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A B S T R A C T   

COVID-19, and the wider social and economic impacts that a global pandemic entails, led to unprecedented 
reductions in energy consumption globally. Whilst estimates of changes in energy consumption have emerged at 
the national scale, detailed sub-regional estimates to allow for global comparisons are less developed. Using 
night-time light satellite imagery from December 2019–June 2020 across 50 of the world’s largest urban con
urbations, we provide high resolution estimates (450 m2) of spatio-temporal changes in urban energy con
sumption in response to COVID-19. Contextualising this imagery with modelling based on indicators of mobility, 
stringency of government response, and COVID-19 rates, we provide novel insights into the potential drivers of 
changes in urban energy consumption during a global pandemic. Our results highlight the diversity of changes in 
energy consumption between and within cities in response to COVID-19, moderating dominant narratives of a 
shift in energy demand away from dense urban areas. Further modelling highlights how the stringency of the 
government’s response to COVID-19 is likely a defining factor in shaping resultant reductions in urban energy 
consumption.   

1. Introduction 

COVID-19, and the wider social and economic impacts associated 
with a global pandemic, substantially reconfigured energy consumption 
patterns (Ruan et al., 2020), causing the biggest fall in global energy 
investment in history (International Energy Agency (IEA), 2020). With 
GDP shrinking by − 3.3 % globally during 2020 and recoveries diverging 
(International Monetary Fund (IMF), 2021), energy demand fell by − 4 
% -in 2020 compared to 2019 levels, impacting advanced economics 
most severely (IEA, 2021). Global CO2 emissions also fell by − 5.8 % 
during 2020 relative to 2019 (IEA, 2020). Subsequently, Kanda and 
Kivimaa (2020) characterise COVID-19 as a ‘landscape shock’ during 
which rapid political action and emergency legislation - what energy 
transitions literature terms ‘disruptive policies’ (Geels et al., 2017) - 
have shaped the trajectory of energy transitions in unprecedented ways. 
Where previously government efforts to operationalise low carbon pol
icies have been critiqued as slow and ineffectual, responses to COVID-19 
have been characterised by suddenness and scale. Arguably cities have 
been central to these shifts (Batty, 2020; Connolly et al., 2020). How
ever, there is evidence that many changes are temporary as CO2 emis
sions returned to pre-pandemic levels during 2021 (Zheng et al., 2020). 

The impact of COVID-19 on the wider energy system is an inherently 
geographical process, rearranging existing distributions, and scales, of 
socio-economic activity (Kuzemko et al., 2020). As such, like many as
pects of the pandemic, energy consumption changes are socially, 
spatially and temporally uneven. During the early stages of the 
pandemic new energy consumption practices emerged as societies 
locked down to differing extents, energy-intensive industries were sus
pended and people spent a greater proportion of time at home. These 
patterns were especially stark in cities where energy and associated 
infrastructures are an integral part of life. In many contexts evidence 
emerged of a subsequent shift in consumption from commercial, in
dustrial and transportation energy sectors into the domestic sphere 
(Chen et al., 2020). Coupled with accelerated drops in energy prices 
(Norouzi et al., 2020), these reconfigurations have tested the finances 
and flexibility of electricity grids (Kanda & Kivimaa, 2020). Existing 
energy-related inequalities between and within countries have also been 
exacerbated as the negative impacts of the pandemic on finances and 
health disproportionately impacted those who are already least suffi
cient in terms of domestic energy and mobility (Brosemer et al., 2020; 
Broto & Kirshner, 2020; Gebreslassie, 2020; Memmott et al., 2021). 

To better understand the impact of COVID-19 on energy 
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consumption, national-scale evidence has emerged (Bahmanyar et al., 
2020; Gillingham et al., 2020; Ruan et al., 2020). However, changes in 
energy consumption are likely to be highly locally specific, varying ac
cording to socio-economic and urban structure, geographic context, and 
institutional or cultural change stimulated by COVID-19 (Kanda & 
Kivimaa, 2020). Subsequently, Acuto et al. (2020) make the case for 
“seeing COVID-19 like a city” recognising the need to reach “beyond the 
confines of state-centric views to embrace the political-economic 
complexity of the ‘urban’” (p. 978). In the absence of detailed admin
istrative energy-related statistics, night-time light (NTL) satellite imag
ery can provide timely evidence of sub-regional changes in energy 
consumption during the pandemic (Beyer et al., 2021; Bustamante- 
Calabria et al., 2021; Green et al., 2021). NTL satellite imagery captures 
the intensity of visible lighting as observed from space. It can detect NTL 
emissions produced by artificial lighting in cities (e.g. buildings and 
transport hubs), moonlight and light reflected on the Earth’s surface (e. 
g. snow, water and vegetation) (Levin et al., 2020). Whilst artificial city 
lighting encoded in NTL satellite imagery does not provide direct esti
mates of energy consumption, it can effectively capture changes in the 
spatial distribution of energy intensity over time. Hence, NTL satellite 
imagery data have been widely used for assessing electrification, 
detecting and monitoring power outages resulting from natural hazards, 
such as solar activity, earthquakes, winter storms, strong winds and 
tornadoes (Arribas-Bel et al., 2022; Min et al., 2013; Román et al., 2019; 
Wang et al., 2018), and can be an effective tool to capture changes in 
energy use during the COVID-19 pandemic (Green et al., 2021). 

