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ABSTRACT 26 

Estimating the spatiotemporal variability of ground-level PM2.5 is essential to urban air 27 

quality management and human exposure assessments. However, it is difficult in a high-28 

density and highly heterogeneous urban context as ground-level monitoring stations are most 29 

likely sparsely distributed. Satellite-derived Aerosol Optical Depth (AOD) observation has 30 

made it possible to overcome such difficulty due to its advantage of spatial coverage. In this 31 

study, we improve the AOD-PM2.5 correlations by combining land use regression (LUR) 32 

modelling and incorporating microscale geographic predictors and atmospheric sounding 33 

indices in Hong Kong.  The spatiotemporal variations of ground-level PM2.5 over Hong Kong 34 

were estimated using MODerate resolution Imaging Spectroradiometer (MODIS) AOD 35 

remote sensing images for the period of 2003-2015. An extensive LUR variable database 36 

containing 294 variables was adopted to develop AOD-LUR models by seasons. Compared 37 

to the baseline models (fixed effect models include only basic weather parameters), the 38 

prediction performance of all annual and seasonal AOD-LUR fixed effect models were 39 

significantly enhanced with approximately 20-30% increases in the model adjusted R2. On 40 

top of that, a mixed effect model covers time-dependent random effects and a group of 41 

geographically and temporally weighted regression (GTWR) models were also developed to 42 

further improve the model performance. As the results, compared to the uncalibrated AOD-43 

PM2.5 spatiotemporal correlation (adjusted R2 = 0.07, annual fixed effect AOD-only model), 44 

the calibrated AOD-PM2.5 correlation (the GTWR piecewise model) has a significantly 45 

improved model fitting adjusted R2 of 0.72 (LOOCV adjusted R2 of 0.65) and thus becomes a 46 

ready reference for spatiotemporal PM2.5 estimation.  47 

KEYWORDS 48 

land use regression; aerosol optical depth; PM2.5; spatial mapping 49 
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GRAPHICAL ABSTRACT 50 

 51 

HIGHLIGHT  52 

• AOD-PM2.5 spatiotemporal correlation of Hong Kong was investigated; 53 

• Land use regression (LUR) method was adopted to improve the AOD-PM2.5 54 

correlation; 55 

• Microscale geographic variables and sounding indices were incorporated as 56 

predictors; 57 

• MLR, LME and GTWR models were developed for the daily estimation of PM2.5; 58 

• The improved AOD-PM2.5 correlation - GTWR model has an adjusted R2 of 0.72. 59 

  60 
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1. INTRODUCTION 61 

Ambient particular matter (PM) is a mixture of extremely small solid particles and liquid 62 

droplets, which contains complex components of nitrates and sulfates, organic chemicals, 63 

metals, and dust particles (EPA, 2013). PM2.5 (fine particulate matter with < 2.5 microns in 64 

aerodynamic diameter) has been identified as a great threat to population health (Davidson et 65 

al., 2005; Dockery, 2009; Schwarze et al., 2006), and thus the observations of spatiotemporal 66 

variability of PM2.5 has become one of the most important topics in epidemiology (Pope et 67 

al., 1995) and urban climatology (Bach, 1972). The strong associations between long-term or 68 

short-term health risks and ambient PM2.5 exposure were not only be found in the typical 69 

urban form in cities in North America or Europe, but also in cities with compact and high-70 

density built environment such as Hong Kong (Lin et al., 2017; Tam et al., 2015; Wong et al., 71 

1999; Wong et al., 2002). PM2.5 is also responsible for various negative effects on the living 72 

environment, such as urban climate deterioration (Jonsson et al., 2004) and visibility 73 

reduction (Cheung et al., 2005; Thach et al., 2010; Wu et al., 2005). Moreover, these adverse 74 

effects are expected to be stronger in a high-density environment because of the poor wind 75 

ventilation (Yuan et al., 2014). Therefore, estimating the spatiotemporal variation of PM2.5 is 76 

essential to air quality management and health risk assessment.  77 

Although a prediction of spatiotemporal variability of PM2.5 across a city is necessary, it is 78 

generally difficult because of the sparse distributions of air monitoring stations (Kanaroglou 79 

et al., 2005), especially in a high-density city. For example, hourly PM2.5 concentration in 80 

Hong Kong is currently monitored by a local air quality monitoring network (AQMN) with 81 

only 16 stations. However, Hong Kong is a large city with approximately 1,100 km2 of land 82 

covering with a wide range of urban settings (in terms of topography, land use, building form 83 

and residents’ activities, etc.). This diversity means air quality varies greatly across districts, 84 

and cannot be effectively monitored by the ground-level monitoring network with sparsely 85 
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distributed stations (Shi et al., 2016). This consequently leads to the probable issue of 86 

assessment errors in the investigation of human exposure when using the PM2.5 data from the 87 

nearest monitoring station. Moreover, identifying hotspots of human exposure will be 88 

difficult when only AQMN is used. 89 

Alternatively, satellite-based aerosol optical depth (AOD) data with large spatial coverage 90 

and temporal continuity have been popularly used to estimate ground-level PM2.5 91 

concentration in global and regional contexts (Hoff and Christopher, 2009). Previous studies 92 

have observed a fair correlation between PM2.5 measured by AOD and local air monitoring 93 

networks (Krstic and Henderson, 2015; Paciorek et al., 2008), and found the ability of  94 

predicting the spatial distribution of PM2.5 by AOD and chemical transportation models 95 

(Geng et al., 2015; Liu et al., 2004; van Donkelaar et al., 2006). Some studies also suggested 96 

that applying AOD with advanced statistical methods such as machine learning and spatial 97 

statistical models may be able to improve the spatial quality of PM2.5 mapping (Beckerman et 98 

al., 2013). Most of these studies have focused on the spatial distribution of PM2.5 in a 99 

relatively large geographic extent with homogeneous landscapes (Qin et al., 2017; Zang et 100 

al., 2017). Only a few cases incorporated the microscale environmental factors to AOD-PM2.5 101 

modelling (Kloog et al., 2012). Actually, it is more essential in a high-density built 102 

environment, because the microscale effect on the spatial accuracy of PM2.5 prediction is 103 

significantly affected by the urban morphology. Due to this limitation, only a few AOD-104 

PM2.5 studies have incorporated with microscale environmental factors in a fine spatial 105 

resolution mapping. For example, the study with PM2.5 prediction map in 100m-resolution 106 

was an application to traditional European cities with relatively homogenous landscape (de 107 

Hoogh et al., 2016), while the other studies are of 500m resolution or even coarser that are 108 

not suitable for representing the spatial variability of PM2.5 in an extremely heterogeneous 109 

urban area. Moreover, the heterogeneous land surface also affects the vertical distribution of 110 
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aerosol, which is also a major impact factor in the AOD-PM2.5 relationship that should be 111 

taken into consideration (Li et al., 2015).  112 

To overcome the above limitations, several studies have attempted to enhance the AOD-113 

PM2.5 correlations by combining Land Use Regression (LUR) modelling with microscale 114 

land use information and geographic predictors (Kloog et al., 2012; Lee et al., 2016; Mao et 115 

al., 2012; Vienneau et al., 2013). LUR is a promising technique for estimating spatial 116 

variation of ambient air pollution at a fine scale. It has been widely adopted in human 117 

pollution exposure assessments in public health studies (Hoek et al., 2008; Ryan and 118 

LeMasters, 2007). Using geographic and urban setting predictors, LUR allows the estimation 119 

of long-term averaged concentration of ambient air pollution in unmonitored areas in 120 

geographic information system (GIS). Attempts to develop temporal-resolved LUR models 121 

have been made in recent years (Saraswat et al., 2013). These estimations will provide a 122 

series of fine-scale maps of spatially and temporally varying ground-level PM2.5 at a finer 123 

spatial resolution compared to the satellite AOD data. 124 

The aim of this study is to improve the AOD-PM2.5 correlation analysis and to provide a 125 

better estimation of the spatiotemporal variation of ground-level PM2.5 in a city with high-126 

density built environment, in order to fill the monitoring gaps of the local monitoring 127 

network. Hong Kong has been selected as the study site, because it is a high-density city with 128 

distinct urban form across districts. The spatial variation of urban characteristics across both 129 

natural and artificial surfaces can considerably modify the boundary layer meteorological 130 

conditions, and subsequently affect the aerosol vertical distribution. Ultimately, the spatial 131 

variation of ground-level PM2.5 is affected by non-uniformly distributed local sources and the 132 

variation of urban forms at the microscale. In this study, we enhance the spatiotemporal 133 

AOD-PM2.5 correlation analysis for Hong Kong by combining LUR modelling with a 134 
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comprehensive set of microscale geographic predictors as well as atmospheric sounding 135 

indices. Fine-scale spatiotemporal variation of ground-level PM2.5 over Hong Kong is 136 

estimated using LUR with the MODerate resolution Imaging Spectroradiometer (MODIS) 137 

AOD data for the period of 2003-2015. 138 

2. MATERIALS AND METHODS 139 

2.1 GROUND-LEVEL PM 2.5 LONG-TERM MONITORING DATA 140 

In this study, hourly concentration of ground-level PM2.5 between 2003 and 2015 were 141 

obtained from 15 of 16 stations operated under the AQMN of Hong Kong Environmental 142 

Protection Department (EPD), because a newly-constructed station in Tseung Kwan O are 143 

not available for the entire study period. (Figure 1). These hourly PM2.5 concentration 144 

monitored by the AQMN are based on high-accuracy gravimetric sampling using the USEPA 145 

certified gravimetric oscillating microbalance equipment, including the Graseby Anderson 146 

