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of heatwave patterns 3 

4 

Abstract 5 

Climate change lead to more intense, higher frequent and prolonged heat extremes. 6 

Understanding the spatial pattern of heatwave is vital for providing the corresponding 7 

weather services, making climate change adaptation strategies and heat-health actions. In this 8 

study, we present an approach to estimate the heatwave spatial patterns by utilizing the 9 

WUDAPT Level 0 data and machine learning. The analysis is based on two years (2009 and 10 

2016) of air temperature data from 86 meteorological monitoring stations in Guangdong 11 

province of China, a subtropical region with frequent hot and sultry weather in summer. First, 12 

heatwave conditions were quantified by calculating the number of hot days and frequency of 13 

heatwave events in each year and used as the response variables. Then, random forest models 14 

were built by using a geospatial dataset consisting of WUDAPT and urban canopy 15 

parameters (UCP) as predictor variables. Based on the resultant models, spatial patterns of 16 

heatwave were estimated and mapped at 100m spatial-resolution. The results show that this 17 

approach is able to estimate heatwave spatial patterns using open data and inform urban 18 

policy and decision-making. The study is also a new perspective and a feasible pathway of 19 

utilizing WUDPAT Level 0 product to facilitate urban environment applications. 20 

21 
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1. Introduction 30 

Climate change has been identified as a major challenge to environmental sustainability, 31 

human health and well-being (IPCC, 2014; WMO and WHO, 2015). In the context of climate 32 

change and the trend of global warming, heatwave events during summertime have become 33 

one of the most severe meteorological disasters in cities and societies. Heatwave generally 34 

refers to the extreme events of a period of consecutive hot weather (Meehl and Tebaldi, 2004; 35 

Nairn and Fawcett, 2011). In the past two decades, heatwave events during summertime 36 

become more intense, more frequently-happened, and longer-lasting (Field, 2012; Meehl and 37 

Tebaldi, 2004; Stocker, 2014). Such extremely hot weather conditions have brought serious 38 

negative impacts on environmental health (Haines et al., 2006) and also considerable 39 

economic loss (Epstein and Mills, 2005). 40 

1.1.The associations of negative health outcomes and vulnerabilities with heatwave  41 

There have been many studies emphasizing the associations of negative heat-health outcomes 42 

(Campbell et al., 2018; Mayrhuber et al., 2018). It is generally known that the elderly and 43 



children were more susceptible and vulnerable to heatwave events (Benmarhnia et al., 2015; 44 

Oudin Åström et al., 2011). However, extremely hot weather causes a series of heat-related 45 

health impact ranging from sleeping disorder, to heat morbidity and event to the death, not 46 

only for the elderly, children, and vulnerable peoples who do not have strong resistance 47 

(Bunyavanich et al., 2003; Kenny et al., 2010; Maughan, 2012; Xu et al., 2012) but also 48 

increases health risks for youth and working populations (Xiang et al., 2013). Long-term 49 

exposure to weather with high ambient temperature could even endanger human’s life (Rey et 50 

al., 2009) and cost extra economic loss (García-Herrera et al., 2010; WMO, 2011). A national 51 

study in China indicates that a total of 4.5% (95% confidence intervals (CI): 1.4%–7.6%) 52 

excess deaths were associated with heatwaves in south China (Ma et al., 2015). 53 

1.2. The effect of urbanization on heatwave and its spatial heterogeneity  54 

Globally, the process of urbanization is continuing (UN, 2018; UN, 2019). The influence of 55 

urbanization on the spatiotemporal distribution of hot weather and the duration and intensity 56 

of heatwave is noticeable, especially for those countries that are experiencing rapid 57 

urbanization process (Guo et al., 2020; Oleson et al., 2015). The extremely hot weather 58 

condition is exacerbated by urbanization (Chapman et al., 2017; Luo and Lau, 2016; Sun et 59 

al., 2016). Generally speaking, urbanization increases the intensity of the urban heat island 60 

(UHI) effect, which further increases the intensity, frequency, and duration of the heatwave 61 

(Li and Bou-Zeid, 2013; Oke, 1973; Oke, 1997; Tan et al., 2010). In detail, the spatial 62 

variability in land-use patterns and inhomogeneous land surface thermal and aerodynamic 63 

properties lead to spatial heterogeneity in the near-ground wind field (Comrie, 2000), 64 

radiation and energy balance (Arnfield, 2003), and anthropogenic heat (Taha, 1997). All 65 

these spatial heterogeneities make the extremely hot weather condition varies among 66 

locations (Hart and Sailor, 2009). Such spatial heterogeneity makes city dwellers who live in 67 



urbanized areas, especially those who live in compact built-up areas in large cities are more 68 

vulnerable to heatwave (Uejio et al., 2011a; WMO and WHO, 2015).  69 

1.3. The necessity of incorporating fine-scale spatial heterogeneity into the 70 

estimation of heatwave condition 71 

Most of the heat-health related studies are based on time-series analysis; therefore, more 72 

focuses on the temporal characteristics (frequency, duration) of heatwave events (Kovats and 73 

