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Decidability of the Membership Problem for 2× 2 integer matrices∗

Igor Potapov† Pavel Semukhin‡

The main result of this paper is the decidability of the membership problem for 2× 2
nonsingular integer matrices. Namely, we will construct the first algorithm that for any
nonsingular 2 × 2 integer matrices M1, . . . ,Mn and M decides whether M belongs to
the semigroup generated by {M1, . . . ,Mn}.

Our algorithm relies on a translation of the numerical problem on matrices into com-
binatorial problems on words. It also makes use of some algebraical properties of well-
known subgroups of GL(2,Z) and various new techniques and constructions that help
to limit an infinite number of possibilities by reducing them to the membership problem
for regular languages.

1 Introduction

Matrices and matrix products play a crucial role in a representation and analysis of various compu-
tational processes, i.e., linear recurrent sequences [18, 26, 27], arithmetic circuits [15], hybrid and
dynamical systems [25, 2], probabilistic and quantum automata [7], stochastic games, broadcast
protocols [14], optical systems [16], etc. Unfortunately, many simply formulated and elementary
problems for matrices are inherently difficult to solve even in dimension two, and most of these
problems become undecidable in general starting from dimension three or four. One of such hard
questions is the Membership problem in matrix semigroups:

Membership problem: Given a finite set of m × m matrices F = {M1,M2, . . . ,Mn} and a
matrix M . Determine if there exist an integer k ≥ 1 and i1, i2, . . . , ik ∈ {1, . . . , n} such that
Mi1 · Mi2 · · ·Mik = M . In other words, determine whether a matrix M belongs to the semigroup
generated by F .

In this paper we solve an open problem by showing that the membership is decidable for the
semigroups of 2 × 2 nonsingular matrices over integers. The membership problem was intensively
studied since 1947 when A.Markov showed that this problem is undecidable for matrices in Z6×6

even for a specific fixed set F [24]. Later, M. Paterson in 1970 showed that a special case of the
membership problem whenM is equal to a zero matrix (known as Mortality problem) is undecidable
for matrices in Z3×3. The decidability status of another special case of the membership problem —
the Identity problem (i.e., when M = I, the identity matrix) — was unknown for a long time and
was only recently shown to be undecidable for integer matrices starting from dimension four [5], see
also the solution to Problem 10.3 in [8]. The undecidability of the identity problem means that the
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Group problem (of whether a matrix semigroup over integers forms a group) is undecidable starting
from dimension four. A more recent survey of undecidable problems can be found in [9].

The undecidability proofs in matrix semigroups are mainly based on various techniques and
methods for embedding universal computations into matrix products. The case of dimension two
is the most intriguing since there is some evidence that if these problems are undecidable, then
this cannot be proved using any previously known constructions. In particular, there is no injective
semigroup morphism from pairs of words over any finite alphabet (with at least two elements) into
complex 2 × 2 matrices [10], which means that the coding of independent pairs of words in 2 × 2
complex matrices is impossible and the exact encoding of the Post Correspondence Problem or a
computation of the Turing Machine cannot be used directly for proving undecidability in 2×2 matrix
semigroups over Z, Q or C. The only undecidability in the case of 2 × 2 matrices has been shown
so far is the membership, freeness and vector reachability problems over quaternions [3] or more
precisely in the case of diagonal matrices over quaternions, which are simply double quaternions.

The problems for semigroups are rather hard, but there was a steady progress on decidable
fragments over the last few decades. First, both membership and vector reachability problems were
shown to be decidable in polynomial time for a semigroup generated by a single m × m matrix
(known as the Orbit problem) by Kannan and Lipton [20] in 1986. Later, in 1996 this decidability
result was extended to a more general case of commutative matrices [1]. The generalization of this
result for a special class of non-commutative matrices (a class of row-monomial matrices over a
commutative semigroup satisfying some natural effectiveness conditions) was shown in 2004 in [21].
Even now we still have long standing open problems for matrix semigroups generated by a single
matrix, see, for example, the Skolem Problem about reaching zero in a linear recurrence sequence
(LRS), which in matrix form is a question of whether any power of a given integer matrix A has zero
in the right upper corner [12, 13]. It was recently shown that the decidability of either Positivity or
Ultimate Positivity for integer LRS of order 6 would entail some major breakthroughs in analytic
number theory. The decidability of each of these problems, whether for integer, rational, or algebraic
linear recurrence sequences, is open, although partial results are known [15, 25, 26, 27].

Due to a severe lack of methods and techniques the status of decision problems for 2× 2 matrices
(like membership, vector reachability, freeness) is remaining to be a long standing open problem.
More recently, a new approach of translating numerical problems of 2 × 2 integer matrices into
variety of combinatorial and computational problems on words over group alphabet and studying
their transformations as specific rewriting systems have led to a few results on decidability and
complexity for some subclasses. In particular, this approach was successfully applied to proving the
decidability of the membership problem for semigroups from GL(2,Z) [11] in 2005, designing the
polynomial time algorithm for the membership problem for the modular group [17] in 2007, showing
NP-hardness for most of the reachability problems in dimension two [6, 4] in 2012, and showing
decidability of the vector/scalar reachability problems in SL(2,Z) [28] in 2015.

The main ingredient of the translation into combinatorial problems on words is the well-known
result that the groups SL(2,Z) and GL(2,Z) are finitely generated. For example, SL(2,Z) can be
generated by a pair of matrices:

S =

[

0 −1
1 0

]

and R =

[

0 −1
1 1

]

with the following relations: S4 = I, R6 = I and S2 = R3.