PM, Partisol 2025, R&P TEOM series 1400-AB and 1405DF (Lu and Wang, 2008). Daily 147 

average of PM2.5 concentration was calculated in order to be consistent with the AOD data 148 

for further analysis (Figure S-1 in the supplementary materials).  149 

 150 
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 151 

Figure 1. The locations of 15 available stations in the air quality monitoring network 152 

(AQMN) of Hong Kong (The elevation of each station can be found from: 153 

http://www.aqhi.gov.hk/en/monitoring-network/air-quality-monitoring-stations.html). 154 

 155 

2.2 AEROSOL OPTICAL DEPTH (AOD) DATA 156 

The MODIS Level 2 aerosol products at a spatial resolution of 3 km were obtained from both 157 

Terra and Aqua satellites (MOD04_3K at 10:30 and MYD04_3K at 13:30) using dark target 158 

algorithm (Remer et al., 2013). Compared with the original 10-km product, this product with 159 

3-km resolution is better at providing details of fine-scale aerosol characteristics over the 160 

small geographic extent with heterogeneous landscapes. There is finer resolution AOD data 161 

for worldwide, but it is not specially designed for subtropical area. Therefore, it needs to be 162 

carefully pre-calibrated (the aerosol retrieval algorithm needs to be modified) before using 163 

the data in subtropical area (Bilal et al., 2013). Therefore, we acquired the 3 km AOD product 164 

from 2003 to 2015. A total of 8,738 AOD images were obtained for the 13-year period from 165 

Terra and Aqua sensors. All AOD images were projected to the Hong Kong 1980 coordinate 166 

system for the spatial consistency of local land use data sets. Daily averaged AOD values 167 
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were calculated based on above satellite images at grid cells corresponding to the 15 AQMN 168 

stations. Satellite AOD observations are not available when clouds cover the location. All 169 

available observations from the entire AOD image data set were extracted (Figure S-2 in the 170 

supplementary materials). 171 

2.3 METEOROLOGICAL VARIABLES 172 

Weather data (ground-level air temperature, relative humidity, wind speed, rainfall, mean sea 173 

level pressure, wet-bulb temperature and dew-point temperature) were retrieved from a total 174 

of 42 weather stations of Hong Kong Observatory (HKO). Weather data from the closest 175 

weather stations were assigned to the grid cell locations of 15 air quality monitoring stations 176 

in AQMN. Crumeyrolle et al. (2014) mentioned that the variability in atmospheric factors 177 

such as vertical structure/mixing and hygroscopicity could significantly affect and add 178 

uncertainty to AOD-PM2.5 correlation. Their study shows that considering the impact of 179 

ambient relative humidity could improve the PM2.5 estimates. Moreover, the presence of 180 

aerosol above the boundary layer introduces significant uncertainties in PM2.5 estimates. The 181 

day-to-day variation of atmospheric stability also affects the vertical distribution of aerosol 182 

(Lee et al., 2011). In that case, sounding data would serve as better predictors than the basic 183 

weather parameters. Therefore, 19 widely used sounding indices related to atmospheric 184 

stability were also adopted as meteorological variables (Table 1). The atmospheric sounding 185 

indices data used in the present study (Hong Kong, Station No. 45004) is provided by the 186 

Department of Atmospheric Science, University of Wyoming, which represent an overall 187 

atmospheric condition over entire Hong Kong for each day. 188 

2.4 GEOGRAPHIC PREDICTORS OF PM2.5 IN LUR MODELLING  189 

Six categories of data sets were adopted as geographic predictors of PM2.5 LUR modelling: (i) 190 

land use, (ii) road traffic density, (iii) emission sources of marine and power stations, (iv) 191 
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population density, (v) natural geography and (vi) urban surface form. Most of the 192 

geographic predictors were retrieved from the GIS vector dataset that can be accurately 193 

converted to 1m resolution for spatial study. These data have been widely and successfully 194 

used for fine-resolution mapping in Hong Kong (Shi et al., 2017). In this study, to balance the 195 

data size and mapping precision, a spatial resolution of 10m was adopted for the spatial 196 

mapping, which is also the spatial resolution of the standard land use dataset of Hong Kong. 197 

Incorporating the fine-resolution microscale geographic predictors into the estimation of 198 

AOD-PM2.5 correlation is essentially also a data-intensive spatial downscaling process. 199 

2.4.1 LAND USE 200 

The limited land resources and high population jointly spawn the extremely compact urban 201 

development. The vertically developed urban form shapes the intensive and highly mixed 202 

urban land use in Hong Kong. The land use data were obtained from Hong Kong Planning 203 

Department (PlanD). The land use of Hong Kong is recorded in the raster format with a 204 

spatial resolution of 10m. Based on literature 15, the complicated land use types were 205 

reclassified as the following types: Residential use (RES); Commercial use (COM); Industrial 206 

use (IND); Government use (GOV) and Open space (OPN). Using buffering analysis, the 207 

total area (unit: m2) of each land use type in a set of buffers (Table 1) of each monitoring 208 

stations was summed up and used as the explanatory variables of LUR modelling. 209 

2.4.2 ROAD TRAFFIC DENSITY 210 

Four different indicators were used to depict the local road traffic density: road line density 211 

per unit area (km/km2), road area ratio, traffic volume counted based on passenger car unit 212 

(PCUs) and count of bus stops. Using LUR buffering analysis, line densities of five road 213 

types— expressways/trunk road, primary road, secondary road, tertiary road and ordinary 214 

road— were calculated separately. The road area ratio is the percentage of vehicle road area 215 
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within a certain locality, which measures the amount of road traffic carrying capacity. The 216 

raw data of traffic flow count in Hong Kong are published in “Annual Traffic Census” by the 217 

Transport Department every year. The number of vehicles is counted at nearly 900 stations in 218 

different road segments. Based on these data and the road network, the spatial distribution of 219 

traffic volume of public transport vehicles and private/government vehicles can be mapped. 220 

Buses are heavy-duty diesel fuel vehicles and a major source of PM2.5 in Hong Kong.(Wang 221 

and Lu, 2006) Therefore, the number of bus stops within certain buffer ranges was also used 222 

as predictors of road traffic density. 223 

2.4.3 EMISSION SOURCES OF MARINE AND POWER STATIONS 224 

Marine transportation accounts for a large proportion of PM2.5 emissions in Hong Kong (Lau 225 

et al., 2007). Marine facilities and routes were identified in and extracted using GIS as point 226 

and line PM2.5 emission sources. Local power stations relying on fossil and diesel fuels are 227 

considered area emission sources. The nearest distance from each monitoring station to the 228 

marine facilities, routes and local power plants was calculated as the predictor variables.  229 

2.4.4 POPULATION 230 

The population density (people per km2) is the most commonly used measure of population 231 

distribution. The latest population census data of year 2011 is obtained from Hong Kong 232 

Census and Statistics Department and mapped using the digital boundary of Street 233 

Block/Village Clusters (SB/VC, a standard planning unit used in Hong Kong). The 234 

population density in the buffers of each monitoring stations is then calculated. 235 

2.4.5 NATURAL GEOGRAPHY 236 

Seven indicators were adopted as predictor variables to reflect the natural geographic 237 

condition of each monitoring station: longitude (∆x to the coordinate origin of HK1980 Gird), 238 

latitude (∆y to the coordinate origin of HK1980 Gird), elevation above the Hong Kong 239 
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Principal Datum, distance to waterfront, distance to city parks, distance to country parks and 240 

greening coverage ratio (the percentage of vegetation coverage, extracted from land use data). 241 

2.4.6 URBAN SURFACE FORM 242 

Densely built urban forms significantly change the aerodynamic properties of land surface, 243 

and hence change the air flow near the ground surface, resulting in considerable microscale 244 

variation in PM2.5 concentration (Fernando et al., 2001). It has been proved that incorporating 245 

urban forms as predictor variables improves the LUR modelling accuracy (Shi et al., 2016; 246 

Tang et al., 2013). Therefore, to consider microscale environmental variations that affect the 247 

spatial accuracy of PM2.5 prediction in a high-density city, a set of predictor variables of 248 

urban surface forms were used in LUR modelling (Barnes et al., 2014; Cao and Lin, 2014). 249 

They were building height (ℎ), plan area index (λ�), weighted frontal area index based on the 250 

probability of wind directions (�̅�), urban surface roughness length (��), and were calculated 251 

based on the local building data set with the following equations: 252 

λ� = (
 ���

��� )/�� 

Equation 1 
 

�̅� = 
[(
 ���(�)

��� )/��]��

��� �(�) Equation 2 
 

�� = �ℎ − ℎ ∙ λ��.�����  − !"0.5 ∙ %&' ∙ �̅�( Equation 3 
 

where ) is the total amount of buildings in a district. �� is the district area. ��� is the 253 

footprint area of the building *. ���(�) is the frontal area of building * under the scenario of 254 

wind direction +. CDh is drag coefficient considered as 0.8. K is the Kármán's constant of 0.4. 255 

Figure 2 illustrates the mapping of spatial distribution of	�̅� because it is not a traditional 256 

LUR predictor. 257 
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 258 

Figure 2. The spatial distribution map of weighted frontal area index based on the probability 259 

of wind directions (�̅�) which reflects the potential of ground-level air flow movement. 260 
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Table 1. Summary of meteorological and geographic predictor variables. 261 