Hajat, 2008). These studies usually take a city or an area of interest as a whole to associate 74 

health burdens with temperature-related variables (the spatial extent ranges from several 75 

kilometers to dozens of kilometers). Therefore, the effect of urbanization and the spatial 76 

variability of heatwave weather have become missing elements in most of the above studies 77 

and have not been comprehensively investigated (Kaiser et al., 2007; Kyselý, 2002; Le Tertre 78 

et al., 2006). Many studies have demonstrated that the vulnerability of citizens to heatwave is 79 

associated with demographic variables and socioeconomic factors (Bao et al., 2015; Chan et 80 

al., 2012; Gronlund et al., 2015; Uejio et al., 2011b). Most of these studies overlay heat 81 

exposure map, surface/air temperature map on the spatial information on vulnerable 82 

population, in which spatial scale mismatch issues between the heatwave map and spatial 83 

information on the corresponding vulnerability have been a concern (i.e., the Modifiable 84 

Areal Unit Problem) (Fraser et al., 2018; Ho et al., 2015; Wong, 2004). Commonly-used 85 

spatial units of the city administrative boundaries or urban planning zoning correspond to a 86 

spatial resolution approximately a couple of kilometers. In such cases, the assessment of 87 

urban vulnerability to heatwave events and the corresponding prevention measures would 88 

have higher spatial uncertainties. The uncertainties could be even more considerable in those 89 

regions with a complex geographic context.  90 



The importance of locating the groups of people with a high-vulnerability to the impacts of 91 

heatwave has been emphasized (Johnson et al., 2012), which means that it is vital to take 92 

spatial elements into consideration. In that case, acquiring a detailed fine-scale spatial 93 

understanding of the heatwave is essential to heat risk prevention and public health actions 94 

(Buscail et al., 2012). In recent years, relevant studies have been conducted for the spatial 95 

mapping of heat-related risks in many large or megacities worldwide (Dugord et al., 2014; 96 

El-Zein and Tonmoy, 2015; Klein Rosenthal et al., 2014; Lemonsu et al., 2015; Wolf and 97 

McGregor, 2013). Significant spatial variabilities of heat-related health impact were found in 98 

all the above cases. Undoubtedly, reliable fine-scale spatial information on heatwave is a 99 

fundamental part of all strategic actions in relation to the reduction of heat-related risk and 100 

vulnerability. Moreover, it is also a vital part of the information for urban planning for a more 101 

resilient built environment under heatwaves (Maragno et al., 2020). 102 

1.4. Study objective 103 

Understanding the spatial pattern of heatwave is important for public health management and 104 

urban development. Despite the necessity of incorporating spatial heterogeneity into the 105 

estimation of heatwave has been recognized, yet few studies focus on direct mapping of the 106 

spatial distribution of heatwave conditions at a spatial resolution that finer than the 107 

commonly-used spatial units of the city administrative boundaries or urban planning zoning. 108 

To address the above research gap, in this study, we present an approach for the investigation 109 

of the spatial heterogeneity of the heatwave condition via machine learning and geospatial 110 

mapping techniques. The high-resolution spatial maps of heatwave generated by this study 111 

will enhance the robustness of spatial assessment and mapping of heat-health risk. Besides 112 

the resultant spatial mapping of the heatwave condition, the important influential variables of 113 

heatwave will be identified by the study, which will also provide valuable clues for how the 114 



cities should be properly planned to enhance the resilience to heatwave events and heat-115 

related disasters. 116 

2. Materials and methods117 

In this study, spatial buffering analysis and machine learning technique - random forest were 118 

adopted. Guangdong province in China, a subtropical region with highly diversified 119 

landscape and spatially heterogeneous land surface coverage, was selected as the study area, 120 

as its geographical complexity makes it an ideal testbed for the research. Land cover types 121 

were analyzed by utilizing the Level 0 data product of World Urban Database and Access 122 