With this in mind, our analysis uses an urban lens to understand how 
patterns of energy consumption change in response to the pandemic via 
analysis of detailed NTL satellite imagery, focusing on 50 of the largest 
global cities. During the early stages of the pandemic, COVID-19 spread 
rapidly across the world via (inter)national linkages between major 
global cities, yet as the pandemic has progressed COVID-19 has reached 
deeper into rural and peri-urban areas with “planetary implications” 
(Acuto et al., 2020). Our analysis focuses on the early stages of the 
pandemic, allowing us to evaluate how energy consumption in cities 
around the world changed in response to the pandemic as it first 
unfolded. We analyse NTL imagery from three months before and after 
11th March 2020 (i.e. December 2019–June 2020), the date on which 
the World Health Organisation (WHO) declared COVID-19 a global 
pandemic. Although a global pandemic was not declared until March, 
city-scale lockdowns in some Chinese cities came into force in late 
January. Furthermore, in many countries around the world there was a 
significant lag between the timing of the first registered COVID cases 
and implementation of non-pharmaceutical interventions. By including 
imagery from January 2020 and February 2020 in our analysis (and 
comparing it with a December 2019 baseline) we are able to capture a 
greater level of spatio-temporal variation in change. Our results there
fore provide high-resolution estimates of spatiotemporal changes in 
urban energy consumption in response to COVID-19. To offer novel in
sights into potential drivers of changes in NTL intensity, we con
textualise imagery with a range of sub-regional indicators of population 
density, COVID-19 cases and deaths, mobility estimates, and govern
ment response indicators. In doing so, the paper:  

1. analyses city-scale changes in energy consumption in response to 
COVID-19;  

2. identifies shifts in the spatial patterns of intra-urban energy 
consumption;  

3. explores potential explanations for changes in urban energy 
consumption. 

2. Materials and methods 

We analyse the patterns of energy consumption change in 50 of the 
largest global cities. A list of the cities is provided in the Supplementary 
Material (SM) Table 1. Three reasons underpin our selection of cities. 

First, with the exception of Milan (Italy) (included as an epicentre of the 
initial COVID-19 outbreak), all cities rank within the top 110 largest 
urban agglomerations based on population size, with over 4.2 million 
estimated inhabitants in 2020 (United Nations, 2018), to ensure some 
level of consistency comparing cities of equivalent size. Second, we 
sought to provide a diverse geographically perspective. Selected cities 
represent a diversity of national contexts across the Global North and 
Global South. In countries with a number of large cities we typically 
select a single representative city to ensure as diverse a national sample 
as possible. Third, we also seek to identify similarities and differences in 
the effects of COVID-19 on urban energy use globally. City extents are 
defined using Functional Urban Area (FUA) boundaries which provide a 
consistent classification based on density and commuting flows (Schia
vina et al., 2019). Our analytical framework consists of four main stages. 
Each of these stages is in turn described below. 

We adopted an open and reproducible research approach based on 
the use of open software for satellite imagery and statistical analysis - see 
Code Availability section. As indicated below, all data were obtained 
from publicly available sources and organised in the form of an open 
data package - see Data Availability section. We followed best practices 
in geographic data science (Brunsdon & Comber, 2021) and produce an 
open data product (Arribas-Bel et al., 2021), including software code to 
reproduce or extend our analysis, which is available for download as 
indicated in the Code Availability section. 

2.1. Night-time light (NTL) imagery analysis 

To understand changes in energy consumption in response to the 
pandemic in each city, we analyse NTL satellite imagery. NTL imagery 
captures daily and detailed nocturnal visible light observations of the 
Earth, providing a unique source to monitor the spatial distribution and 
intensity variations of human activity at local and planetary scales in 
near-real time. In addition to street lighting, NTL satellite imagery 
captures any type of visible light emanating from residential buildings, 
vehicles, car parks, offices, factories and illuminated sporting venues. 
NTL data have extensively been used to study electricity consumption, 
socio-economic activities, light pollution, urban extent changes and 
power outages (Levin et al., 2020). In the context of COVID-19, NTL 
imagery has been used to understand the initial impact on the US 
electricity sector (Ruan et al., 2020), changes in CO2 emissions na
tionally (Zheng et al., 2020), changes in economic activity in the core of 
global megacities (Xu et al., 2021), and changes in energy use during the 
COVID-19 pandemic in specific Brazilian (Carvalho et al., 2021) and 
European cities (Werth et al., 2021). 

We use a monthly composite of NTL data produced by the Payne 
Institute for Public Policy under the Colorado School of Mines (https 
://payneinstitute.mines.edu/eog/nighttime-lights/). We utilise the 
version 1 monthly series of global average radiance composite images 
from the Visible Infrared Imaging Radiometer Suite (VIIRS) Day-Night 
Band (DNB) sensor on the Suomi National Polar-orbiting Partnership 
satellite. The DNB encodes records of visible near-infrared NTL intensity 
which is measured in radiance units i.e. nanoWatts/cm2/sr 
(nWcm− 2sr− 1). The spatial resolution of VIIRS data is 15 arc sec (450 m) 
across the latitudinal zone of 65

◦

S-75
◦

N5, providing global coverage 
with 12 hr revisit time (Cao et al., 2017) and a local overpass time of 
01:30 am (Elvidge et al., 2013). The data version in our study is the 
monthly VIIRS Cloud Mask product. These data are corrected for stray 
light as well as the effects of biogeophysical processes, such as seasonal 
vegetation and snow (Miller et al., 2013). However, the data are not 
corrected for temporal lights, including fires and boats. Following Li 
et al. (2020), we use an empirical threshold of 0.3 nWcm− 2sr− 1 to 
remove dim light noises caused by these forms of temporal lights. The 
threshold is subtracted from the VIIRS image and negative pixel values 
are set to zero. This noise removal operation is conducted using Google 
Earth Engine. For our analysis, we use cloud free data, and assess if zero 
values in the average radiance imagery for our sample of cities 
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effectively encode no lights, as regions towards the poles during summer 
months have no data due to solar illumination. As a result, imagery for 
six time points is excluded from the analysis (SM Fig. 1). 