Data categories Variables Unit Analysis Codes 
Meteorological variables 

Weather parameters ground-level air temperature °C daily average -�.� 
relative humidity % daily average /0 
wind speed m/s daily average 1�2 
rainfall mm daily average /3 
mean sea level pressure hPa daily average 415� 
wet-bulb temperature °C daily average Wet 
dew-point temperature °C daily average Dew 

Atmospheric 
sounding indices 

Bulk Richardson Number - daily average BRCH 
Bulk Richardson Number using CAPV - daily average BRCV 
Convective Available Potential Energy J/kg daily average CAPE 
CAPE using virtual temperature J/kg daily average CAPV 
Convective Inhibition J/kg daily average CINS 
CINS using virtual temperature J/kg daily average CINV 
Cross totals index - daily average CTOT 
K index - daily average KINX 
Pressure of the Lifted Condensation Level hPa daily average LCLP 
Temperature of the Lifted Condensation Level K daily average LCLT 
Lifted index - daily average LIFT 
LIFT computed using virtual temperature - daily average LIFV 
Mean mixed layer mixing ratio g/kg daily average MLMR 
Mean mixed layer potential temperature K daily average MLPT 
Total precipitable water mm daily average PWAT 
Showalter index - daily average SHOW 
SWEAT index - daily average SWET 
Total totals index - daily average TTOT 
Vertical totals index - daily average VTOT 

Geographic Predictors 
Land use  
(Total land area 
within certain buffer 
sizes *) 

Residential use m2 buffer RES 
Commercial use m2 buffer COM 
Industrial use m2 buffer IND 
Government use m2 buffer GOV 
Open space m2 buffer OPN 

Road Traffic density Road line density of expressways/trunk road km/km2 buffer Rdexp 

Road line density of primary road km/km2 buffer Rdpri 
Road line density of secondary road km/km2 buffer Rdsec 
Road line density of tertiary road km/km2 buffer Rdter 
Road line density of ordinary road km/km2 buffer Rdord 
Road area ratio % buffer Rdar 
Traffic volume of public transport vehicles PCUs buffer ptpcu 
Traffic volume of private/government vehicles PCUs buffer pgpcu 
Number of bus stops - buffer busst 

Emission sources of 
marine & power 
stations 

Distance to marine routes, facilities m point d_marine 
Distance to local power plants m point d_power 

Population  Population density People/km2 buffer pop 
Natural geography Longitude (based on HK1980 system) m point x 

Latitude (based on HK1980 system) m point y 
Elevation of the monitoring station m point z 
Distance to waterfront m point d_water 
Distance to city parks m point d_cityp 
Distance to country parks m point d_countryp 
Greening coverage ratio % buffer greening 

Urban surface form building height m buffer h_bldg 
plan area index % buffer λ� 
weighted frontal area index based on the 
probability of wind directions 

- buffer �̅� 

urban surface roughness length m buffer �� 
The 13 buffer sizes used in this study are 50, 100, 200, 300, 400, 500, 750, 1000, 1500, 2000, 3000, 4000, 5000m. 
The Sounding data available at http://weather.uwyo.edu/upperair/sounding.html 
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2.5 STATISTICAL MODELING AND VALIDATION METHODS 262 

LUR modelling was conducted to develop the AOD-PM2.5 correlation models. The PM2.5 263 

data mentioned in section 2.1 were used as the response variable of the models with the 264 

satellite-derived AOD mentioned in section 2.2 forced as the first explanatory variable of all 265 

regression models. The LUR modelling aims to improve the AOD-PM2.5 correlation by 266 

incorporating microscale geographic predictors and atmospheric stability sounding indices. 267 

First, Multiple Linear Regression (MLR) method — commonly used in previous LUR studies 268 

— was adopted to identify the important predictor variables and develop traditional fixed 269 

effect model. On top of that, a mixed effect model covers time-dependent random effects and 270 

a geographically and temporally weighted regression (GTWR) model were also developed to 271 

further improve the model performance. Four steps were involved in the modelling process. 272 

2.5.1 STEP 1 - DEVELOPING BASELINE AOD-PM2.5 MODEL 273 

In Step 1, the baseline models of the AOD-PM2.5 correlation were developed. The modelling 274 

only involves five most commonly used basic weather parameters mentioned in section 2.3— 275 

ground-level air temperature (-�.�), relative humidity (/0), wind speed (1�2), rainfall 276 

(/3) and mean sea level pressure (415�). The baseline estimation model structure in this 277 

study was forced to be built as follows: 278 

�46.7�8 = 9��:;�8 +	96-�.��8 +	9=/0�8 +	9>1�2�8 + 97/3�8 + 9�451�
+	?�8 	+ 	@�8 	 Equation 4 

 

where �46.7�8 is the predicted PM2.5 concentration at the location of air quality monitoring 279 

station i on day j.  �:;�8 is the satellite-derived AOD at the location i on day j.	9� is the 280 

slope of	�:;. 96,	9=,	9>,	97 and	9� are the slopes for the five daily averaged basic weather 281 

variables. ?�8 is the intercept of the model. @�8 is the residuals which presumably vary by day. 282 

The winter monsoon is predominant from fall to spring, making coastal Hong Kong basically 283 
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downwind of the polluted industrial areas and urbanized areas in Pearl River Delta (PRD) 284 

region (Ding et al., 2013; Kok et al., 1997; Wang et al., 2009). Hence, the influence of 285 

pollution originating in densely built neighboring city of Shenzhen—north of Hong Kong— 286 

is significant. Therefore, in order to distinguish seasonal variation, the AOD-PM2.5 287 

correlations were developed separately using MLR by different seasons defined as annual 288 

(January to December), spring (March to April), summer (May to September), fall (October 289 

to November) and winter (December to the February of the next year). The above definitions 290 

are based on local meteorological observations and the synoptic weather pattern. Hong Kong 291 

is a coastal subtropical city influenced by monsoon. The months of each season are different 292 

than the temperate city in Europe and North America. A piecewise annual model was also 293 

developed by simply combining the four single seasonal models based on the time period of 294 

seasons. To be more specific, the piecewise model predicts the PM2.5 in each season by 295 

separately using the four seasonal MLR correlation models in the time intervals of the four 296 

different seasons. As a result, six baseline models were developed. 297 

2.5.2 STEP 2 - SELECTING INFLUENTIAL MODEL VARIABLE S 298 

Most of the geospatial studies treat all spatial factors using a grid system with fixed spatial 299 

resolution. However, the impact range of different influencing factors may vary due to the 300 

differences in the pollution emission intensity or the complex physical basis of the pollution 301 

diffusion and dispersion. For example, the industrial land use could affect the air quality 302 

within a spatial extent of several kilometers, while a segment of urban tertiary road will only 303 

significantly affect the air quality within a couple of hundred meters. Therefore, LUR studies 304 

apply the concept of buffers, instead of using a fixed grid system for all data. In LUR study, 305 

each air pollution influencing factor are calculated in multiple buffers. Thus, the same 306 

influencing factor calculated using two different buffer sizes are used as two separate 307 

predictor variables in the regression modelling. In this study, LUR buffering analyses were 308 
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conducted for 20 geographic predictors using 13 buffer sizes. Together with other variables, 309 

294 explanatory variables were required to be checked for developing improved the AOD-310 

PM2.5 correlations. In that case, it is essential to pre-select only a limited number of variables 311 

for the regression modelling because this could prevent over-fitting issues during the 312 

automatic stepwise regression modeling process (Babyak, 2004). Using the 13 buffer sizes, a 313 

series of regression analysis was performed for each buffer-based variable. The purpose of 314 

these regression analyses was to test the sensitivity of the variables in the models to different 315 

buffer sizes. These regression analyses were performed using the below model structure: 316 

�46.7�8 = 9��:;�8 +	96-�.��8 +	9=/0�8 +	9>1�2�8 + 97/3�8 + 9�451�
+ 9AB�/C +	?�8 +	@�8	 Equation 5 

 

The model was developed for each buffer-based variable at 13 different buffers. 9A is the 317 

slopes for the test variable (B�/C) calculated the using buffer size of 2. For example, the 318 

road traffic density calculated in 200m buffer and 2000m buffer are used as two separate 319 

variables. As described, 2 = 50, 100, 200, 300, 400, 500, 750, 1000, 1500, 2000, 3000, 4000, 320 

5000m. Adjusted R2 (	/6DDDD ) was used as the indicator to compare model performance. Thus, 321 

there will be 13 /6DDDD for traffic density in the 13 buffers. By following the “A Distance Decay 322 

REgression Selection Strategy (ADDRESS)” developed by Su et al. (2009a), a distance-323 

decay curve can be plotted, which is essentially a function of distance, and thus the critical 324 

buffers (shown as turning points/peaks in the decay curve function) could be identified. In 325 

another application study of “ADDRESS”, Su et al. (2009b) detailly illustrate the 326 

identification of critical buffers. In the present study, by following the same method, only 327 

variables at the critical buffers were identified and retained as candidate explanatory variables 328 

for next step analysis. 329 
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2.5.3 STEP 3 - STEPWISE REGRESSION MODELLING 330 

Following the typical LUR research (Beelen et al., 2013), stepwise MLR modelling was 331 

performed to develop AOD-LUR models by different seasons. The models were initially 332 

determined by using the modelling criteria of minimum Bayesian Information Criterion 333 

