Accepted Manuscript

ATMOSPHERIC
ENVIRONMENT

Improving satellite aerosol optical Depth-PM> 5 correlations using land use
regression with microscale geographic predictors in a high-density urban context

Yuan Shi, Hung Chak Ho, Yong Xu, Edward Ng

PlI: S1352-2310(18)30468-0
DOI: 10.1016/j.atmosenv.2018.07.021
Reference: AEA 16127

To appearin:  Atmospheric Environment

Received Date: 1 February 2018
Revised Date: 6 July 2018
Accepted Date: 9 July 2018

Please cite this article as: Shi, Y., Ho, H.C., Xu, Y., Ng, E., Improving satellite aerosol optical Depth-
PM2 5 correlations using land use regression with microscale geographic predictors in a high-density

urban context, Atmospheric Environment (2018), doi: 10.1016/j.atmosenv.2018.07.021.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to

our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.



https://doi.org/10.1016/j.atmosenv.2018.07.021

~N O

O

10
11

12
13

14
15

16
17

18

19

20
21

22

23
24

25

Improving Satellite Aerosol Optical Depth-BM
Correlations Using Land Use Regression with
Microscale Geographic Predictors in a High-density

Urban Context

Yuan Shi*® Hung Chak H8< Yong X, and Edward NG ©

#School of Architecture, The Chinese University afitg Kong, Shatin, NT, Hong Kong
SAR, China

P Department of Land Surveying and Geo-Informati¢ee Hong Kong Polytechnic
University, Hung Hom, Hong Kong

¢ Research Institute for Sustainable Urban Developm&he Hong Kong Polytechnic
University, Hung Hom, Hong Kong

dLyles School of Civil Engineering, Purdue Univeys50 W Stadium Ave, West Lafayette,
IN 47907, USA

®Institute of Future Cities (IOFC), The Chinese Umsity of Hong Kong, Shatin, N.T., Hong
Kong S.A.R., China

"The Institute of Environment, Energy and SustailitgtiEES), The Chinese University of
Hong Kong, Shatin, NT, Hong Kong SAR, China

*The Corresponding Author:

Postal address: Room 505, AIT Building, School aftAtecture, The Chinese
University of Hong Kong, Shatin, NT, Hong Kong SABhina

Phone: +852 3943 9428

Email address: shiyuan@cuhk.edu.hk (Secondary email
shiyuan.arch.cuhk@gmail.com)



26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

ABSTRACT

Estimating the spatiotemporal variability of grodesiel PM,5 is essential to urban air
guality management and human exposure assessriEmv®ver, it is difficult in a high-
density and highly heterogeneous urban context@mg-level monitoring stations are most
likely sparsely distributed. Satellite-derived Asob Optical Depth (AOD) observation has
made it possible to overcome such difficulty duaetscadvantage of spatial coverage. In this
study, we improve the AOD-PM correlations by combining land use regression (LUR
modelling and incorporating microscale geographiedjctors and atmospheric sounding
indices in Hong Kong. The spatiotemporal variasioh ground-level Pis over Hong Kong
were estimated using MODerate resolution Imagingc8pradiometer (MODIS) AOD
remote sensing images for the period of 2003-2@Ibextensive LUR variable database
containing 294 variables was adopted to develop AQIR models by seasons. Compared
to the baseline models (fixed effect models inclaody basic weather parameters), the
prediction performance of all annual and seasom@DAUR fixed effect models were
significantly enhanced with approximately 20-30%r&ases in the model adjusted On
top of that, a mixed effect model covers time-dejeen random effects and a group of
geographically and temporally weighted regress®m\WR) models were also developed to
further improve the model performance. As the tssw@ompared to the uncalibrated AOD-
PM, 5 spatiotemporal correlation (adjustBd= 0.07, annual fixed effect AOD-only model),
the calibrated AOD-Pls correlation (the GTWR piecewise model) has a Sficamtly
improved model fitting adjustef of 0.72 (LOOCYV adjuste&’ of 0.65) and thus becomes a

ready reference for spatiotemporal P)stimation.
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land use regression; aerosol optical depth; 2Kpatial mapping
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GRAPHICAL ABSTRACT
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* AOD-PMj,sspatiotemporal correlation of Hong Kong was invgestied;

 Land use regression (LUR) method was adopted torowep the AOD-PMs

correlation;

* Microscale geographic variables and sounding

predictors;

irdicgere incorporated as

* MLR, LME and GTWR models were developed for thdydastimation of PM,

« The improved AOD-PMj correlation - GTWR model has an adjusidf 0.72.
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1. INTRODUCTION

Ambient particular matter (PM) is a mixture of extrely small solid particles and liquid
droplets, which contains complex components oftes and sulfates, organic chemicals,
metals, and dust particles (EPA, 2013)..BNine particulate matter with < 2.5 microns in
aerodynamic diameter) has been identified as & tivezat to population health (Davidson et
al., 2005; Dockery, 2009; Schwarze et al., 2006, thus the observations of spatiotemporal
variability of PM 5 has become one of the most important topics idegpiology (Pope et

al., 1995) and urban climatology (Bach, 1972). $tieng associations between long-term or
short-term health risks and ambient Pj\xposure were not only be found in the typical
urban form in cities in North America or Europet hiso in cities with compact and high-
density built environment such as Hong Kong (Limlet2017; Tam et al., 2015; Wong et al.,
1999; Wong et al., 2002). PMis also responsible for various negative effeatshe living
environment, such as urban climate deteriorationggon et al., 2004) and visibility
reduction (Cheung et al., 2005; Thach et al., 20%0;et al., 2005). Moreover, these adverse
effects are expected to be stronger in a high-tleaavironment because of the poor wind
ventilation (Yuan et al., 2014). Therefore, estimgthe spatiotemporal variation of Bdis

essential to air quality management and healthasslessment.

Although a prediction of spatiotemporal variabildlyPM, 5 across a city is necessatry, it is
generally difficult because of the sparse distidng of air monitoring stations (Kanaroglou
et al., 2005), especially in a high-density citgr Example, hourly Pl concentration in
Hong Kong is currently monitored by a local air bifyanonitoring network (AQMN) with
only 16 stations. However, Hong Kong is a largg wiith approximately 1,100 kfrof land
covering with a wide range of urban settings (nmi® of topography, land use, building form
and residents’ activities, etc.). This diversityans air quality varies greatly across districts,

and cannot be effectively monitored by the growsgel monitoring network with sparsely



86 distributed stations (Shi et al., 2016). This copsmtly leads to the probable issue of
87 assessment errors in the investigation of humansexp when using the RBMdata from the
88 nearest monitoring station. Moreover, identifyirgdpots of human exposure will be

89 difficult when only AQMN is used.

