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19 Rapid economic growth, urban sprawl, and unplanned industrialization has increased 

20 socioeconomic statuses but also decreased air quality in South Asian developing countries. 
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22 health statuses, livability and quality of life. It is necessary to estimate fine-scale 

mailto:shiyuan@cuhk.edu.hk
mailto:muhammad.bilal@connect.polyu.hk
mailto:hcho21@hku.hk
mailto:abidomar@pakairquality.com
mailto:muhammad.bilal@connect.polyu.hk


2

23 spatiotemporal distribution of ambient PM2.5 in a national context so that the environmental 

24 planners and government officials can use it for environmental protocol development and 

25 policy-making. In this study, a spatiotemporal land use regression (LUR) model is developed 

26 to refine global air quality data to the national-scale ambient PM2.5 exposure in a high-density 

27 country in South Asia - Pakistan. Combining with transport network, patterns of land use, 

28 local meteorological conditions, geographic characteristics, landscape characteristics, and 

29 satellite-derived data, our resultant model explains 54.5% of the variation in ambient PM2.5 

30 concentration level. Furthermore, tree coverage and road transport are identified to be two 

31 influential factors of the national-scale spatial variation of PM2.5 in Pakistan, which implied 

32 that urbanization might be the major cause of air pollution across the country. In conclusion, 

33 our resultant LUR model as well as the spatial map of ambient PM2.5 concentration level can 

34 be used as a supporting tool for national health risk management and environmental planning, 

35 and could also contribute to the air quality management and pollution reduction actions of 

36 Pakistan.

37 Highlights

38  National-scale ambient PM2.5 exposure assessment in Pakistan;

39  A spatiotemporal land use regression PM2.5 model was developed;

40  Global air quality datasets were refined to local scenario;

41  Tree coverage and road transport are critical factors of PM2.5 spatial variation;

42  Results can be used as reference for national health risk management of Pakistan.
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45 1. Introduction

46 Air pollution has been regarded as one of the most serious environmental issues by the World 

47 Health Organization (WHO) (WHO, 2016). It is also a growing environmental problem in 

48 South Asian developing countries with rapid industrialization, such as Pakistan (UNEP, 

49 2015). Among all major air pollutants, particulate matters (PM) with an aerodynamic 

50 diameter smaller than 2.5 µm (PM2.5) have been identified as one of the biggest 

51 environmental risks due to its extreme harmfulness to human health (WHO, 2005). Exposure 

52 to high concentration levels of ambient PM2.5 dramatically increase the health burdens of 

53 stroke mortality, cardiovascular disease, respiratory diseases, and lung cancer (Davidson et 

54 al., 2005; Russell and Brunekreef, 2009). Recent studies have also found that PM2.5 can 

55 reduce the cognitive function of a person (Lavy et al., 2014; Power et al., 2011). According to 

56 WHO’s report, health burdens due to human exposure to ambient PM2.5 have been observed 

57 over an annual averaged ambient PM2.5 concentration level higher than 10 µg/m3. Therefore, 

58 this particular value has been set as a standard threshold by in WHO guideline. 

59 1.1. Research Background and Relevant Studies

60 Pakistan is one of the biggest countries in South Asia. It is also a relatively high-density 

61 country with a population of more than 207.8 million. In addition, Pakistan is the 33rd-largest 

62 country in the world (area: approximately 882,000 km2). According to a previous study, fast 

63 economic growth, rapid urban sprawl, and unplanned industrialization are the major causes of 

64 severe air pollution issues across the country (Rasheed et al., 2015). Based on the 

65 aforementioned ambient PM2.5 threshold, 100% of the total population of Pakistan are living 

66 in places with PM2.5 concentrations that far beyond the level of resilience (Cohen et al., 

67 2017), such that PM2.5 has become one of the most serious air pollutants in the country 

68 (Colbeck et al., 2010). There are increasing debates and concerns about the negative 
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69 environmental and health effects of poor air quality in Pakistan. Although Pakistan 

70 Environmental Protection Agency has started to take measures in monitoring air quality and 

71 reducing industrial pollution emissions (Saleem and Sughra, 2018), there are extraordinary 

72 increases in air pollution levels in Pakistan for the past several years due to the insufficient 

73 governmental intervention and ineffective control strategies and practical actions. 

74 Extraordinary rises in air pollution have appeared in the past few years, particularly during 

75 the wintertime (Javed et al., 2015; Mehmood et al., 2018). Poor air quality issues have been 

76 reported in many major cities of Pakistan, such as Karachi, Lahore, Quetta, Peshawar, 

77 Islamabad, and Rawalpindi (Rasheed et al., 2015). As a result, more than one-fifth of 

78 mortality in Pakistan each year are attributed to air pollution (Cohen et al., 2017). All the 

79 above facts degrade the living quality of citizens of Pakistan, especially those residents who 

80 are living in highly urbanized areas across the country.

81 As the increasing awareness of adverse impacts caused by air pollution, particularly the PM2.5 

82 environmental pollution, recent studies have been conducted to investigate the temporal 

83 change of PM2.5 in Pakistan. For example, air quality monitoring and meteorological data in 

84 several major cities (Islamabad, Lahore, Peshawar, and Quetta) were collected and analyzed 

85 by a local study of Pakistan to quantify the current situations of air quality within the major 

86 urban environments in Pakistan (Rasheed et al., 2015). The results show that PM2.5 mass 

87 concentration level is negatively correlated with meteorological parameters (air temperature 

88 and wind speed) and clearly associated with the traffic-related pollutants emissions. 

89 Specifically, the diurnal variation observed in all the cities suggests a strong association of 

90 PM2.5 with vehicular traffic (Rasheed et al., 2015). As the road transport has been identified 

91 as a major emission source of PM and a major influential factor of the air quality in Pakistan, 

92 a literature-based desktop study was conducted to understand how the transport affects the 
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93 urban air pollution in Pakistan (Ilyas, 2007). In this desktop study, the influential role of 

94 transport in urban air quality in Pakistan was discussed. 