(BIC) using the forward direction, the model with the highest /6DDDD was selected for further 334 

process. In the subsequent process, the p-value and variance inflation factor (VIF) of each 335 

explanatory variable in all these resultant models were examined in order to eliminate 336 

collinearity issues in the resultant models. Based on the criteria used in literature (Vienneau 337 

et al., 2013), variables with p-value > 0.10 and VIF > 5 were excluded. Due to the above 338 

criteria of variable exclusion, some of those aforementioned basic weather variables may not 339 

be included in the final models, as they naturally correlate with sounding indices (which are 340 

possibly better predictors of atmospheric stability) and are consequently removed. The final 341 

models are constructed in a general model structure as below: 342 

�46.7�8 = 9��:;�8 +	96B�/6�8 + ⋯+	9FB�/F�8 +	9FG�B�/C,FG�
+ 9FG6B�/C,FG6 + ⋯+ 9
B�/C,
 +	?�8 +	@�8 	 Equation 6 

 

where �46.7�8 is the predicted PM2.5 concentration at the location of air quality monitoring 343 

station i on day j.  �:;�8 is the satellite-derived AOD at the location i on day j.		9� is the 344 

slope of �:;�8. 96…	9F are the slopes for the . temporally varied meteorological variables. 345 

9IG�… 9
 are the slopes for the ) − . geographic predictors (B�/C) calculated the at the 346 

buffer size of 2.	?�8 is the intercept of the AOD-LUR model.	@�8 is the residuals. As a result, a 347 

total of six pairs of models (Baseline MLR vs. AOD-LUR MLR) were developed. 348 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 19

2.5.4 STEP 4 – INCORPORATING TIME-DEPENDENT RANDOM EFFECTS AND 349 

GEOGRAPHICAL NON-STATIONARITY 350 

A set of traditional LUR models have been developed for Hong Kong during the first three 351 

steps. However, as mentioned earlier, traditional LUR models are commonly developed 352 

based on a fixed effect model structure, in which the effects of predictor variables are 353 

presumed to be temporally fixed. However, the influence of many predictors could be 354 

temporally variant, especially in the synoptic pattern of Hong Kong in which there are 355 

significant seasonal differences. Under such background, the influence of many predictors 356 

could be presumably at least varying by seasons. The above implies that the AOD-LUR 357 

model performance could be further improved by incorporating time-dependent effects and 358 

geographical non-stationarity into the model development. In this study, linear mixed-effect 359 

(LME) models are developed by additionally including time-dependent variables as random 360 

effects to improve the performance of AOD-LUR models. Considering the significant 361 

seasonal synoptic differences in Hong Kong (as mentioned in section 2.5.1), a categorical 362 

dummy variable was introduced to describe the seasons when particular concentration data 363 

were monitored. This newly included dummy variable is modelled in the linear regression as 364 

the random effect, such that LME models could be developed with time-dependent effects. 365 

As the results, three LME models will be developed: AOD-only LME model, baseline AOD-366 

PM2.5 LME model (a forced model structure with the five most commonly used basic weather 367 

parameters involved), AOD-LUR LME model (a model includes the same variable selection 368 

with the AOD-LUR stepwise MLR model). No seasonal LME models will be developed 369 

because the seasonal non-stationarity has been included in the year-round annual model. The 370 

LME model structure in this study can be expressed as: 371 
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�46.7�8 = 9��:;�8 +	96B�/6�8 + ⋯+	9FB�/F�8 +	9FG�B�/C,FG�
+ 9FG6B�/C,FG6 + ⋯+ 9
B�/C,
 + 9JKLJM
,8B�/JKLJM
,8 	
+ ?�8 +	@�8 

Equation 7 
 

where �46.7�8 is the predicted PM2.5 concentration at the location of air quality monitoring 372 

station i on day j and the random effect variable - B�/JKLJM
,8 is added into the model 373 

structure. 9JKLJM
,8 is the slope of the season variable value (which presumably vary by 374 

seasons) on on day j. No seasonal LME models will be developed because the seasonal non-375 

stationarity has been included in the year-round annual model. As the results, three LME 376 

models will be developed: AOD-only LME model, baseline AOD-PM2.5 LME model (a 377 

forced model structure with the five most commonly used basic weather parameters 378 

involved), AOD-LUR LME model (a model includes the same variable selection with the 379 

AOD-LUR stepwise MLR model). No seasonal LME models will be developed because the 380 

seasonal non-stationarity has been included in the year-round annual model. 381 

The context of land surface in the study area is highly heterogeneous which implies that the 382 

AOD-PM2.5 correlation could also be spatially variant. Geographically weighted regression 383 

(GWR) is a commonly-used method of dealing with such spatial non-stationarity in PM2.5 384 

spatial estimation (van Donkelaar et al., 2015). GWR handles the spatial non-stationarity by 385 

constructing local regression for different geographical locations instead of using one linear 386 

regression for the entire study area (Brunsdon et al., 1998). However, in many cases, the 387 

regression coefficients do not remain fixed over space as well as time. To also take temporal 388 

variation into consideration, a method named GTWR has been developed for modeling 389 

spatiotemporal variation in geographical data (Huang et al., 2010) and recently adopted in 390 

ground-level PM2.5 estimation (Bai et al., 2016). The GTWR model structure in this study can 391 

be expressed as: 392 
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�46.7�8 = 9��:;�8 +	
9F(N�, O� , P)B�/F�8F + 
9
(N�, O� , P)B�/C,

 	
+ 	?�8 +	@�8 

Equation 8 
 

where �46.7�8 is the predicted PM2.5 concentration at the location of air quality monitoring 393 

station i on day j.  �:;�8 is the satellite-derived AOD at the location i on day j. N�, O� are the 394 

geographical coordinates of station i. 9� is the slope of �:;�8. 9F are the slopes for the . 395 

temporally varied meteorological variables B�/F�8. 9
 are the slopes for the ) geographic 396 

predictors (B�/C) calculated the using the buffer size of 2.	?�8 and @�8 are the intercept and 397 

residuals of GTWR model. More technical details can be referred to Huang et al. (2010)’s 398 

article. 399 

2.5.5 MODEL VALIDATION  400 

Root-mean-square error (RMSE) and  /6DDDD were calculated for both the assessment of model fit 401 

and the cross validation of resultant models. /6DDDD and RMSE calculated as follows: 402 

/6DDDD = 1 − (1 − /6) R ) − 1) − � − 1S Equation 9 
 

/41T = U1)
V�46.7�‘ − �46.7�X6

���  Equation 10 

 

Where /6is the coefficient of determination of regression models. ) is the total number of 403 

data points. � is the total number of model predictor variables. �46.7� is the measured value 404 

of the PM2.5 concentration. �46.7�‘  is the estimated PM2.5 concentration from the resultant 405 

models. For the model validation, leave-one-out cross-validation (LOOCV) was used to 406 

validate all resultant models. Under LOOCV, all data will be split into two parts, a single data 407 

point is used for the validation data and the remaining data points used as the training dataset. 408 

This procedure is repeated )-times. There is no randomness in the split of the data into test 409 
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and training sample. Therefore, performing LOOCV repeatedly always yields the same 410 

results. 411 

3. RESULTS 412 

All resultant models developed in this study is based on the 13-year long-term dataset. There 413 

are data limitations provided by the EPD. PM2.5 of Hong Kong was a relatively new 414 

measurement of EPD. Each monitoring station has different start-up date for monitoring 415 

PM2.5. The cloud coverage is also a major impact factor of the availability of the AOD data of 416 

Hong Kong. Therefore, in the present study, the all 13-year long-term monitoring data were 417 

used for the model development to minimize this data bias. As the results, the annual model 418 

will be able to predict a daily spatial PM2.5 concentration for any day during 2003 – 2015 419 

period, while the seasonal models will be able to provide a daily estimation for any day in the 420 

particular season during 2003 – 2015 (for example, a summer model predicts the daily spatial 421 

PM2.5 for any summer day during 2003-2015). Considering the resultant spatiotemporal 422 

models on a daily basis, the annual or seasonal average could be easily achieved by averaging 423 

a series of daily estimations. 424 

3.1 THE BASELINE MODELS OF AOD-PM 2.5 CORRELATION 425 

Using the forced model structure (Step 1), a group of baseline MLR models was developed. 426 

AOD-only fixed effect model and LME model were also developed as a reference for the 427 

model performance comparison. All these resultant baseline models are listed in Table 2. 428 

Although the performance is better than AOD-only fixed effect model, results show that both 429 

the baseline MLR models and the AOD-only LME model perform relatively poor in 430 

predicting spatiotemporal ground-level PM2.5 without incorporating the microscale 431 

geographic variables and sounding data as predictors. The summer, fall, and winter baseline 432 

MLR models and the AOD-only LME model share a similar prediction performance level of 433 
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the	/6DDDD of 0.3-0.4. The Annual baseline MLR model only has a prediction performance of 	/6DDDD 434 

of 0.2 while the spring baseline MLR model has the lowest /6DDDD of less than 0.1.  435 

3.2 THE RESULTANT AOD-LUR MODELS WITH MICROSCALE GE OGRAPHIC 436 

PREDICTORS AND SOUNDING INDICES 437 

Corresponding to the aforementioned baseline models, a group of AOD-LUR MLR models 438 

was developed to improve the AOD-PM2.5 correlations (Step 2-3). Based on the model 439 

variables of corresponding MLR models, an AOD-LUR MLE model and a group of AOD-440 

LUR GTWR models were also developed to further improve the prediction performance 441 

(Step 4). All above resultant AOD-LUR models are listed in Table 2 (details of the MLR and 442 