Portal Tools (WUDAPT) (Bechtel et al., 2019; Bechtel et al., 2016). Land surface 123 

morphology was also quantified by introducing urban canopy parameters (UCP). First, a 124 

buffering method was adopted to analyze WUDAPT Level 0 data and UCP geospatial data 125 

and generate predictor variables. Then, the influential predictors of the heatwave were 126 

identified via random forest variable selection. Finally, the spatial pattern of heatwave was 127 

estimated by performing random forest regression modelling. Figure 1 shows the workflow 128 

of the present study. The year 2016 and 2009 that we selected are two of the representative 129 

warmest years on the local records. Local records indicate frequent occurrence of 130 

meteorological disasters related to heatwaves in these two years. In this study, the workflow 131 

was performed twice to generate the heatwave maps for both of the years 2009 and 2016 in 132 

which the WUDAPT land type data were also generated. Thus, it is feasible to explore the 133 

temporal change of the effect of urbanization in this period of eight years. All methodological 134 

details are introduced in the following paragraphs of this section. 135 



 136 

Figure 1. The workflow of the present study. 137 

2.1. Response variables 138 

2.1.1. Heatwave definition 139 

There is no standardized definition for heatwave worldwide. Currently, China adopts the 140 

standard of heatwave developed by the China Meteorological Administration (CMA). The 141 

CMA defines a day as a high-temperature hot day when it has a maximum daily temperature 142 

≥ 35 °C, and a heat weather event consists of a consecutive three hot days or more than three 143 

hot days is defined as a heatwave event. However, using a single and absolute definition for 144 

heatwave investigations for China could possibly introduce bias, as China's vast territorial 145 

area spans a wide range of latitudes and contains many different climatic zones. It has been 146 

found that the peoples’ group-specific mortality risks in a city in humid subtropical climate 147 

zone (Köppen Cfa) in China using the standardized heatwave definition of CMA was 148 

significantly underestimated than that using the heatwave definition of daily mean 149 



temperature ≥ 99.0th percentile (P99) with a duration ≥ 3 days (Zhang et al., 2017). In that 150 

case, a national-scale study on the adjustment of heatwave definition has emphasized the 151 

importance of area-specific definitions of heatwave in heat-health risk assessments and 152 

developed a series of area-specific heatwave definitions for different regions in China (Lin et 153 

al., 2019). In the study of China, the regional heatwave of Northeast, North, Northwest, East, 154 

Central and Southwest China were defined separately as being two or more consecutive days 155 

with a daily mean temperature higher than or equal to the P64, P71, P85, P67, P75 and P77 of 156 

the warm season (May to October) temperature. The heatwave in South China (for example, 157 

Guangdong province) was defined as five or more consecutive days with a daily mean 158 

temperature higher than or equal to the P93 of the warm season temperature. In the present 159 

study, both the CMA heatwave definition and the P93 definition were adopted to define 160 

heatwave. As a result, two groups of models will be generated based on two different criteria.  161 

2.1.2. Heatwave event counts and the numbers of hot days 162 

There is a total of 86 national meteorological monitoring stations currently located in the 163 

study area – Guangdong province (Figure 2). All the stations are operated by CMA and 164 

conform to the WMO guide (WMO, 2008). Hourly air temperature data of the year 2009 and 165 

2016 were collected and used for the analysis. Using CMA and P93 definition, the numbers 166 

of hot days and heatwave event counts of the entire year were calculated for both of the two 167 

years, respectively. Comprehensively considering the event counts and hot day numbers leads 168 

to a holistic understanding of the heatwave characteristics about duration and frequency. As a 169 

result, a total of eight parameters were calculated to represent the heatwave conditions and 170 

used as the model response variables (2 definitions × 2 parameters × 2 years). Consequently, 171 

eight models and corresponding prediction maps will be generated.  172 



 173 

Figure 2. The location of the study area - Guangdong province in China (a). The location of 174 

86 national meteorological monitoring stations in Guangdong province (b). The WUDAPT 175 

map of the year 2009 (c) and 2016 (d). A table (at the right side of the legend) to illustrate the 176 

LCZ difference between 2009 and 2016 and the rate of change. 177 

2.2. Predictor variables 178 

The physical basis behind the spatial variability in air temperature has been comprehensively 179 

understood from the viewpoint of urban climatology (Landsberg, 1981; Oke, 1982; Oke, 180 

1987; Oke, 1988). In the present study, to maximize the reproducibility and worldwide 181 

applicability of the workflow, all data used for generating predictor variables are open data 182 

based on worldwide unifiable standards. Two major parts of data were selected and used as 183 

the input for generating predictor variable datasets, which are: (a) Land surface cover – 184 

