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Research Highlights

- Estimation of long-term spatially-continuous monthly PM2.5 dataset 

- Cubist outperforms other machine learning algorithms

- Several new predictors were employed to improve the estimation of PM2.5

- PM2.5 was estimated with a CV-RMSE of 2.64 μg/m3
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23 Abstract 

24 Fine particulate matter (PM2.5) has been recognized as a key air pollutant that can 

25 influence population health risk, especially during extreme cases such as wildfires. Previous 

26 studies have applied geospatial techniques such as land use regression to map the ground-

27 level PM2.5, while some recent studies have found that Aerosol Optical Depth (AOD) derived 

28 from satellite images and machine learning techniques may be two elements that can 

29 improve spatiotemporal prediction. However, there has been a lack of studies evaluating use 

30 of different machine learning techniques with AOD datasets for mapping PM2.5, especially in 

31 areas with high spatiotemporal variability of PM2.5.

32 In this study, we compared the performance of eight predictive algorithms with the use 

33 of multiple remote sensing datasets, including satellite-derived AOD data, for the prediction 

34 of ground-level PM2.5 concentration. Based on the results, Cubist, random forest and 

35 eXtreme Gradient Boosting were the algorithms with better performance, while Cubist was 

36 the best (CV-RMSE=2.64 μg/m3, CV-R2=0.48). Variable importance analysis indicated that the 

37 predictors with the highest contributions in modelling were monthly AOD and elevation. 

38 In conclusion, appropriate selection of machine learning algorithms can improve ground-

39 level PM2.5 estimation, especially for areas with nonlinear relationships between PM2.5 and 

40 predictors caused by complex terrain. Satellite-derived data such as AOD and land surface 

41 temperature (LST) can also be substitutes for traditional datasets retrieved from weather 

42 stations, especially for areas with sparse and uneven distribution of stations.

43
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44 1. Introduction

45 Fine particulate matter (PM2.5) is one of the major dust-related air pollutants that can 

46 increase morbidity and mortality risks, especially for cardiovascular and respiratory issues 

47 (Atkinson et al., 2014). In order to reduce community health risks caused by environmental 

48 exposure, previous studies have commonly applied air quality data from single or a small 

49 number of monitoring stations to evaluate the temporal influences of PM2.5 (Liu et al., 2018; 

50 Ostro et al., 2014; Wang et al., 2017), and have found positive association between PM2.5 

51 and chronic diseases. These results have helped pinpoint air pollution as a severe 

52 community health problem (Kan et al., 2012). However, sparse distribution of air quality 

53 monitoring stations across large areas reduces the ability to demonstrate the actual impact 

54 of PM2.5 on all vulnerable populations.

55 Satellite remote sensing data can provide spatially continuous estimates of aerosol 

56 optical depth (AOD), providing an alternative method to map ground-level PM2.5 across a 

57 large region. Since AOD from satellite images has complete spatial coverage and moderate 

58 spatial resolution, AOD measurement can fill in data for areas that lack monitoring stations. 

59 Multiple studies have been carried out to estimate PM2.5 from satellite-derived AOD and 

60 other environmental variables (Lai et al., 2014; Saunders et al., 2014; Wu et al., 2015). Due 

61 to the spatio-temporal heterogeneity of AOD-PM2.5 relationships, using AOD to directly 

62 represent ground-level PM2.5 may be inappropriate, as has been reported by previous 

63 studies (Lee et al., 2011; Paciorek et al., 2008). Additional environmental predictors, such as 

64 geographical and meteorological variables, have also been incorporated in models to 

65 improve estimation performance (Hu et al., 2013; Kloog et al., 2011; Liu et al., 2009). To 
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66 derive PM2.5 from satellite-derived AOD and other predictors, various models have been 

67 developed. The most commonly used models include multiple linear regression (Lai et al., 

68 2014; Liu et al., 2004; Saunders et al., 2014; Schaap et al., 2009; Yao et al., 2018a), mixed 