GTWR models have been included in supplementary materials, Table S1-S7). The annual 443 

MLR model performs poorer than the seasonal MLR models naturally because of the lack of 444 

consideration on the seasonal variation. Developing GTWR models significantly improve the 445 

performance by to incorporate time-dependent effects and geographical non-stationarity into 446 

the model development. It can be seen that the resultant seasonal MLR models with 447 

geographic predictors and sounding variables perform much better than the corresponding 448 

baseline models (see actual by predict plot in Figure 3 and Figure S-3). The summer, fall, and 449 

winter AOD-LUR MLR models have a prediction performance level of the	/6DDDD of 0.5-0.6 450 

which are moderately good. After identifying the important variables, the development of 451 

GTWR models further improve the prediction performance to a higher level of the	/6DDDD of 0.6-452 

0.8. The actual by predicted plot shows that some data points in spring have an extremely 453 

high monitored concentration level that cannot be well predicted. A possible cause of these 454 

outliers is the impact of the severe dust storm episodes at a much larger geographical extent 455 

during spring time in Hong Kong (Lee et al., 2010). Although there are conspicuous outliers 456 

in the spring AOD-LUR model, the regression performance is significantly increased when 457 
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compared with the spring baseline model (/6DDDD from 0.07 to 0.35). As described earlier, a 458 

piecewise annual model was also developed by combining the four single seasonal models. 459 

By separately using the four seasonal MLR correlation models in the time intervals of the 460 

four different seasons, the piecewise annual model achieves a better prediction performance 461 

(/6DDDD of 0.55) than the single MLR annual model (/6DDDD of 0.33). As the results, a 48% increase 462 

of 0.48 in /6DDDD of the calibrated correlation was achieved by combining AOD-PM2.5 correlation 463 

with LUR modelling and incorporating geographic variables and sounding indices as 464 

predictors. Although the AOD-PM2.5 correlation has been significantly increased, the model 465 

performance is still lower than some previous studies in the other regions of China. It is 466 

reasonable because those studies of China are usually focusing on a larger spatial extent with 467 

fewer concerns of change in microscale environment. For example, the previous studies by 468 

You et al. (2016) and Xie et al. (2015) . Moreover, the monitoring stations they used are 469 

mostly located in homogeneous rural settings. Above the reasons why the variation between 470 

data are relatively low, resulting in a better /6DDDD. Our study focuses on inner-city microscale 471 

variability that can be influenced by multiple geographic factors across a city, which is more 472 

difficult to predict. Similar study for exposure modelling across a city (e.g. heat exposure) 473 

also has relatively low /6 because of this reason (Ho et al., 2014). 474 

  475 
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Table 2. List of resultant baseline models by seasons with forced model structure and 476 

improved AOD-LUR (MLR, LME and GTWR) models with geographic variables and 477 

atmospheric sounding indices as model predictors. Piecewise MLR and GTWR models are 478 

not shown in this table because they are combinations of four single-season models. About 479 

the variable name, for example, Rdexp0500 represents the road line density of 480 

expressways/trunk road calculated within the buffer of 500m. 481 

 Models Model performance evaluation 

Model type 
Model by 
seasons 

Model structure (included 
variables & coefficients) YZ YZDDDD Model 

fitting-
RMSE 

LOOCV
-RMSE 

LOOCV
-YZDDDD p-value 

AOD-only 
fixed effect 
model 

Annual 15.616*AOD+41.723 0.072 0.071 18.707 19.249 0.069 <0.0001* 

Baseline MLR 
models 
(weather 
parameters-
only) 
(regardless of p-
value and VIF 
of 
meteorological 
variables, no 
other LUR 
variables, Table 
S-1) 

Annual 
21.030*AOD-0.802*Temp-
0.463*RH-1.761*Spd-9.285*Rf-
0.091*MSLP+184.058 

0.199 0.196 18.875 19.070 0.194 <0.0001* 

Spring 
9.294*AOD-0.840*Temp-
0.077*RH-1.465*Spd-
35.261*Rf+0.190*MSLP-129.230 

0.096 0.070 14.410 15.761 0.064 0.0018* 

Summer 
20.958*AOD+0.028*Temp-
1.071*RH-1.691*Spd-0.406*Rf-
0.387*MSLP+496.565 

0.341 0.319 15.181 16.361 0.296 <0.0001* 

Fall 
26.609*AOD+1.222*Temp-
0.672*RH-2.336*Spd-89.186*Rf-
0.124*MSLP+187.013 

0.389 0.373 14.111 14.953 0.352 <0.0001* 

Winter 

48.645*AOD+0.319*Temp-
0.376*RH-0.941*Spd-
184.146*Rf-
0.216*MSLP+274.619 

0.381 0.373 15.894 16.332 0.363 <0.0001* 

AOD-LUR 
MLR models 
(with all 
included 
variables meet 
the criteria of p-
value < 0.10 
and VIF < 5, 
Table S-2) 

Annual 

24.522*AOD-0.550*Spd+25.347*	�̅�0050-(2.178e-
5)*RES0400+0.358*CTOT-
0.105*LCLP-
0.737*PWAT+138.640 

0.326 0.322 17.097 17.589 0.313 <0.0001* 

Spring 
16.745*AOD-
0.487*z+3.724*Rdsec2000+0.45
1*CTOT-1.014*PWAT+57.171 

0.371 0.353 12.270 14.155 0.306 <0.0001* 

Summer 

24.628*AOD+1.382*Wet+38.007
* �̅�0100-(3.538e-4)*pop0050-
0.248*LCLP-0.315*PWAT-
2.763*VTOT+274.492 

0.605 0.589 12.761 13.163 0.571 <0.0001* 

Fall 

37.719*AOD+1.534*Wet+3.835*
Rdexp0500-0.990*Rdord0200-
0.167*LCLP-
0.575*PWAT+168.896 

0.524 0.518 13.508 13.747 0.509 <0.0001* 

Winter 
57.671*AOD+0.266*RH+2.172*
Rdexp0750-0.144*LCLP-
0.089*MLPT+155.119 

0.570 0.564 13.223 14.453 0.516 <0.0001* 

AOD-only 
LME model 

Annual 
The coefficients of random effect 
are seasonally varied. 

0.320 0.319 15.456 16.380 0.301 <0.0001* 

AOD-LUR 
LME model 

Annual 0.375 0.374 15.755 15.797 0.374 <0.0001* 

AOD-LUR 
GTWR models 
(with all 
included 
variables meet 
the criteria of p-
value < 0.10 
and VIF < 5) 

Annual 
The model coefficients are 
geographically and temporally 
varied. (Table S-3 - S-7 shows the 
coefficients of GTWR models, see 
the Supplementary Material). 

0.542 0.541 11.598 13.523 0.461 <0.0001* 

Spring 0.617 0.615 8.590 9.693 0.536 <0.0001* 
Summer 0.899 0.898 5.885 6.254 0.839 <0.0001* 

Fall 0.709 0.708 9.071 10.460 0.606 <0.0001* 

Winter 0.640 0.639 12.120 12.158 0.634 <0.0001* 

 482 
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 483 

Figure 3. Actual by predicted plot of resultant piecewise models with microscale geographic 484 

predictors and sounding indices (LOOCV-/6DDDD and LOOCV-RMSE are shown). Figure S-3 485 

shows the results of other models. 486 

Without forcing the structure, the resultant AOD-LUR models shows different model 487 

structures from the baseline models. First, as expected, most of the basic weather variables, 488 

instead of atmospheric sounding indices, are removed from the resultant models. A major 489 

impact factor in meteorological conditions and aerosol vertical distribution (Arya, 1999; Li et 490 

al., 2015), the atmospheric stability can be better represented by sounding indices, and 491 

consequently improve the model performance. Second, the geographic predictors of urban 492 

surface form, road traffic density and land use show in all resultant models. Traffic density 493 

and land use represent the spatial variability of the emission intensity, necessarily be the 494 

influential factors of air particle concentration in the resultant models. Under the high-density 495 

and highly heterogeneous urban context of Hong Kong, the surface forms in different areas 496 

can be considerably diverse. Urban surface forms alter the turbulent air circulation (Seinfeld, 497 

1989), and subsequently varies the vertical profile of air particles in the boundary layer (Chan 498 

et al., 2005). Including such spatial information into the AOD-PM2.5 correlations for LUR 499 

modelling naturally provides a better estimation of ground-level PM2.5 variability.  500 
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3.3 AOD-LUR GEO-MAPPING 501 

The geo-mapping of the spatial distribution of PM2.5 was developed based on the 502 

spatiotemporal PM2.5 estimation from the resultant AOD-LUR models. The AOD images 503 

were resampled using a cubic spline function for the mapping purpose (Bian and Xie, 2015). 504 

Seasonal average values were mapped in this paper as the right column of Figure S-3. As 505 

shown in a zoomed-in picture (Figure 4), several generally concerned air pollution hotspots, 506 

including Central, Causeway Bay in Hong Kong Island and Mong Kok, Sham Shui Po, Hung 507 

Hom in Kowloon Area can be clearly observed in the resultant geo-mapping (summer model, 508 

local-dominant air pollution mode). These areas have always been of great concerns and are 509 

commonly investigated in other local air pollution studies (Chu et al., 2005; Ho et al., 2006). 510 

