mines.edu/products/vnl/) from 2012 to 2019 derived from monthly mean data 305 

(Elvidge et al. 2021), (ii) MODIS Collection 6 global monthly Fire Location product (MCD14ML) 306 

from 2003 to 2020 (https://firms.modaps.eosdis.nasa.gov/download/), (iv) MODIS Collection 6 307 

Level 3 land cover type product (MCD12Q1) for 2019 308 
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(https://ladsweb.modaps.eosdis.nasa.gov/), and (v) the LandScan population density 309 

(https://landscan.ornl.gov/ ) for 2019 (Rose et al. 2020).  310 

4. Research Methodology 311 

To investigate the air pollution scenario over Pakistan and characterize the extremely 312 

polluted cities, in this study the following methodology was adopted: 313 

1. MODIS AOD retrievals were obtained from the Scientific Data Set (SDS) “Optical Depth 314 

Land and Ocean” and “Deep Blue Aerosol Optical Depth 550 Land Best Estimate”. Only 315 

the highest quality-assured DT (QA = 3) and DB (QA ≥ 2) retrievals were used, as 316 

recommended by previous studies (Bilal et al. 2013; Levy et al. 2013; Mhawish et al. 2019; 317 

Sayer et al. 2013). Pakistan has a variety of land cover types, e.g., snow and mountainous 318 

land surface in Northern Pakistan, plain and agricultural land surfaces in Central Pakistan, 319 

and arid and desert land surfaces in southern Pakistan, where the DT and DB algorithms 320 

overestimate and underestimate, respectively. However, the DT algorithm is unable to 321 

provide retrievals over the arid and desert land surfaces of Balochistan. Similar results 322 

were observed and reported in our previous study over Pakistan (Bilal et al. 2016). 323 

Therefore, in the present study, we preferred to generate the combined (merged) DTB 324 

AOD550 retrievals for both Aqua and Terra MODIS data from 2003 to 2017 using the 325 

customized method-1 (CM1) (Bilal et al. 2017), which in later publications is named 326 

Simplified Merge Scheme (SMS) (Bilal et al. 2018a; Bilal et al. 2018b), i.e., an average of 327 

the DT and DB AOD retrievals or the available one with the highest quality flag (Equation 328 

1), to enhance spatio-temporal coverage.  329 

https://ladsweb.modaps.eosdis.nasa.gov/
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 330 

𝐷𝑇𝐵 𝐴𝑂𝐷550 = {

𝑖𝑓 𝑜𝑛𝑙𝑦 𝐷𝑇 𝐴𝑂𝐷 𝑒𝑥𝑖𝑠𝑡𝑠             →                𝐷𝑇
𝑖𝑓 𝑜𝑛𝑙𝑦 𝐷𝐵 𝐴𝑂𝐷 𝑒𝑥𝑖𝑠𝑡𝑠             →               𝐷𝐵

𝑖𝑓 𝑏𝑜𝑡ℎ 𝐷𝑇 𝑎𝑛𝑑 𝐷𝐵 𝐴𝑂𝐷 𝑒𝑥𝑖𝑠𝑡        →      (𝐷𝑇 + 𝐷𝐵) 2⁄
}     (1) 331 

 332 

2. Aqua and Terra MODIS may not provide complete spatial coverage due to cloud cover. 333 

On days when Aqua provides AOD retrievals, Terra may not, and vice-versa. Therefore, 334 

for more complete spatial coverage between Aqua and Terra as well as to represent an 335 

average air pollution scenario between morning and afternoon times with a single 336 

dataset, the combined AquaTerra DTB AOD retrievals were generated from the Aqua DTB 337 

and Terra DTB AOD retrievals using SMS/CM1, i.e., an average of the Aqua and Terra DTB 338 

AOD retrievals or the available one (Equation 2). 339 

𝐴𝑞𝑢𝑎𝑇𝑒𝑟𝑟𝑎 𝐴𝑂𝐷 = {

𝑖𝑓 𝑜𝑛𝑙𝑦 𝐴𝑞𝑢𝑎 𝐴𝑂𝐷 𝑒𝑥𝑖𝑠𝑡𝑠        →                𝐴𝑞𝑢𝑎
𝑖𝑓 𝑜𝑛𝑙𝑦 𝑇𝑒𝑟𝑟𝑎 𝐴𝑂𝐷 𝑒𝑥𝑖𝑠𝑡𝑠         →                 𝑇𝑒𝑟𝑟𝑎

𝑖𝑓 𝑏𝑜𝑡ℎ 𝐴𝑞𝑢𝑎 𝑎𝑛𝑑 𝑇𝑒𝑟𝑟𝑎 𝐴𝑂𝐷 𝑒𝑥𝑖𝑠𝑡    →      (𝐴𝑞𝑢𝑎 + 𝑇𝑒𝑟𝑟𝑎) 2⁄
} (2) 340 

3. The AquaTerra DTB AOD retrievals are validated against Sunphotometer AOD 341 

measurements obtained for Lahore (31.480° N and 74.264° E) and Karachi (24.946° N and 342 

67.136° E) AERONET sites. The AERONET Sunphotometer does not provide AOD at 550 343 

nm (AOD550), AOD550 is interpolated using AOD at 500 nm (AOD500) and Ångström 344 

Exponent at 440-675 nm (AE440-675) based on the  Ångström Exponent empirical formula 345 

(Equation 3) (Eck et al. 1999). Collocated AquaTerra and AERONET AOD retrievals were 346 

defined as the average of at least two pixels of DTB within a spatial region of 3 × 3 pixels 347 



19 

(at least 2 out of 9 pixels) centered on the AERONET site and the average of at least two 348 

AERONET AOD measurements between 10:00 and 14:30 local solar time. 349 

𝐴𝑂𝐷550 = 𝐴𝑂𝐷500  (
550

500
)
−𝐴𝐸440−667

                                                 (3) 350 

4. Accuracy and errors are reported using the Pearson correlation coefficient (r), the 351 

expected error (EE, Equation 4), and relative mean bias (RMB, Equation 5). The slope (, 352 

Equation 6) and intercept (, Equation 7) between collocated AquaTerra DTB and 353 

AERONET AOD data are calculated using the reduced major axis (RMA) regression which 354 

incorporates errors in both independent (AERONET) and dependent (MODIS) variables 355 

(Bilal et al. 2019a; Harper 2016). The performance of the Terra and Aqua DT, DB, and DTB 356 

AOD retrievals is evaluated based on (i) highest correlation coefficient (r), (ii) highest 357 

number of collocated retrievals (N), (iii) the highest percentage of retrievals within the EE, 358 

and (iv) lowest RMB. To evaluate the performance of the collocated retrievals, the 359 

following criteria are utilized (Bilal et al. 2017): the DT, DB, and DTB retrievals are 360 

considered to be of equal quality if the relative difference is within (1) 5% for the 361 

correlation coefficient (r), (2) 10% for the collocated retrievals, (3) 10% for the percentage 362 

of retrievals is within the EE, and (4) RMB < 25%.  363 

𝐸𝐸 = ± (0.05 + 0.20 × 𝐴𝐸𝑅𝑂𝑁𝐸𝑇𝐴𝑂𝐷)                                                 (4) 364 

The upper and lower EE envelopes are calculated using Equations 4a and 4b. 365 

𝑈𝑝𝑝𝑒𝑟 𝐸𝐸 𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒 = 𝐴𝐸𝑅𝑂𝑁𝐸𝑇𝐴𝑂𝐷 + |𝐸𝐸|                                            (4𝑎) 366 
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𝐿𝑜𝑤𝑒𝑟 𝐸𝐸 𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒 = 𝐴𝐸𝑅𝑂𝑁𝐸𝑇𝐴𝑂𝐷 − |𝐸𝐸|                                                (4𝑏) 367 

The percentage of best retrieved MODIS AOD retrievals within the EE is reported using 368 

Equation 4c. 369 

%𝐸𝐸 = 𝐴𝐸𝑅𝑂𝑁𝐸𝑇𝐴𝑂𝐷 − |𝐸𝐸| ≤ 𝑀𝑂𝐷𝐼𝑆𝐴𝑂𝐷  ≤  𝐴𝐸𝑅𝑂𝑁𝐸𝑇𝐴𝑂𝐷 + |𝐸𝐸|      (4𝑐) 370 

Where |EE| is the absolute value of EE. 371 

𝑅𝑀𝐵 =
(𝑀𝑂𝐷𝐼𝑆𝐴𝑂𝐷̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝐴𝐸𝑅𝑂𝑁𝐸𝑇𝐴𝑂𝐷̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )   

𝐴𝐸𝑅𝑂𝑁𝐸𝑇𝐴𝑂𝐷̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 × 100                                          (5) 372 

Where, 𝑀𝑂𝐷𝐼𝑆𝐴𝑂𝐷̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ and 𝐴𝐸𝑅𝑂𝑁𝐸𝑇𝐴𝑂𝐷̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   are the mean of MODIS and AERONET AOD 373 

retrievals, respectively. RMB > 0 represents overestimation in MODIS AOD compared to 374 

AERONET AOD, RMB < 0 represents underestimation, and RMB = 0 represents no over- and 375 

under-estimations. 376 

𝛽 =
𝜎𝑀𝑂𝐷𝐼𝑆𝐴𝑂𝐷
𝜎𝐴𝐸𝑅𝑂𝑁𝐸𝑇𝐴𝑂𝐷

                                                                        (6) 377 

𝛼 = 𝑀𝑂𝐷𝐼𝑆𝐴𝑂𝐷̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − (
𝜎𝑀𝑂𝐷𝐼𝑆𝐴𝑂𝐷
𝜎𝐴𝐸𝑅𝑂𝑁𝐸𝑇𝐴𝑂𝐷