Hence we can represent a matrix M ∈ SL(2,Z) as a word in the alphabet {S,R}.
In [11] both the Identity and the Group problems are shown to be decidable in Z2×2. Moreover, it

was also claimed more generally that it is decidable whether or not a given nonsingular matrix be-
longs to a given finitely generated semigroup over integers. Unfortunately, it appears that the proof
of this more general claim (i.e., when we consider matrices with determinants different from ±1)
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has a significant gap, and it only works for a small number of special cases. Namely, after trans-
lating the membership from GL(2,Z) to SL(2,Z), the authors describe a very short reduction from
the membership problems in Z2×2 to the one in SL(2,Z) using some incorrect assumptions. For
instance, it was assumed that if X is an integer matrix with determinant one and Z is a nonsingular
integer matrix, then there exists an integer matrix Y satisfying the following equation ZX = Y Z.

However, this is not true and here is a simple counter example. Let Z =

[

1 0
0 2

]

and X =

[

0 −1
1 0

]

,

then from ZX = Y Z it follows that Y = ZXZ−1 =

[

1 0
0 2

]

×

[

0 −1
1 0

]

×

[

1 0
0 1

2

]

=

[

0 −1
2

2 0

]

. So

Y has fractional coefficients, and if the matrices X and Z were in the generating set, then the
argument from [11] would not work.

The main result of this paper is that the membership problem is decidable for the semigroups of
2×2 nonsingular integer matrices. Our proof provides an algorithm for solving this problem, which
is based on the translation of the numerical problem on matrices into combinatorial problems on
words and regular languages. We will also makes use of some well-known algebraical results like
the uniqueness of the Smith normal form of a matrix and a fact that certain subgroups of GL(2,Z)
have finite index.

2 Preliminaries

The semigroup of 2× 2 integer matrices is denoted by Z2×2. We use SL(2,Z) to denote the special
linear group of 2 × 2 matrices with integer coefficients, i.e., SL(2,Z) = {M ∈ Z2×2 : det(M) = 1}
and GL(2,Z) to denote the general linear group, i.e., GL(2,Z) = {M ∈ Z2×2 : det(M) = ±1}.

A matrix is called nonsingular if its determinant is not equal to zero.
If F is a finite collection of matrices from Z2×2, then 〈F 〉 denotes the semigroup generated by

F (including the identity matrix), that is, M ∈ 〈F 〉 if and only if M = I or there are matrices
M1, . . . ,Mn ∈ F such that M = M1 · · ·Mn.

3 Main result

The main result of our paper is presented in Theorem 1 which states that membership problem in
dimension two is decidable.

Theorem 1. There is an algorithm that decides for a given finite collection F of nonsingular
matrices from Z2×2 and a matrix M ∈ Z2×2 whether M ∈ 〈F 〉.

Proof sketch. Let {M1, . . . ,Mn} be all matrices from F whose determinant is different from ±1,
and let S±1 be the semigroup which is generated by all matrices from F with determinant ±1, that
is, S±1 = 〈F ∩GL(2,Z) 〉. Then it is not hard to see that M ∈ 〈F 〉 if and only if M ∈ S±1 or there
is a sequence of indices i1, . . . , it ∈ {1, . . . , n} and matrices A1, . . . , At+1 from S±1 such that

M = A1Mi1A2Mi2 · · ·AtMitAt+1.

The key point of the proof is that the value of t is bounded. Indeed, since |det(Mis)| ≥ 2,
for s = 1, . . . , t, we have that t ≤ log2 |det(M)|. So to decide whether or not M ∈ 〈F 〉 we
first need to check whether M ∈ S±1. If M /∈ S±1, then we need to go through all sequences
i1, . . . , it ∈ {1, . . . , n} of length up to log2 |det(M)| and for every such sequence check whether there
are matrices A1, . . . , At+1 from S±1 such that M = A1Mi1A2Mi2 · · ·AtMitAt+1. The rest of the
paper is devoted to the proof that these problems are algorithmically decidable.
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In Section 3.1 we describe an algorithm that decides whether M ∈ S±1. In fact, in Proposition 7
we prove a stronger statement that it is decidable whether M ∈ S, where S is an arbitrary regular
subset of GL(2,Z), that is, a subset which is defined by a finite automaton. The precise definition
of this notion is given in Section 3.1. We will also show there that any semigroup in GL(2,Z), and
in particular S±1, is a regular subset.

Proposition 7 provides an alternative proof for the decidability of the membership in GL(2,Z)
presented in [11]. The difference of our approach is that we do not introduce new symbols in the
alphabet, and we explicitly construct an automaton Can(A) that accepts only canonical words. The
construction of Can(A) will be also used in the next steps of our algorithm.

In Section 3.2 we provide a proof for the decidability of the second problem in the special case
when t = 1. Again, in Corollary 15 we prove a more general statement that for any two nonsingular
matrices M1 and M2 from Z2×2 and regular subsets S1 and S2, it is decidable whether there are
matrices A1 ∈ S1 and A2 ∈ S2 such that A1M1A2 = M2.

Finally, in Section 3.3 we describe an algorithm for the general case. Namely, in Theorem 19
we will prove that for any nonsingular matrices M1, . . . ,Mt from Z2×2 and for any regular subsets
S1, . . . ,St of GL(2,Z), it is decidable whether there are matrices A1 ∈ S1, . . . , At ∈ St such that
A1M1 · · ·At−1Mt−1At = Mt.

Remark. The complexity of our algorithm is in EXPSPACE. The exponential blow-up in memory
usage happens when we translate matrices into words and construct a finite automaton for the
semigroup S±1 (see the paragraph before Corollary 8 in Section 3.1). The other steps of the
algorithm require only polynomial space. Furthermore, our algorithm can be extended to check
the membership not only for semigroups in Z2×2 but for arbitrary regular subsets of nonsingular
matrices from Z2×2.