95 To further understand the main contributors of the PM in the urban environment of Pakistan, 

96 source apportionment was performed in Peshawar, a major city in Northern Pakistan (Alam et 

97 al., 2015). The results identified several major emission sources of PM: road and soil dust, 

98 emission from vehicular traffic, industrial activities, and household combustion. To evaluate 

99 the impact of biomass burning on ambient PM concentrations in an urban environment, the 

100 chemical characterization and mass closure of PM2.5 was also investigated in urban sites of 

101 Karachi, a financial and industrial metropolis, the most populous city in Pakistan and also one 

102 of the largest megacities in the world (Shahid et al., 2016). Besides the local emission, 

103 regional influence is also a contributor to air pollution as a part of the prevailing monsoon 

104 circulation. The regional transportation of air pollutants makes the air quality condition even 

105 worse in Pakistan (Rasheed et al., 2015). All above studies show that PM2.5 mass 

106 concentration in almost all major urban areas of Pakistan exceeding Pakistan’s National 

107 Environmental Quality Standards both in long-term (annual average concentration of 25 

108 μg/m3) and in short-term (24 hourly average concentration of 40 μg/m3) for ambient air 

109 quality (Ghauri et al., 2007). 

110 As a result, the health burdens caused by environmental exposure to PM2.5 in Pakistan have 

111 also drawn increasing attention. Health effect of PM2.5 on daily morbidity in the previously 

112 mentioned megacity - Karachi was evaluated by collating on-site monitoring data with 

113 register-based data (i.e. daily hospital admissions and emergency room visit count) of 

114 cardiovascular disease data. The results indicate that morbidity of cardiovascular disease is 

115 strongly associated with the high concentrations > 150 μg/m3, a level which is almost 4 times 

116 higher than the local 24 h air quality standard and 5 times higher than the WHO guideline. 

117 Specifically, this poor air quality commonly appears in many urban sites in Pakistan (Khwaja 



6

118 et al., 2012). Using a dataset of national mortality rate, health risk assessment has also been 

119 conducted in Islamabad, the capital city of Pakistan (Mehmood et al., 2018). Excessive 

120 mortality due to the environmental exposure of PM2.5 was observed.

121 Although the air quality in Pakistan is severe and has caused considerable negative health 

122 effects, the majority of the citizens in Pakistan still do not have enough consciousness of self-

123 protection from the toxic smog due to the lack of social awareness. More seriously, despite 

124 that there are already many efforts have been made to investigate the poor air quality issue, a 

125 usable and reliable reference for environmental exposure to air pollution is currently still not 

126 available for either the public health professions or the general public in Pakistan for further 

127 actions in the reduction of health risks caused by air pollution. In addition, the influential 

128 factor of regional air pollution across South Asian developing countries such as Pakistan is 

129 still underestimated. 

130 1.2. Research Objectives

131 Under the above background, the main objective of the present study is to provide a national 

132 spatial estimation of the ambient PM2.5 exposure in Pakistan in a relatively fine-scale, based 

133 on the re-adjustment and refinement of existing datasets (e.g. global satellite-derived air 

134 quality datasets, local monitoring data). Based on the resultant model, influential factors of 

135 the national-scale spatial variation of PM2.5 will also be identified and quantified. 

136 Additionally, a series of spatial maps of ambient PM2.5 concentration level matching local 

137 scenario will be generated based on the resultant LUR model, which is useful to the national 

138 health risk management and environmental planning. This procedure of refining global air 

139 quality data from LUR could also contribute to the air quality management and pollution 

140 reduction actions of Pakistan.
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141 2. Material and methods

142 2.1. Analytical method - Land Use Regression (LUR)

143 Land Use Regression (LUR) was applied to estimate the spatiotemporal variations of ambient 

144 PM2.5 exposure from the refinement of the global dataset in this study. LUR is a promising 

145 geospatial data integration technique that has been widely applied to estimate pollution 

146 surfaces for environmental exposure assessment usually at the urban scale but increasingly 

147 also at larger scales (Eeftens et al., 2012; Ross et al., 2006; van Nunen et al., 2017). This 

148 data-driven analytic method can estimate spatial distributions of air pollution concentration 

149 with high-resolution and high accuracy (Knibbs et al., 2014) based on an aggregation of 

150 multiscale datasets generated by spatial buffering. Currently, most of the previous LUR 

151 models with fine-scale outputs are still developed at the city-scale (Larson et al., 2009; Rivera 

152 et al., 2012). Recent studies have applied LUR to predict global PM2.5 exposure (Donkelaar et 

153 al., 2010; van Donkelaar et al., 2016). However, the results are either in a coarse-scale, or 

154 either may not be representative of a specific country because of the selection of global 

155 monitoring stations for air quality mapping. 

156 As national environmental assessment and public health management have been given a 

157 higher priority, spatial prediction of regional-scale air pollution becomes critically important, 

158 especially for those South Asian developing countries that are experiencing severe air 

159 pollution issues. In Pakistan, despite the efforts being made by different sectors of the 

160 society, there are still both a lack of well-developed and coordinated network of surface 

161 measurements of PM2.5 and lack of the precise spatially-resolved emission inventory and 

162 other geospatial datasets that can be directly used for the estimation of ground-level PM2.5 

163 exposure. In that case, by persevering with the limited data and make the best use of open-

164 source datasets that are currently available, this study, for the first time, applied the LUR 
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165 modelling technique to provide a national-scale spatial estimation of the ambient PM2.5 

166 exposure for Pakistan. Specifically, using the ground-level PM2.5 monitoring data from the 

167 Pakistan Air Quality Initiative (PAQI پاکی) as the dependent variable, and combing with a 

168 comprehensive set of predictor variables: meteorological and sounding data in regional basis, 

169 land use/land cover products derived from high-resolution satellite datasets, and satellite-

170 derived Aerosol Optical Depth (AOD) based-dataset, this LUR study aims to provide a 

171 spatiotemporal PM2.5 exposure estimation result with a fit-for-purpose accuracy.  

172 2.2. Summary of datasets 

173 Ground-level daily average PM2.5 monitoring data at 15 air quality monitoring stations were 

174 used as the dependent variable of LUR modelling. Considering that the dependent variable 

175 dataset contains both spatial and temporal variability, the following multiple sets of different 

176 data sets are used as independent variables: spatial datasets including the land use/land cover, 

177 geographical features, and AOD data derived from satellite observation; temporal-resolved 

178 datasets including meteorological data and sounding data.