 ) × 𝐴𝐸𝑅𝑂𝑁𝐸𝑇𝐴𝑂𝐷̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅                                                  (7) 378 

Where, 𝛽, 𝛼, 𝜎𝑀𝑂𝐷𝐼𝑆𝐴𝑂𝐷, and 𝜎𝐴𝐸𝑅𝑂𝑁𝐸𝑇𝐴𝑂𝐷  are the slope, intercept, the standard deviation 379 

of MODIS AOD, and standard deviation of AERONET AOD, respectively.  380 

5. To show the long-term variation of the mean spatial distributions of AquaTerra AOD over 381 

Pakistan, the AOD retrievals from 2003 to 2017 are used to generate monthly mean 382 
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spatial AOD maps, and their corresponding pixel counts are calculated for reporting the 383 

retrieval performance of both the DT and DB algorithms.  384 

6. To assure the quality of the PM2.5 data, validation of daily average CAMS and MERRA-2 385 

PM2.5 data was conducted against in-situ PM2.5 measurements obtained from the air 386 

quality monitoring stations. The performance was evaluated based on the correlation 387 

coefficient (r), RMB (Eq. 5), and slope (Eq. 6). MERRA-2 PM2.5 concentrations were 388 

calculated based on five aerosol components using Equation 8 (Song et al. 2018), and 389 

CAMS PM2.5 and PM10 concentrations were calculated using Equations 9 and 10 (Rémy et 390 

al. 2019). 391 

 392 

𝑃𝑀2.5 = [𝐷𝑢𝑠𝑡2.5] + [𝑆𝑆2.5] + 1.375 × [𝑆𝑂4] + [𝐵𝐶] + 1.6 × [𝑂𝐶]                         (8) 393 

Where, Dust2.5, SS2.5, BC, OC, and SO4 are the GOCART concentrations of dust, sea salt, 394 

black carbon, organic carbon, and sulfate in particles with a diameter smaller than 2.5 µm, 395 

respectively.  396 

𝑃𝑀2.5 = 𝜌([𝑆𝑆1] 4.3⁄ + [𝑆𝑆2] 4.3⁄ + [𝐷𝐷1] + [𝐷𝐷2] + 0.7[𝑂𝑀] + [𝐵𝐶] + 0.7[𝑆𝑈]397 

+ 0.7[𝑁𝐼1] + 0.25[𝑁𝐼2] + 0.7[𝐴𝑀])                                                              (9) 398 

 399 

𝑃𝑀10 = 𝜌([𝑆𝑆1] 4.3⁄ + [𝑆𝑆2] 4.3⁄ + [𝐷𝐷1] + [𝐷𝐷2] + 0.4[𝐷𝐷3] + [𝑂𝑀] + [𝐵𝐶]400 

+ [𝑆𝑈] + [𝑁𝐼1] + [𝑁𝐼2] + [𝐴𝑀])                                                                  (10) 401 



22 

Where [SS1,2] = sea salt aerosol, [DD1,2,3] = desert dust, [NI1,2] = nitrate, [OM] = organic 402 

matter, [BC] = black carbon, [SU] = sulfate, and [AM] = ammonium (concentrations in 403 

particles with a diameter smaller than 2.5 µm from the CAMS model).  404 

7. To characterize extremely polluted cities in Pakistan, the DTB AOD retrieved from 405 

AquaTerra, the PM1, PM2.5, and PM10 from CAMS data, and the SO2 VCD and NO2 TVCD 406 

from OMI are used. Polluted months as well as years, for the corresponding polluted 407 

cities, are also characterized based on each pollutant.  408 

8. To assess recent changes in the concentrations of atmospheric constituents, the non-409 

parametric Mann Kendal test (Kendall and Gibbons 1990; Mann 1945) associated with 410 

Theil-Sen’s slope (Sen 1968; Theil 1992) was used to estimate and detect trends over the 411 

main cities of Pakistan from 2003 to 2020. The non-parametric Mann Kendal test is often 412 

used to detect monotonic trends in a time series and is also suitable for non-normally 413 

distributed data, or if the data have some missing observations such as environmental 414 

data. Further, the bootstrapping technique was used to eliminate serial autocorrelation 415 

in the monthly mean aggregated time series data and increase the robustness of the test 416 

(Hamed and Ramachandra Rao 1998; Salmi et al. 2002). The significance of the calculated 417 

trend was assessed using the two-tailed test method at a 95% confidence interval.  418 

9. The NOAA (National Oceanic and Atmospheric Administration) HYSPLIT (Hybrid Single-419 

Particle Lagrangian Integrated Trajectory Model) (Stein et al. 2015), a complete transport, 420 

dispersion, and chemical transformation model, is used for back trajectory analysis to 421 

determine the origin of air masses (Fleming et al. 2012) and highlight the possible sources 422 

of aerosol pollutants affecting the air quality of Pakistan using the PSCF (Potential Source 423 
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Contribution Function) analysis. In this study, 72 hours HYSPLIT backward trajectories at 424 

the height of 500 m above the ground level (AGL) were computed for every 6 hours at 425 

seasonal scales from March 2020 to February 2021 using the GDAS (Global Data 426 

Assimilation System) meteorological data at 1° × 1° spatial resolution (available at 427 

ftp://arlftp.arlhq.noaa.gov/pub/archives/gdas1). The PSCF analysis was performed for 4 428 

cities selected because of the availability of ground-based PM2.5 measurements from the 429 

air quality stations operated by the US Consulates, namely, Peshawar, Islamabad, Lahore, 430 

and Karachi. The height of 500 m AGL has been reported very useful as it is the 431 

approximate height of the mixing layer (Begum et al. 2005). The backward trajectory 432 

clustering and investigation of the origins of the particulate matter at the receptor 433 

locations were studied using  MeteoInfo TrajStat software (Version 2.0, available at 434 

http://meteothink.org/products/trajstat.html) (Wang et al. 2009) in conjunction with 435 

HYSPLIT and Geographic Information System (GIS). 436 

The PSCF analysis was performed using 24-hour average ground-based PM2.5 437 

concentrations over a grid with a resolution of 0.5°, for the days that exceeded the Pak-438 

NEQS 24-hour air quality standards (35 µg/m3). The PSCF value for a specific grid cell was 439 

calculated on the assumption that the trajectory endpoint is located within a cell (i, j) and 440 

the trajectory is assumed to collect pollutants emitted from different pocket emission 441 

sources within that cell (i, j). The PSCF value can be interpreted as a conditional probability 442 

describing the potential contributions of a grid cell to the high PM2.5 loadings at the 443 

receptor site. The error associated with the trajectory is proportional to the distance from 444 

ftp://arlftp.arlhq.noaa.gov/pub/archives/gdas1)
http://meteothink.org/products/trajstat.html
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the receptor location (Begum et al. 2005). The PSCF value for the ijth grid cell can be 445 

computed using Equation 11: 446 

𝑃𝑆𝐶𝐹(𝑖, 𝑗) = 𝑚𝑖𝑗 𝑛𝑖𝑗⁄                                                             (11) 447 

Where, 𝑛𝑖𝑗 represents the number of endpoints that fall or pass through the 𝑖𝑗𝑡ℎ cell 448 

and 𝑚𝑖𝑗 denotes for the number of endpoints in the 𝑖𝑗𝑡ℎ cell having a higher pollutant 449 

concentration than the 24-hour Pak-NEQS. The uncertainty arising due to small 𝑛𝑖𝑗 is 450 

reduced by multiplying an arbitrary weight function 𝑊𝑖,𝑗, which is multiplied into the 451 

PSCF. In this case, the weight function is given in Equation (12): 452 

𝑊𝑖,𝑗 = 

{
 
 

 
 𝑖𝑓 𝑛𝑖𝑗 > 3𝑛 ̅ → 1.00

               𝑖𝑓 1.5𝑛 ̅ <  𝑛𝑖𝑗 ≤ 3𝑛 ̅ → 0.70

              𝑖𝑓 𝑛 ̅ <  𝑛𝑖𝑗 ≤ 1.5𝑛 ̅  → 0.42 

𝑖𝑓  𝑛𝑖𝑗 ≤ 𝑛 ̅ → 0.15

                             (12) 453 

Where 𝑛 ̅ denotes the average number of endpoints per cell, which is calculated for each 454 

cell that has at least one endpoint. Therefore, the Weighted PSCF is expressed as Equation 455 

(13): 456 

𝑊𝑃𝑆𝐶𝐹 =  𝑊𝑖,𝑗  × 𝑃𝑆𝐶𝐹 (𝑖, 𝑗)                                                     (13) 457 

5. Results and Discussion 458 

5.1 Aqua and Terra MODIS AOD data 459 

5.1.1 Validation of AOD products against AERONET 460 

The MODIS AOD data used in this paper were evaluated by comparison with the AERONET 461 

AOD data over Lahore and Karachi. The scatterplots in Figure 2 show that Terra DT (Figure 2a), 462 
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DB (Figure 2b), and DTB (Figure 2c) retrieved AOD are equally correlated (r = 0.83) with AERONET-463 

derived AOD, and have the same percentage of retrievals within the EE. However, the number of 464 

collocated observations for DTB (N = 2796) is significantly higher than for DT (N = 1437) and DB 465 

(N = 2486) i.e., 94.6% and 12.5% more data are available from DTB than from DT and DB, 466 

respectively. The AOD retrieved from DT is significantly overestimated (RMB = 17.17%), with 467 

34.38% of the data are above the EE (+EE). DB underestimates the AOD (RMB = -9.87%) with 468 

28.24% of the data below the EE (-EE). These uncertainties appear to be averaged out in the DTB 469 