69 effect models (Just et al., 2015; Lee et al., 2011; Zheng et al. 2016; Xie et al., 2015), chemical 

70 transport models (Crouse et al., 2016; Wang & Chen, 2016; van Donkelaar et al., 2006) and 

71 geographically weighted regression (Chu et al., 2015; Chu et al., 2016; He and Huang, 2018; 

72 Jiang et al., 2017; Ma et al., 2014; Shi et al., 2018; Song et al., 2014; Wu et al., 2016; You et 

73 al., 2016). Recently, machine learning technology, which can fit complicated non-linear 

74 relationships in many dimensions, has also been employed to derive air-pollutant 

75 concentrations from remote sensing data (Chen et al., 2018; Deters et al., 2017, He & Huang, 

76 2018, Yao et al., 2018b). Several machine learning methods, such as artificial neural 

77 networks, generalized boosting models, support vector machine and random forest, have 

78 also been used to generate models for estimating PM2.5 (Di et al., 2016; Hu et al., 2017; Reid 

79 et al., 2015; Zhan et al., 2017). However, to date, studies with machine learning for 

80 estimating PM2.5 are still rare in this field.

81 In order to better understand the potential of machine learning for PM2.5 mapping, we 

82 developed an innovative approach to estimate spatial variability of PM2.5 by using machine 

83 learning techniques with multiple predictors based on Moderate Resolution Imaging 

84 Spectroradiometer (MODIS) and re-analysis data. By using machine learning techniques, it 

85 can better characterize non-linear relationships for estimating air pollution based on all 

86 geophysical components. To enhance the ability to develop a spatiotemporal model for 

87 PM2.5 prediction, the specific objectives of this study included 1) to develop a model for 
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88 predicting PM2.5 based on remote sensing data, re-analysis data and station observed air 

89 quality data; 2) to evaluate the prediction performance of different statistical methods, for 

90 determining the best model setting for estimating PM2.5; and 3) to map the spatio-temporal 

91 distribution of PM2.5 based on the best model. British Columbia of Canada was selected as 

92 the case of this study, because of its complex terrain and wildfire history that can 

93 significantly influence air quality across the province, including PM2.5. 

94 2. Study Area

95 British Columbia (BC) is the westernmost province of Canada (Fig. 1), and it is 

96 characterized by mountainous terrain and heavy forest cover. BC has traditionally been 

97 known for its clean environment. However, due to climate change, increasing frequency of 

98 wildfires has been observed in recent decades (Wildfire Management Branch, 2014; Wotton, 

99 2010). Wildfires produce excessive smoke that can influence regional air quality and severely 

100 affect human health (Henderson et al., 2011; McLean et al., 2015; Krstic & Henderson et al., 

101 2015). In order to minimize air pollution risk, a National Air Pollution Surveillance (NAPS) 

102 system with ground-based stations has been established across the province, monitoring 

103 temporal changes in air pollutants including the daily change in PM2.5. However, due to the 

104 province’s sprawling territory with complex terrain and a limited number of surveillance 

105 stations, station-based observation may not be able to adequately measure the PM2.5 

106 influencing all populated regions (McLean et al. 2015). The stations with data between 2001 

107 and 2014 were sparsely distributed and clustered in the southern and central parts of BC. 

108 Therefore, combining satellite images to monitor the spatiotemporal changes in PM2.5 across 

109 the province is essential.
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110 3. Data and Methods

111 3.1 Selection of predictors for PM2.5 mapping 

112 According to previous studies, AOD has strong positive relationships with ground-level 

113 PM2.5 concentrations (Engel-Cox et al., 2004; Mukai et al., 2006; Wang & Christopher, 2003; 

114 Xin et al., 2014), and some studies have applied satellite-derived AOD to map PM2.5 (Chu et 

115 al., 2016). Therefore, AOD was the first predictor for PM2.5 mapping. In this study, AOD data 