WUDAPT, (b) Urban canopy parameters (UCP), as they have been proved to be ideal proxies 185 

of land surface form as well as good indicators of the spatial variability in near-ground 186 

ambient air temperature (Bechtel et al., 2015; Salamanca et al., 2011).  187 



2.2.1. Land surface cover – WUDAPT Level 0 map 188 

WUDAPT Level 0 data has been popularly used for the investigation of spatial variability in 189 

air temperature (Leconte et al., 2015; Shi et al., 2018b). It is a well-established urban data 190 

portal which aims to provide a globally standardized and detailed urban morphological 191 

database of Local Climate Zone (LCZ) (Mills et al., 2015). LCZ is a standardized urban 192 

morphology scheme which provides a 17-LCZ type land surface classification for urban 193 

climate research (Stewart and Oke, 2012). Different LCZ types represent various 194 

combinations of surface structure (sky view factor, aspect ratio, surface roughness), surface 195 

cover (ground coverage ratio of buildings, vegetation, and impervious/paved surface), surface 196 

thermal properties, surface albedo, and human activity (building functions, anthropogenic 197 

heat). Moreover, different from other existing land use/land cover (LU/LC) classification 198 

products (e.g., USGS Global Land Cover Characterization (GLCC), Climate Change 199 

Initiative (CCI) Land Cover, and GlobeLand30), the WUDAPT introduces 3-level product to 200 

meet different needs in urban climate study and as well as provides a detailed LU/LC 201 

classification, especially for the built-enviroment. The above features make it a better proxy 202 

to depict the aerodynamic and thermal properties of the land surface. There are mainly two 203 

types of methods of generating LCZ map - GIS-based method and satellite image-based 204 

method (Gál et al., 2015; Wang et al., 2018). The GIS-based method is more city-specific as 205 

it uses local datasets. The robustness of GIS-based results depends on the quality of local 206 

urban datasets, thus varying from place to place. Oppositely, the satellite image-based 207 

method, as the most popular one of the WUDAPT Level 0 product methods, was designed to 208 

be universal to be part of a global dataset of urban form (Ching et al., 2018). Specifically, 209 

LCZ map at a high spatial-resolution of 100 meters (Level 0 data) can be generated by using 210 

open-source satellite images (Bechtel et al., 2015). As the input data, the highly standardized 211 

database of WUDAPT also enables cross-comparison between urban climate related studies 212 



in different regions of the world. The above advantages make WUDAPT a superior choice of 213 

input data to facilitate urban climate and environmental modelling (Ching et al., 2014). The 214 

WUDAPT Level 0 map of Guangdong province (Figure 2) was generated for both of the 215 

years 2009 and 2016 in previously published peer-reviewed research. The information on 216 

accuracy assessment can be found in two papers. WUDAPT Map of 2009 is described in the 217 

study by Wang et al. (2019b). WUDAPT Map of 2016 is described in the study Ren et al. 218 

(2019).  219 

2.2.2. Urban canopy parameters (UCP) 220 

There have been studies focus on the relationship between parameters of urban surface 221 

parameterization such as the urban canopy parameters (UCP) and the ambient air temperature 222 

or urban heat island effects (Chen et al., 2011; Garuma, 2018; Salamanca et al., 2011; Sharma 223 

et al., 2017). In the present study, besides WUDAPT, six commonly used parameters were 224 

also used for generating continuous data layers of predictor variables, which are impervious 225 

surface fraction (ISF, also known as urban fraction), pervious surface fraction (PSF), building 226 

width (BW), building height (BH), standard deviation of building heights (StdH), surface 227 

albedo (SA). All building-related parameters were estimated from 30m resolution DSM and 228 

DEM datasets by using the method developed by Ren et al. (2020). Specifically, the building 229 

footprints are extracted by utilizing the Google Maps Static API. The height information is 230 

estimated from the Advanced Land Observing Satellite (ALOS) World 3D Digital Surface 231 

Model dataset. The 3D building morphology can be achieved by combing the above two parts 232 

of information and be used to map UCP at a spatial resolution of 100m. Instead of 233 

exhaustively processing data for the large spatial extent (approximately 179,800 km2) of the 234 

entire study area, an inexhaustive sampling strategy was used for generating the spatial maps 235 

of the six parameters. Specifically, for each LCZ type in the study area, we randomly select 236 

30 - 100 typical LCZ sample sites that locate separately from each other. The average (Avg), 237 



maximum (Max), minimum (Min), and standard deviation (Std) values of building-related 238 

parameters were calculated for all samples of each LCZ type and then assigned to each 100 × 239 