179 2.2.1. Ground-level PM2.5 observation – the dependent variable

180 Currently, there is a lack of well-developed and coordinated network of surface 

181 measurements of PM2.5 to act as the dependent variable in the statistical analysis. Therefore, 

182 in this study, we acquired PM2.5 monitoring data from PAQI. PAQI provides community-

183 driven air quality data to increase social awareness. As reference-standard air quality data is 

184 not available for Pakistan, PAQI has crowd-sourced air quality data using a nationwide 

185 network of low-cost air quality monitors. These monitors are the proven IQAir AirVisual Pro 

186 air quality monitors, and have been functional across Pakistan since 2016. The IQAir Air 

187 Visual Pro is a standalone device measuring fine particles PM2.5 and PM10, CO2, temperature, 

188 and relative humidity. It uses a propriety PM2.5 sensor (AVPM25b) based on the 
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189 nephelometer light-scattering principle to measure particulate matter, and are calibrated from 

190 0.3 to 2.5 µm. It also uses the A33 quad-core Cortex microprocessor, has its own internal 

191 data logging function (4 GB flash storage), and communicates through Wifi. The data can be 

192 downloaded as a .csv file using the SMB protocol or published live in an Airvisual cloud. The 

193 sampling interval is 10 seconds. A laboratory evaluation by the AQ-SPEC (Air Quality 

194 Performance Evaluation Center) can be found at http://www.aqmd.gov/aq-

195 spec/sensordetail/iqair---airvisual-pro. The measurements are done in continuous real-time, 

196 though for analytical purposes hourly-average data is utilized.

197 For the present study, hourly observations of ground-level PM2.5 concentration monitored 

198 between October 2016 and September 2018 at a total of 15 air quality monitoring stations in 

199 Pakistan (shown in Figure 1), distributed in seven major cities, which are Bahawalpur, 

200 Faisalabad, Islamabad, Karachi, Lahore, Peshawar, and Rawalpindi. Noted that the time 

201 periods of available observations are slightly varying between the 15 stations) is acquired. 

202 The daily average of PM2.5 concentration was calculated and used as the dependent variable 

203 of LUR modelling in order to be collated with the temporal resolution of sounding data. The 

204 log-transformation was performed for the PM2.5 concentration observation data, as the daily 

205 averaged PM2.5 data does not have a normal distribution, which is similar to some 

206 representative previous LUR studies (Eeftens et al., 2012).
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207

208 Figure 1. The locations of the 15 air quality monitoring stations in Pakistan available for this 

209 study.

210 2.2.2. Meteorological data and sounding data

211 Regional climatic condition is an influencing factor of air quality (Crumeyrolle et al., 2014). 

212 It alters the atmospheric condition as such affects the movement and spatial distribution of air 

213 pollutants. For example, in Pakistan, a significant relationship has been found between PM2.5 

214 and temperature by a previous investigation of urban air pollutants emission patterns in the 

215 city Lahore (Haider et al., 2017). It has been investigated that the variation in atmospheric 

216 stability also strongly affects the vertical distribution of aerosol (Lee et al., 2011). Therefore, 

217 in this study, both commonly-used meteorological data (air temperature and relative humidity 

218 monitored at the same locations of the air quality monitoring stations, daily averages were 

219 calculated), and a group of atmospheric sounding indexes were used as candidate predictor 

220 variables (Table S-1, supplementary materialError! Reference source not found.). The 

221 sounding data used in this study is provided by the Department of Atmospheric Science, the 

222 University of Wyoming at their website: http://weather.uwyo.edu/upperair/sounding.html 

223 (which provides all relevant information about the sounding data). The sounding station is 

http://weather.uwyo.edu/upperair/sounding.html
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224 located in Srinagar, a capital city of Jammu and Kashmir (Region: Southeast Asia, Station 

225 Number: 42027). The station provides sounding data for every 24 hours at the time of hour 

226 0000 (00Z) Greenwich Mean Time (GMT/ UTC) which is the local time at 5:30 am. This 

227 station is selected to represent an overall atmospheric condition for each day as it is relatively 

228 close to five cities with available air quality monitoring stations (Faisalabad, Islamabad, 

229 Lahore, Peshawar, and Rawalpindi). The location of the sounding station is labeled in Figure 

230 1.

231 2.2.3. Land use/land cover and geographical features

232 Currently, there is also a lack of precise spatially-resolved emission inventory and other 

233 geospatial datasets that can be tested for significance as predictor independent variables. It 

234 has been observed that the changes in spatial land use and land cover (LU/LC) also strongly 

235 affects the regional climatic condition of the urbanized area in Pakistan (Arshad et al., 2019). 

236 Therefore, LU/LC was also quantitatively measured by combining various of remote sensing 

237 data sources and open map service, which are High-resolution Multi-temporal Mapping of 

238 Global Urban Land 2015 (Liu et al., 2018) and GlobeLand30 (GLC30) (Jun et al., 2014) and 

239 OpenStreetMap (OSM). Specifically, the fraction of impervious surface was calculated based 

240 on Global Urban Land 2015; tree coverage ratio and water coverage ratio were calculated 

241 based on GlobeLand30. A buffering method that has been commonly-adopted by LUR 

242 studies (Hoek et al., 2008; Ryan and LeMasters, 2007) was used to analyze the land use of 

243 the study area. The land use area of commercial, industrial, residential, and retail land use 

244 within a series of round buffers (see section 2.3 and Table S-1, supplementary material) was 

245 calculated based on OSM. Same with all previous LUR studies, population density is also 

246 used, as human activities are the most direct source of air pollution. The geographical 

247 location (longitude, latitude, and elevation) of air quality monitoring stations are also adopted 

248 as candidate predictors, as the regional transportation affects the air quality in Pakistan 
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249 (Rasheed et al., 2015). Transport is one of the major emission sources of PM. Traffic-related 

250 PM emission is often estimated based on national emission inventories. However, a previous 

251 study (Ilyas, 2007) has indicated that the emission inventory of Pakistan is not a reliable 

252 source because it only takes vehicular exhausts into account, and it cannot represent either the 

253 actual vehicle populations or the in-use conditions, due to the inadequate emission factors. 