3.1 Decidability of the membership problem in GL(2,Z).

We will use an encoding of matrices from GL(2,Z) by words in alphabet Σ = {X,N,S,R}. For this
we define a mapping ϕ : Σ → GL(2,Z) as follows:

ϕ(X) =

[

−1 0
0 −1

]

, ϕ(N) =

[

1 0
0 −1

]

, ϕ(S) =

[

0 −1
1 0

]

, ϕ(R) =

[

0 −1
1 1

]

.

We can extend ϕ to the morphism ϕ : Σ∗ → GL(2,Z) in a natural way. It is a well-known fact
that morphism ϕ is surjective, that is, for every M ∈ GL(2,Z) there is a word w ∈ Σ∗ such that
ϕ(w) = M .

Definition 2. We call two words w1 and w2 from Σ∗ equivalent, denoted w1 ∼ w2, if ϕ(w1) = ϕ(w2).
Two languages L1 and L2 in the alphabet Σ are equivalent, denoted L1 ∼ L2, if

(i) for each w1 ∈ L1, there exists w2 ∈ L2 such that w1 ∼ w2, and

(ii) for each w2 ∈ L2, there exists w1 ∈ L1 such that w2 ∼ w1.

In other words, L1 ∼ L2 if and only if ϕ(L1) = ϕ(L2). Two finite automata A1 and A2 with
alphabet Σ are equivalent, denoted A1 ∼ A2, if L(A1) ∼ L(A2).

To simplify the notation we will often write M = w instead of M = ϕ(w) when M ∈ GL(2,Z)
and w ∈ Σ∗. Note that in this notation if M = w1 and M = w2, then we have w1 ∼ w2 but not
necessarily w1 = w2.
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Definition 3. A subset S ⊆ GL(2,Z) is called regular or automatic if there is a regular language
L in alphabet Σ such that S = ϕ(L).

Throughout the paper we will use the following abbreviation: if n is a positive integer and V ∈ Σ,
then V n denotes a words of length n which contains only letter V , and V 0 is assumed to be equal
to the empty word.

Definition 4. A word w ∈ Σ∗ is called a canonical word if it has the form

w = N δXγSβRα0SRα1SRα2 . . . SRαn−1SRαn ,

where β, δ, γ ∈ {0, 1}, α0, . . . , αn−1 ∈ {1, 2}, and αn ∈ {0, 1, 2}. In other words, w is canonical if
it does not contain subwords SS or RRR. Moreover, letter N may appear only once in the first
position, and letter X may appear only once either in the first position or after N .

We will make use of Corollary 6 below which states that every matrix from GL(2,Z) can be
represented by a unique canonical word.

Proposition 5 ([22, 23, 29]). For every matrix M ∈ SL(2,Z), there is a unique canonical word w
such that M = w. Note that w does not contain letter N because ϕ(N) /∈ SL(2,Z).

Corollary 6. For every matrix M ∈ GL(2,Z), there is a unique canonical word w such that M = w.

Proof. If det(A) = 1, that is, M ∈ SL(2,Z), then by Proposition 5 there is a unique canonical word
w such that M = w. If det(A) = −1, then N−1M ∈ SL(2,Z) and again by Proposition 5 there is
a unique canonical word w such that N−1M = w or M = Nw. Note that Nw is also a canonical
word since w does not contain letter N .

Proposition 7. There is an algorithm that for any regular subset S ⊆ GL(2,Z) and a matrix
M ∈ GL(2,Z) decides whether M ∈ S.

Proof. Let L be a regular language such that S = ϕ(L), and let A be a finite automaton that
recognizes L, that is, L = L(A). The words in L do not have to be in canonical form. So, we will
construct a new automaton Can(A) whose language contains only canonical words and such that
Can(A) is equivalent to A, that is, ϕ(L(Can(A))) = ϕ(L(A)) = S. The construction of Can(A)
consists of a sequence of transformations that insert new paths and ε-transitions into A. The
detailed description of this construction is given in Section 4.1 of the Appendix.

Using the automaton Can(A) we can decide whether M ∈ S. Indeed, by Corollary 6, there is a
unique canonical word w that represents the matrix M , i.e., M = ϕ(w). Now we have the following
equivalence: M ∈ S if and only if w ∈ L(Can(A)). Therefore, to decide whether M ∈ S, we need
to check whether w is accepted by Can(A).

Note that any finitely generated semigroup 〈M1, . . . ,Mn〉 in GL(2,Z) is a regular subset. Indeed,
let w1, . . . , wn be canonical words that represent the matrices M1, . . . ,Mn, respectively, and consider
a regular language L = (w1 + · · ·+ wn)

∗. Clearly ϕ(L) = 〈M1, . . . ,Mn〉, and hence the semigroup
〈M1, . . . ,Mn〉 is regular. So as a corollary from Proposition 7 we obtain the decidability of the
membership problem for semigroups in GL(2,Z).

Corollary 8. The membership problem for GL(2,Z) is decidable. That is, there is an algorithm
that for a given finite collection of matrices M1, . . . ,Mn and M from GL(2,Z), decides whether
M ∈ 〈M1, . . . ,Mn〉.
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3.2 Special case: A1M1A2 = M2

In this section we show that for any two nonsingular matrices M1 and M2 from Z2×2 and regular
subsets S1 and S2, it is decidable whether there exist matrices A1 ∈ S1 and A2 ∈ S2 such that
A1M1A2 = M2 (Corollary 15). First, we prove this statement in the case when M1 = M2 = D,
where D is a diagonal matrix in the Smith normal form (Proposition 14).

For the proof of this result we will use a few algebraical facts and results that are explained below.
The most important of them is the following theorem about the Smith normal form of a matrix.