100 m pixel based on their LCZ type. Similarly, minimum and maximum SA values were 240 

assigned to each pixel based on the representative values of the LCZ scheme (Stewart and 241 

Oke, 2012). ISF and PSF were based on the High-resolution Multi-temporal Mapping of 242 

Global Urban Land product (Liu et al., 2018). The 2010 and 2015 data layers were used in 243 

this study, as the product only provides data layer at a 5-year interval. 244 

2.2.3. Buffering Analysis 245 

The measured air temperature depends on not only the physical environment at the location 246 

of meteorological stations but also its surroundings at a longer spatial range (Kljun et al., 247 

2004; Konarska et al., 2016). Therefore, instead of training the model by directly using the 248 

predictor data extract at those pixels in which the meteorological stations located, we perform 249 

buffering analysis to generate predictor variable sets. Similar buffering analysis has been 250 

adopted and found to be a useful way of investigating fine-scale spatial variability of air 251 

temperature in several studies (Brandsma and Wolters, 2012; Johnson et al., 2020; Schatz and 252 

Kucharik, 2014; Shi et al., 2018a). In this present study, a total of 22 buffer radius range from 253 

100 meters to 10 kilometers was used for buffering analysis (For example, a buffer zone with 254 

a radius of 500 m contains a total of 80 pixels on a data layer of 100 m resolution). For the 255 

categorical data of each of the 17 LCZ types, the areal proportion within the range of each 256 

buffer radius was calculated. For all UCP parameters, the average value within the range of 257 

each buffer radius was calculated based on the continuous data layers of UCP (mentioned in 258 

section 2.2.2). All predictor variables were calculated for both the year of 2009 and 2016. 259 

The above process, along with the latitude, longitude, and elevation of meteorological 260 

stations, resulted in a total of 839 candidate predictors, which correspond to 839 spatial data 261 

layers for each year. To be consistent with the WUDAPT maps, all spatial data layers were 262 



generated using the resolution of 100 × 100 m; thus all have a data amount of 46.1 263 

Megapixel. The prediction map will be using the same spatial resolution which is a relatively 264 

fine resolution with regards to the spatial extent of the study area and allows to spatially 265 

continuous data layer of heatwave patterns. All geospatial data processing was completed in 266 

QGIS Desktop software (v3.10.5 LTR). 267 

2.3. Variable selection and regression modelling using random forests 268 

It has been found that non-linear modelling techniques are necessary for the estimation of 269 

spatial variability in air temperature, as they usually result in a better prediction performance 270 

than linear modelling approaches (Brandsma and Wolters, 2012; Voelkel and Shandas, 2017). 271 

Ensemble approaches such as random forest allow building complex non-linear models while 272 

still provide reasonable interpretability by ranking variable importance. In this study, the 273 

random forest algorithm (Breiman, 2001) was used for both the variable selection and the 274 

regression modelling. 275 

2.3.1. Predictor variable selection 276 

As the predictor variable dataset contains a massive amount of candidate predictor variables 277 

that have to be examined, a random forest-based strategy of variable selection developed by 278 

Genuer et al. (2010) was adopted by the present study for variable selection. Simply 279 

speaking, the method ranks all the candidate predictor variables via the random forest 280 

permutation-based score of importance, and during the process a forward stepwise strategy is 281 

employed for adding predictor variables (Genuer et al., 2015). This variable selection method 282 

identifies two subsets of important predictor variables: a larger subset of variables aims to all 283 

possible interpretation but with redundancy in explaining the variability in the response 284 

variable and a smaller subset of predictors aims to a more robust prediction without 285 

redundancy. In this study, we use the later subset, as the study aims to prediction mapping. 286 



The above variable selection process was performed in R (v3.6.3) using the VSURF package 287 

(v1.1.0) (Genuer et al., 2015) and finished using data-driven default values.  288 

2.3.2. Random forest regression modelling and model fine-tuning 289 

Random forest is a supervised machine learning algorithm that uses the ensemble learning 290 

method and uses the Out-of-bag (OOB) error to measures the prediction error (Breiman, 291 

1996; Breiman, 2001; Liaw and Wiener, 2002). The prediction performance of the random 292 

forest regression model is sensitive to parameter tuning (Probst et al., 2019). The number of 293 

trees (ntree) and the number of variables considered for splitting at each node (mtry) are two 294 

commonly considered tuning parameters. In this study, a fine-tuning process is employed to 295 

let the random forest algorithm to automatically choose the optimal prediction model. 296 