Apart from the well-known air pollution hotspots, the AOD-LUR mappings developed in this 511 

paper also successfully point out another PM2.5 hotspot, North Point on Hong Kong Island, 512 

which was newly identified by a recent study focusing on the street-level PM2.5 exposure (Shi 513 

et al., 2016). Kok et al. (1997) already mentioned that the pollution transported from the 514 

neighboring area in Mainland China leads to poor air quality on the north and west sides of 515 

Hong Kong. In the present study, besides the local effect, a higher concentration level in the 516 

north and west part of Hong Kong can be clearly observed in the winter model (regional-517 

dominant air pollution mode, Figure 4), which indicates that the resultant models successfully 518 

capture above situation by incorporating AOD data into LUR modelling. To be more specific, 519 

this large difference in the spatial mapping between summer and winter clearly shows the 520 

seasonal change in the dominant air pollution modes of Hong Kong. It features the local 521 

emission dominant mode in summer and the overwhelming effect of the strong regional 522 

impacts from PRD in winter (Kwok et al., 2010; Yuan et al., 2006). The above indicates that 523 

the AOD-LUR modelling in this study provides a reliable estimation of PM2.5 for a small 524 

geographic extent in a high-density and heterogeneous urban context.  525 
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 526 

Figure 4. Resultant AOD-LUR geo-mapping with labeled PM2.5 concentration hotspots 527 

(AOD-LUR GTWR piecewise model results). 528 

4. DISCUSSION 529 

4.1 IMPROVING AOD-PM 2.5 CORRELATIONS WITH MICROSCALE GEOGRAPHIC 530 

PREDICTORS AND SOUNDING INDICES 531 

The present study improves the AOD-PM2.5 correlation in a small geographic extent with 532 

highly heterogeneous landscapes and utilizes the result in LUR spatiotemporal PM2.5 533 

estimation. A previous attempt has been made for estimating the spatial variability of air 534 

particles in Hong Kong using MODIS AOD. However, the spatial scale is limited by the 535 

resolution of remote sensing images (Wong et al., 2011). Moreover, the annual average based 536 

spatial variation only provides limited information for health risk assessments without 537 

temporal estimation. In this study, the uncalibrated spatiotemporal correlation between AOD 538 

and ground-level PM2.5 observations are substantially improved by incorporating microscale 539 

geographic predictors and atmospheric sounding indices as covariates using AOD-LUR 540 

modelling. This result makes the temporal-resolved PM2.5 spatial estimation become viable 541 

for more accurate public health applications. 542 
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4.2 LUR MODELLING IN HIGH-DENSITY AND HETEROGENEOUS  URBAN 543 

CONTEXT 544 

On the top of the improved AOD-PM2.5 correlations, this study also provides fine-scale 545 

mappings of PM2.5 spatiotemporal variation based on LUR modelling. The mappings provide 546 

useful information for public health management because they help identify the PM2.5 547 

concentration hotspots. Identifying pollution hotspots at a fine scale is essential in Hong 548 

Kong. Under the highly heterogeneous urban context, it is impossible to identify hotspots by 549 

the sparsely distributed monitoring stations efficiently. This study shows that the monitoring 550 

gaps can be filled with remote sensing data by AOD-LUR modelling and geo-mapping 551 

techniques which are useful in the estimation of PM2.5 human exposure level and public 552 

health applications at a finer spatial scale (Thach et al., 2015). The present study is one of the 553 

first cases of application in an extremely high-density city. Although the resultant LUR 554 

models are specially developed for Hong Kong thus cannot be entirely transferable to other 555 

locations, the present study provides a generalize-able methodology to the environment 556 

protection officers and policy-makers in other cities/regions. The way that this research 557 

analyzes the microscale urban form and integrates it into AOD-LUR modelling makes better 558 

use of the urban datasets. The analysis method could be entirely transferred and adopted to 559 

other cities. The environment protection officers and policy-makers will be able to reference 560 

it and adjusted or redevelop the prediction models based on their local settings. More 561 

importantly, the generalize-able workflow makes the prediction models and spatial estimation 562 

of different city scenarios becomes quantitatively comparable, which could contribute a more 563 

comprehensive understanding on the urban effects on air quality across different regions. 564 

4.3 LIMITATIONS 565 

There are a few limitations of this study, which included that the available AOD observations 566 

were directly joined to the ground-level PM2.5 measurements. The grid cell variability in each 567 
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3 km AOD cell can only be considered on the multivariate statistical analysis stage (by using 568 

microscale geographic indices as model predictors). Future studies could be beneficial to 569 

consider the grid-cell variability of when joining AOD observations with ground-level PM2.5 570 

measurements.  571 

In addition, external dataset is not available for validation in Hong Kong. With the use of 572 

only 15 ground-based monitoring stations in Hong Kong that available for model 573 

development, cross-validation was used to validate our resultant maps. This internal 574 

validation method is a strategy for validating predictions with observed data when there is 575 

lack of external data for validation (Refaeilzadeh et al., 2009), which has been widely used in 576 

previous studies for exposure mapping. Therefore, cross-validation without the use of an 577 

external dataset is appropriate for the purpose of the present study. In our next step works, 578 

attempt will be made to acquire relevant datasets from neighboring large cities (e.g. 579 

Shenzhen) for an external validation, which could also be useful to evaluate the 580 

transferability to other regions of the resultant models. 581 

Although, the regional impact from the neighboring urbanized area in PRD region was 582 

successfully captured by our models as mentioned in section 3.3, the severe dust storm 583 

episode events due to the transport of dusts from East Asian and non-East Asian sources (Lee 584 

et al., 2010) are not well reflected in the spring models. This reveals that AOD-LUR 585 

modelling approach has a limited skill in handling the long-range transport of pollutants at a 586 

very large geographical extent. Further attempts could be made to nest the AOD-LUR models 587 

into a global or a very large regional climate/atmospheric modelling (e.g., GCMs, WRF) for 588 

geostatistical downscaling. The outputs can possibly provide a better estimation of ground-589 

level PM2.5 under the large-scale regional impacts. 590 
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5. CONCLUSIONS 591 

In this study, we developed AOD-LUR spatiotemporal models of ground-level PM2.5 592 

concentrations and a 13-years long-term daily resolved dataset to improve the AOD-PM2.5 593 

correlations in a high-density city, with considerations of microscale environmental factors. 594 

On top of the AOD-PM2.5 correlations based on the LUR model with microscale geographic 595 

predictors, we estimated the daily-resolved fine-scale spatiotemporal variation of ground-596 

level PM2.5 over Hong Kong. Quantitative information on the spatiotemporal variation of air 597 

pollution is essential for the planning of a densely-built urban environment because air 598 

quality is closely related to urban development. Urban development changes land cover/land 599 

use, building morphology and transportation. As a result, pollution emission increases, the 600 

local climate condition is altered and pollution dispersion is consequently affected. Compact 601 

urban development is generally regarded as a sustainable mode because it saves land 602 

resources, allows efficient use of transportation facilities. However, compact development 603 

modes without appropriate control can lead to severe urban air pollution issues (Betanzo, 604 

2007). The AOD-LUR models developed in this study indicate that the building morphology 605 

(parameterized as the model variables of urban surface form) is actually an influential factor 606 

in air pollution concentration in a high-density urban context. Therefore, the resultant AOD-607 

LUR models developed in this study could be potentially translated into quantitative rules 608 

and guidelines for environmental urban planning.  609 

ACKNOWLEDGMENT  610 

This research is supported by the General Research Fund (GRF) No.14610717 - “Developing 611 

urban planning optimization strategies for improving air quality in compact cities using geo-612 

spatial modelling based on in-situ data” from the Research Grants Council (RGC) of Hong 613 

Kong. The authors wish to thanks the Department of Atmospheric Science, University of 614 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 32

Wyoming, especially Dr. Larry Oolman, for providing the atmospheric sounding indices data 615 

(Station No. 45004). The authors also would like to thank Ms. Ada Lee for her help on 616 

language. The authors appreciate reviewers for their insightful comments and constructive 617 

suggestions on our research work. The authors also want to thank editors for their patient and 618 

meticulous work for our manuscript.  619 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 33

REFERENCE 620 

Arya, S.P., 1999. Air pollution meteorology and dispersion. Oxford University Press Oxford. 621 

Babyak, M.A., 2004. What You See May Not Be What You Get: A Brief, Nontechnical 622 
Introduction to Overfitting in Regression-Type Models. Psychosom. Med. 66, 411-421. 623 

Bach, W., 1972. Urban climate, air pollution and planning. Urbanization and environment, 624 
69-96. 625 

Bai, Y., Wu, L., Qin, K., Zhang, Y., Shen, Y., Zhou, Y., 2016. A Geographically and 626 
Temporally Weighted Regression Model for Ground-Level PM2.5 Estimation from Satellite-627 
Derived 500 m Resolution AOD. Remote Sensing 8, 262. 628 

Barnes, M.J., Brade, T.K., MacKenzie, A.R., Whyatt, J.D., Carruthers, D.J., Stocker, J., Cai, 629 
X., Hewitt, C.N., 2014. Spatially-varying surface roughness and ground-level air quality in an 630 
operational dispersion model. Environ. Pollut. 185, 44-51. 631 

Beckerman, B.S., Jerrett, M., Serre, M., Martin, R.V., Lee, S.-J., van Donkelaar, A., Ross, Z., 632 
Su, J., Burnett, R.T., 2013. A Hybrid Approach to Estimating National Scale Spatiotemporal 633 
Variability of PM2.5 in the Contiguous United States. Environ. Sci. Technol. 47, 7233-7241. 634 