Theorem 9 (Smith normal form [19]). For any matrix A ∈ Z2×2, there are matrices E,F from
GL(2,Z) such that

A = E

[

t1 0
0 t2

]

F

for some t1, t2 ∈ Z such that t1 | t2. The diagonal matrix

[

t1 0
0 t2

]

, which is unique up to the signs

of t1 and t2, is called the Smith normal form of A. Moreover, E, F , t1, and t2 can be computed in
polynomial time.

Definition 10. IfH is a subgroup of G, then the sets gH = {gh : h ∈ H} andHg = {hg : h ∈ H},
for g ∈ G, are called the left and right cosets of H in G, respectively. An element g is called a
representative of the left coset gH (respectively, of the right coset Hg).

The collection of left cosets or right cosets of H form a disjoint partition of G. Moreover, the
number of left cosets is equal to the number of right cosets, and this number is called the index of
H in G, denoted |G : H|.

For every natural n ≥ 1, let us define the following subgroups of GL(2,Z):

H(n) =

{[

a11 a12
a21 a22

]

∈ GL(2,Z) : n divides a21

}

,

F (n) =

{[

a11 a12
a21 a22

]

∈ GL(2,Z) : n divides a12

}

.

Let A =

[

a11 a12
a21 a22

]

be any matrix from GL(2,Z) and let D =

[

m 0
0 mn

]

be a diagonal matrix in

the Smith normal form, where m,n 6= 0. Then the conjugation of A with D is equal to

AD = D−1AD =

[

a11 na12
1
n
a21 a22

]

.

From this formula we see that if AD ∈ GL(2,Z), then n divides a21. On the other hand, if a21 is
divisible by n, then AD is in GL(2,Z), and in fact in F (n). Thus we have the following criterion.

Proposition 11. Suppose A is in GL(2,Z) and D is a diagonal matrix of the above form, then
AD ∈ GL(2,Z) if and only if A ∈ H(n). Moreover, if A ∈ H(n), then AD ∈ F (n).

Theorem 12. The subgroups H(n) and F (n) have finite index in GL(2,Z). Furthermore, there is
an algorithm that for a given n computes representatives of the left and right cosets of H(n) and
F (n) in GL(2,Z).
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Proof. We will only show how to compute representatives of the left cosets of H(n) because the
other cases are similar. For each pair of indices i, j such that 0 ≤ i, j ≤ n − 1, let us define a
matrix Wi,j as follows. Let Wi,0 be the identity matrix for i = 0, . . . , n− 1. If j > 0, then consider
d = gcd(i, j) and let i0 and j0 be such that i = i0d and j = j0d. Since i0, j0 are relatively prime,

there exist integers u and v such that ui0 + vj0 = 1. Hence if we let Wi,j =

[

u v
−j0 i0

]

, then Wi,j

belongs to GL(2,Z).

Now consider an arbitrary matrix A =

[

a11 a12
a21 a22

]

from GL(2,Z). Let a11 = i+nk and a21 = j+nl,

where 0 ≤ i, j ≤ n−1. We will show thatWi,jA ∈ H(n). If j = 0, then a21 = nl is divisible by n, and
hence A ∈ H(n). Since we defined Wi,0 to be the identity matrix, it follows that Wi,0A = A ∈ H(n).
If j > 0, then let d = gcd(i, j) and let i0, j0 be such that i = i0d and j = j0d. In this case

Wi,jA =

[

u v
−j0 i0

] [

di0 + nk a12
dj0 + nl a22

]

,

and the lower left corner of Wi,jA is equal to −j0di0 − j0nk+ i0dj0 + i0nl = n(−j0k+ i0l), which is
divisible by n. Thus Wi,jA ∈ H(n).

So we showed that for any matrix A ∈ GL(2,Z) there is a pair i, j such that Wi,jA ∈ H(n) or,
equivalently, A ∈ W−1

i,j H(n). Therefore, the collection {W−1
i,j H(n) : 0 ≤ i, j ≤ n − 1} contains all

left cosets of H(n) in GL(2,Z). In particular, the index of H(n) in GL(2,Z) is bounded by n2.
Note that some of the cosets in {W−1

i,j H(n) : 0 ≤ i, j ≤ n − 1} may be equal to each other. In

fact, two cosets W−1
i1,j1

H(n) and W−1
i2,j2

H(n) are equal if and only if Wi1,j1
W−1

i2,j2
∈ H(n). Since the

domain of the subgroup H(n) is a computable set, the equality of two cosets is a decidable property.
Therefore, we can algorithmically choose a collection of pairwise nonequivalent representatives of
the left cosets of H(n) in GL(2,Z).

Lemma 13. Let LH(n) and LF (n) be the languages that correspond to the subgroups H(n) and F (n),
respectively, that is, LH(n) = {w ∈ Σ∗ : ϕ(w) ∈ H(n)} and LF (n) = {w ∈ Σ∗ : ϕ(w) ∈ F (n)}. Then
LH(n) and LF (n) are regular languages.

Proof. We will show that LH(n) is regular by constructing an automaton AH(n) that recognizes it.
The proof for LF (n) is similar.

Let U0, U1, . . . , Uk be pairwise nonequivalent representatives of the right cosets ofH(n) in GL(2,Z),
which can be computed by Theorem 12. We will assume that U0 = I and hence H(n)U0 = H(n).
The automaton AH(n) will have k states u0, u1, . . . , uk, where u0 is the only initial and the only
final state of AH(n). The transitions of AH(n) are defined as follows: there is a transition from ui
to uj labelled by σ ∈ Σ if and only if the element Uiϕ(σ) belongs to the coset H(n)Uj. Note that
since for every i and σ there is exactly one j such that Uiϕ(σ) ∈ H(n)Uj , the automaton AH(n) is
deterministic.