The result is a series of monthly global composites for between 
December 2019 and June 2020 (Fig. 1). Each pixel within the image 
represents an area of 450 m2. In analysing changes in NTL intensity, it is 
necessary to assume that these changes are the result of COVID-19 and 
associated restrictions; however, we acknowledge that other factors 
could have contributed (e.g. national holidays, blackouts and seasonal 
variations). As a result, as explained below, we further contextualise the 
imagery with additional indicator data sets: daily national estimates of 
stringency of government response (Hale et al., 2021); population 
density estimates (Stevens et al., 2015); confirmed COVID-19 cases 
(Ritchie et al., 2020); and daily sub-regional mobility estimates (Google, 
2020). 

2.2. Measuring city-scale changes in night-time lighting 

To measure the overall extent of changes in energy consumption 
patterns in cities, we compute three summary indicators. All three in
dicators are based on the difference between the radiance for individual 
months and for December (our baseline). The first indicator is the mean 
number of pixels (Eq. (1)). It indicates the number of pixels defining 
individual cities that record a change on average across pixel differences 
for individual months (mt) and the baseline month (m0) (i.e. December 
2019). Averages are computed conditionally for pixels indicating 
negative, neutral and positive change (C). The second indicator is the 
average percentage of pixels in each category: negative, neutral and 
positive (Eq. (2)). This indicator accounts for variations in city size to 
enable comparisons across cities. The third indicator is the median 
radiance (r) of night-time intensity across the difference from the 
baseline for each of the six months. This indicator provides an estimate 
of the total change in NTL intensity in individual cities, as well as the 
overall direction of this change (i.e. positive and negative). For this in
dicator we report only two categories (i.e. positive and negative), as the 
median for the neutral category is zero. In addition to these indicators, 
we analys the full distribution of the difference in NTL radiance between 
individual months and December 2019. Given small numbers, extreme 
NTL scores (i.e. above 30) are set to 30. 

n =

∑6
t=1,m∈Cmt

(
C
)
− m0

(
C
)

6
(1)  

p =

∑6
t=1,m∈C

mt(C)− m0(C)
mt − m0

6
(2)  

n =

∑6
t=1,m∈Cmedian

[
rt

(
C
)
− r0

(
C
)]

6
(3) 

To define city extents, we use the Functional Urban Area (FUA) 
boundaries developed during the Organisation for Economic Co- 
operation and Development and the Global Human Settlement layer 
project (Schiavina et al., 2019). Delimiting the extent of cities is chal
lenging, and the FUA boundaries overcome this problem providing a 
consistent way to define extents based on population density measured 
at a fine spatial resolution (1 km2 grids). First, adjacent grids of high 
density are clustered together. Then the level of commuting flows is 
measured to integrate non-continuous areas that display a distinctive 
urban centre of employment. 

2.3. Analysing intra-urban changes in night-time lighting 

To understand intra-urban changes, we conduct two sets of analyses. 
First, we examine the association between population density and NTL 
intensity using Generalised Additive Models (GAMs). We assess whether 
more densely populated areas in cities experience larger average 

declines in NTL intensity, arguably reflecting the location of employ
ment centres. To this end, population density data are obtained from the 
WorldPop project (https://www.worldpop.org). These data comprise a 
raster layer covering the entire world and provide population density 
estimates at 1 km2 grids. The data set is based on the United Nations’ 
population count data using a top-down methodological approach 
(Stevens et al., 2015). In this approach, population counts at adminis
trative units level are disaggregated to grid-cell based counts by using a 
series of detailed geospatial data sets, such as land cover, night-time 
imagery and proximity to amenities as covariates in a random forest 
estimation framework. 

In a second analysis, we assessed the spatial distribution of NTL 
change between January and June 2020. We mapped the changes in NTL 
intensity for individual cities, and classify them based on the spatial 
structure of these changes during the month local lockdowns were 
enacted, or the following month if lockdowns were introduced towards 
the end of a month (SM Table 2 provides a list of start dates of local 
lockdowns for each city). We categorise cities into three classes: whole 
city, fragmented and spatially concentrated patterns of change. Whole 
city change encompasses cities displaying widespread dimmed or 
brightened patterns of NTL intensity. Fragmented change includes cities 
displaying scattered patterns of change. Spatially concentrated involves 
cities displaying geographically focused patterns of change. We observe 
three distinctive patterns: (1) changes along network infrastructures; (2) 
a core-periphery configuration; and, (3) systematic localised changes in 
key areas of cities. 

2.4. Modelling mobility, stringency and COVID-19 infection 

We also seek to understand the temporal patterns of urban energy 
use, non-pharmaceutical interventions and COVID-19 incidence. We use 
a hierarchical two-level modelling approach to capture time-city level 
interactions at level 1 and city-specific patterns at level 2. Monthly NTL 
data afford very limited temporal granularity, so we used Google 
Mobility Report data to capture these dynamics. The percentage change 
in stay-at home population is used as a proxy for shifts in urban energy 
use. We argue that this is a reasonable proxy as we expect that increases 
in stay-at-home population and simultaneous drops in time spent at 
work over time will likely be associated with changes in the patterns of 
urban energy use. Analysis of Google workplace and residential mobility 
data reveals that increases in stay-at-home population mirror declines in 
time spent at work (SM Fig. 4). 