AOD product, as the overestimations and underestimations are fewer than for DT and DB, 470 

individually. Furthermore, the RMB (-0.03%) is significantly improved, being 99.9% and 99.8% 471 

lower than for DT and DB, respectively. These results indicate the better performance of the Terra 472 

DTB AOD product as compared to DT and DB over Pakistan. Similar to Terra, the performance of 473 

the Aqua DTB AOD product (Figure 2f) is much better than for DT (Figure 2d) and DB (Figure 2e) 474 

products, with a significantly higher number of collocated AOD values and lower RMB. However, 475 

Aqua performs equally as Terra in terms of correlation and the percentage of retrievals within 476 

the EE. It is important to mention that a larger number of both DT and DB AOD retrieval products 477 

was available for Lahore than for Karachi and also that DB provides a greater number of AOD 478 

retrievals over Pakistan than DT. Based on the superior performance of the Aqua and Terra DTB 479 

AOD retrievals, the merged AquaTerra DTB AOD product was generated for further analysis (see 480 

Figure S1 in the supplementary data for the validation of AquaTerra DTB AOD retrievals).  481 
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Figure 2: Validation of Terra and Aqua DT, DB, and DTB AOD products versus AERONET Version 483 

3 Level 2.0 AOD measured in Lahore (for location, see no. 1 in Fig. 1a) and Karachi (for location, 484 

see no. 56 in Fig. 1a) from 2006 to 2017. The red line represents the regression line, the solid 485 

black line represents the identity line, and the dashed black lines represent the upper and lower 486 

EE envelopes. The orange points represent AOD pairs at Karachi, the blue dots at Lahore. 487 

5.1.2 Spatial distribution of AOD retrievals 488 

Figure 3 shows the spatial distributions of the monthly mean AquaTerra DTB AOD over 489 

Pakistan together with the corresponding pixel counts (PC) averaged over the years 2003 - 2017. 490 

Significant monthly variations in both AOD and PC are observed. AOD retrievals are missing over 491 

the Gilgit-Baltistan and Jammu & Kashmir (disputed territory) throughout the year, except for 492 

January, as the DT and DB algorithms do not provide AOD retrievals over high mountain regions 493 

and snow-covered surfaces. The presence of AOD retrievals during January is because the DB 494 

algorithm does not use the MODIS snow mask product directly, and the internal snow/cloud 495 

mask does not work well over these regions. Surprisingly, high AOD values > 1.0 are observed 496 

during June and July over the Northwestern region of Khyber Pakhtunkhwa, which is a high 497 

mountainous region with permanent snow cover. These high AOD values over snow-covered 498 

regions could be due to an error in the internal snow/cloud mask of the DB algorithm which has 499 

missed these pixels during preprocessing; DT does discard bright pixels during preprocessing. 500 

AOD >1.0 is observed in July followed by June and August over Punjab and Sindh, mainly 501 

attributed to hygroscopic growth of the aerosol particles during summer relative humidity is high, 502 

similar to other reports using MODIS and MISR aerosol products (Mehta et al. 2016; Mhawish et 503 
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al. 2021). Most of the major cities of Punjab and Sindh are surrounded by cropland, and the 504 

results show that high AOD over Pakistan follows the same spatial pattern as that of the cropland. 505 

The AOD over cropland is significantly higher than over non-agricultural (i.e., mainly desert) 506 

regions throughout the year, even during late spring and summer when dust storms are 507 

considered a major source of aerosols over Punjab and Sindh. Local production of anthropogenic 508 

aerosols from urban and industrial emissions and agricultural pre- and post-harvest burning may 509 

be responsible for the high pollution levels over the region. Over Balochistan, especially over the 510 

desert areas, the AOD is low compared to that in Punjab and Sindh, but still higher than over 511 

other administrative units. Over Punjab, the highest AOD values are observed during the post-512 

harvest seasons, i.e., throughout September to November, peaking in November, probably due 513 

to biomass (crop residue) burning activities (Jethva et al. 2019; Mhawish et al. 2021). However, 514 

if the high AOD levels would only be due to locally produced aerosols, the spatial patterns during 515 

each month should be similar, but they are not. Therefore, the transboundary transport of 516 

aerosols may contribute to Pakistan’s deteriorating air quality. This is confirmed by the well-517 

known smog episodes, occurring every year over Punjab due to both local production of aerosols 518 

from crop residue burning and across the border, during which atmospheric visibility is reduced 519 

to a few meters in both urban and rural areas. Overall, much higher AOD levels were observed in 520 

Pakistan during June, July, and August (summer), followed by September, October, and 521 

November (autumn), March, April, and May (spring), and December, January, and February 522 

(winter). The higher AOD in the summer is attributed to several reasons, including (i) hygroscopic 523 

growth of aerosol particles, due to high relative humidity, which increases the extinction 524 

efficiency of the atmospheric aerosols (Dickerson et al. 1997; Li and Wang 2014), (ii) the 525 
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enhancement of secondary aerosol formation rate due to faster photochemical reactions during 526 

higher temperatures (Jacob and Winner 2009; Kulmala et al. 2020), and (iii) the larger 527 

contribution of natural aerosols (mainly dust) during the summer monsoon (Mhawish et al. 528 

2021).  529 

Figure 3 shows a distinct pattern of PC which suggests that the DT and DB algorithms do not 530 

perform equally temporally or spatially. For example, between 2003 to 2017, from late spring to 531 

early autumn, a large number of AOD retrievals (> 400) per pixel are available over Balochistan 532 

and some parts of Punjab, and from late autumn to early spring, a large number of AOD retrievals 533 

(> 400) per pixel are available over Sindh and some parts of Punjab. This could be attributed to 534 

the seasonality in the surface albedo due to changes in vegetation cover and/or the presence of 535 

cloud cover. Only October provides favorable conditions to both the DT and DB algorithms, when 536 

more than 400 AOD retrievals are available over Pakistan from both algorithms, except for Gilgit-537 

Baltistan and disputed areas, due to high surface albedo for snow/ice surfaces.  538 
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Figure 3: Monthly mean spatial distributions of AquaTerra DTB AOD550 and the total number of 540 

corresponding Pixel Counts (PC) over Pakistan, both averaged over the years from 2003 to 541 

2017. The six units in Pakistan are indicated in the upper-left figure: GB = Gilgit-Baltistan, AK= 542 

Azad Kashmir, KP = Khyber Pakhtunkhwa, PJ = Punjab, BL = Balochistan, and SN = Sindh. 543 

5.1.3 Characterization of extremely polluted cities using MODIS data 544 

Figure 4a shows the mean AOD550 retrievals for 80 cities (Figure 1) obtained from the annual 545 

mean AquaTerra DTB AOD550 images and categorizes the extremely polluted to polluted cities. 546 

The thresholds for polluted and extremely polluted cities are defined based on the values of first 547 

(Q1) and third (Q3) quartiles respectively, and these quartiles are calculated by analyzing 548 

descriptive statistics (Table S1) for the AOD values extracted for 80 cities. Highly polluted cities 549 

are defined based on the AOD range between the first and third quartiles. For example, AOD < 550 

0.3 (1st quartile) represents polluted cities, 0.3 ≤ AOD ≤ 0.6 (between 1st and 3rd quartiles) 551 

represents highly polluted cities and AOD > 0.6 represents extremely polluted cities (3rd quartile). 552 

A total of 21 cities fall within the category of extremely polluted cities (Punjab: 12, Sindh: 7, and 553 

Balochistan: 2), 35 cities in the category of moderately polluted cities (Punjab: 11, Sindh 7, 554 

Balochistan: 7, Khyber Pakhtunkhwa: 8, Azad Kashmir: 2), and 24 cities in the category of low 555 

polluted cities (Punjab: 0, Sindh 0, Balochistan: 10, Khyber Pakhtunkhwa: 11, Azad Kashmir: 3). 556 

The top 3 polluted cities are Jhang, Multan, and Vehari in Punjab, as Punjab is the most urbanized 557 

and populated administrative unit (Figures 1b and 4a), with more vehicles and industries, and 558 

also faces severe smog episodes and dust storms, resulting in extremely high AOD levels over the 559 

region. Along with anthropogenic aerosols produced locally from cropland, urban and industrial 560 
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emissions, regional transport of aerosols may be responsible for Punjab’s severe air pollution 561 

problems which will be investigated using the PSCF analysis based on the HYSPLIT air parcel back 562 

trajectory analysis and BAM PM2.5 concentrations (see section 5.7).  563 

Figure 4b shows the pixel counts (PC) of the daily AOD retrievals for each city from 2003 to 564 

2017. Results show a large number of PC for most cities, indicating that the characterization of 565 

extremely polluted to polluted cities is based on a large number of PC, which supports the results 566 

in Figure 4a and provides confidence in the use of merged AquaTerra DTB AOD products for 567 

quantitative research applications over Pakistan. However, it is noted that the lowest number of 568 

PC is observed for the coastal (Ormara and Gwadar) and mountainous (Dir) cities, where the 569 

inversion scheme of both the DT and DB algorithms needs to be improved.  570 

The monthly mean AOD retrievals are plotted to identify the high and low polluted months 571 

in Pakistan (Figure 4c). The months of June, July, and August are by far the most polluted, with 572 

AOD > 1.20 for extremely polluted cities. A similar pattern of monthly variation in AOD is 573 

observed for all other cities, though at lower pollution levels. As mentioned in section 5.1.2, these 574 

months may be affected by aerosol pollutants from local sources such as agricultural land, urban 575 

and industrial regions, and deserts. Figure 4d, showing inter-annual variations, indicates very high 576 

AOD levels for extremely polluted cities throughout the last two decades, with annual mean AOD 577 