We now show that the language of AH(n) is equal to LH(n). Take any word w = σ1σ2 . . . σt ∈ Σ∗

and consider a run ρ = ui0ui1 . . . uit of AH(n) on w. Note that i0 = 0, and ui0 = u0 is the initial

state. Since AH(n) has transitions uis−1

σs−→ uis , for s = 1, . . . , t, we have that Uis−1
ϕ(σs) ∈ H(n)Uis

and hence Uis−1
ϕ(σs)U

−1
is

∈ H(n). Since Ui0 = U0 = I, we can rewrite ϕ(w) = ϕ(σ1)ϕ(σ2) . . . ϕ(σt)
as

ϕ(w) = (Ui0
ϕ(σ1)U

−1
i1

)(Ui1
ϕ(σ2)U

−1
i2

) · · · (Uit−1
ϕ(σt)U

−1
it

)Uit .

If uit = u0, that is, if w is accepted by AH(n), then it = 0 and Uit = U0 = I ∈ H(n). This implies

that ϕ(w) ∈ H(n) because for all s = 1, . . . , t we have Uis−1
ϕ(σs)U

−1
is

∈ H(n). On the other hand, if
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ϕ(w) ∈ H(n), then it must be that Uit ∈ H(n), which can only happen if it = 0 and hence uit = u0.
This means that w is accepted by AH(n). Therefore, we proved that L(AH(n)) = LH(n).

Now for any automaton A with alphabet Σ we construct two automata Inv(A) and FD(A), where
D is a diagonal matrix in the Smith normal form. The automaton Inv(A) recognizes inverses to the
words from L(A), that is:

(1) For every w ∈ L(A), there exists w′ ∈ L(Inv(A)) such that ϕ(w′) = ϕ(w)−1.

(2) For every w′ ∈ L(Inv(A)), there exists w ∈ L(A) such that ϕ(w) = ϕ(w′)−1.

In other words, for any matrix A ∈ GL(2,Z), A ∈ ϕ(L(A)) if and only if A−1 ∈ ϕ(L(Inv(A))).
Construction of the automaton Inv(A). We will make use of the following equivalences,

which are easy to check: X−1 ∼ X, N−1 ∼ N , S−1 ∼ S3, and R−1 ∼ R5. Informally speaking, to
construct Inv(A) we want to reverse the transitions in A and replace the labels by their inverses.
More formally, Inv(A) will have the same states as A plus some newly added states as explained
below. The initial states of Inv(A) are the final states of A, and the final states of Inv(A) are the

initial states of A. For every transitions of the form q
X
−→ q′ and q

N
−→ q′ in A we add the transitions

q′
X
−→ q and q′

N
−→ q to Inv(A), respectively. Furthermore, for every transitions of the form q

S
−→ q′

and q
R
−→ q′ in A we add the paths q′

S
−→ p1

S
−→ p2

S
−→ q and q′

R
−→ p3

R
−→ p4

R
−→ p5

R
−→ p6

R
−→ q

to Inv(A), respectively, where p1, p2, . . . , p6 are newly added states. It is not hard to verify that
Inv(A) has the desired properties.

The purpose of the automaton FD(A) is to recognize conjugations of the words from L(A) with

matrix D. To explain formally what this means, let D =

[

m 0
0 mn

]

be a diagonal matrix in the

Smith normal form, where m,n 6= 0. Recall that by Proposition 11, for any matrix A ∈ GL(2,Z),
AD ∈ GL(2,Z) if and only if A ∈ H(n). The automaton FD(A) will have the following properties:

(1) For every w ∈ L(A) ∩ LH(n), there exists w′ ∈ L(FD(A)) such that ϕ(w′) = ϕ(w)D .

(2) For every w′ ∈ L(FD(A)), there exists w ∈ L(A) ∩ LH(n) such that ϕ(w)D = ϕ(w′).

In other words, we will have

ϕ(L(FD(A))) = {ϕ(w)D : where w ∈ L(A) and ϕ(w) ∈ H(n)}.

Construction of the automaton FD(A). Let A be a finite automaton in alphabet Σ and let

D =

[

m 0
0 mn

]

be a diagonal matrix in the Smith normal form, where m,n 6= 0.

Suppose that A has the states q0, q1, . . . , qt. Recall from the proof of Lemma 13 that the automa-
ton AH(n), which recognizes LH(n), has the states u0, u1, . . . , uk, where u0 is the only initial and
also the only final state. First, we construct an automaton A′ for the language L(A) ∩ LH(n) by
taking the direct product of A and AH(n). Namely, A′ has the states (qi, uj), for i = 0, . . . , t and
j = 0, . . . , k. The initial states of A′ are of the form (qi, u0), where qi is an initial state of A, and
the final states of A′ are of the form (qi, u0), where qi is a final state of A. Furthermore, there is
a transition from (qi, uj) to (qi′ , uj′) labelled by σ if and only if there are transitions qi

σ
−→ qi′ and

uj
σ
−→ uj′ in A and AH(n), respectively.

Next we replace every transition in A′ by a new path as follows. Let (qi1 , uj1)
σ
−→ (qi2 , uj2) be a

transition in A′. So there must be a transition of the form uj1
σ
−→ uj2 in AH(n). By construction of

8



AH(n) as described in Lemma 13, we have Uj1ϕ(σ) ∈ H(n)Uj2 or, equivalently, Uj1
ϕ(σ)U−1

j2
∈ H(n),

where U0, . . . , Uk are pairwise nonequivalent representatives of the right cosets of H(n) in GL(2,Z),
such that U0 = I. Hence (Uj1

ϕ(σ)U−1
j2

)D is a matrix with integer coefficients, that is, it belongs to

GL(2,Z). Let w = σ1 . . . σs ∈ Σ∗ be a canonical word1 such that ϕ(w) = (Uj1
ϕ(σ)U−1

j2
)D. Then we

replace the transition (qi1 , uj1)
σ
−→ (qi2 , uj2) by a path of the form

(qi1 , uj1)
σ1−→ p1

σ2−→ · · ·
σs−1

−−−→ ps−1
σs−→ (qi2 , uj2),

where p1, . . . , ps−1 are new states added to A′. Let FD(A) be an automaton that we obtain after
applying the above procedure to A′.