90 Alternatively, satellite-based aerosol optical def@OD) data with large spatial coverage
91 and temporal continuity have been popularly usegstonate ground-level P\
92 concentration in global and regional contexts (Hoffl Christopher, 2009). Previous studies
93 have observed a fair correlation betweern,Reasured by AOD and local air monitoring
94  networks (Krstic and Henderson, 2015; Paciorek.eP@08), and found the ability of
95 predicting the spatial distribution of Bby AOD and chemical transportation models
96 (Gengetal., 2015; Liu et al., 2004; van Donkekstaal., 2006). Some studies also suggested
97 that applying AOD with advanced statistical methsdsh as machine learning and spatial
98 statistical models may be able to improve the apgtiality of PM s mapping (Beckerman et
99 al., 2013). Most of these studies have focusedherspatial distribution of PMin a
100 relatively large geographic extent with homogendandscapes (Qin et al., 2017; Zang et
101 al., 2017). Only a few cases incorporated the rsate environmental factors to AOD-RM
102 modelling (Kloog et al., 2012). Actually, it is neessential in a high-density built
103 environment, because the microscale effect onpghtat accuracy of Pl prediction is
104 significantly affected by the urban morphology. Daehis limitation, only a few AOD-
105 PM;y;5studies have incorporated with microscale enviremial factors in a fine spatial
106 resolution mapping. For example, the study with,Bptediction map in 100m-resolution
107 was an application to traditional European citiéthwelatively homogenous landscape (de
108 Hoogh et al., 2016), while the other studies argGffm resolution or even coarser that are
109 not suitable for representing the spatial varigbhf PM, 5 in an extremely heterogeneous

110 urban area. Moreover, the heterogeneous land suafao affects the vertical distribution of
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aerosol, which is also a major impact factor inAl@D-PM; 5 relationship that should be

taken into consideration (Li et al., 2015).

To overcome the above limitations, several studgs attempted to enhance the AOD-
PM, s correlations by combining Land Use Regression (LBRdelling with microscale
land use information and geographic predictors ¢i§let al., 2012; Lee et al., 2016; Mao et
al., 2012; Vienneau et al., 2013). LUR is a pronggechnique for estimating spatial
variation of ambient air pollution at a fine scdtehas been widely adopted in human
pollution exposure assessments in public healtthesuy(Hoek et al., 2008; Ryan and
LeMasters, 2007). Using geographic and urban ggtiedictors, LUR allows the estimation
of long-term averaged concentration of ambienpailution in unmonitored areas in
geographic information system (GIS). Attempts teedep temporal-resolved LUR models
have been made in recent years (Saraswat et &B).Zlhese estimations will provide a
series of fine-scale maps of spatially and temppxarying ground-level PMsat a finer

spatial resolution compared to the satellite AOEada

The aim of this study is to improve the AOD-Ptorrelation analysis and to provide a
better estimation of the spatiotemporal variatibground-level PMs in a city with high-
density built environment, in order to fill the mtming gaps of the local monitoring
network. Hong Kong has been selected as the sttejypbgcause it is a high-density city with
distinct urban form across districts. The spatalation of urban characteristics across both
natural and artificial surfaces can considerablyifydhe boundary layer meteorological
conditions, and subsequently affect the aerosaicatdistribution. Ultimately, the spatial
variation of ground-level Pl is affected by non-uniformly distributed local soes and the
variation of urban forms at the microscale. In 8tisdy, we enhance the spatiotemporal

AOD-PM; 5 correlation analysis for Hong Kong by combiningRUhodelling with a
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comprehensive set of microscale geographic prediet® well as atmospheric sounding
indices. Fine-scale spatiotemporal variation ofugieblevel PM 5 over Hong Kong is
estimated using LUR with the MODerate resolutiomdimg Spectroradiometer (MODIS)

AOD data for the period of 2003-2015.

2. MATERIALS AND METHODS

2.1 GROUND-LEVEL PM,5 LONG-TERM MONITORING DATA

In this study, hourly concentration of ground-lef?&ll, s between 2003 and 2015 were
obtained from 15 of 16 stations operated undeAR®N of Hong Kong Environmental
Protection Department (EPD), because a newly-cacisttl station in Tseung Kwan O are
not available for the entire study period. (FiglyeThese hourly Pkk concentration
monitored by the AQMN are based on high-accuraayigretric sampling using the USEPA
certified gravimetric oscillating microbalance gouient, including the Graseby Anderson
PM, Partisol 2025, R&P TEOM series 1400-AB and I3B%Lu and Wang, 2008). Daily
average of PMs concentration was calculated in order to be comsisvith the AOD data

for further analysis (Figure S-1 in the supplemgntaaterials).
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Figure 1. The locations of 15 available stations in the a@lgy monitoring network
(AQMN) of Hong Kong (The elevation of each statman be found from:

http://www.aghi.gov.hk/en/monitoring-network/airajity-monitoring-stations.html).

2.2 AEROSOL OPTICAL DEPTH (AOD) DATA

The MODIS Level 2 aerosol products at a spatiadltg®n of 3 km were obtained from both
Terra and Aqua satellites (MODO04_3K at 10:30 andD@®% 3K at 13:30) using dark target
algorithm (Remer et al., 2013). Compared with thginal 10-km product, this product with
3-km resolution is better at providing details ioiefscale aerosol characteristics over the
small geographic extent with heterogeneous lan@scdphere is finer resolution AOD data
for worldwide, but it is not specially designed faubtropical area. Therefore, it needs to be
carefully pre-calibrated (the aerosol retrievabaitpm needs to be modified) before using
the data in subtropical area (Bilal et al., 20T3)erefore, we acquired the 3 km AOD product
from 2003 to 2015. A total of 8,738 AOD images web¢ained for the 13-year period from
Terra and Aqua sensors. All AOD images were preptd the Hong Kong 1980 coordinate

system for the spatial consistency of local lanel deta sets. Daily averaged AOD values
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were calculated based on above satellite imaggsdatells corresponding to the 15 AQMN
stations. Satellite AOD observations are not abélavhen clouds cover the location. All
available observations from the entire AOD imagedat were extracted (Figure S-2 in the

supplementary materials).