116 were retrieved from MOD04_3K, a 3-km near-real-time aerosol dataset derived from 

117 TEAAR/MODIS.

118 The PM2.5-AOD relationship can be a multivariate function of a wide range of 

119 influencing factors (Lary et al., 2015; Natunen et al., 2010; Song et al., 2014; van Donkelaar 

120 et al., 2006). For example, meteorological and geographical predictors can be the 

121 parameters of co-predicting PM2.5 concentrations (Jiang et al., 2017; Liu et al., 2009; Ma et 

122 al., 2014; Reid et al., 2015; You et al., 2016). Built on the literature, the following parameters 

123 may contribute to PM2.5 prediction: humidity, temperature, albedo, normalized difference 

124 vegetation index (NDVI), height of the planetary boundary layer (HPBL), wind speed, 

125 distance to the ocean, elevation, and calendar month. Therefore, we constructed the input 

126 datasets for modelling as follows.

127 Considering the bias which sparse distribution of weather stations may produce in data 

128 representing spatial variations in temperature and humidity, 26855 images of MODIS land 

129 surface temperature product (MOD11A1) and 44336 images of MODIS water vapor product 

130 (MOD05_L2) were used as alternatives to air temperature and relative humidity for better 

131 spatial representativeness. In brief, MOD11A1 is a 1-km daily land surface temperature (LST) 
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132 product derived from TERRA/MODIS, and MOD05_L2 is a 1-km near-real-time water vapor 

133 product derived from TERRA/MODIS. 

134 In addition, NDVI and albedo were derived based on MODIS products: the MODIS 

135 vegetation index product (MOD13A3), a 1-km monthly vegetation index product derived 

136 from TERRA/MODIS; and the MODIS albedo product (MCD43B3), a 1-km 8-day albedo 

137 product derived from TERRA/MODIS and AQUA/MODIS. For the mapping purpose, all MODIS 

138 datasets were re-projected to the Albers projection, resampled to 1-km spatial resolution, 

139 and averaged for each month. 

140 Finally, HPBL and wind speed were derived from NCAR/NCEP re-analysis data, which 

141 provides the corresponding data on a monthly basis. Elevation was derived from a digital 

142 elevation model (DEM) dataset of the Shuttle Radar Topography Mission (SRTM). Distance to 

143 the ocean was calculated by buffer analysis based on the coastal boundary of BC. 

144 Based on the satellite-derived products and re-analysis data, a total of 10 predictors 

145 were employed to estimate ground-level PM2.5 concentration across BC: monthly AOD, 

146 monthly vapor, monthly LST, monthly NDVI, monthly albedo, monthly HPBL, monthly wind 

147 speed, elevation, distance to ocean and calendar month (Table 1).

148 It is known that the relationship between environmental predictors and PM2.5 may vary 

149 across space (Hu et al., 2013; Song et al., 2014), as well as time. We did not include spatial 

150 predictors (e.g. latitude, longitude) other than “distance to ocean”, and we did not use 

151 spatially weighted models such as geographically weighted regression, because of the 

152 limited insight that can be gained from using such predictors/models, and the limited 
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153 transferability such models will have to other geographical regions.

154 3.2 Model development with machine learning algorithms

155 Association between PM2.5 concentration of air quality monitoring stations and the 

156 values of predictors retrieved by the locations of stations were first established for each 

157 machine learning model in order to estimate the spatial distributions of ground-level PM2.5 

158 concentrations. In this study, ground-level PM2.5 concentrations for modelling were retrieved 

159 from 63 stations of the NAPS network operated by Environment Canada, with hourly PM2.5 

160 data between 2001 and 2014 across BC. Since several stations within this study period did 

161 not provide temporal-continuous observations, or even had significant data gaps in temporal 

162 observation, we averaged hourly PM2.5 data on a daily basis, then converted the daily 

163 information to the monthly average PM2.5 concentrations based on all valid daily values.