254 Besides, it has been found that there are discrepancies between emission inventories provided 

255 by different organizations (Ilyas, 2007). In that case, a commonly-used alternative in many 

256 LUR studies – the road network was adopted to represent the spatial emission of transport. 

257 Road length within the buffer area of air quality stations was used as the measure.

258 2.2.4. Satellite-observation based dataset

259 The air quality monitoring stations available for this study are relatively limited in terms of 

260 the amount and sparsely distributed in the spatial context. This fact possibly introduces large 

261 uncertainties in the PM2.5 estimation for unmonitored regions. The satellite-derived Aerosol 

262 Optical Depth (AOD) has been a popularly-used input to overcome this issue and provide 

263 robust spatial estimation due to its advantage of spatial coverage (Chu and Bilal, 2019). 

264 Incorporating satellite data also enables the consideration the regional impacts of PM2.5 

265 emitted and transported from the outside of Pakistan (i.e. the impact of long-range transport 

266 from the emission sources in neighboring countries usually does not fully reflect in national 

267 geographical dataset, which can still be captured by satellite in AOD dataset). Therefore, the 

268 Global Annual PM2.5 Grids from MODIS, MISR, and SeaWiFS AOD with GWR, v1 (van 

269 Donkelaar et al., 2018) were also used as candidate predictor variables. 

270 2.3. Spatial buffer scheme

271 To be consistent with other existing LUR models, based on literature (Knibbs et al., 2014; 

272 Knibbs et al., 2018; Novotny et al., 2011), a total of 22-circular buffers was generated with 
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273 radii of 100 m, 200 m, 300 m, 400 m, 500 m, 600 m, 700 m, 800 m, 1000 m, 1200 m, 1500 

274 m, 1800 m, 2000 m, 2500 m, 3000 m, 3500 m, 4000 m, 5000 m, 6000 m, 7000 m, 8000 m, 

275 and 10000 m. All predictor variables are summarized in Table S-1 (in the supplementary 

276 material).

277 2.4. Model development and validation

278 In this study, the LUR model was developed for the log-transformed PM2.5 concentration 

279 using linear regression approaches which is similar to many previous LUR studies. There is a 

280 total of 324 potential predictor variables in this study, which is a relatively large number of 

281 potential predictor variables that need to be examined. “A Distance Decay REgression 

282 Selection Strategy (ADDRESS)” - a systematic method has been developed for optimizing 

283 the variable selection process for LUR modeling (Su et al., 2009). The study introduces the 

284 process of constructing distance-decay curves and the criteria for identifying optimized buffer 

285 distance for spatial covariates for LUR modelling. By referencing this method of constructing 

286 distance-decay curves, in our study, we performed a pre-selection process. Briefly speaking, 

287 the correlation between log-transformed PM2.5 concentrations against each of the buffer-

288 based spatial covariate was calculated and used to construct distance-decay curves. Typically, 

289 it is expected that the variable has the highest correlation to PM2.5 concentrations at its 

290 optimized buffer radii. To avoid the correlation overestimation caused by the possible over-

291 aggregation of the spatial data, the distance at the largest slope change should be chosen as 

292 the optimized buffer radii on curves that continue to rise with buffer distance. Multiple 

293 optimized buffer distances were chosen if multiple peaks appear in the curve. This condition 

294 indicates that the spatial covariates possibly influences the pollution level at different spatial 

295 scales. Performing this step allows us to find the optimized buffer distance of a spatial 

296 variable. The process was repeatedly performed for all the distance decay curves such that a 

297 sub-group of variables was chosen.
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298 To build up the LUR model, the chosen sub-group of variables resulted from the previous 

299 variable selection process, together with other point-based spatial variables and temporal 

300 variables (meteorological data and sounding data) were used as the input of a forward-

301 direction stepwise regression using the minimum Bayesian information criterion (BIC) 

302 criteria. Collinearity between variables was checked with the variance inflation factor (VIF). 

303 Variables were excluded if it significantly collinear with existing predictors (evaluated as VIF 

304 ≥ 2) or the p-values exceeded α = 0.05. The adjusted R2 was used to represent the explained 

305 variance by the LUR model. 

306 For the validation of the resultant model, we conducted the 10-fold cross-validation (10-fold 

307 CV) to compare the difference between the monitored and the estimated concentration. The 

308 root-mean-square error ( ) and the  of 10-fold cross validation (10-fold CV R2) 𝑅𝑀𝑆𝐸 𝑅2

309 (Burman, 1989) were used to validate the resultant LUR models. All response data were 

310 randomly divided into ten subsets, with nine subsets used as the training dataset and the other 

311 one subset used as validation datasets. This process was repeated ten times until all data have 

312 been used as validation data once.

313 3. Results

314 3.1. Variable pre-selection

315 By constructing distance-decay curves, all spatial covariates were examined to explore their 

316 relationship with pollution levels. It was found that there are four spatial covariates have clear 

317 relationships with the PM2.5 concentration level: tree coverage ratio (TREE), water coverage 

318 ratio (WATER), the length of motorway and trunk roads (RDTRU), and the length of tertiary 

319 roads (RDTER). TREE has negative correlations with PM2.5 level at buffer distance ranges 

320 from 400 m to 10000 m. Tree coverage ratio within the buffer distance of 100 m, 200 m, 300 

321 m are found to be zero for all monitoring locations. Similarly, WATER is negatively 
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322 correlated PM2.5 level at all buffers between the distance from 1000 m to 10000 m. There is 

323 no water coverage was found within the buffer distance < 800 m of all monitoring locations. 

324 The rest of spatial covariates were not chosen as input predictor variables for stepwise 

325 regression because there are no clear patterns found in their correlations with pollution level 

326 (the correlation changed between positive and negative with the increase of buffer distance). 