2.3 METEOROLOGICAL VARIABLES

Weather data (ground-level air temperature, regdtivmidity, wind speed, rainfall, mean sea
level pressure, wet-bulb temperature and dew-femperature) were retrieved from a total
of 42 weather stations of Hong Kong Observatory (WKWeather data from the closest
weather stations were assigned to the grid ceditions of 15 air quality monitoring stations
in AQMN. Crumeyrolle et al. (2014) mentioned tha tvariability in atmospheric factors
such as vertical structure/mixing and hygroscoypictiuld significantly affect and add
uncertainty to AOD-PMlscorrelation. Their study shows that consideringitheact of
ambient relative humidity could improve the PMstimates. Moreover, the presence of
aerosol above the boundary layer introduces siamfiuncertainties in PMestimates. The
day-to-day variation of atmospheric stability aédtects the vertical distribution of aerosol
(Lee et al., 2011). In that case, sounding datadveerve as better predictors than the basic
weather parameters. Therefore, 19 widely used sogmadices related to atmospheric
stability were also adopted as meteorological \dem (Table 1). The atmospheric sounding
indices data used in the present study (Hong K8tagjon No. 45004) is provided by the
Department of Atmospheric Science, University ofaiyng, which represent an overall

atmospheric condition over entire Hong Kong forteday.

2.4 GEOGRAPHIC PREDICTORS OF PM2.5 IN LUR MODELLING

Six categories of data sets were adopted as gdugnagedictors of PisLUR modelling: (i)

land use, (ii) road traffic density, (iii) emissisnurces of marine and power stations, (iv)
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population density, (v) natural geography and @vban surface form. Most of the
geographic predictors were retrieved from the Gd&tar dataset that can be accurately
converted to 1m resolution for spatial study. Them@ have been widely and successfully
used for fine-resolution mapping in Hong Kong (8hal., 2017). In this study, to balance the
data size and mapping precision, a spatial resolf 10m was adopted for the spatial
mapping, which is also the spatial resolution ef $tandard land use dataset of Hong Kong.
Incorporating the fine-resolution microscale geptia predictors into the estimation of

AOD-PM;, 5 correlation is essentially also a data-intenspatial downscaling process.

2.4.1 LAND USE

The limited land resources and high populationtjgispawn the extremely compact urban
development. The vertically developed urban for@ypgs the intensive and highly mixed
urban land use in Hong Kong. The land use data wolati@ned from Hong Kong Planning
Department (PlanD). The land use of Hong Kongdsmed in the raster format with a
spatial resolution of 10m. Based on literattirehe complicated land use types were
reclassified as the following types: Residentia (RES); Commercial use (COM); Industrial
use (IND); Government use (GOV) and Open space (OBsing buffering analysis, the
total area (unit: f) of each land use type in a set of buffers (Tablef each monitoring

stations was summed up and used as the explanatioaples of LUR modelling.

2.4.2 ROAD TRAFFIC DENSITY

Four different indicators were used to depict theal road traffic density: road line density
per unit area (km/kR), road area ratio, traffic volume counted basepassenger car unit
(PCUs) and count of bus stops. Using LUR buffeanglysis, line densities of five road
types— expressways/trunk road, primary road, sesxgnebad, tertiary road and ordinary

road— were calculated separately. The road argaisahe percentage of vehicle road area

10
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within a certain locality, which measures the antafrroad traffic carrying capacity. The
raw data of traffic flow count in Hong Kong are fisbed in “Annual Traffic Census” by the
Transport Department every year. The number ofckesis counted at nearly 900 stations in
different road segments. Based on these data andall network, the spatial distribution of
traffic volume of public transport vehicles andvattie/government vehicles can be mapped.
Buses are heavy-duty diesel fuel vehicles and amsajurce of PMsin Hong Kong.(Wang
and Lu, 2006) Therefore, the number of bus stopisinvcertain buffer ranges was also used

as predictors of road traffic density.

2.4.3 EMISSION SOURCES OF MARINE AND POWER STATIONS

Marine transportation accounts for a large propartf PM s emissions in Hong Kong (Lau
et al., 2007). Marine facilities and routes werenitfied in and extracted using GIS as point
and line PM s emission sources. Local power stations relyindossil and diesel fuels are
considered area emission sources. The nearestaisiem each monitoring station to the

marine facilities, routes and local power plantswalculated as the predictor variables.

2.4.4 POPULATION

The population density (people per Rris the most commonly used measure of population
distribution. The latest population census datgeair 2011 is obtained from Hong Kong
Census and Statistics Department and mapped usrdjdgital boundary of Street
Block/Village Clusters (SB/VC, a standard plannumgt used in Hong Kong). The

population density in the buffers of each monitgratations is then calculated.

2.4.5 NATURAL GEOGRAPHY

Seven indicators were adopted as predictor vagableeflect the natural geographic
condition of each monitoring station: longitude (to the coordinate origin of HK1980 Gird),

latitude Ay to the coordinate origin of HK1980 Gird), eleweatiabove the Hong Kong

11



240 Principal Datum, distance to waterfront, distarxceity parks, distance to country parks and

241 greening coverage ratio (the percentage of vegetabverage, extracted from land use data).

242 2.4.6 URBAN SURFACE FORM

243 Densely built urban forms significantly change #seodynamic properties of land surface,
244  and hence change the air flow near the ground®irfasulting in considerable microscale
245 variation in PM s concentration (Fernando et al., 2001). It has Ipgewed that incorporating
246 urban forms as predictor variables improves the lriRlelling accuracy (Shi et al., 2016;
247 Tang et al., 2013). Therefore, to consider micrieseavironmental variations that affect the
248 spatial accuracy of Pp prediction in a high-density city, a set of predicvariables of

249 urban surface forms were used in LUR modelling (Raret al., 2014; Cao and Lin, 2014).
250 They were building height, plan area indexif), weighted frontal area index based on the
251 probability of wind directionsAr), urban surface roughness lengtk)(and were calculated

252 based on the local building data set with the feifey equations:

5 Equation 1
Ap = (Z 1APi)/AT g
=
& n E tion 2
7 uation
Ap = Z[(Z, Arie))/Ar] Peoy g
=1 =1
Equation 3

Zy = {h —h- XPO'E’}exp I—

K
253 wheren is the total amount of buildings in a distridt: is the district areap; is the
254  footprint area of the building Ag; ) is the frontal area of buildingunder the scenario of
255 wind directionf. Cpy, is drag coefficient considered as K8s the Karman's constant of 0.4.
256  Figure 2 illustrates the mapping of spatial disttibn of 1 because it is not a traditional

257 LUR predictor.

12



Weighted frontal area index
based on the probability of wind directions (AF)

555,

Ry ;

k= RN
4 4

0-0.07

258

259 Figure 2. The spatial distribution map of weighted frontaaindex based on the probability

260 of wind directions {) which reflects the potential of ground-level #dw movement.
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Table 1.Summary of meteorological and geographic predicéoiables.