> 0.60, and with the most polluted years being 2004, 2006, 2008, 2016, and 2017. 578 



33 

 579 



34 

Figure 4: Characterization of extremely polluted to polluted cities in Pakistan using AquaTerra 580 

DTB AOD550 products from 2003 to 2017. (a) polluted cities based on mean AOD, (b) pixel 581 

counts, (c) polluted months based on mean AOD, and (d) polluted years based on mean AOD. 582 

5.2 CAMS and MERRA-2 reanalysis data 583 

5.2.1 Validation of PM2.5 reanalysis data 584 

Previous studies have evaluated the uncertainties in both CAMS and MERRA-2 PM2.5 585 

reanalysis data compared to ground-based PM2.5 measurements (Cuevas et al. 2015; He et al. 586 

2019; Song et al. 2018; Ukhov et al. 2020). Recently, Ukhov et al. (2020) reported overestimation 587 

in CAMS PM2.5 over the middle east and west Asia which have been attributed to the deficient 588 

size distribution of the emitted dust. Additionally, significant underestimation in MERRA-2 PM2.5 589 

was reported over China and India (He et al. 2019; Navinya et al. 2020; Song et al. 2018) which 590 

could be due to the lack of nitrate concentrations in the reanalysis data and underestimation of 591 

OC emission for urban/suburban areas (Buchard et al. 2016; Provencal et al. 2017).  592 

The MERRA-2 and CAMS PM2.5 reanalysis data over Pakistan were evaluated by comparison 593 

with BAM (beta gauge attenuation monitor) PM2.5 concentrations for 2019-2020 provided by the 594 

US Consulates and with LCM (low-cost monitor) PM2.5 concentrations for 2018-2019 provided by 595 

PAQI. The scatterplots in Figure 5 show a significant underestimation of both daily (Figures 5a 596 

and 5b) and monthly (Figures 5e and 5f) MERRA-2 PM2.5 concentrations compared to both BAM 597 

and LCM PM2.5 measurements: for the daily data the slopes are 0.45 and 0.54 and the RMB are -598 

34.2% and -26.8%, respectively, and for the monthly data the slopes are 0.30 and 0.52 with -599 
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35.9% to 25.3%, respectively. The results also show the weak correlation of MERRA-2 PM2.5 data 600 

with both BAM and LCM daily (r = 0.22 and 0.25, respectively) and monthly (r = 0.10 and 0.27, 601 

respectively) PM2.5 data. The weak correlation suggests that MERRA-2 PM2.5 data based on the 602 

GOCART aerosol module is unable to accurately reproduce the temporal variations in PM2.5. A 603 

significant underestimation of MERRA-2 PM2.5 data was also reported over China (He et al. 2019; 604 

Song et al. 2018) and India (Navinya et al. 2020), but over Pakistan, the correlation is even 605 

weaker. Moreover, the grid size of MERRA2 (0. 5° × 0.625° grid size) could introduce errors due 606 

to heterogeneity within the large area that affects the correlation with the in-situ measurements.  607 

In comparison with the MERRA-2 data, the correlation coefficients of the CAMS daily (Figures 608 

5c and 5d) and monthly (Figures 5g and 5h) PM2.5 data versus ground-based in situ PM2.5 609 

measurements are substantially higher for both BAM and LCM. However, the data in Figure 5 610 

show significant deviations of the CAMS-estimated PM2.5 from the ground-based PM2.5 values, 611 

with over- or under-estimation depending on grid size. For example, CAMS overestimates PM2.5 612 

at the 0.75° grid size by 30.4% in comparison with the daily BAM data and by 55.4% in comparison 613 

with the daily LCM data. For monthly data, these percentages are 30.4% and 57.4%. In contrast, 614 

CAMS underestimates PM2.5 at the 0.125° grid size in comparison with BAM data and 615 

overestimates in comparison with LCM data. These results suggest that grid size and ground-616 

based PM2.5 measurement methods (BAM and LCM) play an important role in the 617 

overestimation/underestimation of CAMS PM2.5 data. For illustration, in comparison with the 618 

BAM PM2.5 measurements, CAMS data are overestimated for one grid (0.75°) and 619 

underestimated for another grid (0.125°), and CAMS PM2.5 data at the same grid size (0.125°) are 620 

underestimated when compared with data measured using the BAM method and overestimated 621 
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when compared with data measured using the LCM method. It is worth mentioning that both 622 

MERRA-2 and CAMS simulate 5 types of fine particulate matter components (dust, sea salt, 623 

sulfate, organic carbon, and black carbon), but nitrate concentrations are not included. If the lack 624 

of nitrate concentrations is the main reason for underestimation in MERRA PM2.5 data, as 625 

reported by previous studies (Buchard et al. 2016; He et al. 2019; Provencal et al. 2017; Song et 626 

al. 2018), then underestimation should be observed in CAMS PM2.5 data at 0.75° grid size, but 627 

this is not the case. Therefore, the exact reasons for underestimation in both MERRA-2 and CAMS 628 

as well as overestimation in CAMS data should be thoroughly investigated in future studies. The 629 

results show a higher correlation for CAMS monthly data (Figures 5g and 5h) compared to the 630 

daily data (Figures 5c and 5d). Although CAMS monthly data at 0.75° grid size show 631 

overestimation, they have a good correlation coefficient (r = 0.72–0.76) with ground-based PM2.5 632 

measurements and could be useful for characterizing pollution levels in the cities of Pakistan 633 

compared to the MERRA-2. The comparisons in Figure 5 do not provide a strong reason for 634 

choosing one data set over the other. We have selected the CAMS data at the 0.75o grid taking 635 

into account the deviation in the CAMS data observed in this evaluation, in addition to the large 636 

scatter in individual data points which adds uncertainty.  637 
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 638 

Figure 5: Validation of MERRA-2 and CAMS PM2.5 reanalysis data against BAM (beta gauge 639 

attenuation monitor) PM2.5 concentrations for 2019-2020 provided by the US Consulates and 640 

LCM (low-cost monitor) PM2.5 concentrations for 2018-2019 provided by PAQI. Where, (a) 641 

MERRA-2 daily PM2.5 vs. BAM daily PM2.5, (b) MERRA-2 daily PM2.5 vs. LCM daily PM2.5, (c) CAMS 642 

daily PM2.5 vs. BAM daily PM2.5, (d) CAMS daily PM2.5 vs. LCM daily PM2.5, (e) MERRA-2 monthly 643 

PM2.5 vs. BAM monthly PM2.5, (f) MERRA-2 monthly PM2.5 vs. LCM monthly PM2.5, (g) CMAS 644 

monthly PM2.5 vs. BAM monthly PM2.5, and (h) CAMS monthly PM2.5 vs. LCM monthly PM2.5. The 645 

dashed line in each figure is the identity line and the blue and orange solid lines are the fit lines 646 

with parameters presented in the legends.  647 

5.2.2 Characterization of extremely polluted cities using PM1 and PM2.5 concentrations 648 

PM1 and PM2.5 are fine particulate matter associated with human health issues. PM1 is more 649 

harmful than PM2.5 as it can reach deeper into the lungs and affect the respiratory system (Liu et 650 
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al. 2013; Meng et al. 2013). A previous study over China reported that most health issues 651 

associated with PM2.5 were mainly due to greater contributions of PM1 in PM2.5 (Chen et al. 2017). 652 

The ranking of extremely polluted to polluted cities in Pakistan according to annual mean CAMS 653 

PM1 concentrations from 2003 to 2020 in Figure 6a indicates that the top 10 extremely polluted 654 

cities are Lahore (135.44 µg/m3), Gujranwala (131.99 µg/m3), Okara (107.72 µg/m3), Faisalabad 655 

(98.96 µg/m3), Pakpattan (94.06 µg/m3), Jhelum (85.51 µg/m3), Sargodha (84.30 µg/m3), Bhimber 656 

(83.99 µg/m3), Gujrat (83.99 µg/m3), and Sialkot (83.99 µg/m3). Similarly, the top 10 extremely 657 

polluted cities (Figure 7a) ranked according to PM2.5 concentrations are Lahore (170.53 µg/m3), 658 

Gujranwala (163.63 µg/m3), Okara (139.43 µg/m3), Faisalabad (129.85 µg/m3), Pakpattan (126.97 659 

µg/m3), Multan (113.09 µg/m3), Bahawalnagar (110.81 µg/m3), Vehari (110.81 µg/m3), Sargodha 660 

(109.81 µg/m3), and Jhelum (107.68 µg/m3). The WHO air quality guidelines (AQG) are not yet 661 

defined for PM1 as PM1 is not as widely monitored as PM2.5, therefore the WHO recommended 662 

AQG for PM2.5 (<10 µg/m3 annual mean) and Pak-NEQS for PM2.5 (<15 µg/m3 annual mean) are 663 

used for comparison purposes. Not a single city in Pakistan falls within the PM2.5 standards 664 

defined by Pak-NEQS and WHO, and the values of PM1 and PM2.5 respectively for the top 10 cities 665 

are 5.6 (8.4) to 9.0 (13.5) times and 7.2 (10.8) to 11.4 (17.1) times greater than the Pak-NEQS 666 

(WHO AQG). For PM1 and PM2.5, 9 out of 10, and 10 out of 10 cities respectively, are in Punjab. 667 

The extremely high pollution level may be due to emissions from local anthropogenic activities, 668 

confirming the results of a previous modeling study that suggested local anthropogenic activities 669 

as the major cause of high particulate concentrations in Pakistan (Shi et al. 2020). All major cities 670 

selected in this study (80 cities) are exposed to PM2.5 concentrations during a long period of time 671 