327 It is noticed that most of the spatial covariates that do not have clear correlations with the 

328 pollution level are OSM polygon layer-based covariates. For example, the industrial land use 

329 area extracted from OSM does not have a significant positive correlation with the pollution 

330 level, which is unexpected. A possible explanation of the abnormal findings is the 

331 incompleteness of the OSM data (Haklay, 2010) which introduces errors in the spatial 

332 predictor variable data. Figure 2 illustrates the distance-decay curves of the four chosen 

333 spatial covariates. 

334 Table 1 summarizes all chosen predictor variables used as the input of stepwise modeling 

335 (spatial covariates and optimized buffer distance).

336

337 Figure 2. The distance-decay curves of the four chosen spatial covariates. 
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338 Table 1. Summary of all chosen predictor variables (spatial covariates and their 

339 corresponding optimized buffer distance) used as the input of stepwise modelling.

Spatial covariates Chosen buffer radii (m) R with log(PM2.5) R2 with log(PM2.5)
TREE 3000 -0.206 0.043
WATER 3500 -0.324 0.105
RDTRU 100 0.118 0.014
RDTRU 1500 0.116 0.014
RDTRU 4000 0.130 0.017
RDTRU 8000 0.251 0.063
RDTER 300 0.129 0.017
RDTER 1800 0.092 0.008
RDTER 5000 0.157 0.025

340

341 3.2. Resultant LUR model

342 The resultant LUR model includes five predictor variables: annual mean daily air temperature 

343 (TEMP), lifted index (LIFT), annual mean PM2.5 estimation with GWR gridded at 0.01° 

344 (PMGWR), tree coverage ratio within the buffer radii of 3000 m (TREE_3000), and the total 

345 length of motorway and trunk roads within the buffer radii of 1500 m (RDTRU_1500). The 

346 resultant model explains 54.5% of the variance in the log-transformed PM2.5 concentration 

347 (adjusted R2 = 0.545) and also has a reasonable 10-fold CV R2 of 0.542. The two values are 

348 quite close, which indicates that the resultant model is not a statistical coincidence and 

349 provides an unbiased estimation. Figure 3 and Table 2 show the model performance and 

350 summaries all predictor variables that included by the resultant LUR model.
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351

352 Figure 3. Observed log-transformed PM2.5 concentration on predicted value and residual 

353 (left: actual by predicted plot; right: residual by predicted plot).

354 Table 2. Summary of all included predictor variables of the resultant LUR model of log-

355 transformed PM2.5 concentration.

Predictor 
Variables

Unstandardized 
coefficients Std Error t Ratio

Significance
level

Lower 
95%

Upper 
95% VIF

TEMP -5.42E-03 1.02E-03 -5.32E+00 <.0001 -7.42E-03 -3.42E-03 1.52E+00

LIFT 2.97E-02 1.30E-03 2.29E+01 <.0001 2.72E-02 3.22E-02 1.51E+00

PMGWR 9.29E-03 2.17E-04 4.29E+01 <.0001 8.86E-03 9.71E-03 1.06E+00

TREE_3000 -2.95E+00 1.94E-01 -1.53E+01 <.0001 -3.33E+00 -2.57E+00 1.02E+00

RDTRU_1500 5.25E-03 1.02E-03 5.14E+00 <.0001 3.25E-03 7.25E-03 1.06E+00

Model intercept 1.40E+00 3.11E-02 4.51E+01 <.0001 1.34E+00 1.46E+00 n/a

356

357 3.3. Interpretation of resultant model

358 LIFT was included in the resultant LUR model and positively correlated with the log-

359 transformed PM2.5 concentration level. The lifted index (LIFT) is a simple and 

360 straightforward sounding index which has been commonly used for estimating the 

361 atmospheric stability (Galway, 1956). Stable atmospheric conditions lead to the accumulation 

362 of air pollutants and build up poor air quality scenarios. Therefore, this inclusion is 



18

363 reasonable because a higher value of LIFT indicates higher atmospheric stability as such 

364 indicates a more severe air pollution scenario. Air temperature which represents seasonal 

365 changes is also included by the model and negatively correlated with PM2.5 level. This is 

366 consistent with the previous findings that PM2.5 mass concentration level is negatively 

367 correlated with air temperature (Rasheed et al., 2015). This also reflects the fact that local 

368 emission sources become dominant to the air quality in Islamabad, Rawalpindi, and Lahore 

369 (the three cities locate at the eastern side of Pakistan territory and contain the majority of the 

370 monitoring stations) during winter time due to the reversion of the monsoon flow (Rasheed et 

371 al., 2014).

372 The total length of motorway and trunk roads within the buffer radii of 1500 m 

373 (RDTRU_1500) is included by the resultant model, but other traffic-related variables with a 

374 much larger buffer (i.e. RDTRU_4000, RDTRU_8000, RDTER_5000) are excluded by the 

375 stepwise regression in spite of their higher correlation coefficient with PM2.5 level in the 

376 distance decay curves. This is consistent with the finding in previous LUR studies that the 

377 maximum influenced buffer distance for traffic-related covariates is 1500 m (Henderson et 

378 al., 2007; Jerrett et al., 2004). The inclusion of this traffic-related predictor variable also 

379 verifies the previous statement that PM2.5 is clearly associated with the traffic-related 

380 pollutants emissions, and road transport is a major emission source of PM and a major 

381 influential factor of the air quality in Pakistan (Ilyas, 2007; Rasheed et al., 2015). It has been 

382 reported that the lack of vegetation has been held responsible for the poor urban air quality in 

383 Pakistan (Colbeck et al., 2010), which supports the inclusion of the tree coverage ratio within 

384 the buffer radii of 3000 m (TREE_3000) as a predictor variable. 

385 Figure 4 shows the spatial estimation of the annual mean PM2.5 concentration level in 2016 

386 based on the resultant LUR model. The spatial data of annual mean air temperature of 2016 

387 used for the mapping is extracted from a recently released global dataset of air temperature 



19

388 derived from satellite remote sensing and weather stations (Hooker et al., 2018). By 

389 overlapping the PM2.5 spatial estimation with population distribution data of Pakistan, the 

390 previous finding that all population of Pakistan is living in the condition with PM2.5 

391 concentration levels higher than the standard value of WHO guideline (Cohen et al., 2017) 

392 was verified. The pollution level in city Lahore and Faisalabad were found to be more severe 

393 which possibly because of the combination of the lack of large-scale vegetation coverage and 

394 the regional influence of long-range transport of PM2.5 from emission sources outside the 

395 country. These results are supported by previous studies which showed that biomass burning 

396 in the neighboring region significantly affected the air quality conditions over Lahore and 

397 Faisalabad and increased the PM2.5 level (Khokhar et al., 2016; Tariq et al., 2015). High 

398 PM2.5 concentration levels > 150 μg/m3 which has been correlated with many serious health 

399 burdens were also observed.