164 These monthly average PM2.5 values across BC province were then applied to the 

165 following statistic algorithms to construct the regression models: 1) multiple linear 

166 regression (MLR), 2) Bayesian Regularized Neural Networks (BRNN), 3) Support Vector 

167 Machines with Radial Basis Function Kernel (SVM), 4) Least Absolute Shrinkage and Selection 

168 Operator (LASSO), 5) Multivariate Adaptive Regression Splines (MARS), 6) Random forest 

169 (RF), 7) eXtreme Gradient Boosting (XGBoost), and 8) Cubist.

170 MLR is a widely used algorithm in remote sensing applications because of its simplicity, 

171 but it relies on several assumptions concerning data distributions, and its performance 

172 depends on meting these assumptions as well as the linearity of the modeled relationship 

173 (Helsel and Hirsch 1992). BRNN is a back-propagation network that based on a mathematical 

174 technique named Bayesian regularization to convert nonlinear regression into “well-posed” 
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175 problems (Burden and Winkler, 2008). It is more robust than standard back-propagation 

176 neural networks. SVM was originally developed for classification by constructing separating 

177 hyperplanes to define decision boundaries, and later expanded for regression. To map 

178 samples to high dimension space, kernel functions were introduced. The radial basis function 

179 showed its advances of handling nonlinear problems and fewer tunable parameters (Hsu, 2003; 

180 Bennett and Campbell, 2000). LASSO is a regularization and variable selection method which 

181 shrinks coefficients by forcing some less important coefficients to zero (Tibshirani, 1996). It can 

182 improve the model interpretability and reduce overfitting. MARS is a fully automated method 

183 based on the divide-and-conquer strategy, in which the training dataset is split into 

184 piecewise linear segments (splines) (Friedman, 1991). RF is an ensemble-based decision tree 

185 approach, which consists of a combination of decision trees fitted by randomly selected 

186 subsets of training samples. Final predictions produced by RF model are determined by the 

187 average of the results of all the trees (Breiman, 2001). XGBoost is an ensemble tree method 

188 which follows the principle of Gradient boosting framework (Friedman, 2001), and uses 

189 regularization techniques to control overfitting and model complexity (Chen and Guestrin, 

190 2016). Cubist is a rule-based tree model, which produces multiple linear regression models 

191 in the terminal nodes of trees based on the M5 theory (Quinlan, 1992; RuleQuest, 2018). A 

192 prediction at the terminal node is made by the corresponding linear regression model and is 

193 smoothed by combining with predictions from nearest-neighbor nodes within the tree to 

194 improve prediction accuracy (Houborg & McCabe, 2018). In addition, Cubist also constructs 

195 multiple tree models (called committees), each of which consists of a set of rule-based 

196 models (John et al., 2018). Predictions from all the committees are averaged to produce the 
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197 final prediction.

198 Except for the widely-used traditional MLR algorithm, others were machine learning 

199 algorithms, which can effectively fit nonlinear and complex relationships between outcomes 

200 and predictors (Ngufor et al. 2015). In this study, the complex terrain of the study area can 

201 form a nonlinear relationship between ground-level PM2.5 concentrations and all predictors, 

202 for which machine learning models may provide better results. 

203 In order to optimize the PM2.5 estimation, parameter values were adjusted in each 

204 machine learning model with a fitting process, based on the determination of the best 

205 parameters by cyclic testing with committees of 1, 5, 10, 20, 50, and neighbors of 0, 1, 5, 9. 

206 In addition, predictions of PM2.5 concentrations with all machine learning models were 

207 conducted with the R (R Development Core Team).