Data categories Variables Unit Analysis Codes
Meteorological variables
Weather parameters  ground-level air temperature °C daily average Temp
relative humidity % daily average RH
wind speed m/s daily average Spd
rainfall mm daily average Rf
mean sea level pressure hPa daily average MSLP
wet-bulb temperature °C daily average Wet
dew-point temperature °C daily average Dew
Atmospheric Bulk Richardson Number - daily average BRCH
sounding indices Bulk Richardson Number using CAPV - daily average BRCV
Convective Available Potential Energy J/kg daily average CAPE
CAPE using virtual temperature J/kg daily average CAPV
Convective Inhibition J/kg daily average CINS
CINS using virtual temperature J/kg daily average CINV
Cross totals index - daily average CTOT
K index - daily average KINX
Pressure of the Lifted Condensation Level hPa daily average LCLP
Temperature of the Lifted Condensation Level K daily average LCLT
Lifted index - daily average LIFT
LIFT computed using virtual temperature - daily average LIFV
Mean mixed layer mixing ratio g/kg daily average MLMR
Mean mixed layer potential temperature K daily average MLPT
Total precipitable water mm daily average PWAT
Showalter index - daily average SHOW
SWEAT index - daily average SWET
Total totals index - daily average TTOT
Vertical totals index - daily average VTOT
Geographic Predictors
Land use Residential use n? buffer RES
(Total land area Commercial use 14 buffer COM
within certain buffer  Industrial use nt buffer IND
sizes) Government use n? buffer GOV
Open space " buffer OPN
Road Traffic density =~ Road line density of expressways/trunk road km/knf buffer Rdexp
Road line density of primary road km/knd buffer Rdpri
Road line density of secondary road km/knd buffer Rdsec
Road line density of tertiary road km/knd buffer Rdter
Road line density of ordinary road km/knd buffer Rdord
Road area ratio % buffer Rdar
Traffic volume of public transport vehicles PCUs buffer ptpcu
Traffic volume of private/government vehicles PCUs buffer pgpcu
Number of bus stops - buffer busst
Emission sources of  Distance to marine routes, facilities m point d_marine
marine & power Distance to local power plants m point d_power
stations
Population Population density People/krh buffer pop
Natural geography Longitude (based on HK1980 system) m point X
Latitude (based on HK1980 system) m point y
Elevation of the monitoring station m point z
Distance to waterfront m point d_water
Distance to city parks m point d_cityp
Distance to country parks m point d_countryp
Greening coverage ratio % buffer greening
Urban surface form building height m buffer h_bldg
plan area index % buffer Ap
weighted frontal area index based on the - buffer Ar
probability of wind directions
urban surface roughness length m buffer Zy

The 13 buffer sizes used in this study are 50, 200, 300, 400, 500, 750, 1000, 1500, 2000, 3000045000m.
The Sounding data available at http://weather.uagupperair/sounding.html

14
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2.5 STATISTICAL MODELING AND VALIDATION METHODS

LUR modelling was conducted to develop the AOD-RNMorrelation models. The P

data mentioned in section 2.1 were used as themsspvariable of the models with the
satellite-derived AOD mentioned in section 2.2 &t@s the first explanatory variable of all
regression models. The LUR modelling aims to imprthe AOD-PM 5 correlation by
incorporating microscale geographic predictors @amaospheric stability sounding indices.
First, Multiple Linear Regression (MLR) method —hwmonly used in previous LUR studies
— was adopted to identify the important predictariables and develop traditional fixed
effect model. On top of that, a mixed effect moztwlers time-dependent random effects and
a geographically and temporally weighted regres@®WR) model were also developed to

further improve the model performance. Four stepsevinvolved in the modelling process.

2.5.1 STEP 1 - DEVELOPING BASELINE AOD-PM2.5 MODEL
In Step 1, the baseline models of the AOD-RNbrrelation were developed. The modelling
only involves five most commonly used basic weatf@ameters mentioned in section 2.3—
ground-level air temperatur&dmp), relative humidity RH), wind speedSpd), rainfall
(Rf) and mean sea level pressuves(.P). The baseline estimation model structure in this

study was forced to be built as follows:

PM;5;j = a1AOD;j + a,Temp;; + azRH;; + a,Spd;; + asRf;; + agMLSP Equation 4
+ Bij + &ij

wherePM, s;; is the predicted Pk concentration at the location of air quality moniitg

stationi on dayj. AOD;; is the satellite-derived AOD at the locatioon dayj. a, is the

slope ofAOD. a,, as, a,, as andag are the slopes for the five daily averaged basather

variables g;; is the intercept of the mode]; is the residuals which presumably vary by day.

The winter monsoon is predominant from fall to sgrimaking coastal Hong Kong basically

15
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308

downwind of the polluted industrial areas and urbadh areas in Pearl River Delta (PRD)
region (Ding et al., 2013; Kok et al.,, 1997; Wartgaké, 2009). Hence, the influence of
pollution originating in densely built neighborirgy of Shenzhen—north of Hong Kong—
is significant. Therefore, in order to distinguigeasonal variation, the AOD-BM
correlations were developed separately using MLRlifferent seasons defined as annual
(January to December), spring (March to April), suen (May to September), fall (October
to November) and winter (December to the Februéth® next year). The above definitions
are based on local meteorological observationsttadynoptic weather pattern. Hong Kong
is a coastal subtropical city influenced by monsadidmre months of each season are different
than the temperate city in Europe and North Americgiecewise annual model was also
developed by simply combining the four single seasmodels based on the time period of
seasons. To be more specific, the piecewise maaeligts the PMs in each season by
separately using the four seasonal MLR correlatmdels in the time intervals of the four

different seasons. As a result, six baseline maslete developed.