400

401 Figure 4. Spatial estimation of the annual mean PM2.5 concentration level in 2016 based on 

402 the resultant LUR model. The color bar in both the national map and the maps of each city 

403 are optimized separately for better visualization of the spatial variability.
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404 3.4. Observing seasonal variation from the resultant model

405 Noticeable seasonal changes in PM2.5 concentration levels have been clearly observed in 

406 Pakistan (Javed et al., 2015; Mehmood et al., 2018), which is mainly caused by seasonal 

407 changes in meteorological conditions. Pakistan, particularly the northeastern inland part of 

408 the nation’s territory, has four seasons, which are the warm and rainy summer (June to 

409 August), dry autumn (September to November), cold and dry winter (December to February) 

410 and spring (March to May). The seasonal variation in the coastal area (the southwestern side 

411 of the country) is slightly different: winter (January to March), pre-monsoon (April to June), 

412 monsoon (July to September), and post-monsoon (October to December) (Khan, 1991). As a 

413 fundamental part of the seasonal changes in meteorological conditions, the monsoon 

414 reversion is clearly reflected in seasonal alternation. As predictor variables in the resultant 

415 model, both the air temperature (TEMP) and the sounding index lifted index (LIFT) directly 

416 reflect the seasonal alternations of meteorological conditions. Therefore, the seasonal 

417 alternation and changes in meteorological conditions are already included by the resultant 

418 model. Spatial maps of the seasonal average of PM2.5 concentration in Pakistan have also 

419 been produced to reflect the seasonal variation (Figure 5). The PM2.5 concentration level 

420 seasonal difference in the seasonal maps is consistent with the observation in previous studies 

421 (Javed et al., 2015; Mehmood et al., 2018).
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422

423 Figure 5. Spatial estimation of the seasonal mean PM2.5 concentration level in 2016 based on 

424 the resultant LUR model. A unified color bar is used for all seasonal maps.

425 4. Discussion

426 4.1. Refinement of the existing PM2.5 dataset

427 There are two major refinements. First, the resultant land use regression model could be used 

428 for spatiotemporal estimation of PM2.5 for a period-of-interest as long as the input data are 

429 available. The existing PM2.5 spatial data is an annual average map. After the refinement, the 

430 spatial maps of PM2.5 produced by this study can be temporal-resolved (Figure 5). Second, 

431 through the use of land use regression modelling and integration of local data (vegetation 

432 distribution, road network), the existing global annual average PM2.5 dataset (which is based 

433 on geographical and climate space weighted regressions at a coarse spatial resolution) is 

434 refined to a scenario that more representative to the local condition of Pakistan. 
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435 From the viewpoint of the application in public health risk assessment, a comparison is made 

436 between the existing dataset and the refinement of PM2.5 spatial estimation by using a 7-point 

437 bipolar scale (from high exposure to low exposure) and natural breaks classification. The 

438 PM2.5 data is spatially aggregated based on administrative boundaries. As a result, each 

439 administrative zone has a score of the level of exposure (Figure 6). There are noticeable 

440 differences between the two datasets. Compared with the refined dataset, the existing dataset 

441 might overestimate the exposure level in the northern mountainous area and underestimates 

442 the exposure level in the southern coastal area of the country.

443

444 Figure 6. The classification map of the existing dataset and the refinement of PM2.5 spatial 

445 estimation based on a 7-point bipolar scale using natural breaks classification.

446 4.2. Implications of results on preferred socioeconomic development trajectories for 

447 air quality management of cities in Pakistan

448 Based on the results, this study implied that urbanization might be the key influential of air 

449 pollution across a South Asian developing country. Specifically, a mega network of 

450 motorway and trunk roads not only increased the number of vehicles but also can increase the 

451 frequency and duration of vehicles on the road network, because motorway and trunk roads 

452 are usually designed for long-distance traffic. More importantly, trunk road is a specific type 

453 of road for freight traffic, in which the major vehicle on the roads can be a heavy goods 
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454 vehicle (HGV). It is known that HGV operated by heavy-duty diesel can release a large 

455 amount of PM2.5, in which the expansion of trunk roads across the country has no doubt to be 

456 continuing to negatively influence the air quality in Pakistan. In details, as a developing 

457 country, the logistic network for freight traffic in Pakistan should be car-dependent but not 

458 flight-dependent, since road network can provide the most sustainable strategy to deliver 

459 goods from one city to another city. This transportation network is essential because there is a 

460 significant urban/rural difference in Pakistan. In order to reach both mega cities and small 

461 towns within the country, the road network has become more important than the past. Based 

462 on this, the use of long-distance vehicles especially HGV is expected to be increased in the 

463 future across this country, while this can further worsen the air quality in the urbanized area. 

464 In contrast, although the industrial sector has accounted for approximately 24% of GDP in 

465 Pakistan, it is dominated by the light industry (e.g. Cotton textile production). Therefore, the 

466 emission of air pollutants from factories in Pakistan may be relatively low compared to those 

467 factories for heavy industries such as chemical products and heavy metals. This may also 

468 somewhat explain why industrial lands may not be the contributors of PM2.5 in this country 

469 since the negative effects of urbanization in Pakistan might be driven by the necessity of 

470 transportation within the country.  

471 Therefore, the association between tree coverage and PM2.5 in Pakistan can further be 

472 expressed as a consequence of increased impervious surfaces due to urbanization. 