208 3.3 Model evaluation

209 10-fold cross-validation was performed to evaluate the accuracy of all machine learning 

210 models. Data were first randomly divided into 10 subsets, with one of the subsets used as 

211 the validation dataset and the remaining used as training datasets; then repeating 10 times 

212 until all subsets have been used as validation datasets once. Root-mean-square error (CV-

213 RMSE) and coefficient of determination (CV-R2) based on the comparison of validation and 

214 training data were used to evaluate the accuracy of each machine learning model. While the 

215 best model for PM2.5 estimation was determined based on the accuracies, variable 

216 importance analysis was also conducted to evaluate the contributions of each predictor in 

217 PM2.5 estimation, based on the determination of percentage increase in mean square error 

218 (%IncMSE) of each model relative to the original error, after a predictor was randomly 



11

219 permuted. A higher value of %IncMSE indicated higher importance of this corresponding 

220 predictor to the estimation.

221 4. Results

222 4.1 Empirical relationship between PM2.5 and AOD

223 A total of 1242 records of observed data of ground-level PM2.5 concentrations were 

224 retrieved from stations with effective monthly AOD values based on location. In brief, PM2.5 

225 concentrations of this subset ranged from 1.26μg/m3 to 51.14μg/m3, with an average of 

226 5.26μg/m3 and a median of 4.58μg/m3. This indicated a clean environment with low air 

227 pollution during the study period across BC, except in a few extreme cases. Based on the 

228 observed data, the extremes in PM2.5 concentration samples were observed in August 2003 

229 and August 2010, when there were wildfire events (e.g. 2003 Okanagan Mountain Park Fire) 

230 across BC. 

231 A positive but poor correlation was observed based on evaluation of an empirical 

232 relationship between observed PM2.5 and satellite-derived AOD (Fig. 2), with a correlation 

233 coefficient (R) of 0.34 (P-value < 0.01), a clustering of data was found with AOD value less 

234 than 0.8 and PM2.5 value less than 15μg/m3. Observed data with moderate or high values 

235 were scattered, possibly due to the complexity of the atmospheric conditions and 

236 landscapes across BC. Similar evidence has also been found in a previous study, which 

237 demonstrated a non-linear relationship between geophysical environment and air 

238 temperature across BC (Xu et al., 2014). Therefore, the use of simple linear regression for 

239 ground-level PM2.5 estimation is insufficient and inaccurate, and nonlinear multivariate 

240 models should be adopted to predict PM2.5 under consideration of relevant atmosphere-
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241 surface interactions.

242 4.2 Model performance

243 Parameters of machine learning models were optimized with the fitting process, by 

244 cyclic testing with a given parameter range and step size. Based on the results of optimized 

245 models, CV-RMSE ranged from 2.64 μg/m3 to 3.24 μg/m3 and CV-R2 ranged from 0.22-0.49 

246 (Table 2). Among all, RF, XGBoost and Cubist were the models with better performance, 

247 while Cubist had the best performance determined by CV-RMSE. With 20 committees and 5 

248 neighbors as optimal parameters, CV-RMSE and CV-R2 of Cubist were 2.64 μg/m3 and 0.48. In 

249 contrast, MLR method had the lowest performance (CV-RMSE=3.24 μg/m3 and CV-R2=0.22), 

250 indicating its poor capability of capturing complex relationships for the study area.

251 For the best model, the predicted and observed values were well aligned with the line 

252 of best fit (Fig. 3), indicating the high accuracy of PM2.5 estimation with Cubist. However, 

253 underestimation was also found for observed data with high PM2.5 values (> 20μg/m3), 

254 possibly due to the small sample size, resulting in inability to robustly predict these high-

255 value data with a decision-based machine learning algorithm. Moreover, average deviation 

256 of PM2.5 estimation was 0.07μg/m3, slightly higher than the deviation of observed values. 

257 These results show that lower PM2.5 concentration in observed data may result in 

258 overestimation, while higher values in observed data might result in underestimation during 

259 prediction.