2.5.2 STEP 2 - SELECTING INFLUENTIAL MODEL VARIABLE S

Most of the geospatial studies treat all spatiatdies using a grid system with fixed spatial
resolution. However, the impact range of differgrftuencing factors may vary due to the
differences in the pollution emission intensitytibe complex physical basis of the pollution
diffusion and dispersion. For example, the indastland use could affect the air quality
within a spatial extent of several kilometers, whal segment of urban tertiary road will only
significantly affect the air quality within a cogpbf hundred meters. Therefore, LUR studies
apply the concept of buffers, instead of usingxadigrid system for all data. In LUR study,
each air pollution influencing factor are calcuthtemn multiple buffers. Thus, the same
influencing factor calculated using two differentiffer sizes are used as two separate

predictor variables in the regression modellingthis study, LUR buffering analyses were

16
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conducted for 20 geographic predictors using 13ebdizes. Together with other variables,
294 explanatory variables were required to be ob@dhr developing improved the AOD-
PM, s correlations. In that case, it is essential togakect only a limited number of variables
for the regression modelling because this couldvgare over-fitting issues during the
automatic stepwise regression modeling processy@al2004). Using the 13 buffer sizes, a
series of regression analysis was performed foln éadfer-based variable. The purpose of
these regression analyses was to test the setysdivine variables in the models to different
buffer sizes. These regression analyses were pegtbusing the below model structure:
PM;5;j = a1AOD;j + a,Temp;; + azRH;; + a,Spd;; + asRf;; + agMLSP Equation 5
+ a; VAR, + Bij + &
The model was developed for each buffer-based hMariat 13 different buffersy, is the
slopes for the test variabl&4AR;) calculated the using buffer size df For example, the
road traffic density calculated in 200m buffer &@D0Om buffer are used as two separate
variables. As described,= 50, 100, 200, 300, 400, 500, 750, 1000, 1500028000, 4000,
5000m. Adjusted?? (R? ) was used as the indicator to compare model pegoce. Thus,
there will be 1382 for traffic density in the 13 buffers. By followgrthe “A Distance Decay
REgression Selection Strategy (ADDRESS)” developgdSu et al. (2009a), a distance-
decay curve can be plotted, which is essentialiynation of distance, and thus the critical
buffers (shown as turning points/peaks in the demaye function) could be identified. In
another application study of “ADDRESS”, Su et aR0@9b) detailly illustrate the
identification of critical buffers. In the presestiudy, by following the same method, only
variables at the critical buffers were identifiettaetained as candidate explanatory variables

for next step analysis.
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2.5.3 STEP 3 - STEPWISE REGRESSION MODELLING

Following the typical LUR research (Beelen et 2013), stepwise MLR modelling was
performed to develop AOD-LUR models by differenasens. The models were initially
determined by using the modelling criteria of minmm Bayesian Information Criterion
(BIC) using the forward direction, the model withethighesR? was selected for further
process. In the subsequent process, the p-valuezamahce inflation factor (VIF) of each
explanatory variable in all these resultant modetse examined in order to eliminate
collinearity issues in the resultant models. Basedhe criteria used in literature (Vienneau
et al., 2013), variables with p-value > 0.10 andF\4 5 were excluded. Due to the above
criteria of variable exclusion, some of those afoeationed basic weather variables may not
be included in the final models, as they naturatiyrelate with sounding indices (which are
possibly better predictors of atmospheric stabilggd are consequently removed. The final
models are constructed in a general model struetsifeelow:

PM,s;; = a;AOD;; + a3VARyj + + VAR + tmy1VARgmis Equation 6

+ Ami2VAR g miz + -+ @ VARG + Bij + €

wherePM, s;; is the predicted Pk concentration at the location of air quality moriitg
stationi on dayj. AOD;; is the satellite-derived AOD at the locatioon dayj. a; is the

slope ofAOD;;. a;... a,, are the slopes for the temporally varied meteorological variables.

Am+1--- @y are the slopes for the— m geographic predictor& AR ;) calculated the at the
buffer size ofd. g;; is the intercept of the AOD-LUR mode}, is the residuals. As a result, a

total of six pairs of models (Baseline MLR vs. AQIDR MLR) were developed.
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2.5.4 STEP 4 — INCORPORATING TIME-DEPENDENT RANDOM EFFECTS AND

GEOGRAPHICAL NON-STATIONARITY

A set of traditional LUR models have been develofeedHong Kong during the first three
steps. However, as mentioned earlier, tradition#Rlmodels are commonly developed
based on a fixed effect model structure, in whieheffects of predictor variables are
presumed to be temporally fixed. However, the rfice of many predictors could be
temporally variant, especially in the synoptic pattof Hong Kong in which there are
significant seasonal differences. Under such baxkgt, the influence of many predictors
could be presumably at least varying by seasors abbve implies that the AOD-LUR
model performance could be further improved by ipoaating time-dependent effects and
geographical non-stationarity into the model depgient. In this study, linear mixed-effect
(LME) models are developed by additionally inclugliime-dependent variables as random
effects to improve the performance of AOD-LUR mad&onsidering the significant
seasonal synoptic differences in Hong Kong (as ioeed in section 2.5.1), a categorical
dummy variable was introduced to describe the seasthen particular concentration data
were monitored. This newly included dummy variablenodelled in the linear regression as
the random effect, such that LME models could besligpped with time-dependent effects.
As the results, three LME models will be develop&@D-only LME model, baseline AOD-
PM,sLME model (a forced model structure with the fiveshcommonly used basic weather
parameters involved), AOD-LUR LME model (a modadludes the same variable selection
with the AOD-LUR stepwise MLR model). No season®E models will be developed
because the seasonal non-stationarity has beerettin the year-round annual model. The

LME model structure in this study can be expressed
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PMZ.Sij = alAODij + aZVARZij + -+ amVARmU + am+1VARd,m+1

Equation 7
+ am+2VARd,m+2 + et anVARd,n + aseason,jVARseason,j q

+ Bij + &j
wherePM, s;; is the predicted Pk concentration at the location of air quality moriitg
stationi on dayj and the random effect variabl& AR 4s,n j is added into the model
Structure as.q50n,; iS the slope of the season variable value (whiesymably vary by
seasons) on on d@yNo seasonal LME models will be developed bec#useseasonal non-
stationarity has been included in the year-rountbahmodel. As the results, three LME
models will be developed: AOD-only LME model, baselAOD-PM, s LME model (a
forced model structure with the five most commaumdgd basic weather parameters
involved), AOD-LUR LME model (a model includes th@me variable selection with the
AOD-LUR stepwise MLR model). No seasonal LME modgeis be developed because the

seasonal non-stationarity has been included iye¢he-round annual model.