We estimate a series of hierarchical regression models using the 
percentage change of stay-at-home population as a function of a strin
gency indicator and COVID-19 incidence in a generalised linear mixed 
model (GLMM) framework. Intuitively, all estimated models include a 
stringency indicator and COVID-19 incidence measured at time t, and a 
stringency indicator at time t − 1 recognising the delayed effects of 
lockdowns on influencing mobility patterns. For interpretation and 
identification purposes, independent variables are standardised, sub
tracting the mean and dividing by the standard deviation. We use nat
ural splines to account for systematic temporal variations in the data, 
and incorporate natural splines as overall and city-specific parameters. 
We also include a temporal autoregressive term to account for temporal 
dependency. We evaluate the inclusion of temporal lags of higher order 
for the stringency indicator and COVID-19 incidence. Correlation co
efficients and estimates for these variables are very small in size and 
statistical significance. We report a correlation matrix and two models in 
the SM Table 3 and Fig. 5 providing evidence for this. 

More formally, we present evidence from three different model 
specifications in the manuscript (Fig. 5). These models are mathemati
cally formulated in Eqs. (4)–(6): yit captures change in stay-at-home 
population at city i in time t; β0i is the random intercept that varies 
across cities; β1i is the slope of the associated stringency indicator sit; β2i 
is the slope of the lagged stringency indicator at t − 1; β3i is the slope of 
new COVID-19 cases cit; 

∑
k=1
n+1βkiBkit represents random natural spline 
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Fig. 1. Global map of NTL intensity. Difference in radiance between December 2019 and March 2020. Red encodes a reduction in NTL intensity (i.e. dimmed). Blue encodes an increase (i.e. brightened). NTL imagery is 
extracted from the Payne Institute for Public Policy (https://payneinstitute.mines.edu/eog/nighttime-lights/). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.) 
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slopes at three knot points that vary across cities and capture systematic 
temporal patterns in stay-at-home population changes (see Hastie et al. 
(2009) for details on splines); εit is the city-time-level residual term that 
is assumed to be of first-order autoregressive (Ωε); that is, residuals are 
assumed to be correlated. Residuals at time t − 1 are assumed to influ
ence residuals at time t. Equations relating to β0i and βki correspond to 
the random effects, or city-varying intercept and natural spline slopes, 
respectively. They capture variations in the associated parameters 
across cities and have unexplained heterogeneity denoted by u0i and uki. 
These error terms follow an independent normal distribution N(0,σu0

2 ) 
and N(0,σu1

2 ). 

yit = β0i + β1isit + β2isit− 1 + β3icit +
∑n+1

k=1
βkiBkit + εit

β0i = β0 + u0i

βki = βk + uki

εit ∼ N(0,Ωε)

(4) 

The key difference across Eqs. (4)–(6) is in the parameter allowed to 
vary across cities. In Eq. (4), natural spline parameters are allowed to 
vary across cities capturing differences of systematic temporal fluctua
tions in stay-at-home population. We report the estimates for β1i, β2i and 
β3i from this model as it provides the smallest Akaike Information Cri
terion (AIC) score. Though coefficients across all three models are fairly 
consistent in size. In Eq. (5), β1i is allowed to vary across cities. This 
coefficient captures differences in the association between changes in 
stay-at-home population and the stringency indicator. In Eq. (6), β3i is 
allowed to vary across cities. This coefficient captures differences in the 
association between changes in stay-at-home population and new 
COVID-19 cases. In addition, Eq. (6) also includes a lagged term (β4i) for 
new COVID-19 cases to capture the lagging effect in the relationship 
between changes in stay-at-home population and new COVID-19 cases. 
All models included natural spline parameters in the fixed part of the 
model and a first-order autoregressive error term is assumed for the city- 
time level residuals. 

yit = β0i + β1isit + β2isit− 1 + β3icit +
∑n+1

k=1
βkiBkit + εit

β0i = β0 + u0i

β1i = β1 + u1i

εit ∼ N(0,Ωε)

(5)  

yit = β0i + β1isit + β2isit− 1 + β3icit + β4icit− 1 +
∑n+1

k=1
βkiBkit + εit

β0i = β0 + u0i

β3i = β3 + u3i

εit ∼ N(0,Ωε)

(6) 

During the modeling work, we draw on three additional contextual 
datasets: Google mobility data; Stringency Index and COVID-19 cases. 
Each dataset is now described in turn. Google Mobility Data: In response 
to COVID-19, Google released Community Mobility Reports to help 
inform public health responses to COVID-19 (https://www.google.com/ 
covid19/mobility/). The data set measures the change in the number of 
visitors (or time spent) in relation to a baseline period. The baseline 
corresponds to the median value from the 5–week period January 
3–February 6, 2020. The changes are categorised according to specific 
places or sectors: retail and recreation; groceries and pharmacies; parks; 
transit stations; workplaces; and residential. We focus our analysis on 
the residential category which indicates the change in stay-at-home 
population. 

Stringency index: We use a stringency index to capture the level and 
variation of non-pharmaceutical interventions (https://covidtracker.bsg 
.ox.ac.uk). The stringency index is a composite indicator based on nine 
response indicators: school closures; workplace closures; cancellation of 
public events; restrictions on gatherings; public transport restrictions; 

public information campaigns; and stay at home measures (Hale et al., 
2021). The index, available since 1st January 2020, computes a simple 
score by adding together the nine indicators which is rescaled to vary 
between 0 and 100. The stringency index is intended for comparative 
purposes, rather than as an indicator of how effective national policies 
have been at tackling the spread of COVID-19 (Hale et al., 2021). 