260 4.3 Variable importance analysis

261 Based on the variable importance analysis, the predictors with highest contributions to 

262 the Cubist model were monthly AOD and elevation. %IncRMSE without monthly AOD as 
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263 predictor was 12.14%, possibly due to its strong association between AOD and ground-level 

264 air quality. %IncRMSE without elevation as a predictor was 9.26%, also suggesting a high 

265 importance in PM2.5 estimation because of the influences of complex terrain in BC, with 

266 great variations in altitude between the coast and interior. However, there shall be several 

267 factors which contributed to the importance of elevation for predictions of PM2.5: areas with 

268 high elevation are inclined to suffer from wildfires; areas with low elevation tend to be 

269 influenced by human activities. As AOD is an important predictor in the models, elevation 

270 may be used to correct for model predictions. In addition, %IncRMSE of monthly albedo, 

271 monthly LST and calendar month ranged from 4% to 6%. Predictors with the least 

272 importance were monthly wind speed, monthly HPBL, monthly vapor and monthly NDVI, 

273 with a range of %IncRMSE between 2% and 4%.

274 4.4 Determination of location-based error

275 To further determine the spatial variability of error, RMSEs were extracted by the 

276 location of each station (Fig. 4). Most stations had RMSEs lower than 2.0μg/m3, while the 

277 stations with the lowest RMSEs were in southeastern, western and southwestern BC. In 

278 contrast, high errors were found at stations located in central and central-southern parts of 

279 BC, with RMSEs ranging from 3.0 - 4.0μg/m3 or even higher. Compared with the DEM, these 

280 stations with higher RMSEs were in mountainous valleys with high PM2.5 concentrations. 

281 Estimation errors of these stations were mostly negative, indicating an underestimation of 

282 ground-level PM2.5 across these valleys. These were also aligned with previous findings (Fig. 

283 3) that observed data with higher PM2.5 may introduce a higher chance of underestimation 

284 based on the Cubist model in this study.
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285 5 Discussion

286 5.1 Spatiotemporal variability of ground-level PM2.5 concentration

287 Based on the average concentrations of ground-level PM2.5 between 2001 and 2014 

288 (Fig. 6), considerable spatial heterogeneity was found across BC. Generally, northern and 

289 northeastern BC were areas with lower PM2.5 concentrations (< 4 μg/m3), while mountainous 

290 regions across western BC were areas with higher concentrations of PM2.5 (5-6 μg/m3). We 

291 also observed several extreme cases in mountainous valleys of BC (>7 μg/m3). One reason 

292 for this spatiotemporal variability might be associated with wildfires, as this was a major 

293 source of ambient PM2.5 across mountainous BC. Previous studies have found a particular 

294 deposition process of PM2.5, emitted from biomass burning, with long-distance transport 

295 (Ward et al., 1991; Sapkota et al., 2005). We should emphasize that terrain can play an 

296 influential role in the deposition, due to the aerodynamic characteristics of PM2.5 and the 

297 topographical effect on wind flow. For example, the mountainous topography of BC, with its 

298 irregular terrain, can result in uneven distribution of air pressure that further influences 

299 near-surface wind. The effect of local terrain on PM2.5 dispersion due to its impact on wind 

300 dynamics has also been found in another study in mountainous areas (Shi et al., 2017). A 

301 considerable fraction of PM2.5 is therefore expected to be trapped by the leeward side of 

302 mountains, valleys, canyons and basins (Steyn et al., 2013) under the typical transport 

303 process of air pollutants. Urban areas with high aerodynamic surface roughness may also 

304 have influence similar to this topographical effect on the deposition of PM2.5 from wildfires 

305 (Landsberg, 1981). These findings indicate that regions across BC with lower altitude and 

306 with poorer air dispersion due to topographical effects may be areas with higher PM2.5 
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307 concentration. In addition, these facts may also partly explain the lower contribution of 

308 monthly coarse spatial resolution (2.5 degree latitude x 2.5 degree longitude) and monthly 

309 wind speed in modelling based on variable importance analysis, while another reason may 

310 be the coarse spatial resolution (2.5 degree) of predictors derived from NCEP/NCAR re-

311 analysis data. Due to this resolution, it cannot represent micro-scale topographical effects 

312 on air pollution transport and deposition. Some mountain valleys in BC have high 

313 temperatures and little rainfall during the summer, and become dry enough to have near-

314 desert conditions with substantial amounts of dust suspended in the atmosphere, which is 

315 also contributed to the high PM2.5 concentrations of valleys. An isolated cluster of high 

316 PM2.5 in the Greater Vancouver Area and its surrounding regions was also observed, which 

317 has not been shown in other BC cities. This can be attributed to the large population and 

318 corresponding industrial, traffic and domestic emissions over this region.