The context of land surface in the study areagsligiheterogeneous which implies that the
AOD-PM; 5 correlation could also be spatially variant. Gepdrically weighted regression
(GWR) is a commonly-used method of dealing withhssjgatial non-stationarity in P
spatial estimation (van Donkelaar et al., 2015). Eéndles the spatial non-stationarity by
constructing local regression for different geodpiagl locations instead of using one linear
regression for the entire study area (Brunsdoth et298). However, in many cases, the
regression coefficients do not remain fixed ovexcgpas well as time. To also take temporal
variation into consideration, a method named GTV¥R lbeen developed for modeling
spatiotemporal variation in geographical data (Hueihal., 2010) and recently adopted in
ground-level PMs estimation (Bai et al., 2016). The GTWR model &inee in this study can

be expressed as:
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PM,5;j = a;AOD;j + Z U (g, Vi, VAR + Z an (Ui, v, VAR Eauation 8
— — quation

+ Bij + &
wherePM, s;; is the predicted Pk concentration at the location of air quality moriitg
stationi on dayj. AOD;; is the satellite-derived AOD at the locatioon dayj. u;, v; are the
geographical coordinates of statiom; is the slope ofA0D;;. a,, are the slopes for the
temporally varied meteorological variabléar,,;;. a, are the slopes for thegeographic
predictors VAR,) calculated the using the buffer sizedof;; ande;; are the intercept and

residuals of GTWR model. More technical details bameferred to Huang et al. (2010)’s

article.

2.5.5 MODEL VALIDATION

Root-mean-square error (RMSE) aRd were calculated for both the assessment of midel f

and the cross validation of resultant mod8kand RMSE calculated as follows:

— -1 ,
R2=1-(1-R? (n—) Equation 9
n—p-—1

n
1 , ,
RMSE = ZZ(PMZ'“ - PMZ_SL-)2 Equation 10
i=1

WhereR?Zis the coefficient of determination of regressioodels.n is the total number of

data pointsp is the total number of model predictor variabl¥, -; is the measured value

of the PM 5 concentrationPM, .; is the estimated PM concentration from the resultant
models. For the model validation, leave-one-oussnaalidation (LOOCV) was used to
validate all resultant models. Under LOOCYV, alladafll be split into two parts, a single data
point is used for the validation data and the rengi data points used as the training dataset.

This procedure is repeataetimes. There is no randomness in the split ofdéia into test
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and training sample. Therefore, performing LOOCpeaedly always yields the same

results.

3. RESULTS

All resultant models developed in this study isduhen the 13-year long-term dataset. There
are data limitations provided by the EPD. RMf Hong Kong was a relatively new
measurement of EPD. Each monitoring station hdsrdifit start-up date for monitoring
PM. s The cloud coverage is also a major impact fagtdine availability of the AOD data of
Hong Kong. Therefore, in the present study, th&&l{ear long-term monitoring data were
used for the model development to minimize thisdaés. As the results, the annual model
will be able to predict a daily spatial BMconcentration for any day during 2003 — 2015
period, while the seasonal models will be ablertivigle a daily estimation for any day in the
particular season during 2003 — 2015 (for exanmgkymmer model predicts the daily spatial
PM, s for any summer day during 2003-2015). Considetiregresultant spatiotemporal
models on a daily basis, the annual or seasonahg&eould be easily achieved by averaging

a series of daily estimations.

3.1 THE BASELINE MODELS OF AOD-PM ,sCORRELATION

Using the forced model structure (Step 1), a gmiupaseline MLR models was developed.
AOD-only fixed effect model and LME model were atdeveloped as a reference for the
model performance comparison. All these resultasebine models are listed in Table 2.
Although the performance is better than AOD-onkedl effect model, results show that both
the baseline MLR models and the AOD-only LME magedform relatively poor in

predicting spatiotemporal ground-level PMvithout incorporating the microscale
geographic variables and sounding data as predicibbe summer, fall, and winter baseline

MLR models and the AOD-only LME model share a samprediction performance level of
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theR? of 0.3-0.4. The Annual baseline MLR model only hgsrediction performance dt?

of 0.2 while the spring baseline MLR model hasltiveestR? of less than 0.1.

3.2 THE RESULTANT AOD-LUR MODELS WITH MICROSCALE GE OGRAPHIC

PREDICTORS AND SOUNDING INDICES

Corresponding to the aforementioned baseline mpdejsoup of AOD-LUR MLR models
was developed to improve the AOD-RMorrelations (Step 2-3). Based on the model
variables of corresponding MLR models, an AOD-LURBmModel and a group of AOD-
LUR GTWR models were also developed to further mwprthe prediction performance
(Step 4). All above resultant AOD-LUR models astdd in Table 2 (details of the MLR and
GTWR models have been included in supplementargmadgt, Table S1-S7). The annual
MLR model performs poorer than the seasonal MLR etodaturally because of the lack of
consideration on the seasonal variation. Develo@mgVR models significantly improve the
performance by to incorporate time-dependent effaotl geographical non-stationarity into
the model development. It can be seen that thdtaesiseasonal MLR models with
geographic predictors and sounding variables parfouch better than the corresponding
baseline models (see actual by predict plot in feguand Figure S-3). The summer, fall, and
winter AOD-LUR MLR models have a prediction perfemte level of th&2 of 0.5-0.6

which are moderately good. After identifying thepiontant variables, the development of
GTWR models further improve the prediction perfontrto a higher level of the? of 0.6-
0.8. The actual by predicted plot shows that soata goints in spring have an extremely
high monitored concentration level that cannot ledl mredicted. A possible cause of these
outliers is the impact of the severe dust storrsages at a much larger geographical extent
during spring time in Hong Kong (Lee et al., 2018hough there are conspicuous outliers

in the spring AOD-LUR model, the regression perfante is significantly increased when
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compared with the spring baseline mod& from 0.07 to 0.35). As described earlier, a
piecewise annual model was also developed by cangpbthe four single seasonal models.
By separately using the four seasonal MLR cormatathodels in the time intervals of the
four different seasons, the piecewise annual maclgkeves a better prediction performance
(RZ of 0.55) than the single MLR annual modet (f 0.33). As the results, a 48% increase

of 0.48 inR? of the calibrated correlation was achieved by daing AOD-PM; 5 correlation
with LUR modelling and incorporating geographicightes and sounding indices as
predictors. Although the AOD-PM correlation has been significantly increased ntioelel
performance is still lower than some previous ssdin the other regions of China. It is
reasonable because those studies of China ardyufgaising on a larger spatial extent with
fewer concerns of change in microscale environntemtexample, the previous studies by
You et al. (2016) and Xie et al. (2015) . Moreotbg monitoring stations they used are
mostly located in homogeneous rural settings. Alibeaeasons why the variation between
data are relatively low, resulting in a bet®r. Our study focuses on inner-city microscale
variability that can be influenced by multiple gesmghic factors across a city, which is more
difficult to predict. Similar study for exposure dalling across a city (e.g. heat exposure)

also has relatively lowk? because of this reason (Ho et al., 2014).
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Table 2.List of resultant baseline models by seasons witbeid model structure and
improved AOD-LUR (MLR, LME and GTWR) models with @graphic variables and
atmospheric sounding indices as model predictoeseise MLR and GTWR models are
not shown in this table because they are combinsid four single-season models. About
the variable name, for exampRdexp0500epresents the road line density of

expressways/trunk road calculated within the buffes00m.