Specifically, an extended tune grid was set to automatically repeat the experiment with all 297 

possible combinations between mtry ranging from 1 to 5 and ntree ranging from 500 to 1000 298 

(using an increment of 100). In order to avoid the overfitting issue and evaluate the regression 299 

model, the resampling process was done by using repeated 10-fold cross-validation (Burman, 300 

1989). All response data were randomly divided into ten subsets, with nine subsets used as 301 

the training dataset and the other one subset used as validation datasets. This process was 302 

repeated ten times until all data have been used as validation data once. The coefficient of 303 

determination (R2) is selected as the metric to determine the optimal model. The above 304 

random forest regression and fine-tuning process were performed in R using the caret 305 

package (v6.0-86) (Kuhn, 2008).  306 



3. Results307 

3.1. Predictor variable selection results 308 

Following the method mentioned in section 2.3.1, for each of the eight response variables, a 309 

subset of important predictor variables was identified. The identified variables for each 310 

response are summarized and shown in Table 1.  311 

Table 1. Summary of important predictor variables identified by the variable selection 312 

process and the formula of eight prediction models. For the nomenclature of predictor 313 

variables: LCZ8_1800 means the areal fraction of LCZ8 within the buffer radius of 1800 314 

meters; SA_Max_2000 means the averaged value of the maximum surface albedo in all pixels 315 

within the buffer radius of 2000 meters, so on and so forth.  316 
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Model formula 

2
0

0
9
 

CMA 

Number of hot days ~ Lat + Elev + LCZE_8000 + LCZE_7000 + Lon + LCZG_10000 + 

LCZD_6000+ LCZ8_1800 + LCZ8_2500  

HW events count ~ Elev + Lat + LCZE_8000 + LCZE_7000 + Lon + LCZ8_1800 + LCZA_8000 

P93 

Number of hot days ~ LCZ8_8000 + LCZ8_7000 + LCZ6_10000 + LCZ8_5000  + LCZA_8000 

HW events count ~ LCZ8_10000 + LCZ8_8000 + LCZ8_7000 + LCZG_200 + LCZG_10000 + 

LCZ6_10000 + SA_Min_10000  

2
0

1
6
 

CMA 

Number of hot days ~ Lat + LCZE_8000+ LCZ2_600  + Elev + LCZ3_300 + LCZF_8000 + 

ISF_Std_200  

HW events count ~ Lat + Lon + LCZE_8000 

P93 

Number of hot days ~ LCZ1_5000 + LCZC_1500 + SA_Min_2000 + LCZ2_2000 + SA_Max_1500 

HW events count ~ LCZ1_5000 + LCZC_1500 + LCZ1_400 + SA_Max_2000 + LCZ1_6000 + 

SA_Min_2000 + LCZG_6000 + LCZG_2500 + LCZG_3000 + LCZ2_2000 + LCZ5_200  

317 

3.2. Resultant models and evaluation 318 

Following the method mentioned in section 2.3.2, the R2, mean absolute error (MAE) and 319 

root mean square error (RMSE) were calculated for the model evaluation. Figure 3 shows the 320 

results and the comparison between the predicted and monitored values of the number of hot 321 

days and heatwave event counts based on CMA and P93 heatwave definitions, in the year of 322 



2009 and 2016, respectively. The eight resultant models explain 47.8% to 70.3% of the 323 

spatial variability of heatwave conditions. Most of the resultant models can explain 324 

approximately 60% of the spatial variability. Figure 4 shows the variable importance 325 

measured and ordered based on Mean Decrease Accuracy (%IncMSE) and Mean Decrease 326 

Gini (IncNodePurity). 327 

 328 

Figure 3. The actual-by-predicted data plot of the number of hot days and heatwave event 329 

counts based on CMA and P93 heatwave definitions, in the year of 2009 and 2016, 330 

respectively. The R2, MAE, RMSE of corresponding models are shown under each plot. 331 

 332 

Figure 4. The variable importance plot (%IncMSE and IncNodePurity sorted decreasingly 333 

from top to bottom) of all resultant models. 334 



3.3. Spatial mapping of heatwave conditions 335 

Using the model formulas shown in Table 1 and the predictor data layers described in section 336 