319 Furthermore, CV-RMSE of this study was lower than previous research in other areas 

320 (Liu et al., 2009; Song et al., 2014; Kloog et al., 2014; You et al., 2015; Reid et al., 2015; Liu et 

321 al., 2005), partially indicating better air quality of BC compared to other regions. In contrast, 

322 a lower CV-R2 was found, which may be the result of extreme wildfire events in BC leading to 

323 data with high PM2.5 concentration values as outliers in modelling.

324 5.2 Advantages and Limitations

325 In this study, optimization of machine learning models can effectively reduce the 

326 sensitivity of the model tree to data noise with uncertainty; while the evaluation of eight 

327 machine learning algorithms for modelling indicated that ensemble machine learning can 

328 improve the accuracy of ground-level PM2.5 prediction. In addition, weather stations were 
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329 generally designed under government protocols, resulting in a sparse and uneven 

330 distribution. This, as well as the strong variation in topography across the study area, makes 

331 it unsuitable to apply conventional geostatistical methods such as spatial interpolation for 

332 mapping the spatial variability of environmental variables (e.g. temperature and humidity), 

333 while these maps should be the input layers for air quality prediction. In this study, we 

334 provided an alternative, in which the use of LST and atmospheric water vapor derived from 

335 satellite images can be substitutes for temperature and humidity maps.

336 There were areas with data missing from the prediction (Fig. 6). These were mainly the 

337 high-altitude areas covered with perennial snow, because the Dark Target algorithm for AOD 

338 retrieval was designed for areas with lower surface reflectance under a clear sky. For areas 

339 with high surface reflectance values (e.g. snow coverage and desert), null values of AOD data 

340 would be found. In addition, AOD values surrounding the missing data were generally high, 

341 because AOD in such areas could be easily overestimated by the Dark Target algorithm, 

342 especially in areas with high surface brightness and low vegetation coverage (Levy et al., 

343 2010). These became the areas with missing values of PM2.5 concentration across snow 

344 coverage in this study, and there were extremely high values of PM2.5 concentration 

345 surrounding these areas with missing data, especially those areas just below the snowline 

346 with lower vegetation coverage. The issue of missing data is especially noticeable in winter, 

347 as mountainous BC was covered by snow, resulting in high surface reflectance, and this area 

348 was also constantly covered by clouds due to the relatively humid weather in wintertime, 

349 resulting in spatiotemporal incompleteness of PM2.5 estimation.

350 In addition, the PM2.5 concentration over BC showed high values both in western high 
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351 mountains and the Fraser River Delta. The principal sources of PM2.5 is likely different 

352 between these areas. In mountain areas high PM2.5 concentration is mostly caused by 

353 wildfires, while in the Fraser River Delta high PM2.5 concentration is caused by human 

354 activity. Due to the lack of the chemical characteristics of particulate matter, we cannot 

355 perform a chemical analysis of fine particulate matter over these regions. Further study with 

356 field measurement should be applied to observe personal and ambient exposure of PM2.5 

357 from multiple sources. However, this future study will be limited by the accessibility of field 

358 measurement and the potential bias from indoor-outdoor exchange of air pollution.  

359 6 Conclusions

360 In this study, we evaluated the abilities of machine learning techniques to estimate the 

361 monthly concentrations of ground-level PM2.5 between 2001 and 2014, based on eight 

362 algorithms with predictors derived from remote sensing and meteorological re-analysis data. 