Models Model performance evaluation
. Model
Model by  Model structure (included 2 — . LOOCV LOOCV
e g seasons  variables & coefficients) Lo R? gttl\lﬂnng -RMSE -R? D
AOD-only
fixed effect Annual 15.616*A0OD+41.723 0.072 0.071 18.707  19.249 0.069 0.0801*
model

21.030*A0D-0.802*Temp-
_ Annual  0.463*RH-1.761*Spd-9.285*Rf- 0199 0.196  18.875 19.070  0.194  <0.0001*
Baseline MLR 0.091*MSLP+184.058

models 9.294*A0D-0.840*Temp-
(weather Spring 0.077*RH-1.465*Spd- 0.096 0.070 14.410 15761  0.064 0.0018*
gz‘lra)meters' 35.261*Rf+0.190*MSLP-129.230
(reé’ar dless of p- 20.958*A0D+0.028*Temp-
Value and VIE . Summer  1071*RH-1.691*Spd-0.406*Rf- 0341 0319 15181 16361  0.296 <0.0001*
of 0.387*MSLP+496.565
meteorological 26.609*A0D+1.222*Temp-
. Fall 0.672*RH-2.336*Spd-89.186*Rf- 0.389 0.373  14.111 14953  0.352 <0.0001*
variables, no
other LUR 0.124*MSLP+187.013
variables. Table 48.645*A0D+0.319*Temp-
° : . 0.376*RH-0.941*Spd- .
S-1) Winter 184 146" R 0381 0373 15894 16.332  0.363 <0.0001
0.216*MSLP+274.619
24.522*A0D-0.550*Spd+25.347*
1-0050-(2.178e-
Annual  5)*RES0400+0.358*CTOT- 0.326 0322  17.097 17589  0.313 <0.0001*
0.105*LCLP-
0.737*PWAT+138.640
AOD-LUR 16.745*A0D-
MLR models  Spring 0.487*2+3.724*Rdsec2000+0.45 0371 0.353 12270 14155  0.306 <0.0001*
(with all 1*CTOT-1.014*PWAT+57.171
included 24.628*A0D+1.382*Wet+38.007
;’ﬁg'iﬁ{gﬁi?gfg_ Summer ~ Ar0100-3938c4)POP00S0- 0605 0589 12761 13163 0571  <0.0001%
value < 0.10 2.763*VTOT+274.492
and VIF <5, 37.719%A0D+1.534*Wet+3.835*
Table S-2) Rdexp0500-0.990*Rdord0200- N
Fall py < Sy 0524 0518 13508 13.747  0.509 <0.0001
0.575*PWAT+168.896
57.671*AOD+0.266*RH+2.172*
Winter Rdexp0750-0.144*LCLP- 0570 0564 13223 14.453  0.516 <0.0001*
0.089*MLPT+155.119
AOD-only
LME model Anngal The coefficients of random effect 0320 0319 15.456 16.380 0301 <0.0001*
AOD-LUR Annual  2r€ seasonally varied. 0375 0374 15755 15797 0374  <0.0001*
LME model
AOD-LUR
GTWR models  Annual N 0.542 0541 11598 13523  0.461 <0.0001*
(with all The model coefficients are

included —Sorma geographically and temporally
pring i -3-S- 0.617 0.615 8.590 9.693 0.536 <0.0001*
variables meet varied. (Table S-3 - S-7 shows the

the criteria of p- Summer  coefficients of GTWR models, seeg ggg  0.898 5.885 6.254 0.839 <0.0001*
——— the Supplementary Material).

value < 0.10 Fall 0.709  0.708 9.071 10.460 0.606 <0.0001*

and VIF<5)  —yinter 0640 0639 12120 12158 0634 <0.0001*
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PM2.5 Predicted PM2.5 Predicted PM2.5 Predicted
483 LOOCV Adj R2 = 0.269 LOOCV-RMSE = 15.852 LOOCV Adj R2 = 0.475 LOOCV-RMSE = 13.880 LOOCV Adj R2 = 0.654 LOOCV-RMSE = 9.641

484  Figure 3. Actual by predicted plot of resultant piecewise ®lsdvith microscale geographic
485 predictors and sounding indices (LOO@?-and LOOCV-RMSE are shown). Figure S-3

486 shows the results of other models.

487  Without forcing the structure, the resultant AOD®RUnhodels shows different model

488 structures from the baseline models. First, as @rpe most of the basic weather variables,
489 instead of atmospheric sounding indices, are reohénaen the resultant models. A major
490 impact factor in meteorological conditions and aetwertical distribution (Arya, 1999; Li et
491 al., 2015), the atmospheric stability can be betpresented by sounding indices, and

492 consequently improve the model performance. Sedbedjeographic predictors of urban
493 surface form, road traffic density and land useashoall resultant models. Traffic density
494 and land use represent the spatial variabilithefémission intensity, necessarily be the
495 influential factors of air particle concentrationthe resultant models. Under the high-density
496 and highly heterogeneous urban context of Hong Ktmgsurface forms in different areas
497 can be considerably diverse. Urban surface formes e turbulent air circulation (Seinfeld,
498 1989), and subsequently varies the vertical prafilair particles in the boundary layer (Chan
499 et al., 2005). Including such spatial informatiatoithe AOD-PM s correlations for LUR

500 modelling naturally provides a better estimatiomafund-level PM;s variability.
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501 3.3 AOD-LUR GEO-MAPPING

502 The geo-mapping of the spatial distribution of RWas developed based on the

503 spatiotemporal Pl estimation from the resultant AOD-LUR models. @D images

504 were resampled using a cubic spline function ferrttapping purpose (Bian and Xie, 2015).
505 Seasonal average values were mapped in this paplee aight column of Figure S-3. As

506 shown in a zoomed-in picture (Figure 4), severakgeally concerned air pollution hotspots,
507 including Central, Causeway Bay in Hong Kong Island Mong Kok, Sham Shui Po, Hung
508 Hom in Kowloon Area can be clearly observed inrgultant geo-mapping (summer model,
509 local-dominant air pollution mode). These areasr@ways been of great concerns and are
510 commonly investigated in other local air pollutistudies (Chu et al., 2005; Ho et al., 2006).
511 Apart from the well-known air pollution hotspoteetAOD-LUR mappings developed in this
512 paper also successfully point out another,BRbtspot, North Point on Hong Kong Island,
513 which was newly identified by a recent study foagson the street-level P\ exposure (Shi
514 etal., 2016). Kok et al. (1997) already mentiottet the pollution transported from the