2.2.3, we generate the spatial prediction maps of the number of hot days and heatwave event 337 

counts. As a result, eight maps were generated using the resolution of 100 × 100 m for the 338 

entire spatial extent of the study area (Figure 5 and Figure 6). 339 

 340 

Figure 5. Spatial prediction maps of the number of hot days and heatwave event counts 341 

based on CMA heatwave definitions, in the year of 2009 and 2016, respectively. For the 342 

number of hot days, only those days belongs to CMA heatwave events are counted. For 343 

example, if a day has a maximum temperature ≥ 35 °C, but not belongs to a ≥ 3-day 344 

consecutive series, then it is not counted. 345 



 346 

Figure 6. Spatial prediction maps of the number of hot days and heatwave event counts 347 

based on P93 heatwave definitions, in the year of 2009 and 2016, respectively. 348 

4. Discussion 349 

4.1. Influential LCZ types and UCPs 350 

In the eight resultant models, some LCZ types have been found that are commonly included, 351 

which are LCZ 8 (large low-rise buildings), LCZ E (bare rock, paved surface), LCZ G (water 352 

body). Besides the above LCZ types, LCZ 6 (open low-rise buildings) and LCZ A (dense 353 

trees) were also included by some of the resultant models. Two UCPs were found to be 354 

influential factors, i.e., impervious surface fraction, surface albedo. Impervious ground 355 

surfaces in LCZ E, especially those artificial surfaces such as the pavements of concrete, 356 

asphalt store more heat compared to natural pervious land surfaces (Arnold and Gibbons, 357 

1996). Surface albedo has been proven to be a crucial factor in urban air temperature (Susca 358 

et al., 2011; Taha et al., 1988). In the urban context of China, LCZ 8 mostly contains those 359 

buildings with a very large area of flat dark-colored rooftop of low surface albedo, or the 360 



color-coated steel sheet roofing. The thermal properties of roofing materials determine the 361 

surface energy balance, consequently alters the atmospheric heating, thus affect ambient air 362 

temperature (Coutts et al., 2013). LCZ A and LCZ G represent dense tree-dominated green 363 

space and blue space. The blue-green space has strong and complex relationships with the 364 

urban canopy and boundary-layer temperatures and has a significant impact on it (Garuma, 365 

2018; Gunawardena et al., 2017; Morris et al., 2016). Therefore, it is reasonable that the 366 

above candidate predictor variables are identified by the data-driven variable selection 367 

process and included in the resultant models. 368 

4.2. Temporal change of the models between 2009 and 2016 369 

Comparing the 2009 and 2016 models, we found that LCZ1 (compact high-rise buildings), 370 

LCZ2 (compact mid-rise buildings), and LCZ3 (compact low-rise buildings) which were not 371 

included in the 2009 resultant models are included in the 2016 resultant models. These LCZ 372 

types represent highly-urbanized compact built-up areas. During 2009 – 2016, Guangdong 373 

province continues a rapid development and urbanization process, as planned in the “PRD 374 

Region Reform and Development Planning Guidelines (2008–2020)” which was released by 375 

the local authorities (Shen and Kee, 2016; Yu-shek, 2018). Affected by the regional planning 376 

and development policies, the land area for urban development and construction is gradually 377 

expanding, consequently causes an increase in local temperature. In cities, the amount of 378 

high-rise buildings is increasing rapidly, and the building density is also increased. Such 379 

changes in the urban morphology are conducive to the intensification of urban heat islands. 380 

The inclusion of predictors about LCZ 1, LCZ2, and LCZ3 in the 2016 models implies that 381 

the effect of urbanization on heatwave conditions becomes stronger during the past several 382 

years. Such impacts of urbanization on local climate is also found in regional weather 383 

simulation for Guangdong (Tse et al., 2018). 384 



4.3. Spatial distribution of heatwave conditions and differences between using the 385 

heatwave definitions of CMA and P93 386 

As shown in Figure 5 and Figure 6, the resultant maps based on CMA and P93 heatwave 387 

definitions have noticeable differences in the spatial pattern. In the spatial prediction maps 388 

based on the CMA definition, it is observed that the total number of hot days and heatwave 389 

events counted in coastal areas of Guangdong province are less than those in the inland areas. 390 

This finding breaks through the common mindset that the higher the average temperature, the 391 

more heatwave events. Using the absolute definition like CMA definition, the spatial 392 

distribution of hot days/heatwave events does not have to be consistent with the 393 

climatological mean temperature distribution. In South China, it has been found that a 394 

consecutive series of several hot days have higher health impacts than a single hot day with a 395 

extremely high temperature, as people cannot be relieved and physically recover from the hot 396 

weather (Wang et al., 2019a). Therefore, the heatwave investigation consider not only the air 397 

temperature but also the duration of the events. In this study, for the number of hot days, only 398 

those days belongs to CMA heatwave events are counted. For example, if a day has a 399 