473 Specifically, the development of motorway and trunk roads must have to interrupt the natural 

474 environment. This can induce deforestation across the country. This deforestation can be 

475 further enhanced because of the economic growth and energy consumption of the country 

476 (Ahmed et al., 2015). For example, biofuel burning is a known problem in Pakistan (Tahir et 

477 al., 2010), and informal mining has been threatening the natural environment in the country 

478 for decades (Lahiri-Dutt and Brown, 2017), not to mention that government-controlled 
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479 mining sites can be found nationwide. Combining all these factors above, deforestation has 

480 become a great threat to air quality control due to a lack of natural greenery to reduce PM2.5. 

481 Based on these facts, policies for sustainable development should be established in this 

482 country for air quality improvement. Specifically, these policies should at least include the 

483 following three factors: 1) integration of urban design with greenery along with the road 

484 network, 2) afforestation of abandoned mining sites and 3) afforestation of sites after biofuel 

485 burning. These policies should be delivered in both top-down and bottom-up basis. 

486 Specifically, the bottom-up strategies can be a community engagement among local residents, 

487 non-governmental organization, and government sectors to establish afforestation programs 

488 together. Such approaches have somewhat taken been places in this country. For examples, 

489 the 2010 agreement of International Union for Conservation of Nature to raise a mangroves 

490 plantation of over 25 hectares along the Karachi coast, Pakistan; and the “Billion Tree 

491 Tsunami” project launched in 2014 to restore 350,000 hectares of forests and degraded land 

492 to surpass its Bonn Challenge commitment. Although action plans for afforestation across 

493 this country have been established, the magnitude for such actions still needs to be further 

494 increased. 

495 Moreover, the study outputs could also contribute to national health risk management. The 

496 study outputs can be directly used in environment-related risk assessment in GIS. Taking the 

497 Crichton’s conceptual definition of risk triangle as an example (Crichton, 1999), the 

498 Crichton’s risk triangle transfers a risk into three dimensions, which corresponds to three data 

499 layers in GIS: the hazard layer, the exposure layer, and the vulnerability layer. This study 

500 directly outputs the hazard layer.
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501 4.3. Limitations and future works

502 In this study, there were only a few 15 ground-level air quality monitoring locations across 

503 the country that can be used to refine the global dataset to the local scenario. As these air 

504 quality monitoring locations are sparsely and unevenly distributed in the study area, this may 

505 still introduce bias and uncertainty in the spatial estimation. However, since this study is a 

506 refinement of the existing global PM2.5 dataset by integrating local data, the bias should be 

507 lower than either directly using global datasets or predicting ambient PM2.5 exposure by 

508 solely using air quality data from sparsely distributed monitoring locations. For future 

509 studies, besides the long-term monitoring data from fixed air quality monitoring network, 

510 data collected in short-term air quality sampling or mobile monitoring campaigns can also be 

511 used to substantially enrich the spatial coverage of ambient PM2.5 observations (Brantley et 

512 al., 2014; van Nunen et al., 2017). However, since Pakistan is a developing country with a 

513 great urban/rural difference, nationwide mobile monitoring campaigns to measure air quality 

514 across the whole country would still be extremely difficult.  In that case, our approach in this 

515 current study is appropriate to provide a cost-effective solution to deliver national-scale air 

516 quality outputs and exposure assessment by refining the global datasets.  

517 Another limitation of the study is that only open map service was used for the extraction of 

518 detailed intraurban land utilization and road networks. It has been widely noticed that OSM 

519 has limitations in its spatial data completeness and positional accuracy (Haklay, 2010), 

520 particularly in polygon feature layers. Therefore, in our future works, more accurate 

521 geoinformation of the study area (for example, a spatial-resolved industrial emission 

522 inventory from local authorities) should be acquired and used for improving the estimation of 

523 spatial PM2.5 distribution. It should also be noted that the resultant model only has a limited 

524 capacity to estimate the regional influence caused by long-range pollution transport. In the 

525 next step of the study, incorporating geoinformation of neighboring regions and mesoscale 
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526 meteorological modelling results into LUR modelling would be helpful to enhance the 

527 prediction capacity of the resultant model. Last but not least, it should be noticed that, to help 

528 with the local government, there are much more coordination and communication need to be 

529 done despite that the study outputs have the potential of helping with the local government.

530 5. Conclusions

531 In this study, a spatiotemporal LUR model is developed to refine global air quality datasets to 

532 the local scenario of ambient PM2.5 exposure in Pakistan. Multiple open-source and publicly 

533 available datasets were used for model development, which means that the model 

534 development process of the present LUR study could be transferred and adopted by other 

535 regions for the development of cross-comparable LUR models. The research findings also 

536 show that tree coverage and road transport are two influential factors of the national-scale 

537 spatial variation of PM2.5. This finding implies that Pakistan’s current efforts in 

538 environmental protection (i.e., the effort in reforestation and transport pollution emission 

539 reduction) are in a good direction and need to be continued. Based on the resultant LUR 

540 model, a spatial map of ambient PM2.5 concentration level matching local scenario was 

541 generated, which could provide useful spatial information to the national health risk 

542 management and also has a great potential of helping local authorities on the air quality 

543 management, and contributing to the pollution reduction actions of Pakistan (Matthew, 2001; 

544 Qadir, 2002; Shaikh et al., 2016).
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Table S-1. Summary of meteorological, geographic predictor variables and satellite-based 

observations. Notes: a The 22-circular buffer scheme was created with radii of 100 m, 200 m, 

300 m, 400 m, 500 m, 600 m, 700 m, 800 m, 1000 m, 1200 m, 1500 m, 1800 m, 2000 m, 2500 

m, 3000 m, 3500 m, 4000 m, 5000 m, 6000 m, 7000 m, 8000 m, and 10000 m (Knibbs et al., 

2014; Knibbs et al., 2018; Novotny et al., 2011); b Average or sum of the independent 

variable within buffer. 