COVID-19 cases: Data on the number of COVID-19 cases are obtained 
from Our World in Data (Ritchie et al., 2020). We also analyse the 
relationship between COVID-19 deaths and changes in stay-at-home 
population. We do not report these analyses in the main manuscript as 
we argue that COVID-19 cases are a more prominent measure of public 
knowledge in the early stages of the pandemic. We believe that indi
vidual responses during this period are more likely the result of the 
extent and rate of spread of COVID-19, rather than the actual number of 
deaths. We do however report analysis on COVID-19 in the SM Figs. 3 
and 4. 

3. Results and discussion 

3.1. City-scale changes in energy consumption patterns during COVID-19 

Comparison of imagery from December 2019 and each month be
tween January 2020 and June 2020 yields three city-scale summary 
indicators of average NTL intensity (see Methods and Supplementary 
Materials (SM) Table 1), each a proxy for changes in urban energy 
consumption (Fig. 2). Firstly, the mean number of pixels indicator (left) 
indicates the proportion of pixels in each city for which the average 
change is either negative, neutral or positive. To account for variation in 
city size (with indicators based on number of pixels likely prioritising 
larger, less dense urban conurbations), a second indicator is provided 
based on the mean percentage of pixels (centre). Thirdly, an indicator of 
median percentage change illustrates the strength of change in NTL 
intensity (positive or negative). Based on the summary indicators, there 
is considerable variation in changes in energy consumption between 
selected cities. 

Based on the mean percentage of pixels, in selected cities a high 
proportion of pixels experienced no change in NTL intensity during the 
six month period. In four cities this represented over half of pixels: 
Manila (53 %) Osaka (60 %), Melbourne (69 %) and Dhaka (74 %). 
Elsewhere, the mean percentage of pixels was overwhelmingly negative: 
Shanghai (56 %), Beijing (51 %); Johannesburg (54 %), Luanda (53 %), 
and Milan (54 %). For several cities, particularly in the Middle East, 
change was largely positive, including Tehran (50 %), Moscow (55 %) 
and Baghdad (64 %). The strength of change also varies as reflected by 
the median percentage change indicator. In Lima there was a large 
difference between the median negative (− 25 %) and positive per
centage change (+22.75 %) indicating considerable diversity in NTL 
intensity across space and time. 

For other cities, the distribution of change in pixels is relatively 
similar for each time period (e.g. Melbourne; Osaka; Manila) (Fig. 3) 
suggesting that the spatial distribution of NTL intensity is quite stable 
over time. In Melbourne there was little change over time, likely 
reflective of stringent border closures that enabled a national zero- 
COVID strategy (Phillips, 2021). In other cities, where there was 
greater variation in the distribution of change (e.g. Karachi, Tehran, 
Kinshasa, Mumbai) detailed examination of the intra-urban distribution 
of NTL intensity is useful. 

3.2. Shifting spatial patterns of intra-urban energy consumption during 
COVID-19 

Examination of the relationship between population density and NTL 
intensity (Fig. 4) provides insight into the intra-urban distribution of 
energy consumption in response to COVID-19. Much attention has been 
paid to the risk of infection in dense urban centres (Hamidi et al., 2020; 
Xu et al., 2021), particularly during the early stages of the outbreak. This 
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Fig. 2. Indicators of changes in NTL intensity. a Mean number of pixels: Average number of changing pixels. b Mean percentage of pixels. c Median radiance change: 
Median radiance of NTL intensity. These indicators refer to the difference between individual months (January 2020, February 2020, March 2020, April 2020, May 
2020, and June 2020) and December 2019 across three categories: negative, neutral and positive. NTL imagery is extracted from the Payne Institute for Public Policy 
(https://payneinstitute.mines.edu/eog/nighttime-lights/). 
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is evident in cities in which NTL intensity declined in densely populated 
areas (e.g. Johannesburg; Karachi; Kinshasa; Tokyo; Toronto). However, 
for the majority of cities we observe little association between the var
iables, with some cities experiencing a relative increase in light intensity 
in densely populated areas (e.g. Delhi, Melbourne; Rio de Janeiro; New 
York). 

From closer inspection of mapped NTL intensity (for imagery for all 
50 cities see SM Fig. 2), we identify three distinctive spatial configura
tions in energy use: (i) whole city; (ii) fragmented; and (iii) spatially 
concentrated (Fig. 5). This classification is not exhaustive, rather it 

illustrates the type, consistency and diversity of change in cities globally 
in response to COVID-19. 

Firstly, selected cities experience a whole city change in NTL in
tensity. In Beijing, where a national lockdown was implemented in 
February, dimming of the majority of the pixels occurred (see also Addis 
Ababa; Beijing; Buenos Aires; Cairo; Luanda; Mexico City; Rio de 
Janeiro; São Paulo; Santiago; Shanghai; Toronto; Wuhan). Compara
tively, in a small number of cities including Dar es Salaam, the majority 
of pixels brightened (see also Abidjan; Baghdad and Kabul). Secondly, 
selected cities experienced fragmented changes with pixels increasing 