To prove the first property of FD(A), take any w = σ1 . . . σs ∈ L(A)∩LH(n). Then there must be

an accepting run ρ = (qi0 , uj0)(qi1 , uj1) . . . (qis , ujs) of A
′ on w. For every transition (qir−1

, ujr−1
)

σr−→
(qir , ujr) in the run ρ, there is a path in FD(A) from (qir−1

, ujr−1
) to (qir , ujr) labelled by a word

wr such that ϕ(wr) = (Ujr−1
ϕ(σr)U

−1
jr

)D, where Ujr−1
ϕ(σr)U

−1
jr

∈ H(n). If we let w′ = w1 . . . ws,

then w′ is accepted by FD(A). To prove that ϕ(w′) = ϕ(w)D , we first note that since w ∈ LH(n),
the run uj0uj1 . . . ujs is an accepting run of AH(n) on w, and in particular j0 = js = 0. Since
Uj0

= Ujs
= U0 = I, we can rewrite ϕ(w) as

ϕ(w) = U
−1
j0

(Uj0
ϕ(σ1)U

−1
j1

)(Uj1
ϕ(σ2)U

−1
j2

) · · · (Ujs−1
ϕ(σs)U

−1
js

)Ujs

= (Uj0
ϕ(σ1)U

−1
j1

)(Uj1
ϕ(σ2)U

−1
j2

) · · · (Ujs−1
ϕ(σs)U

−1
js

) (here we used that Uj0
= Ujs = I).

Recall that for each r = 1, . . . , s, we have ϕ(wr) = (Ujr−1
ϕ(σr)U

−1
jr

)D. Therefore,

ϕ(w)D = (Uj0
ϕ(σ1)U

−1
j1

)D(Uj1
ϕ(σ2)U

−1
j2

)D · · · (Ujs−1
ϕ(σs)U

−1
js

)D

= ϕ(w1)ϕ(w2) · · ·ϕ(ws) = ϕ(w′).

This proves the first property of FD(A).
To prove the second property of FD(A), take any w′ ∈ L(FD(A)) and consider an accepting run

of FD(A) on w′. This run passes through some states of the form (qi, uj), that are present in both
FD(A) and A′, and some new states that exist only in FD(A). Let (qi0 , uj0), (qi1 , uj1), . . . , (qis , ujs)
be the subsequence of the states of the first type which appear in the accepting run of FD(A).
They naturally divide w′ into subwords w′ = w1w2 . . . ws, where wr is a label of the path from
(qir−1

, ujr−1
) to (qir , ujr) for r = 1, . . . , s. By construction of FD(A), for each r = 1, . . . , s, there

exists a symbol σr ∈ Σ for which there is a transition (qir−1
, ujr−1

)
σr−→ (qir , ujr) in A′ and, moreover,

Ujr−1
ϕ(σr)U

−1
jr

∈ H(n) and ϕ(wr) = (Ujr−1
ϕ(σr)U

−1
jr

)D.
Let w = σ1σ2 . . . σs, then qi0qi1 . . . qis will be an accepting run of A on w and uj0uj1 . . . ujs will

be an accepting run of AH(n) on w. Thus w ∈ L(A) ∩ LH(n). Furthermore, we have uj0 = ujs = u0
and hence Uj0 = Ujs = I. So we can rewrite ϕ(w) as

ϕ(w) = U
−1
j0

(Uj0
ϕ(σ1)U

−1
j1

)(Uj1
ϕ(σ2)U

−1
j2

) · · · (Ujs−1
ϕ(σs)U

−1
js

)Ujs

= (Uj0
ϕ(σ1)U

−1
j1

)(Uj1
ϕ(σ2)U

−1
j2

) · · · (Ujs−1
ϕ(σs)U

−1
js

).

From this we obtain the following equalities

ϕ(w)D = (Uj0
ϕ(σ1)U

−1
j1

)D(Uj1
ϕ(σ2)U

−1
j2

)D · · · (Ujs−1
ϕ(σs)U

−1
js

)D

= ϕ(w1)ϕ(w2) · · ·ϕ(ws) = ϕ(w′).

This proves the second property of FD(A).

1Actually, we can take w to be any word that represents (Uj1
ϕ(σ)U−1

j2
)D. The fact that it is canonical is not

important for our construction.
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Proposition 14. Let D be a diagonal matrix in the Smith normal form and let S1 and S2 be two
regular subsets of GL(2,Z). Then it is decidable whether there exist matrices A1 ∈ S1 and A2 ∈ S2

such that A1DA2 = D.

Proof. Let A1 and A2 be finite automata such that S1 = L(A1) and S2 = L(A2), respectively. We
will show that the equation A1DA2 = D has a solution for some A1 ∈ S1 and A2 ∈ S2 if and only
if L(Can(FD(A1))) ∩ L(Can(Inv(A2))) 6= ∅2.

First, suppose there exist matrices A1 ∈ S1 and A2 ∈ S2 such that A1DA2 = D. Let w1 ∈ L(A1)

and w2 ∈ L(A2) be such that ϕ(w1) = A1 and ϕ(w2) = A2, respectively. Also let D =

[

m 0
0 mn

]

for

some m,n 6= 0. We can rewrite the equation A1DA2 = D as A−1
2 = AD

1 . From this we can see that
the matrix AD

1 must have integer coefficients. Hence, by Proposition 11, A1 ∈ H(n) and w1 ∈ LH(n).