Variable 

(units) 

Abbreviation 

code  

Spatial 

/temporal 

Resolution 

Point or buffer a 

(average or sum b) 

Data source 

Spatial datasets - Land use/land cover and geographical features 

 

Elevation (m) ELEV 30 m Point SRTM 1-ArcSecond Global Digital Elevation 

Model: https://earthexplorer.usgs.gov/ 

Longitude LONG Vector Point Location of air quality monitoring stations 

Latitude LAT Vector Point Location of air quality monitoring stations 

Built-up 

areas/Impervi

ous surfaces 

(%) 

BUILT 30 m Buffer  High-resolution Multi-temporal Mapping of 

Global Urban Land 2015 (Liu et al., 2018): 

http://www.geosimulation.cn/GlobalUrbanLan

d.html 

Tree coverage 

ratio (%) 

TREE 30 m Buffer  GlobeLand30 (GLC30) (Jun et al., 2014) 2010 

Data: http://www.globallandcover.com/ 

Lands covered with trees, with vegetation 

cover over 30%, including deciduous and 

coniferous forests, and sparse woodland with 

cover 10-30%. 

Water 

coverage ratio 

(%) 

WATER 30 m Buffer  GlobeLand30 (GLC30) (Jun et al., 2014) 2010 

Data: http://www.globallandcover.com/ 

Water bodies in land area, including river, 

lake, reservoir, fish pond. etc. 

Commercial 

land use area 

(m2) 

LUCOM Vector Buffer (total area) OpenStreetMap (OSM): 

openstreetmap.org 

Industrial land 

use area (m2) 

LUIND Vector Buffer (total area) As above. 

Residential 

land use area 

(m2) 

LURES Vector Buffer (total area) As above. 

Retail land 

use area (m2) 

LURET Vector Buffer (total area) As above. 

Distance to 

coast (km) 

COAST Vector Point Measured using 'Near' tool in ArcGIS 

(excludes inland waterbodies) 

Population 

density 

(persons/km2) 

POPD 250 m Buffer  GHS_POP_GPW4_GLOBE_R2015A 

European Commission, Joint Research Centre 

(JRC); Columbia University, Center for 

International Earth Science Information 

Network - CIESIN (2015): GHS population 

grid, derived from GPW4, multitemporal 

(1975, 1990, 2000, 2015). European 

Commission, Joint Research Centre (JRC) 

[Dataset] PID: http://data.europa.eu/89h/jrc-

ghsl-ghs_pop_gpw4_globe_r2015a 

Motorway and 

trunk roads 

(km) 

RDTRU Vector Buffer (total length) OpenStreetMap (OSM): 

openstreetmap.org 

Primary roads 

(km) 

RDPRI Vector Buffer (total length) As above. 

Secondary 

roads (km) 

RDSEC Vector Buffer (total length) As above. 

https://earthexplorer.usgs.gov/
http://www.geosimulation.cn/GlobalUrbanLand.html
http://www.geosimulation.cn/GlobalUrbanLand.html
http://www.globallandcover.com/
http://www.globallandcover.com/
http://data.europa.eu/89h/jrc-ghsl-ghs_pop_gpw4_globe_r2015a
http://data.europa.eu/89h/jrc-ghsl-ghs_pop_gpw4_globe_r2015a


Tertiary roads 

(km) 

RDTER Vector Buffer (total length) As above. 

Ordinary 

roads (km)  

RDORD Vector Buffer (total length) As above. (Includes: living street, residential, 

and service roads) 

Count of bust 

stations and 

stops 

BUSST Vector Buffer (count) As above. 

Temporal-resolved datasets - Meteorological data and sounding data 

 

Annual mean 

daily average 

Air 

Temperature 

(°C) 

TEMP Daily Point (at the same 

location of air 

quality monitoring 

stations) 

Provided by Pakistan Air Quality Initiative 

(PAQI پاکی). 

Annual mean 

daily average 

Relative 

Humidity (%) 

RH Daily Point (at the same 

location of air 

quality monitoring 

stations) 

As above. 

Bulk 

Richardson 

Number  

BRCH Daily Temporal variable 

(daily averaged 

value for all 

sounding data) 

Department of Atmospheric Science, 

University of Wyoming at their website: 

http://weather.uwyo.edu/upperair/sounding.ht

ml 

(Station Number: 42027) 

Bulk 

Richardson 

Number using 

CAPV  

BRCV Daily Temporal variable As above. 

Convective 

Available 

Potential 

Energy (J/kg) 

CAPE Daily Temporal variable As above. 

CAPE using 

virtual 

temperature 

(J/kg) 

CAPV Daily Temporal variable As above. 

Convective 

Inhibition 

(J/kg) 

CINS Daily Temporal variable As above. 

CINS using 

virtual 

temperature 

(J/kg) 

CINV Daily Temporal variable As above. 

Cross totals 

index  

CTOT Daily Temporal variable As above. 

K index  KINX Daily Temporal variable As above. 

Pressure of 

the Lifted 

Condensation 

Level (hPa) 

LCLP Daily Temporal variable As above. 

Temperature 

of the Lifted 

Condensation 

Level (K) 

LCLT Daily Temporal variable As above. 

Lifted index  LIFT Daily Temporal variable As above. 

LIFT 

computed 

using virtual 

temperature  

LIFV Daily Temporal variable As above. 

Mean mixed 

layer mixing 

ratio (g/kg) 

MLMR Daily Temporal variable As above. 

Mean mixed 

layer potential 

temperature 

(K) 

MLPT Daily Temporal variable As above. 

http://weather.uwyo.edu/upperair/sounding.html
http://weather.uwyo.edu/upperair/sounding.html


Total 

precipitable 

water (mm) 

PWAT Daily Temporal variable As above. 

Showalter 

index  

SHOW Daily Temporal variable As above. 

SWEAT 

index  

SWET Daily Temporal variable As above. 

Total totals 

index  

TTOT Daily Temporal variable As above. 

Vertical totals 

index  

VTOT Daily Temporal variable As above. 

Satellite-observation based spatial dataset 

 

Annual mean 

PM2.5 

estimation 

gridded at 

0.01° 

(μg/m3)* 

PMGWR 1 km Point (the value in 

the corresponding 

cell of the satellite 

image) 

Global Annual PM2.5 Grids from MODIS, 

MISR and SeaWiFS Aerosol Optical Depth 

(AOD) with GWR, v1 (van Donkelaar et al., 

2018): 

http://sedac.ciesin.columbia.edu/data/set/sdei-

global-annual-gwr-pm2-5-modis-misr-seawifs-

aod/data-download 
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