Fig. 3. Change in NTL intensity. Each line in the graph represents the difference in NTL intensity between each individual month (January 2020, February 2020, 
March 2020, April 2020, May 2020 and June 2020) and our baseline month (December 2019). The y-axis indicates the proportion of pixels at each value of the 
difference in night-time light intensity between relevant months. Comparing across density distributions provides an indication of the magnitude of change in night- 
time light intensity over time. NTL imagery is extracted from the Payne Institute for Public Policy (https://payneinstitute.mines.edu/eog/nighttime-lights/). 
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Fig. 4. Relationship between population density (log) and average change in NTL intensity. The average in NTL intensity corresponds to the difference across in
dividual months (January–June 2020) and December 2019 (baseline). NTL imagery is extracted from the Payne Institute for Public Policy (https://payneinstitute.min 
es.edu/eog/nighttime-lights/). Population density data are obtained from the WordPop project (https://www.worldpop.org - see Stevens et al., 2015). 
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Fig. 5. Classification of global cities according to change in NTL intensity. Pixels shaded in red record a reduction NTL intensity (i.e. dimmed), whilst those shaded in blue record an increase (i.e. brightened). Areas that 
did not experience a change are not shaded. Interpretation of the imagery in the text is based on the month that national lockdown was first imposed in each city (SM Table 2). Where the date of lockdown was close to 
the end of the month, imagery for the following month is used. NTL imagery is extracted from the Payne Institute for Public Policy (https://payneinstitute.mines.edu/eog/nighttime-lights/). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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and decreasing across the city with limited spatial patterning. This was 
the case in Los Angeles and Singapore when lockdown restrictions were 
introduced in March (see also Istanbul; Johannesburg; Kuala Lumpur; 
London; Melbourne; Milan; New York; Osaka; Rome; Singapore; Tokyo). 
Thirdly, spatially concentrated changes in NTL intensity also occur. 
Spatially concentrated changes are wide-ranging, reflecting diverse 
urban structures. Changes in some cities were shaped by networked 
infrastructures illustrative of connectivity (i.e. based on roads and eco
nomic corridors) that arguably play an integral role in the spread of 
COVID-19 (Hamidi et al., 2020). In Delhi, networked infrastructures 
dimmed in March in response to restrictions (see also Bangkok and 
Lahore), whilst in Moscow infrastructures brightened. Elsewhere, 
spatially concentrated forms of change replicated classic core-versus- 
periphery structures of cities (Dhaka; Karachi; Lagos; Madrid; Manila; 
Mumbai; Paris; Riyadh; Seoul; Tehran; Yangon). Yet in Lima, during 
March when lockdown was implemented, the core of the city brightened 
whilst the periphery dimmed. For some cities, hot spots of both dimming 
and brightening emerged (Bogota, Ho Chi Minh City; Hong Kong; 
Jakarta; Kinshasa Nairobi). 

Where a whole city scale or spatially concentrated dimming of a city 
occurs, this is indicative of a variety of socio-spatial trends in response to 
COVID-19. Previous research on energy use and COVID-19 has evi
denced substantial reductions in areas of concentrated economic activ
ity. For example, there is evidence of heightened reductions in 
electricity consumption in areas with a high level of commercial activity 
(Ruan et al., 2020). As non-essential businesses close, schools and 
workplaces transition online and strict travel restrictions are imple
mented, evidence has also emerged of a transfer of energy consumption 
into the domestic sphere. For example, Liu et al. (2020) highlight 
increased activity in residential areas, decreased activities in commer
cial centres, and similar activity levels in transport and public facilities. 
In some cities a proportion of affluent or transient urban residents, no 
longer tied to places of employment, temporarily migrated away from 
dense urban areas where the perceived risks of contracting the virus are 
most acute (Connolly et al., 2020), thus contributing towards a sub
urbanisation of energy consumption. For example, in Wuhan where the 
virus first emerged, an estimated five million residents left the city prior 
to lockdown (Pinghui & Ma, 2020). 

Further detailed analysis of cities with a spatially concentrated 
change offers insight into how NTL intensity is shaped by the degree and 
type of industrialisation in a city. Many highly industrialised areas - 
including energy intensive industrial zones and infrastructural corridors 
typically associated with high NTL intensity - experienced a concen
trated reduction in energy consumption, as non-essential manufacturing 
halted during the pandemic. For example, in Wuhan, energy intensity 
reduced dramatically in the Optics Valley of China, the largest producer 
of fiber optic cable in the world, and the Wuhan subsidiary of the China 
Baowu Steel Corporation, one of the foremost global steel producers. 
Dimming of major energy infrastructures is also apparent, reflecting the 
role of global energy systems and markets in shaping urban energy in
tensity. For example, Riyadh Oil Refinery part of Saudi Aramco - a 
company with the world’s second-largest proven crude oil reserves - 
dimmed as demand for oil hit a 25 year low in response to COVID-19 
(Ambrose, 2020). 

Yet as evidenced in the NTL imagery, some cities contradict more 
commonly documented trends of a reduction or suburbanisation of en
ergy consumption. For example, in Dar es Salaam (a city that brightened 
overall) restrictions on socio-economic activities were relatively light- 
touch attributed to the political response to the pandemic (Makoni, 
2021), coupled with concerns about impacts of lockdown on employ
ment (Mfinanga et al., 2021). In selected cities, patterns also changed 
considerably over time. For example, in Lima one of the regions worst 
hit by COVID-19 (Munayco et al., 2020), a brightening of the core and 
dimming of the periphery from February until April gave way to a 
complete dimming in May and June. 