(Figures 1a and 7a), which exceed the Pak-NEQS (<15 µg/m3) and 68, 73, and 80, out of 80 cities 672 
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exceeded the WHO Interim Target-1 (<35 µg/m3), Target-2 (<25 µg/m3), and Target-3 (<15 673 

µg/m3), respectively. These exceedances are set in strong perspective against the much lower 674 

recommended WHO AQG for PM2.5 of 10 µg/m3. These results suggest that the top polluted cities 675 

are extremely hazardous for human health, as an increase of PM2.5 by 10 µg/m3 can increase 676 

mortality, lung cancer, and cardiopulmonary diseases by 8%, 6%, and 4%, respectively, due to 677 

long-term exposure to fine particulates (Pope et al. 2002).  678 

 679 
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Figure 6: Ranking of extremely polluted to polluted cities in Pakistan according to annual mean 680 

CAMS PM1 concentrations from 2003 to 2020. Where (a) polluted cities based on yearly mean 681 

PM1 averaged over the years 2003-2020, (b) polluted months based on PM1 averaged over the 682 

years 2003-2020, and (c) polluted years based on yearly mean PM1.  683 

Figures 6b and 7b show months with the highest levels of PM1 and PM2.5, averaged over the 684 

years 2003-2020, for the extremely polluted cities. The higher PM1 and PM2.5 concentrations were 685 

observed in cold months (October to February) with the maximum concentrations in December 686 

and January, while warmer months (March to September) showed lower PMx concentrations.  687 

The high levels of fine particulates in October and November may be attributed to both cross-688 

border transport of aerosol produced from biomass burning activities (from India) as well as 689 

locally produced aerosols by anthropogenic activities. As the highest values of fine particulates 690 

were observed in December and January which are not the main months of biomass burning 691 

activities, these are not likely the main source of the high levels of fine particulates pervasive 692 

across these highly polluted cities. At this time of year, less surface heating and less turbulence 693 

due to lower intensity of solar irradiation lead to stable and shallow boundary layers. 694 

Furthermore, with higher concentrations of light-absorbing aerosols, mainly BC, the atmospheric 695 

stability increases due to local heating near the top of the boundary layer, induced by BC, which 696 

further lowers the boundary layer height (BLH) (Ding et al. 2016). Stable atmospheric conditions 697 

that imply low BLH together with low wind speed, both limiting aerosol transport, lead to the 698 

accumulation of aerosols and enhancement of particle concentrations near the surface. As a 699 

result, anthropogenic aerosols such as those produced from fossil fuel combustion and other 700 

urban and industrial activities may linger for long periods (Mhawish et al. 2020). In October and 701 
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November, both local and remote (cross-border) biomass (crop residue) burning activities 702 

coupled with stable atmospheric conditions have been recognized to cause severe haze and smog 703 

episodes, especially over Punjab (Mhawish et al. 2020; Tariq et al. 2015; Tariq et al. 2016). The 704 

formation of secondary inorganic aerosol during haze episodes is also responsible for higher 705 

PM2.5 concentrations as reported from recent studies over China (Nichol et al. 2020; Zhang et al. 706 

2018). An increase in PM2.5 concentrations was observed in June and July, and PM1 707 

concentrations slightly increased in July. This means that PM2.5 exhibited two peaks: the first in 708 

winter and the second in summer, whereas a single peak in winter was observed for PM1. The 709 

second PM2.5 peak in summer may be attributed to the fine particulates from dust, as dust storm 710 

activities are very common in Pakistan during summer, as well as local anthropogenic activities. 711 

The lower peak of PM2.5 in the summer, compared to winter, may be due to the unstable 712 

atmospheric conditions due to the higher surface heating by solar irradiation, leading to the 713 

generation of strong turbulence with rising air and thus strong mixing conditions which promote 714 

the vertical dispersion of pollutants. 715 

The annual mean concentrations of PM1 (Figure 6c) and PM2.5 (Figure 7c) show strong inter-716 

annual variations with distinct PMx levels and very poor air quality conditions throughout the last 717 

two decades. The annual mean mass concentrations in extremely polluted cities range from 63 718 

µg/m3 to 150.19 µg/m3 for PM1 and from 85 µg/m3 to 187.35 µg/m3 for PM2.5, which are 4.2 719 

(6.3)–10 (15) and 5.7 (8.5)–12.5 (18.7) times greater than the Pak-NEQS (WHO AQG), 720 

respectively.  721 
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 722 

Figure 7: As Figure 6, but for PM2.5.  723 

5.2.3 Characterization of extremely polluted cities using PM10 concentrations 724 

Figure 8a shows the ranking of polluted cities according to PM10 concentrations. The PM10 725 

fraction with an aerodynamic diameter larger than PM2.5 (PM10-PM2.5), i.e. the mass 726 

concentration of coarse particles, mainly originates from natural sources such as desert dust and 727 
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resuspended soil particles. The top 10 most polluted cities according to the PM10 concentrations 728 

are Lahore (238.9 µg/m3), Gujranwala (229.1 µg/m3), Okara (194.5 µg/m3), Faisalabad (180.6 729 

µg/m3), Pakpattan (177.9 µg/m3), Bahawalnagar (160.6 µg/m3), Vehari (160.6 µg/m3), Multan 730 

(157.5 µg/m3), Sargodha (152.3 µg/m3), and Jhelum (149.7 µg/m3). PM10 concentrations are 1.2 731 

to 11.9 times higher than the WHO AQG for PM10 (20 µg/m3 annual mean) for all the cities shown 732 

in Figure 8a, suggesting that very poor air quality conditions, hazardous for human life, prevail in 733 

all Pakistani cities. Overall, the PM10 temporal trend pattern is very similar to that for PM2.5, i.e., 734 

December is the month with the highest PM10 concentrations, followed by January. In summer, 735 

July is the most polluted month followed by June (Figure 8b). Similar to the PM2.5 variations, PM10 736 

also exhibited peaks in both winter and summer. The higher concentrations during the winter 737 

months (i.e. December and January) may be due to increased anthropogenic emission activities 738 

along with stable atmospheric conditions (stagnant conditions, and shallower boundary layer). 739 

Despite the abundance of coarse particulate matter in spring and summer seasons which are 740 

transported from the arid and semiarid regions, the strong convection combined with a deeper 741 

boundary layer enhances the dispersion of the near-surface pollutant that decreases the PM10 742 

concentrations along with the wet deposition during the rainy summer season. The pre-harvest, 743 

harvesting, and post-harvest burning activities along with meteorological conditions such as low 744 

wind speed and low boundary layer height may contribute to higher surface PM10 levels 745 

especially during October and November as these activities produce both fine (PM1 and PM2.5) 746 

and coarse (PM10) particles as reported by (Jain et al. 2020; Singh et al. 2017) over South Asia and 747 

by Le Blond et al. (2017) over South American countries.  748 
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Similar to the annual mean PM2.5 variations (Figure 7c), the annual mean PM10 concentrations 749 

also show distinct interannual variations for all cities (Figure 8c), and severe air pollution levels 750 

were observed throughout the last two decades. According to these findings, Pakistani people 751 

are not only exposed to long-term PM2.5 but also to PM10 concentrations exceeding the WHO 752 

recommended AQG for PM10 (<20 µg/m3). Overall, these results suggested that Pakistani cities 753 

are a severe threat to human life due to extremely poor air quality conditions.  754 

 755 
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Figure 8: As Figure 6, but for PM10. 756 

5.2.4 PM1/PM2.5 and PM2.5/PM10 ratios 757 

The PMx ratios are very useful for understanding the contributions among particulate size, as 758 

revealed by a study in China where PM1 contributed nearly 80% of PM2.5 (Wang et al. 2015), 759 

which would have consequences for human health. Over Pakistan, the PM1/PM2.5 (Figure 9a) and 760 

PM2.5/PM10 (Figure 9b) ratios are lower than those observed over China (Wang et al. 2015), 761 

indicating lower contributions of PM1 to PM2.5 and PM2.5 to PM10. However, the pattern of ratios 762 

is similar to that observed for China, i.e., the PM1/PM2.5 ratios are higher than PM2.5/PM10 ratios. 763 

Relatively higher PM1/PM2.5 ratios (>75%) are observed from October to March (Figure 9a), 764 

indicating a larger fraction of PM1 in PM2.5 due to more anthropogenic activities. The directly 765 

emitted PM1 from the automobile and combustion of fossil fuel, and indirectly by formation from 766 

precursor gases, are most likely higher from October to March, leading to the enhanced 767 

PM1/PM2.5 ratio. This also suggests that the PM2.5 concentrations from October to March are 768 

driven by emissions from combustion and secondary aerosols formation (Jain et al. 2020). 769 

However, low PM1/PM2.5 ratios are observed from April to September in most of the cities, and 770 

low ratios during all months are observed in the cities located in Balochistan, indicating a lower 771 

contribution of PM1 to PM2.5, which is mainly dominated by the larger particles especially during 772 

summer (June, July, and August) which not contributed to PM1.  773 

Figure 9b shows large contributions of PM2.5 to PM10 throughout the year with maximum 774 

contributions during summer as indicated by the large PM2.5/PM10 ratios. This suggests that the 775 

air quality in these cities is mainly (and significantly) influenced by fine particulates, largely from 776 
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anthropogenic sources. The large PM2.5/PM10 ratios in Gwadar and Ormara (Figure 9b), coastal 777 

cities in Balochistan, throughout the year suggest that also in these coastal cities the PM is 778 

dominated by PM2.5 particles, which indicates that the PM10 is driven by PM2.5 which is highly 779 

influenced by anthropogenic sources. Gwadar has the deepest seaport in the world and the ship-780 

based emissions may be one of the sources of fine anthropogenic particles throughout the year. 781 