Beelen, R., Hoek, G., Vienneau, D., Eeftens, M., Dimakopoulou, K., Pedeli, X., Tsai, M.-Y., 635 
Künzli, N., Schikowski, T., Marcon, A., 2013. Development of NO 2 and NO x land use 636 
regression models for estimating air pollution exposure in 36 study areas in Europe–the 637 
ESCAPE project. Atmos. Environ. 72, 10-23. 638 

Betanzo, M., 2007. Pros and cons of high density urban environments. Build, April/May, 39-639 
40. 640 

Bian, F., Xie, Y., 2015. Geo-Informatics in Resource Management and Sustainable 641 
Ecosystem: International Conference, GRMSE 2014, Ypsilanti, USA, October 3-5, 2014, 642 
Proceedings. Springer Berlin Heidelberg. 643 

Bilal, M., Nichol, J.E., Bleiweiss, M.P., Dubois, D., 2013. A Simplified high resolution 644 
MODIS Aerosol Retrieval Algorithm (SARA) for use over mixed surfaces. Remote Sensing 645 
of Environment 136, 135-145. 646 

Brunsdon, C., Fotheringham, S., Charlton, M., 1998. Geographically Weighted Regression. 647 
Journal of the Royal Statistical Society: Series D (The Statistician) 47, 431-443. 648 

Cao, M., Lin, Z., 2014. Impact of Urban Surface Roughness Length Parameterization Scheme 649 
on Urban Atmospheric Environment Simulation. Journal of Applied Mathematics 2014, 14. 650 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 34

Chan, C.Y., Xu, X.D., Li, Y.S., Wong, K.H., Ding, G.A., Chan, L.Y., Cheng, X.H., 2005. 651 
Characteristics of vertical profiles and sources of PM2.5, PM10 and carbonaceous species in 652 
Beijing. Atmos. Environ. 39, 5113-5124. 653 

Cheung, H.-C., Wang, T., Baumann, K., Guo, H., 2005. Influence of regional pollution 654 
outflow on the concentrations of fine particulate matter and visibility in the coastal area of 655 
southern China. Atmos. Environ. 39, 6463-6474. 656 

Chu, A.K.M., Kwok, R.C.W., Yu, K.N., 2005. Study of pollution dispersion in urban areas 657 
using Computational Fluid Dynamics (CFD) and Geographic Information System (GIS). 658 
Environmental Modelling & Software 20, 273-277. 659 

Crumeyrolle, S., Chen, G., Ziemba, L., Beyersdorf, A., Thornhill, L., Winstead, E., Moore, 660 
R., Shook, M., Hudgins, C., Anderson, B., 2014. Factors that influence surface PM 2.5 values 661 
inferred from satellite observations: perspective gained for the US Baltimore–Washington 662 
metropolitan area during DISCOVER-AQ. Atmospheric Chemistry and Physics 14, 2139-663 
2153. 664 

Davidson, C.I., Phalen, R.F., Solomon, P.A., 2005. Airborne Particulate Matter and Human 665 
Health: A Review. Aerosol Sci. Technol. 39, 737-749. 666 

de Hoogh, K., Gulliver, J., Donkelaar, A.v., Martin, R.V., Marshall, J.D., Bechle, M.J., 667 
Cesaroni, G., Pradas, M.C., Dedele, A., Eeftens, M., Forsberg, B., Galassi, C., Heinrich, J., 668 
Hoffmann, B., Jacquemin, B., Katsouyanni, K., Korek, M., Künzli, N., Lindley, S.J., Lepeule, 669 
J., Meleux, F., de Nazelle, A., Nieuwenhuijsen, M., Nystad, W., Raaschou-Nielsen, O., 670 
Peters, A., Peuch, V.-H., Rouil, L., Udvardy, O., Slama, R., Stempfelet, M., Stephanou, E.G., 671 
Tsai, M.Y., Yli-Tuomi, T., Weinmayr, G., Brunekreef, B., Vienneau, D., Hoek, G., 2016. 672 
Development of West-European PM2.5 and NO2 land use regression models incorporating 673 
satellite-derived and chemical transport modelling data. Environ. Res. 151, 1-10. 674 

Ding, A., Wang, T., Fu, C., 2013. Transport characteristics and origins of carbon monoxide 675 
and ozone in Hong Kong, South China. Journal of Geophysical Research: Atmospheres 118, 676 
9475-9488. 677 

Dockery, D.W., 2009. Health Effects of Particulate Air Pollution. Annals of Epidemiology 678 
19, 257-263. 679 

EPA, 2013. Particulate Matter (PM). United States Environmental Protection Agency. 680 

Fernando, H.J.S., Lee, S.M., Anderson, J., Princevac, M., Pardyjak, E., Grossman-Clarke, S., 681 
2001. Urban Fluid Mechanics: Air Circulation and Contaminant Dispersion in Cities. 682 
Environmental Fluid Mechanics 1, 107-164. 683 

Geng, G., Zhang, Q., Martin, R.V., van Donkelaar, A., Huo, H., Che, H., Lin, J., He, K., 684 
2015. Estimating long-term PM2.5 concentrations in China using satellite-based aerosol 685 
optical depth and a chemical transport model. Remote Sensing of Environment 166, 262-270. 686 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 35

Ho, H.C., Knudby, A., Sirovyak, P., Xu, Y., Hodul, M., Henderson, S.B., 2014. Mapping 687 
maximum urban air temperature on hot summer days. Remote Sensing of Environment 154, 688 
38-45. 689 

Ho, K.F., Cao, J.J., Lee, S.C., Chan, C.K., 2006. Source apportionment of PM 2.5 in urban 690 
area of Hong Kong. J. Hazard. Mater. 138, 73-85. 691 

Hoek, G., Beelen, R., de Hoogh, K., Vienneau, D., Gulliver, J., Fischer, P., Briggs, D., 2008. 692 
A review of land-use regression models to assess spatial variation of outdoor air pollution. 693 
Atmos. Environ. 42, 7561-7578. 694 

Hoff, R.M., Christopher, S.A., 2009. Remote Sensing of Particulate Pollution from Space: 695 
Have We Reached the Promised Land? Journal of the Air & Waste Management Association 696 
59, 645-675. 697 

Huang, B., Wu, B., Barry, M., 2010. Geographically and temporally weighted regression for 698 
modeling spatio-temporal variation in house prices. International Journal of Geographical 699 
Information Science 24, 383-401. 700 

Jonsson, P., Bennet, C., Eliasson, I., Selin Lindgren, E., 2004. Suspended particulate matter 701 
and its relations to the urban climate in Dar es Salaam, Tanzania. Atmos. Environ. 38, 4175-702 
4181. 703 

Kanaroglou, P.S., Jerrett, M., Morrison, J., Beckerman, B., Arain, M.A., Gilbert, N.L., Brook, 704 
J.R., 2005. Establishing an air pollution monitoring network for intra-urban population 705 
exposure assessment: A location-allocation approach. Atmos. Environ. 39, 2399-2409. 706 

Kloog, I., Nordio, F., Coull, B.A., Schwartz, J., 2012. Incorporating Local Land Use 707 
Regression And Satellite Aerosol Optical Depth In A Hybrid Model Of Spatiotemporal 708 
PM2.5 Exposures In The Mid-Atlantic States. Environ. Sci. Technol. 46, 11913-11921. 709 

Kok, G.L., Lind, J.A., Fang, M., 1997. An airborne study of air quality around the Hong 710 
Kong territory. Journal of Geophysical Research: Atmospheres 102, 19043-19057. 711 

Krstic, N., Henderson, S.B., 2015. Use of MODIS data to assess atmospheric aerosol before, 712 
during, and after community evacuations related to wildfire smoke. Remote Sensing of 713 
Environment 166, 1-7. 714 

Kwok, R.H., Fung, J.C., Lau, A.K., Fu, J.S., 2010. Numerical study on seasonal variations of 715 
gaseous pollutants and particulate matters in Hong Kong and Pearl River Delta Region. 716 
Journal of Geophysical Research: Atmospheres (1984–2012) 115. 717 

Lau, A., Lo, A., Gray, J., Yuan, Z., Loh, C., 2007. Relative significance of local vs. regional 718 
sources: Hong Kong's air pollution. Civic Exchange. 719 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 36

Lee, H., Liu, Y., Coull, B., Schwartz, J., Koutrakis, P., 2011. A novel calibration approach of 720 
MODIS AOD data to predict PM2. 5 concentrations. Atmos. Chem. Phys 11, 7991-8002. 721 

Lee, H.J., Chatfield, R.B., Strawa, A.W., 2016. Enhancing the Applicability of Satellite 722 
Remote Sensing for PM2.5 Estimation Using MODIS Deep Blue AOD and Land Use 723 
Regression in California, United States. Environ. Sci. Technol. 50, 6546-6555. 724 

Lee, Y.C., Yang, X., Wenig, M., 2010. Transport of dusts from East Asian and non-East 725 
Asian sources to Hong Kong during dust storm related events 1996–2007. Atmos. Environ. 726 
44, 3728-3738. 727 

Li, J., Carlson, B.E., Lacis, A.A., 2015. How well do satellite AOD observations represent 728 
the spatial and temporal variability of PM2.5 concentration for the United States? Atmos. 729 
Environ. 102, 260-273. 730 

Lin, H., Ma, W., Qiu, H., Wang, X., Trevathan, E., Yao, Z., Dong, G.-H., Vaughn, M.G., 731 
Qian, Z., Tian, L., 2017. Using daily excessive concentration hours to explore the short-term 732 
mortality effects of ambient PM2. 5 in Hong Kong. Environ. Pollut. 229, 896-901. 733 