3.3. Explaining changes in urban energy use through changes in mobility, 
stringency of government restrictions and COVID-19 incidence 

Evidence of the diversity of configurations over both space and time 
suggests that multiple factors shape changes in urban energy con
sumption in response to COVID-19. We examine the association between 
temporal shifts in energy use patterns, and changes in COVID-19 inci
dence and non-pharmaceutical measures. We recognise the distinctive 
dynamics of this association across cities by employing a hierarchical 
two-level modelling approach, at level 1 capturing time-city interactions 
and level 2 capturing city-specific patterns (see Materials and methods 
section). Monthly NTL imagery affords limited temporal granularity, so 
we use Google Mobility Report data to capture these dynamics. Changes 
in mobility, specifically in the share of stay-at-home population, serve as 
a proxy for shifts in urban energy use (Mohammadi & Taylor, 2017). To 
measure non-pharmaceutical interventions, we use a stringency index 
which is a composite indicator that measures the extent and variation of 
non-pharmaceutical interventions globally, ranging from 0 (no mea
sures) to 100 (the strictest scenario) (Hale et al., 2021). 

We recognise two important features in the association between 
these factors. First, the relationship between changes in mobility (energy 
use), COVID-19 incidence and non-pharmaceutical measures represents 
multiple causal mechanisms, arising from “top-down” government in
terventions and “bottom-up” individual responses. For instance, strict 
non-pharmaceutical measures may result in business and school clo
sures, reducing mobility, increasing the share of stay-at-home popula
tion, and ultimately domestic energy consumption. Conversely, rising 
COVID-19 case transmission, particularly early in the pandemic, may 
have led to increasing public concern fuelled by anxiety and fear with a 
rising number of stay-at-home population and domestic energy usage as 
a result of reduced workplace activity. 

Second, these relationships exhibit different temporal dynamics 
across cities (Fig. 6a and b). Certain cities (Melbourne, Kuala Lumpur, 
Delhi, Manila, Lagos) display large increases in stay-at-home population 
associated with strict non-pharmaceutical interventions despite rela
tively small rises in COVID-19 cases. Cities like Singapore, Paris, Madrid, 
Santiago and Lima show equally large increases in stay-at-home popu
lation and strict interventions; yet report consistently high numbers of 
COVID-19 cases. Others, including Bangkok and Seoul, display moderate 
increases in stay-at-home population despite strict non-pharmaceutical 
interventions. 

Fig. 6c–e reports our modelling of changes in the share of stay-at- 
home population as a function of stringency intervention and new 
COVID-19 cases (see Methods and SM Table 3 for full model estimates). 
Main fixed effects are displayed in Fig. 6c, and random, varying city 
slopes for stringency and new COVID-19 cases in Fig. 6d–e, respectively. 
Compared to COVID-19 cases, a larger and positive estimate for local 
stringency measures (β = 4.69;95 % CI = 3.85 − 5.52) (Fig. 6c) suggests 
that the enactment of “top-down” stringent lockdown played a major 
role in incentivising working from home and hence domestic energy 
consumption across most cities in our sample. Coupled with a positive 
but smaller estimate for local stringency at time t-1 (β = 2.73;95 % CI =
2.02 − 3.45), these findings also suggest that the largest impact of 
stringency measures on reducing travel-to-work activity was immediate 
but it takes some time for this to be fully realised. 

Fig. 6d–e reveals the extent of variation in the association between 
changes in the share of stay-at-home population, and stringency mea
sures and new COVID-19 cases across our sample of cities. Cross- 
tabulating estimates for these associations, we identify four groupings 
of cities (Fig. 6f):  

• Group one includes cities with greater than average stringency and 
COVID-19 cases estimates, (e.g. Kuala Lumpur, Manila and Mumbai). 
Underpinning these results are relatively high shares of stay-at-home 
population (40 %) and arguably domestic energy use, coupled with 
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high levels of stringency (100) and continuously small numbers of 
COVID-19 cases (<15 per million) (Fig. 6a–b).  

• Group two displays larger than average stringency but lower COVID- 
19 cases estimates (e.g. Lagos, Bogota, Lima and Johannesburg). This 
reflects initially large and subsequently moderate increases in stay- 
at-home population (ranging from 40 %–20 %) and domestic en
ergy use, and moderate rises in COVID-19 cases despite strict lock
down interventions early in the pandemic (i.e. March) (Fig. 6a–b and 
SM Table 3).  

• Group three includes cities with smaller than average stringency and 
COVID-19 case estimates (e.g. Bangkok, Osaka, Cairo, Moscow and 
New York). These cities display moderate rises in the share of stay-at- 
home population (<25 %) and domestic energy use despite stringent 
measures, with varying outcomes of COVID-19 cases: persistently 
low in Bangkok, Osaka and Cairo, and relatively high in Moscow and 
New York.  

• Group four comprises a small set of cities displaying small stringency 
but greater than average COVID-19 cases estimates (e.g. Seoul and 
Tokyo). These patterns reflect a trend of moderate stay-at-home 
population shares (<20 %), low COVID-19 cases and stringency 
measures. In South Korea, transmission was controlled by employing 
less stringent social distancing measures than in Europe and the 
United States (Watanabe & Yabu, 2021). Similarly, Japan did not 
impose stringent lockdown measures, but enacted a state of emer
gency strategy to encourage people to stay at home (Dighe et al., 
2020). 

These overarching trends suggest that “top-down” emergency re
strictions and legislation introduced by national governments have 
played a substantial role in reconfiguring social and economic struc
tures, and therefore energy consumption patterns, in the majority of 
cities selected. However, where government response has been rela
tively light touch, “bottom-up” changes in energy–related practices 
owing to the response of individuals or employers to the crisis assume 
greater importance in shaping energy consumption (Schot et al., 2016). 
In the absence of emergency legislation, people are still required to 
engage in essential everyday activities that encourage energy con
sumption e.g. commuting. However, our results show that energy con
sumption and mobility declined moderately over time, as non-essential 
energy-related activities were foregone in response to the increased 
incidence of COVID-19. 