However, lower PM2.5/PM10 ratios are observed for other cities located in Balochistan, indicating 782 

the greater influence of coarse particulates (mainly desert dust). 783 

 784 

Figure 9: (a) Monthly mean ratios of PM1/PM2.5 and (b) PM2.5/PM10. 785 

 786 
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Scatter plots of PM1 vs. PM2.5 (Figure 10a) and PM2.5 vs. PM10 (Figure 10b) show that the PMx 787 

fractions over Pakistan are well-correlated, with Pearson’s correlation coefficients (r) of 0.95 and 788 

0.99, and slopes of 0.90 and 0.70, respectively. The strong linear relationship between PM10 and 789 

PM2.5 (higher r values) suggests common sources of fine and coarse particulates compared to 790 

PM1 vs PM2.5 relationship. While the higher slope values suggest larger contributions of PM1 to 791 

PM2.5 than PM2.5 to PM10. Overall, both the contribution of PM1 to PM2.5 and that of PM2.5 to PM10 792 

are smaller over Pakistan than over China (Wang et al. 2015) as indicated by the PMx ratios (Figure 793 

9) and slope values (Figure 10). This might be due to a higher contribution of anthropogenic 794 

emissions to the PM concentrations in China than in Pakistan; however, other processes may also 795 

contribute, and unraveling the different contributions requires more detailed research. Figures 796 

10a and 10b show some scattered points, within a red circle or ellipse, which represent the data 797 

from May to September and these scattered points suggest lower contributions of PM1 in PM2.5 798 

and PM2.5 in PM10, as also indicated by low PMx ratios (Figure 9).   799 

 800 
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Figure 10: Scatter plots between (a) PM1 vs. PM2.5 and (b) PM2.5 vs. PM10. The red solid line 801 

represents the regression line and the black dashed line represents the identity line. The data 802 

points in the red circle and ellipse are explained in the text. 803 

5.2.5 Monthly mean temporal trend of PM1, PM2.5, and PM10 804 

The month-to-month variations of the multi-year (2003–2020) monthly mean PM1, PM2.5, and 805 

PM10 concentrations for the top 10 polluted cities are shown in Figure 11. These cities vary 806 

according to population growth, the number of automobiles, urbanization, industrialization, city 807 

size, land cover types, and climatic conditions, and PM concentrations are expected to behave 808 

differently due to these factors. This study follows the hypothesis of our previous study 809 

conducted over Hong Kong (Bilal et al. 2019c) i.e., if the PM concentrations have different 810 

magnitudes but follow the same temporal pattern at different locations, they are influenced by 811 

local as well as regional contributions. Thus for PM1 concentrations, Figure 11a shows the same 812 

pattern for each of the 10 cities, suggesting that both local and regional sources contribute to 813 

PM1 concentrations. For both PM2.5 (Figure 11b) and PM10 (Figure 11c), similar patterns are only 814 

evident from September to April, and dissimilar patterns due to variation in magnitudes are 815 

evident from May to August, suggesting more local contributions for the summer months of May 816 

to August. This local contribution during summer may be attributed to the frequent dust/sand 817 

storms. Similarly, from October to January, the PM1, PM2.5, and PM10 concentrations in Lahore 818 

and Gujranwala show similar patterns as in other cities, but with higher concentrations, probably 819 

because  Lahore and Gujranwala are the largest cities, with consequently more transport, fossil 820 

fuel, and industrial emissions, and some local and cross-border biomass burning activities in 821 
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autumn (Ali et al. 2013; Tariq et al. 2015; Tariq et al. 2016), which reinforce the effects of 822 

meteorological impacts, such as shallower boundary layer height and lower wind speed, which 823 

result in the accumulation of particulate matter near the surface (Miao et al. 2019; Miao and Liu 824 

2019; Miao et al. 2018; Qu et al. 2017; Sun et al. 2019; Wang et al. 2018).  825 
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 826 

Figure 11: Multiyear (2003 - 2020) monthly average variations of PM1, PM2.5, and PM10 827 

concentrations in the corresponding top 10 polluted cities (see legend). Cities are plotted with 828 

the rank of high to low polluted. 829 
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5.3 OMI vertical column densities of NO2 and SO2  830 

5.3.1 Characterization of extremely polluted cities using NO2 data 831 

NO2 is mainly produced from fossil fuel combustion, industrial emission, automobile 832 

emission, biomass burning, natural lightning, and soil microbe emissions (Cheng et al. 2012; Lee 833 

et al. 1997; Olivier et al. 1998; Richter and Burrows 2002). NO2 has an adverse effect on health 834 

and contributes to low atmospheric visibility, and poor air quality conditions (Khokhar et al. 2015; 835 

ul–Haq et al. 2014). Pakistan’s top ten polluted cities according to NO2, where we use 836 

Tropospheric vertical column densities (TVCDs) as a proxy, are those with the highest levels of 837 

urbanization, vehicle emissions, and industrialization, suggesting anthropogenic activities to be 838 

the major cause. They are Lahore (5.69×1015 molecules/cm2), Rawalpindi (3.65×1015 839 

molecules/cm2), Islamabad (3.65×1015 molecules/cm2), Karachi (3.60×1015 molecules/cm2), 840 

Gujranwala (3.32×1015 molecules/cm2), Sialkot (2.81×1015 molecules/cm2), Haripur (2.73×1015 841 

molecules/cm2), Okara (2.72×1015 molecules/cm2), Faisalabad (2.72×1015 molecules/cm2), and 842 

Gujrat (2.47×1015 molecules/cm2) (Figure 12a). Similar results are reported by Tabinda et al. 843 

(2019), Ashraf et al. (2013), and Khanum et al. (2017). In terms of data availability from OMI, 844 

Figure 12b indicates the largest number of PC available for Lasbela (4168), Awaran (4154), and 845 

Panjgur (4140), all located in Balochistan. On a monthly mean basis, NO2 (Figure 12c) follows the 846 

same patterns as observed for PM1 and PM2.5 concentrations; i.e., higher values in winter, 847 

especially for the extremely polluted cities (Lahore, Rawalpindi, Islamabad, and Karachi), which 848 

are attributed to emissions of automobiles, industries, and fossil fuel combustion, under stable 849 

atmospheric conditions. The NO2 atmospheric lifetime is higher in winter than in summer due to 850 
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higher mixing ratio and less sunlight that initiates the breakdown reaction of NO2; therefore stays 851 

longer in the atmosphere in winter than in summer. A different trend observed for cities located 852 

in Balochistan, with higher NO2 in summer, could be due to natural lightning as reported by 853 

Khokhar et al. (2015). Figure 12d shows that Lahore, Rawalpindi, Islamabad, and Karachi are 854 

polluted in all years from 2004 to 2019, subjecting citizens to long-term exposure associated with 855 

respiratory diseases,  otitis media, and mortality (Latza et al. 2009).  856 
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Figure 12: Ranking of extremely polluted to polluted cities in Pakistan according to OMI NO2 858 

TVCDs (molecules/cm2) from 2004 to 2019. (a) polluted cities based on mean NO2, (b) pixel 859 

counts, (c) polluted months based on mean NO2, and (d) polluted years based on mean NO2. 860 

5.3.2 Characterization of extremely polluted cities using SO2 data 861 

Power plants, oil and gas refineries, and metal smelters are the major sources of 862 

anthropogenic SO2 (Dahiya and Myllyvirta 2019). In Figure 13a, extremely polluted to polluted 863 

cities are ranked based on OMI-derived SO2 vertical column density and the top 10 polluted cities 864 

are Lahore (10.6×1015 molecules/cm2), Mirpur (10.5×1015 molecules/cm2), Gujranwala (10.3×1015 865 

molecules/cm2), Rawalpindi (10.3×1015 molecules/cm2), Islamabad (10.3×1015 molecules/cm2), 866 

Sialkot (10.3×1015 molecules/cm2), Gujrat (10.3×1015 molecules/cm2), Faisalabad (10.3×1015 867 

molecules/cm2), Bhimber (10.2×1015 molecules/cm2), and Jhelum (10.2×1015 molecules/cm2). 868 

According to the global SO2 emission hotspot database (Dahiya and Myllyvirta 2019), five oil 869 

power plants near Lahore are the main sources of high SO2 emissions over Lahore. The lower 870 

number (1080–2520) of successful SO2 retrievals (Figure 13b) as compared to NO2 retrievals 871 

(Figure 12b) is attributed to the high noise level in the OMI-retrieved SO2 data. Only the relatively 872 

strong SO2 signal over point sources (e.g., power plants, metal smelters) can be detected. 873 

(Fioletov et al. 2011; Li et al. 2017; Li et al. 2020). The temporal variation of the monthly mean 874 

SO2 VCDs (Figure 13C) have a pattern similar to that of PM2.5 and NO2 TVCD, with high values in 875 

the winter and low in the summer. For the top polluted cities, the high SO2 observed during 876 

November, December, and January may be attributed to the power plants and brick kilns (Dahiya 877 

and Myllyvirta 2019; Rahman et al. 2000). Brick kilns are considered as major sources of SO2 878 
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resulting in extremely poor air quality. This is clearly observed over Punjab (Adrees et al. 2016; 879 

Colbeck et al. 2010; Pervaiz et al. 2021; Ur Rehman et al. 2019). Therefore, every year during late 880 

autumn and winter, the government of Pakistan bans these kilns to control pollution levels. The 881 

SO2 accumulates in the BL during the stable atmospheric conditions and shallow BLH at this time 882 

of year, in response to the low solar irradiation resulting in little surface heating and turbulence 883 

mixing. Unlike NO2, the contribution of SO2 to poor air quality in Pakistani cities varies from year 884 

to year, as shown in Figure 13d. The SO2 VCD is higher in 2004, 2008, and 2011 than in other 885 

years. The investigation of the year-to-year variability requires a separate study.  886 