515 neighboring area in Mainland China leads to poogaality on the north and west sides of
516 Hong Kong. In the present study, besides the leffatt, a higher concentration level in the
517 north and west part of Hong Kong can be clearlyeoled in the winter model (regional-

518 dominant air pollution mode, Figure 4), which irates that the resultant models successfully
519 capture above situation by incorporating AOD data LUR modelling. To be more specific,
520 this large difference in the spatial mapping betwsemmer and winter clearly shows the
521 seasonal change in the dominant air pollution modétong Kong. It features the local

522 emission dominant mode in summer and the overwinglrifect of the strong regional

523 impacts from PRD in winter (Kwok et al., 2010; Yuainal., 2006). The above indicates that
524 the AOD-LUR modelling in this study provides a adlie estimation of Pl for a small

525 geographic extent in a high-density and heterogemadan context.
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Figure 4. Resultant AOD-LUR geo-mapping with labeled PMoncentration hotspots

(AOD-LUR GTWR piecewise model results).

4. DISCUSSION

4.1 IMPROVING AOD-PM , 5 CORRELATIONS WITH MICROSCALE GEOGRAPHIC

PREDICTORS AND SOUNDING INDICES

The present study improves the AOD-P\orrelation in a small geographic extent with
highly heterogeneous landscapes and utilizes thétri@ LUR spatiotemporal PM

estimation. A previous attempt has been made tonasng the spatial variability of air
particles in Hong Kong using MODIS AOD. Howevere thpatial scale is limited by the
resolution of remote sensing images (Wong et 8lL12 Moreover, the annual average based
spatial variation only provides limited informatiéor health risk assessments without
temporal estimation. In this study, the uncalibdagpatiotemporal correlation between AOD
and ground-level Pl observations are substantially improved by incaapog microscale
geographic predictors and atmospheric sounding@sdas covariates using AOD-LUR
modelling. This result makes the temporal-resoR&} 5 spatial estimation become viable

for more accurate public health applications.
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4.2 LUR MODELLING IN HIGH-DENSITY AND HETEROGENEOUS URBAN

CONTEXT

On the top of the improved AOD-PMcorrelations, this study also provides fine-scale
mappings of PMls spatiotemporal variation based on LUR modellinige Thappings provide
useful information for public health managementause they help identify the BM
concentration hotspots. Identifying pollution hattgpat a fine scale is essential in Hong
Kong. Under the highly heterogeneous urban contieistjmpossible to identify hotspots by
the sparsely distributed monitoring stations edintly. This study shows that the monitoring
gaps can be filled with remote sensing data by AQIR modelling and geo-mapping
techniques which are useful in the estimation ob PMuman exposure level and public
health applications at a finer spatial scale (Thetchl., 2015). The present study is one of the
first cases of application in an extremely high-signcity. Although the resultant LUR
models are specially developed for Hong Kong trarsot be entirely transferable to other
locations, the present study provides a generalte-methodology to the environment
protection officers and policy-makers in otherasfregions. The way that this research
analyzes the microscale urban form and integraiati AOD-LUR modelling makes better
use of the urban datasets. The analysis method beutntirely transferred and adopted to
other cities. The environment protection officemsl @olicy-makers will be able to reference
it and adjusted or redevelop the prediction mobdaked on their local settings. More
importantly, the generalize-able workflow makes phediction models and spatial estimation
of different city scenarios becomes quantitativaynparable, which could contribute a more

comprehensive understanding on the urban effectsrajuality across different regions.

4.3 LIMITATIONS

There are a few limitations of this study, whickluded that the available AOD observations

were directly joined to the ground-level RMneasurements. The grid cell variability in each
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3 km AOD cell can only be considered on the muitata statistical analysis stage (by using
microscale geographic indices as model predictérgure studies could be beneficial to
consider the grid-cell variability of when joini®fOD observations with ground-level BM

measurements.

In addition, external dataset is not availableviairdation in Hong Kong. With the use of
only 15 ground-based monitoring stations in Hongnélthat available for model
development, cross-validation was used to validateesultant maps. This internal
validation method is a strategy for validating peadns with observed data when there is
lack of external data for validation (Refaeilzadttal., 2009), which has been widely used in
previous studies for exposure mapping. Therefamssevalidation without the use of an
external dataset is appropriate for the purposbeopresent study. In our next step works,
attempt will be made to acquire relevant datasets heighboring large cities (e.g.
Shenzhen) for an external validation, which coud &e useful to evaluate the

transferability to other regions of the resultamtdals.

Although, the regional impact from the neighborurganized area in PRD region was
successfully captured by our models as mentionsédtion 3.3, the severe dust storm
episode events due to the transport of dusts frast Asian and non-East Asian sources (Lee
et al., 2010) are not well reflected in the spmmgdels. This reveals that AOD-LUR

modelling approach has a limited skill in handlthg long-range transport of pollutants at a
very large geographical extent. Further attemptdccbe made to nest the AOD-LUR models
into a global or a very large regional climate/aspiveric modelling (e.g., GCMs, WRF) for
geostatistical downscaling. The outputs can poggitdvide a better estimation of ground-

level PMysunder the large-scale regional impacts.
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5. CONCLUSIONS

In this study, we developed AOD-LUR spatiotempaonaldels of ground-level Pp4
concentrations and a 13-years long-term daily vesbtlataset to improve the AOD-BM
correlations in a high-density city, with considéeras of microscale environmental factors.
On top of the AOD-PMis correlations based on the LUR model with microsggdographic
predictors, we estimated the daily-resolved finglesspatiotemporal variation of ground-
level PMy sover Hong Kong. Quantitative information on thetggamporal variation of air
pollution is essential for the planning of a degdalilt urban environment because air
quality is closely related to urban developmenbadrdevelopment changes land cover/land
use, building morphology and transportation. Assult, pollution emission increases, the
local climate condition is altered and pollutiospirsion is consequently affected. Compact
urban development is generally regarded as a satilai mode because it saves land
resources, allows efficient use of transportatewilities. However, compact development
modes without appropriate control can lead to seudpan air pollution issues (Betanzo,
2007). The AOD-LUR models developed in this stuatjicate that the building morphology
(parameterized as the model variables of urbamsariorm) is actually an influential factor
in air pollution concentration in a high-densitypan context. Therefore, the resultant AOD-
LUR models developed in this study could be po#diytiranslated into quantitative rules

and guidelines for environmental urban planning.
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