4. Conclusions 

Energy production, demand consumption is highly locally contin
gent and spatially uneven (Baka & Vaishnava, 2020; Broto & Baker, 
2018). Analysis of socio-spatial datasets can provide unique insights into 
the geographical distribution of energy consumption at a range of scales 
(Bouzarovski & Thomson, 2018; Robinson et al., 2019). In our analysis 
of energy consumption during COVID-19 using NTL imagery, whilst 
global, and typically national, demand for energy fell overall in response 
to COVID-19 and accompanying restrictions (especially in contexts 
where per-capita energy use is typically high) (IEA, 2021) new spatial 
distributions have emerged between and within cities. 

Our analysis provides a global assessment of the city-scale changes in 
energy consumption patterns during COVID-19, evidencing consider
able variations in changes across the largest 50 urban agglomerations in 
the world. For some cities, changes in energy consumption as indicated 
by NTL intensity are overwhelming negative in response to COVID-19, 
yet elsewhere the reverse pattern is observed. We also provide 

evidence of three distinctive signatures of changes in the spatial patterns 
of intra-urban energy consumption within cities, reflecting widespread 
and more localised geographical changes across the urban landscape. 
This evidence expands existing predominant narratives suggesting the 
“suburbanisation” of energy demand in several urban contexts during 
the early phases of COVID-19 as the dominant spatial pattern of energy 
usage as lockdowns were enacted, business and services were closed, 
and home working became the predominant form of employment 
(Abdeen et al., 2021; Krarti & Aldubyan, 2021; Qarnain et al., 2020). We 
provide evidence that suburbanisation is just one of several distinctive 
ways in which energy consumption has been reconfigured within large 
cities across the globe. 

We also presented statistical evidence suggesting that, whilst vari
ability exists, government stringency responses to mitigate the spread of 
COVID-19 were a key factor in shaping changes and reductions in urban 
energy consumption observed in most cities in our sample during the 
early stages of the pandemic. Individual behavioural responses to 
minimise exposure to COVID-19 also appeared to have resulted in higher 
local shares of stay-at-home population and hence declines in urban 
energy consumption in cities, but to a lesser extent. Taken together, 
these findings suggest that structural policy responses are key to 
generate large-scale changes in energy use, and support the need for 
ambitious national and global policies that substantially reconfigure 
social and economic systems, rather than individual behaviour change - 
if the necessary scale of change for a low-carbon society is to be ach
ieved. Our study thus contributes to the ongoing debate about whether 
COVID-19 is likely to act as a catalyst for a permanent reduction in urban 
energy consumption owing to digitalisation of work and other activities 
(Kanda & Kivimaa, 2020), and indeed as inspiration for transitions to a 
low carbon society (Henry et al., 2020). 

Our analysis evidences changes in the spatial patterns of urban en
ergy use during night-time as encoded in NTL satellite imagery based on 
lighting from urban features and mobility. Overall, domestic energy 
consumption increased during the pandemic; the most significant 
change is in the shape of the load profiles during the day time as 
household schedules and day-time mobility patterns change. Further 
research is thus needed to capture these shifts in demand for energy 
during the day and understand the energy-related household practices 
or industrial energy usage underpinning these changes as estimates of 
energy consumption become available. Our analysis focuses on large 
global urban conurbations. Understanding changes in energy patterns in 
smaller cities or rural and peri-urban areas is also important as these 
areas recorded a large influx of population moving away from high 
density areas, suggesting a transfer of energy demand from urban ag
glomerations to smaller areas (González-Leonardo, López-Gay, News
ham, Recaño, & Rowe, 2022; González-Leonardo, López-Gay, Recaño 
Valverde, & Rowe, 2022; Rowe et al., 2022). 

Additionally, our analysis captures changes in the spatial distribu
tion of urban energy during COVID-19. Whilst these changes may largely 
reflect, as we believe, the effects of lockdowns, they may also reflect 
seasonal variations in the distribution of population across cities as some 
parts of the world transitioned from winter into spring. More impor
tantly, identifying the causes of changes in energy consumption 
observed in large cities over the early stages of the pandemic and 
extending the period of analysis could be key to better understand the 
extent to which the changes brought about by COVID-19 are temporary 
or will endure as hybrid working becomes ingrained in societies. Evi
dence of changes in energy consumption post-lockdown suggests that 
recovery to pre-lockdown levels is socially and spatially uneven, with 
relatively affluent areas experiencing a rapid recovery compared to 

Fig. 6. Association between stay-at-home population, stringency and COVID-19 cases. a Relationship between stay-at-home population and new COVID-19 cases per 
million. b Relationship between stay-at-home population and stringency index. c Regression coefficients: main fixed effects were obtained from Eq. (4). d Regression 
coefficients: random effects for stringency across cities were obtained from Eq. (5). e Regression coefficients: random effects for COVID-19 cases across cities were 
obtained from Eq. (6). f Classification based on stringency and COVID-19 cases random effects estimated via Eqs. (5) and (6). 
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poorer regions (Aruga et al., 2020; Zheng et al., 2020). Detailed spatial 
analyses of NTL imagery beyond June 2020 could provide insight into 
the longer-term impacts of COVID-19, including inequalities embedded 
in the recovery of energy consumption levels post-lockdown. 
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mation. The source data underlying all the figures in the main manu
script and Supplementary information are provided as a Source Data file. 
Source data to replicate the results reported in the paper are provided in 
an Open Science Framework (OSF) repository, DOI: https://doi.org/10 
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composites which exceed the data storage capacity in GitHub. VIIRS 
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