Since w1 ∈ L(A1)∩LH(n), there exists w
′
1 ∈ L(FD(A1)) such that ϕ(w′

1) = ϕ(w1)
D = AD

1 . Also there

is w′
2 ∈ L(Inv(A2)) such that ϕ(w′

2) = ϕ(w2)
−1 = A−1

2 . Since A−1
2 = AD

1 , we have ϕ(w′
1) = ϕ(w′

2).
In other words, w′

1 and w′
2 are equivalent. Let w be a canonical word such that w ∼ w′

1 ∼ w′
2, then

w ∈ L(Can(FD(A1))) ∩ L(Can(Inv(A2))).
Now suppose there is a word w that belongs to L(Can(FD(A1)))∩L(Can(Inv(A2))). Hence there

are words w′
1 and w′

2 such that w ∼ w′
1 ∼ w′

2 and w′
1 ∈ L(FD(A1)) and w′

2 ∈ L(Inv(A2)). Therefore,
there exists w1 ∈ L(A1) ∩ LH(n) such that ϕ(w1)

D = ϕ(w′
1). Also there exists w2 ∈ L(A2) such

that ϕ(w2)
−1 = ϕ(w′

2). Let A1 = ϕ(w1) and A2 = ϕ(w2). Then we have AD
1 = ϕ(w1)

D = ϕ(w′
1) =

ϕ(w′
2) = ϕ(w2)

−1 = A−1
2 , which is equivalent to A1DA2 = D. Moreover, since w1 ∈ L(A1) and

w2 ∈ L(A2), we have that A1 ∈ S1 and A2 ∈ S2.
The proof of the proposition now follows from the facts that the intersection of two regular

languages is regular and that the emptiness problem for regular languages is decidable.

Corollary 15. Let M1 and M2 be nonsingular matrices from Z2×2 and let S1 and S2 be regular
subsets of GL(2,Z). Then it is decidable whether there exist matrices A1 ∈ S1 and A2 ∈ S2 such
that A1M1A2 = M2.

Proof. Let D1 and D2 be the Smith normal forms of M1 and M2, respectively, that is, M1 = E1D1F1

and M2 = E2D2F2 for some E1, F1, E2, F2 ∈ GL(2,Z). Without loss of generality, we can assume
that D1 and D2 have strictly positive diagonal coefficients. Note that if the equation A1M1A2 = M2

has a solution for some A1, A2 ∈ GL(2,Z), then, by Theorem 9, M1 and M2 must have the same
Smith normal form. Therefore, if D1 6= D2, then the equation does not have a solution.

So suppose that D = D1 = D2 is the Smith normal form of M1 and M2. Then A1M1A2 = M2

is equivalent to A1(E1DF1)A2 = E2DF2, which we can rewrite as (E−1
2 A1E1)D(F1A2F

−1
2 ) = D.

Let S ′
1 = {E−1

2 AE1 : A ∈ S1} and S ′
2 = {F1AF

−1
2 : A ∈ S2}. Then S ′

1 and S ′
2 are regular subsets

of GL(2,Z) because E1, F1, E2, and F2 are some fixed matrices. Now it is not hard to see that the
equation A1M1A2 = M2 has a solution A1, A2 such that A1 ∈ S1 and A1 ∈ S2 if and only if the
equation A′

1DA′
2 = D has a solution A′

1, A
′
2 such that A′

1 ∈ S ′
1 and A′

2 ∈ S ′
2. By Proposition 14,

this problem is decidable.

3.3 General case: A1M1 . . . At−1Mt−1At = Mt

To prove an analog of Corollary 15 in the general case, we will extend the construction of the
automaton FD(A) to build an automaton F(A1, . . . ,At−1,M1, . . . ,Mt−1;Mt) (where A1, . . . ,At−1

are finite automata in alphabet Σ and M1, . . . ,Mt−1,Mt are nonsingular matrices from Z2×2) which
will have the following properties:

2We remind that the construction of the automaton Can(A) is described in Section 4.1 of the Appendix.
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(1) If w1 ∈ L(A1), . . . , wt−1 ∈ L(At−1) and there is a matrix A ∈ GL(2,Z) which satisfies the equa-
tion ϕ(w1)M1 . . . ϕ(wt−1)Mt−1A = Mt, then there is w ∈ L(F(A1, . . . ,At−1,M1, . . . ,Mt−1;Mt))
such that ϕ(w1)M1 . . . ϕ(wt−1)Mt−1ϕ(w)

−1 = Mt (and hence A = ϕ(w)−1).

(2) If w ∈ L(F(A1, . . . ,At−1,M1, . . . ,Mt−1;Mt)), then there are w1 ∈ L(A1), . . . , wt−1 ∈ L(At−1)
such that ϕ(w1)M1 . . . ϕ(wt−1)Mt−1ϕ(w)

−1 = Mt.

Construction of F(A1, . . . ,At−1,M1, . . . ,Mt−1;Mt). The construction will be done by induc-
tion on t. We will use the following notations: If A1 and A2 are finite automata in alphabet Σ,
then A1 ·A2 denotes the concatenation of A1 and A2. If A is an automaton and w ∈ Σ∗, then A·w
denotes an automaton that recognizes the language L(A) · {w} = {uw : u ∈ L(A)}. Similarly, w · A
is an automaton that recognizes {w} · L(A) = {wu : u ∈ L(A)}.