56 

 887 



57 

Figure 13: Ranking of high to low polluted cities in Pakistan according to OMI SO2 VCDs 888 

(molecules/cm2) from 2004 to 2019. (a) polluted cities based on mean SO2, (b) pixel counts, (c) 889 

polluted months based on mean SO2, and (d) polluted years based on mean SO2. 890 

5.4 Spatial distributions of aerosols and trace gases 891 

The purpose of this section is to link the spatial distributions of aerosols and trace gases with 892 

each other as well as with population density, nighttime lights, land cover types (cropland and 893 

urban areas), and presumed vegetation fire activities. Here, the PMx data are interpolated using 894 

cubic convolution (Keys 1981) from 0.75° grid size to 0.125° grid size to better show the smooth 895 

spatial distributions over different administrative units. The spatial distributions of the multi-year 896 

averaged concentrations of aerosols (AOD, PMx) and trace gases (VCDs) (Figure 14) show that 897 

Punjab is the most polluted region of Pakistan, followed by Sindh. It is significant that other 898 

environmental data including population density (Figure 14g), VIIRS nighttime lights (Figure 14h), 899 

cropland (Figure 14i), and vegetation fires (Figure 14j) show similar spatial patterns. It is obvious 900 

that vegetation fires would have the same spatial pattern as cropland, but not obvious that 901 

population density and nighttime lights would have the same pattern. As nighttime lights and 902 

vegetation fires represent human activities, having the same spatial patterns suggests that the 903 

majority of human settlements including urban, suburban and, industrial regions, are inter-mixed 904 

with cropland. Interestingly, these coincident spatial distributions (population, nighttime lights, 905 

land cover, and fires) correspond to the higher ranges of pollutants i.e., AOD > 0.4, PM1 > 20 906 

µg/m3, PM2.5 > 40 µg/m3, PM10 > 60 µg/m3, NO2 > 1.0×1015 molecules/cm2, and SO2 > 6.5×1015 907 

molecules/cm2. These results suggested that the primary (directly emitted) and the secondary 908 
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(gas-to-particles formation) aerosol emissions and trace gases are mainly from local 909 

anthropogenic sources such as power plants, oil and gas refineries, vehicular emissions, crop 910 

residue burning, and industrial activities including construction, manufacturing of cement, 911 

ceramic, and bricks, and metals smelting. These anthropogenic sources are mainly responsible 912 

for NO2, SO2, and PMx (Adrees et al. 2016; Shah et al. 2012; Ur Rehman et al. 2019). Among these 913 

anthropogenic sources, brick kilns industries are considered a major source. Small-scale 914 

traditional brick kilns, located in rural and suburban areas, produce large amounts of gaseous 915 

pollutants (NO2, SO2, O3, and CO) and PMx due to the usage of low-quality fuels including coal, 916 

oil, wood, rice straw, rice husk, rubber tires, bagasse, and corncobs (Adrees et al. 2016; Ishaq et 917 

al. 2010). Besides this, the combustion of agricultural biomass and crop residue burning are also 918 

contributing to deteriorating rural and urban air quality (Irfan et al. 2015; Irfan et al. 2014). Irfan 919 

et al. (2015) reported that Punjab produced more aerosol pollutants than Sindh from crop 920 

residue burning and among the crop residues, wheat straw is the main contributor of NOx, SO2, 921 

CO2, and CO. Pakistan’s 23.6 million vehicles emitted 58% of the country’s total NO2 emission and 922 

34% is emitted by power plants and industries (Amnesty International 2019; Government of 923 

Pakistan 2019; UNDP 2019). Another important source of aerosol pollutants, missed by previous 924 

studies, is the burning of solid waste and street garbage which is a common practice in Pakistan, 925 

even in major urban cities such as Islamabad, Lahore, Rawalpindi, Faisalabad, Gujranwala, Okara, 926 

etc. To support this statement, some illustrations with references are provided in the 927 

supplementary data (Figure S2). Figures 14a to 14d show that deserts (see Figure 1 for locations) 928 

are another source of increasing AOD and PMx levels in Pakistan. Although local anthropogenic 929 

activities are the mains source of aerosol pollutants and severe air quality problems in Pakistan, 930 
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transboundary transport of aerosols may also influence Pakistan’s air quality. Contributions of 931 

transboundary transport are investigated in section 5.7, using PSCF analyses, integrated with 932 

HYSPLIT backward trajectory analysis and ground-based PM2.5 measurements.  933 
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Figure 14: Spatial distributions of yearly mean (a) AOD averaged over the years 2003–2017 (b) 935 

PM1 [2003–2020] (c) PM2.5 [2003–2020], (d) PM10 [2003–2020], (e) NO2 [2005–2019], (f) SO2 936 

[2005–2019], (g) Population density [2019], (h) VIIRS Nighttime Lights [2012–2019], (i) Land 937 

cover types [2019], and (j) Presumed vegetation fire data [2003–2020]. 938 

5.5 Relationship of PMx with AOD, NO2, and SO2 939 

AOD provides valuable information about the aerosol loading in the atmospheric column, 940 

while the PMx represents the aerosol concentrations near the ground. This section assesses how 941 

well satellite-based AOD describes PM1, PM2.5, and PM10 by examining the monthly correlation 942 

between AOD and PMx. We have also examined the monthly correlation between PMx and SO2 943 

and NO2 to understand the common sources that originated mainly from a combustion process. 944 

The relationships between AOD and PMx vary spatially and temporally and are influenced by 945 

several factors such as meteorological variables including boundary layer height and relative 946 

humidity, and the vertical distribution of aerosol layer (Li et al. 2016; Mhawish et al. 2021). The 947 

linear correlation between AOD and PMx shows a higher correlation coefficient from October to 948 

January (see Figure 15a) when the atmosphere is stably stratified and the boundary layer is 949 

shallow. This suggests that the AOD and PMx variability are well agreed during the stable 950 

atmospheric conditions (from Oct to Jan) and AOD can explain > 65% in the PMx variability. On 951 

the other hand, during April and May when the atmosphere is unstable and the boundary layer 952 

deeper, the correlation between AOD and PMx was smaller (r < 0.4). In the rainy season (July to 953 

August), the correlation coefficient between AOD and PM10 was found higher than PM2.5 and PM1 954 

which may be due to the larger contribution of coarse dust particles to the total aerosol loading 955 
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than PM2.5 and PM1. The high relative humidity in the summer season enhanced the AOD retrieval 956 

due to the hygroscopic growth of aerosol particles. On the other hand,  the wash-out of PMx due 957 

to precipitation, deeper boundary layer, and strong convection during rainy months leads to a 958 

reduction in the ground-level PMx concentrations, while the AOD retrieval remains high under 959 

cloud-free conditions during the inactive rain phase (Mhawish et al. 2021). The results suggested 960 

that using satellite-based AOD to infer the ground-level PMx variability is limited to specific 961 

meteorological conditions such as stable atmospheric conditions and dry seasons. On the other 962 

hand, the weak linear relationship between AOD and ground-level PMx concentrations found 963 

during unstable conditions in spring and summer and more influenced by meteorological 964 

variables and atmospheric mixing height.  965 

Tropospheric NO2 and SO2 are precursors for the formation of secondary aerosols which are 966 

produced by anthropogenic activities such as fossil fuel burning and power plants. The strong 967 

correlation coefficient between PMx vs. SO2 and NO2 in the spring months suggests that 968 

photochemical reactions can contribute to the formation of PMx. The strong correlation in winter 969 

suggests that both trace gases NO2 and SO2 originated from the same emission sources of PMx, 970 

mainly domestic heating, industrial activities, and vehicular emissions. While the lower 971 

correlation in the summer monsoon may be attributed to the higher contribution of natural 972 

sources of PMx and the deeper boundary layer that enhance the dispersion of air pollutants.  973 

 974 
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 975 

Figure 15: Relationship from PMx with (a) AOD, (b) NO2, and (c) SO2 from 2004-2017. 976 

5.6 Trends of aerosol and trace gas concentrations 977 

This section presents the annual trends in the six parameters used to assess the air quality in 978 

each city of Pakistan. The annual trends were calculated after removing the seasonality from the 979 

monthly mean time series data which also accounted for temporal autocorrelation. Figure 16 980 
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shows the magnitude of the trends as Theil-Sen’s slope over each individual city, for the periods 981 

indicated at the top of each Figure. A significant positive trend in PMx was found over most cities, 982 

particularly in Punjab, Khyber Pakhtunkhwa, and the Islamabad Capital Territory. The PMx trends 983 

found over cities in Punjab range from +0.35 to +1.10 µg/m3 yr-1, +0.42 to +1.52 µg/m3 yr-1 and 984 

+0.57 to +2.20 µg/m3 yr-1 for PM1, PM2.5 and PM10, respectively. Correspondingly, the AOD trend 985 

in Punjab cities was positive, with the strongest increase over Lahore (0.008 yr-1). Over cities in 986 

Khyber Pakhtunkhwa and Azad Kashmir, the AOD trend was also positive, but smaller than in 987 