363 Predictions from these algorithms were evaluated by a 10-fold cross-validation, with CV-

364 RMSE ranging from 2.64μg/m3 to 3.25μg/m3 and CV-R2 ranging from 0.23-0.49. Among all, 

365 Cubist had the best performance (CV-RMSE=2.64μg/m3, CV-R2=0.48). A series of maps were 

366 produced for representing the monthly PM2.5 concentrations across BC, which can be 

367 reference information on intra-province air pollution over 14 years for further air quality 

368 monitoring and public health surveillance. In conclusion, selection of appropriate machine 

369 learning algorithms for modelling can improve the accuracy in PM2.5 estimation, while using 

370 satellite-derived data as predictors can minimize the spatial bias compared with use of 

371 traditional datasets retrieved from weather stations. 

372 Recently, deep learning technology has attracted much attention in various fields. 
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373 Compared with conventional machine learning technology, deep learning can provide better 

374 accuracy but requires a large amount of training data (Camilleri and Prescott, 2017; Ravì et 

375 al., 2017). Due to the limited number of air quality stations, there are not enough samples to 

376 sufficiently train deep learning models. Therefore it is a big challenge to adopt deep learning 

377 technology to map PM2.5 at the present stage. In the future, if the big training data 

378 requirement of deep learning can be resolved, it is expected to achieve improved estimation 

379 of PM2.5 concentration from remote sensing data. The method used in this study with the 

380 combination of machine learning and multi-source variables was a preliminary attempt to 

381 map PM2.5 concentration with the currently available data and suitable machine learning 

382 methods. The method proposed in this paper could also be applied to other complex terrain 

383 regions with sparse distributed air quality stations. Due to the limitation of AOD retrieval 

384 algorithms, the remotely sensed AOD data have coarse spatial resolutions. Re-analysis data have 

385 even coarser resolutions. The low spatial resolution of datasets restricts the application of this 

386 method on a small scale (e.g. city scale).

387
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601

602 Fig. 1. Study Site. Red dots represent the location of air quality stations across BC. 
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603

604 Fig.2 Empirical relationship between PM2.5 and AOD. X-axis indicated the AOD values derived 

605 from MODIS dataset. Y-axis indicated the PM2.5 retrieved from the air quality stations.
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606

607 Fig. 3 Comparison between observed and estimated PM2.5 using Cubist.
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608

609 Fig. 4 Variable importance analysis (Cubist Model). Y-axis indicated the predictors for 

610 predicting PM2.5. X-axis indicated the percentage increase in mean square error (%IncMSE) 

611 without using the corresponding predictor. 
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612

613 Fig. 5 Location-based root mean square error (RMSE) of estimated PM2.5. Red indicated an 

614 air quality station with higher RMSE, and green indicated a station with lower RMSE after a 

615 comparison with observed data.
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616

617 Fig. 6 Average of ground-level PM2.5 concentration across BC (2001-2014)
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618 Table 1 Information on datasets used for PM2.5 estimation

Dataset Spatial resolution Temporal resolution Scenes Derived predictors

MOD04_3k 3km Daily 25350 AOD

MOD05_L2 1km Daily 22198 Vapor

MOD11A1 1km Daily 25369 LST

MOD13A3 1km Monthly 1677 NDVI

MCD43B3 1km 16 days 6394 albdo

NCAR/NCEP 
re-analysis

2.5º Monthly / HPBL, wind speed

SRTM DEM 90m / / elevation

619
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620 Table 2 Accuracy of PM2.5 prediction of each machine learning model.

Model CV-RMSE (μg/m3) CV-R2

MLR 3.24 0.22

BRNN 3.04 0.31

SVM 3.13 0.30

LASSO 3.20 0.24

MARS 3.05 0.31

RF 2.67 0.49

XGBoost 2.71 0.46

Cubist 2.64 0.48

621