Liu, Y., Park, R.J., Jacob, D.J., Li, Q., Kilaru, V., Sarnat, J.A., 2004. Mapping annual mean 734 
ground-level PM2.5 concentrations using Multiangle Imaging Spectroradiometer aerosol 735 
optical thickness over the contiguous United States. Journal of Geophysical Research: 736 
Atmospheres 109, n/a-n/a. 737 

Lu, W.-Z., Wang, X.-K., 2008. Investigation of respirable suspended particulate trend and 738 
relevant environmental factors in Hong Kong downtown areas. Chemosphere 71, 561-567. 739 

Mao, L., Qiu, Y., Kusano, C., Xu, X., 2012. Predicting regional space–time variation of 740 
PM2.5 with land-use regression model and MODIS data. Environ Sci Pollut Res 19, 128-138. 741 

Paciorek, C.J., Liu, Y., Moreno-Macias, H., Kondragunta, S., 2008. Spatiotemporal 742 
Associations between GOES Aerosol Optical Depth Retrievals and Ground-Level PM2.5. 743 
Environ. Sci. Technol. 42, 5800-5806. 744 

Pope, C.A., Dockery, D.W., Schwartz, J., 1995. Review of epidemiological evidence of 745 
health effects of particulate air pollution. Inhalation Toxicol. 7, 1-18. 746 

Qin, K., Wang, L., Wu, L., Xu, J., Rao, L., Letu, H., Shi, T., Wang, R., 2017. A campaign for 747 
investigating aerosol optical properties during winter hazes over Shijiazhuang, China. 748 
Atmospheric Research 198, 113-122. 749 

Refaeilzadeh, P., Tang, L., Liu, H., 2009. Cross-Validation, in: Liu, L., ÖZsu, M.T. (Eds.), 750 
Encyclopedia of Database Systems. Springer US, Boston, MA, pp. 532-538. 751 

Remer, L.A., Mattoo, S., Levy, R.C., Munchak, L.A., 2013. MODIS 3 km aerosol product: 752 
algorithm and global perspective. Atmos. Meas. Tech. 6, 1829-1844. 753 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 37

Ryan, P.H., LeMasters, G.K., 2007. A review of land-use regression models for 754 
characterizing intraurban air pollution exposure. Inhalation Toxicol. 19, 127-133. 755 

Saraswat, A., Apte, J.S., Kandlikar, M., Brauer, M., Henderson, S.B., Marshall, J.D., 2013. 756 
Spatiotemporal Land Use Regression Models of Fine, Ultrafine, and Black Carbon 757 
Particulate Matter in New Delhi, India. Environ. Sci. Technol. 47, 12903-12911. 758 

Schwarze, P.E., Øvrevik, J., Låg, M., Refsnes, M., Nafstad, P., Hetland, R.B., Dybing, E., 759 
2006. Particulate matter properties and health effects: consistency of epidemiological and 760 
toxicological studies. Human & Experimental Toxicology 25, 559-579. 761 

Seinfeld, J.H., 1989. Urban Air Pollution: State of the Science. Science 243, 745. 762 

Shi, Y., Lau, K.K.-L., Ng, E., 2016. Developing Street-Level PM2.5 and PM10 Land Use 763 
Regression Models in High-Density Hong Kong with Urban Morphological Factors. Environ. 764 
Sci. Technol. 50, 8178-8187. 765 

Shi, Y., Lau, K.K.-L., Ng, E., 2017. Incorporating wind availability into land use regression 766 
modelling of air quality in mountainous high-density urban environment. Environ. Res. 157, 767 
17-29. 768 

Su, J.G., Jerrett, M., Beckerman, B., 2009a. A distance-decay variable selection strategy for 769 
land use regression modeling of ambient air pollution exposures. Sci. Total Environ. 407, 770 
3890-3898. 771 

Su, J.G., Jerrett, M., Beckerman, B., Wilhelm, M., Ghosh, J.K., Ritz, B., 2009b. Predicting 772 
traffic-related air pollution in Los Angeles using a distance decay regression selection 773 
strategy. Environ. Res. 109, 657-670. 774 

Tam, W.W.S., Wong, T.W., Wong, A.H.S., 2015. Association between air pollution and 775 
daily mortality and hospital admission due to ischaemic heart diseases in Hong Kong. Atmos. 776 
Environ. 120, 360-368. 777 

Tang, R., Blangiardo, M., Gulliver, J., 2013. Using Building Heights and Street 778 
Configuration to Enhance Intraurban PM10, NOX, and NO2 Land Use Regression Models. 779 
Environ. Sci. Technol. 47, 11643-11650. 780 

Thach, T.-Q., Wong, C.-M., Chan, K.-P., Chau, Y.-K., Chung, Y.-N., Ou, C.-Q., Yang, L., 781 
Hedley, A.J., 2010. Daily visibility and mortality: Assessment of health benefits from 782 
improved visibility in Hong Kong. Environ. Res. 110, 617-623. 783 

Thach, T.-Q., Zheng, Q., Lai, P.-C., Wong, P.P.-Y., Chau, P.Y.-K., Jahn, H.J., Plass, D., 784 
Katzschner, L., Kraemer, A., Wong, C.-M., 2015. Assessing spatial associations between 785 
thermal stress and mortality in Hong Kong: A small-area ecological study. Sci. Total 786 
Environ. 502, 666-672. 787 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 38

van Donkelaar, A., Martin, R.V., Park, R.J., 2006. Estimating ground-level PM2.5 using 788 
aerosol optical depth determined from satellite remote sensing. Journal of Geophysical 789 
Research: Atmospheres 111, n/a-n/a. 790 

van Donkelaar, A., Martin, R.V., Spurr, R.J.D., Burnett, R.T., 2015. High-Resolution 791 
Satellite-Derived PM2.5 from Optimal Estimation and Geographically Weighted Regression 792 
over North America. Environ. Sci. Technol. 49, 10482-10491. 793 

Vienneau, D., de Hoogh, K., Bechle, M.J., Beelen, R., van Donkelaar, A., Martin, R.V., 794 
Millet, D.B., Hoek, G., Marshall, J.D., 2013. Western European Land Use Regression 795 
Incorporating Satellite- and Ground-Based Measurements of NO2 and PM10. Environ. Sci. 796 
Technol. 47, 13555-13564. 797 

Wang, T., Wei, X.L., Ding, A.J., Poon, C.N., Lam, K.S., Li, Y.S., Chan, L.Y., Anson, M., 798 
2009. Increasing surface ozone concentrations in the background atmosphere of Southern 799 
China, 1994–2007. Atmos. Chem. Phys. 9, 6217-6227. 800 

Wang, X.-K., Lu, W.-Z., 2006. Seasonal variation of air pollution index: Hong Kong case 801 
study. Chemosphere 63, 1261-1272. 802 

Wong, M.S., Nichol, J., Lee, K.H., Lee, B.Y., 2011. Monitoring 2.5 µm particulate matter 803 
within urbanized regions using satellite-derived aerosol optical thickness, a study in Hong 804 
Kong. International Journal of Remote Sensing 32, 8449-8462. 805 

Wong, T.W., Lau, T.S., Yu, T.S., Neller, A., Wong, S.L., Tam, W., Pang, S.W., 1999. Air 806 
pollution and hospital admissions for respiratory and cardiovascular diseases in Hong Kong. 807 
Occupational and Environmental Medicine 56, 679-683. 808 

Wong, T.W., Tam, W.S., Yu, T.S., Wong, A.H.S., 2002. Associations between daily 809 
mortalities from respiratory and cardiovascular diseases and air pollution in Hong Kong, 810 
China. Occupational and Environmental Medicine 59, 30-35. 811 

Wu, D., Tie, X., Li, C., Ying, Z., Kai-Hon Lau, A., Huang, J., Deng, X., Bi, X., 2005. An 812 
extremely low visibility event over the Guangzhou region: A case study. Atmos. Environ. 39, 813 
6568-6577. 814 

Xie, Y., Wang, Y., Zhang, K., Dong, W., Lv, B., Bai, Y., 2015. Daily Estimation of Ground-815 
Level PM2.5 Concentrations over Beijing Using 3 km Resolution MODIS AOD. Environ. 816 
Sci. Technol. 49, 12280-12288. 817 

You, W., Zang, Z., Zhang, L., Li, Y., Pan, X., Wang, W., 2016. National-Scale Estimates of 818 
Ground-Level PM2.5 Concentration in China Using Geographically Weighted Regression 819 
Based on 3 km Resolution MODIS AOD. Remote Sensing 8, 184. 820 

Yuan, C., Ng, E., Norford, L.K., 2014. Improving air quality in high-density cities by 821 
understanding the relationship between air pollutant dispersion and urban morphologies. 822 
Build Environ. 71, 245-258. 823 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 39

Yuan, Z., Lau, A.K.H., Zhang, H., Yu, J.Z., Louie, P.K.K., Fung, J.C.H., 2006. Identification 824 
and spatiotemporal variations of dominant PM10 sources over Hong Kong. Atmos. Environ. 825 
40, 1803-1815. 826 

Zang, Z., Wang, W., You, W., Li, Y., Ye, F., Wang, C., 2017. Estimating ground-level 827 
PM2.5 concentrations in Beijing, China using aerosol optical depth and parameters of the 828 
temperature inversion layer. Sci. Total Environ. 575, 1219-1227. 829 

 830 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 