Punjab. The positive trends in PMx and AOD, particularly over cities in Punjab, may be due to 988 

increasing aerosol emissions and/or secondary aerosol formation. Anthropogenic activities and 989 

biomass burning are considered major sources of ultrafine and fine particles (PM1 and PM2.5) over 990 

the region (Alam et al. 2015; Stone et al. 2010). Anthropogenic activities also result in the 991 

production of NO2 and SO2 and  ~91%, and ~88% of the cities the trends in the NO2 and SO2, 992 

respectively, are positive. This increase in trace gas concentrations would be a further source of 993 

increased particulate pollution, as trace gases facilitate secondary aerosol formation via gas-to-994 

particle conversion reactions (Seinfeld and Pandis 1998). 995 

In terms of monthly trends, the common feature is that the statistically significant positive 996 

trends of PMx were largest during the cold months (November to February), particularly over 997 

major Punjab cities (Lahore, Faisalabad, and Gujranwala) and Islamabad (Figure S3). In contrast, 998 

during the summer months, the trends over many cities are negative. The overall positive annual 999 

trends indicate that the increase of the PMx concentrations in the winter is stronger than the 1000 

decrease in the summer. The reasons for these opposing trends are beyond the scope of the 1001 

current study and require further, more detailed investigation.  1002 
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 1003 

Figure 16: Annual mean trend in aerosols and trace gas concentrations for (a) AOD, (b) PM1, (c) 1004 

PM2.5, (d) PM10, (e) NO2, and (f) SO2. The trends were calculated over different periods of time, 1005 
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which are indicated on top of each figure on the right-hand side, together with the type of 1006 

species.  1007 

5.7 Potential Source Contribution Function (PSCF) Analysis 1008 

PSCF analysis was used to identify the potential source areas for PM2.5 at four receptor cities: 1009 

Peshawar, Islamabad, Lahore, and Karachi, for the period from March 2020 to February 2021. 72 1010 

hours HYSPLIT backward trajectories were computed for each receptor site, arriving every 6 1011 

hours at the height of 500 m above ground level (AGL). The results were grouped by season as 1012 

shown in Figure 17. The results show strong differences between cities and seasons. Starting with 1013 

Peshawar, in spring there are some local sources regions around the city, within a few hundreds 1014 

of km, but also strong contributions from the WNW (West-NorthWest) in Afghanistan and from 1015 

the SE in India. In the summer, the source regions are mostly located in Pakistan, but with a 1016 

contribution from sources to the SE (SouthEast), in India. In contrast, in the autumn the 1017 

contributions from India are very small but those from Afghanistan, both to the NW (NorthWest) 1018 

and W (West) are relatively large. Whereas, in the winter source regions in NW and SE directions 1019 

(Afghanistan and India, respectively) are stronger than in other seasons. In Islamabad, not far 1020 

from Peshawar, the situation is quite different. In the spring, the source regions have a rather 1021 

low PSCF, and are distributed over specific directions to the W (West) into Afghanistan and 1022 

toward the SE in India, with few local sources. In the summer, the source regions are similar to 1023 

those in Peshawar, but with low PSCF except for the source regions in Afghanistan which seem 1024 

to contribute most to the air pollution in Islamabad in the summer, but still with moderate PSCF. 1025 

In the autumn sources to the W and N dominate with stronger contributions from Afghanistan 1026 

than from the local sources. In the winter, the source regions redistributed over a much larger 1027 

area than in other seasons, with strong contributions from both local sources and Afghanistan, 1028 

as well as some contributions from India. The situation in Lahore is remarkably different, with 1029 

the strongest contributions from sources inside Pakistan (PJ and KP), some contributions from 1030 
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sources to the SE in India, during all seasons, and in the spring a strong contribution from sources 1031 

in Afghanistan. The situation in Karachi is again different, both as regards source regions and 1032 

seasonal behaviour. The strongest contributions come from local sources within a few hundreds 1033 

of km in Pakistan, except in the summer when all source regions are weak contributors (PSCF 1034 

<0.2) and almost all located over the ocean. In the spring, source regions to the NW, reaching far 1035 

into Afghanistan, contribute to the PM2.5 in Karachi. Oceanic sources also contribute some to 1036 

the PM2.5 in other seasons 1037 

In summary, the values of PSCF indicate the regional transport of aerosol from source regions 1038 

in Afghanistan and India (see Figure 1 for locations). Karachi is influenced by fine dust particles 1039 

from the Cholistan and Thar deserts (see Figure 1 for locations). Figure 17 shows that the PM2.5 1040 

in Lahore, the top polluted city of Pakistan, is mainly influenced by source areas in Pakistan, 1041 

during all seasons. This suggests that increases in local anthropogenic activities play an important 1042 

role in the worsening of Lahore’s air quality. Overall, the higher values of PSCF > 0.6 identify 1043 

potential source areas which are located both inside and outside of Pakistan, which indicates that 1044 

the air quality in Pakistan is not only influenced by local sources but also influenced by transport 1045 

from regional sources areas. 1046 

 1047 
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 1048 

Figure 17: Potential source contribution function plots for PM2.5 at seasonal scales from March 1049 

2020 to February 2021 for four receptor cities namely, Peshawar, Islamabad, Lahore, and 1050 

Karachi (see legend for identification).  1051 
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6. Conclusions 1052 

In this study, long-term (2003–2020) remote sensing, ground-based, and model simulation 1053 

datasets were combined to provide the most comprehensive and extensive evaluation ever, of 1054 

air quality conditions over Pakistan. Long-term spatio-temporal distributions of aerosol 1055 

pollutants and trace gases, recent long-term trends at the city level, ranking of cities in terms of 1056 

air pollution levels into three categories (extremely polluted, highly polluted, polluted cities), and 1057 

the potential sources of air pollution across Pakistan were reported.  1058 

The highest AOD was observed in the summer months (June to August), mainly attributed to 1059 

the hygroscopic growth of aerosol particles during the humid summer season. High AOD levels 1060 

were also observed during cold months (October to January), mainly over biomass burning 1061 

affected regions such as Punjab. For PMx and trace gases, the highest values were observed 1062 

during cold months from October to February, when the atmosphere is stably stratified and the 1063 

boundary layer is shallow, and emissions from anthropogenic activities and biomass burning are 1064 

higher than in other seasons.  1065 

The CAMS PM2.5 data are in better agreement with ground-based PM2.5 concentrations than 1066 

MERRA-2 reanalysis PM2.5 data and were therefore used to rank the cities in terms of 1067 

concentrations of particulate matter (PMx). The 18 years average of the PM2.5 concentrations for 1068 

the 80 cities of Pakistan show that a total of 21 cities fall within the category of extremely polluted 1069 

cities (PM2.5 > 92.84) (namely Punjab: 17, Khyber Pakhtunkhwa: 3, Azad Kashmir: 1), 40 cities fall 1070 

within the category of highly polluted cities (45.69 < PM2.5 < 92.84) (namely 6 in Punjab, 14 in 1071 

Sindh, 3 in Balochistan, 13 in Khyber Pakhtunkhwa and 4 in Azad Kashmir); 19 cities fall within 1072 
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the category of polluted cities (PM2.5 < 45.69) (16 in Balochistan and 3 in Khyber Pakhtunkhwa). 1073 

No single city in Pakistan falls within the PM2.5 standards defined by Pak-NEQS and WHO, and the 1074 

values of PM1 and PM2.5 for the top 10 cities are 5.6 (8.4) to 9.0 (13.5) times and 7.2 (10.8) to 1075 

11.4 (17.1) times larger than the Pak-NEQS (WHO AQG). The map of annual average PM2.5 shows 1076 

that people in the whole country are exposed to high PM2.5 concentrations for many years, with 1077 

the annual mean concentrations for all cities exceeding the Pak-NEQS (<15 µg/m3), and 68, 73, 1078 

and 80 cities exceeding the WHO Interim Target-1 (<35 µg/m3), Target-2 (<25 µg/m3), and 1079 

Target-3 (<15 µg/m3), respectively. In terms of pollution sources, the study indicates that 1080 

biomass (crop residue) burning activities may not be the main source of severe air quality 1081 

conditions in Pakistan: the highest PMx concentrations were observed in December and January 1082 

when also the NO2 TVCD and SO2 VCD, used as proxies for NO2 and SO2 concentrations, were 1083 

highest. The emissions of these trace gases are known to be associated with anthropogenic 1084 

activities including transport, industrial activities, and power generation. Interestingly, higher 1085 

levels of AOD, PM1, PM2.5, PM10, NO2, SO2, population density, nighttime lights, and vegetation 1086 

fire activities showed the same spatial pattern as cropland: most of the major cities, as well as 1087 

rural areas in Pakistan, are surrounded by cropland and transport of pollutants generated from 1088 

anthropogenic activities mix with aerosol and trace gases generated from agricultural activities, 1089 

biomass burning and natural aerosols such as dust, to produce a rather smooth mixture of the 1090 

metrics reported in this study. These findings suggest that Pakistan’s extreme air pollution 1091 

problems are strongly influenced by anthropogenic activities within Pakistan. This is also 1092 

confirmed by the PSCF (> 0.6) analysis based on HYSPLIT air parcel back trajectories and ground-1093 
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based PM2.5 concentrations. In addition, meteorological factors have a strong influence on the 1094 

occurrence of pollution episodes. 1095 

Significant positive trends in the concentrations of AOD, PM1, PM2.5, PM10, NO2, and SO2 were 1096 

observed from November to February, particularly over Lahore, Islamabad, Gujranwala, and 1097 

Faisalabad.  1098 

The final remark of this study is that all cities in Pakistan have been exposed to long-term 1099 

PMx, NO2, and SO2 concentrations throughout the last two decades. The pollution levels in these 1100 

cities imply extremely poor air quality conditions, mainly due to local anthropogenic activities, 1101 

which severely threaten human life. This comprehensive study, based on long-term multi-source 1102 

information on aerosols and trace gases may be considered a baseline study by the Ministry of 1103 

Climate Change, Pakistan, and other policymakers, to mitigate air pollution problems in Pakistan. 1104 
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