maximum temperature ≥ 35 °C, but not belongs to a ≥ 3-day consecutive series, then it is not 400 

counted. This has brought a counter-intuitive result that there are more heat waves in the 401 

northern part of the study area. It is also found that the number of hot days and heatwave 402 

events have a significant correlation with latitude and longitude (particularly in the map of 403 

heatwave events count in 2016). It is commonly known that the air temperature in a specific 404 

geographic location highly depends on the latitude and whether the location is near to the 405 

coastal area. The CMA definition uses a fixed threshold of air temperature (a maximum daily 406 

temperature ≥ 35 °C) to define hot days. Therefore, it is reasonable that the spatial 407 

distribution of heatwave conditions based on CMA definition is strongly correlated with 408 

geolocation predictors (latitude and longitude). Using a fixed threshold of air temperature to 409 



investigate the spatial pattern of heatwave conditions in a relatively large spatial extent could 410 

introduce bias. Specifically, it might overestimate the heatwave condition and relevant 411 

environmental and health risks in low latitudes and underestimate the situation in high 412 

latitudes, as the surface air temperature is already a function of latitude, and those people live 413 

in different latitudes has varying tolerance and adaptions to heat (McCarthy et al., 2001). 414 

Unlike CMA based results, the effect of urbanization can be clearly observed in the resultant 415 

prediction maps produced using P93 definition. The hotspot shows in Figure 6 is the location 416 

of Guangzhou which is the capital city and also the most urbanized and the most populated 417 

city of Guangdong province. It has been found that city areas do have more very hot days 418 

than rural areas due to the high-density building clusters trap heat within the city during 419 

nighttime (Shi et al., 2019). Therefore, it is reasonable that Figure 6 shows a distribution 420 

pattern that similar to the urbanized areas and urban heat island effect. 421 

4.4. Limitations and future works 422 

There are still certain limitations in the present study, which could be further overcome in 423 

future works. First, in this study, only moderate prediction performance is achieved in the 424 

estimation of heatwave spatial patterns. The resultant model explains approximately 50-60% 425 

of the spatial variability in heatwave conditions. In this study, the automatic variable selection 426 

process identifies five to eleven important variable predictors in most cases. However, the 427 

variable selection process only identifies three predictors in the analysis of CMA heatwave 428 

events count in 2016, which are Latitude, Longitude, and LCZ_E_8000. It can be observed 429 

that the inclusion of Latitude, Longitude as spatial predictors leads to the appearance of edge 430 

in the prediction map of CMA heatwave events count in 2016. In that case, future work 431 

should focus on further fine-tuning the model to improve the prediction performance. 432 

Currently, the models are developed based on data from 86 locations (the 86 major national 433 

standard meteorological stations) in the study area. The data amount is usable but not 434 



sufficient for the development of very high-performance spatial models yet. The model 435 

development would be beneficial from a denser spatial distribution of input data. In future 436 

work, the model will be fine-tuned by using hundreds of automatic weather stations (AWS) 437 

that are densely distributed in the study area. Second, in this study, so far, only the areal 438 

proportion of LCZ types was calculated and used as predictors. The spatial pattern of the 439 

configuration (i.e., the evenness, fragmentation, clustering, which can be quantified by means 440 

of landscape ecology methods) of specific LCZ types not been analyzed yet by the present 441 

study. More complex spatial pattern analysis for WUDAPT could be introduced for 442 

generating more useful predictor variables in future studies to improve the model 443 

performance. Last but not least, this pilot study is currently only conducted in subtropical 444 

regions, which means that more tests should be conducted in other areas under different 445 

climatic zones in order to verify and increase the worldwide applicability of the proposed 446 

approach. 447 

5. Conclusion 448 

Investigating the spatial distribution of heatwave conditions is essential to the evaluation of 449 

the heat-related vulnerability and relevant potential social and economic impacts, especially 450 

for regions that are in rapid urbanization and economic development. In this study, we 451 

present an effective approach to spatially estimate the heatwave patterns using machine 452 

learning and WUDAPT. The approach enables direct mapping of the spatial distribution of 453 

heatwave conditions by taking advantage of open urban data, which incorporates spatial 454 

heterogeneity into the estimation of heatwave. The resultant models and high-resolution 455 

spatial maps of heatwave generated by this study enhance the spatial assessment of heat-456 

health risk, and also provide valuable clues for how the cities should be properly planned to 457 

enhance the resilience to heatwave events and heat-related disasters. The study also put up a 458 



new perspective and a feasible pathway of utilizing WUDPAT to facilitate urban 459 

environment applications. 460 
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