First, we construct an automaton F(A1,M1;M2), which will serve as a base for induction. Let
D1 and D2 be diagonal matrices with nonnegative coefficients which are equal to the Smith normal
forms of M1 and M2, respectively. If D1 6= D2, then define F(A1,M1;M2) to be an automaton that
accepts the empty language. Otherwise, let D = D1 = D2 be the common Smith normal form of M1

and M2, and suppose M1 = E1DF1 and M2 = E2DF2 for some matrices E1, F1, E2, F2 ∈ GL(2,Z).
Let w(E1), w(F1), w(E

−1
2 ) and w(F−1

2 ) be canonical words that represent the matrices E1, F1, E
−1
2

and F−1
2 , respectively, and define F(A1,M1;M2) to be the following automaton

F(A1,M1;M2) = w(F−1
2 ) · FD

(

w(E−1
2 ) · A1 · w(E1)

)

· w(F1).

The following proposition states that the automaton F(A1,M1;M2) indeed satisfies the desired
properties.

Proposition 16. Let A1 be a finite automaton in alphabet Σ, and let M1 and M2 be nonsingular
matrices from Z2×2. Then the automaton F(A1,M1;M2) has the following properties:

(1) If w1 ∈ L(A1) and there is a matrix A ∈ GL(2,Z) which satisfies the equation ϕ(w1)M1A = M2,
then there is w ∈ L(F(A1,M1;M2)) such that ϕ(w1)M1ϕ(w)

−1 = M2 (and hence A = ϕ(w)−1).

(2) If w ∈ L(F(A1,M1;M2)), then there is w1 ∈ L(A1) such that ϕ(w1)M1ϕ(w)
−1 = M2.

Proof. Note that if M1 and M2 have different Smith normal forms, then by the uniqueness part of
Theorem 9 the equation A1M1A2 = M2 cannot have a solution A1, A2 ∈ GL(2,Z). Therefore, in

this case both properties of F(A1,M1;M2) are trivially satisfied. Now suppose that D =

[

m 0
0 mn

]

is the common Smith normal form of M1 and M2 and let E1, F1, E2, F2 be matrices form GL(2,Z)
such that M1 = E1DF1 and M2 = E2DF2.

To see that the first property of F(A1,M1;M2) holds, let’s take any w1 ∈ L(A1) for which
there is a matrix A ∈ GL(2,Z) that satisfies the equation ϕ(w1)M1A = M2. Hence we have that
ϕ(w1)E1DF1A = E2DF2, which is equivalent to F−1

2 (E−1
2 ϕ(w1)E1)

DF1 = A−1. Because F−1
2 , F1,

and A−1 are matrices from GL(2,Z), we conclude that (E−1
2 ϕ(w1)E1)

D is in GL(2,Z). Then, by
Proposition 11, we have E−1

2 ϕ(w1)E1 ∈ H(n) or, equivalently, w(E−1
2 ) · w1 · w(E1) ∈ LH(n). By

the first property of the construction FD, there exists w′ ∈ L
(

FD

(

w(E−1
2 ) · A1 · w(E1)

))

such that

ϕ(w′) = ϕ
(

w(E−1
2 ) · w1 · w(E1)

)D
= (E−1

2 ϕ(w1)E1)
D. Let w = w(F−1

2 ) · w′ · w(F1). Then w is in
L(F(A1,M1;M2)). Moreover, ϕ(w) = F−1

2 ϕ(w′)F1 = F−1
2 (E−1

2 ϕ(w1)E1)
DF1. The last equation is

equivalent to ϕ(w1)E1DF1ϕ(w)
−1 = E2DF2, which is the same as ϕ(w1)M1ϕ(w)

−1 = M2. Hence
the first property holds.

Now we prove the second property of F(A1,M1;M2). Let’s take any w ∈ L(F(A1,M1;M2)).
Then there exists w′ ∈ L

(

FD

(

w(E−1
2 )·A1 ·w(E1)

))

such that w = w(F−1
2 )·w′ ·w(F1). By the second
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property of the construction FD, there exists w1 ∈ L(A1) such that w(E−1
2 ) · w1 · w(E1) ∈ LH(n)

and ϕ(w′) = ϕ
(

w(E−1
2 ) · w1 · w(E1)

)D
. The last two conditions are equivalent to the facts that

E−1
2 ϕ(w1)E1 ∈ H(n) and ϕ(w′) = (E−1

2 ϕ(w1)E1)
D. From the equation w = w(F−1

2 ) · w′ · w(F1)
we have that ϕ(w) = F−1

2 ϕ(w′)F1. Therefore, ϕ(w) = F−1
2 (E−1

2 ϕ(w1)E1)
DF1. The last equation

is equivalent to ϕ(w1)E1DF1ϕ(w)
−1 = E2DF2, which is the same as ϕ(w1)M1ϕ(w)

−1 = M2. This
proves the second property.

We now explain how to construct an automaton F(A1, . . . ,At−1,M1, . . . ,Mt−1;Mt). For conve-
nience the description of this construction is enclosed in the following proposition.

Proposition 17. Let A1, . . . ,At−1 be finite automata in alphabet Σ, and let M1, . . . ,Mt−1,Mt be
nonsingular matrices from Z2×2. Then there is an automaton F(A1, . . . ,At−1,M1, . . . ,Mt−1;Mt)
which has the following properties:

(1) If w1 ∈ L(A1), . . . , wt−1 ∈ L(At−1) and there is a matrix A ∈ GL(2,Z) which satisfies the equa-
tion ϕ(w1)M1 . . . ϕ(wt−1)Mt−1A = Mt, then there is w ∈ L(F(A1, . . . ,At−1,M1, . . . ,Mt−1;Mt))
such that ϕ(w1)M1 . . . ϕ(wt−1)Mt−1ϕ(w)

−1 = Mt (and hence A = ϕ(w)−1).

(2) If w ∈ L(F(A1, . . . ,At−1,M1, . . . ,Mt−1;Mt)), then there are w1 ∈ L(A1), . . . , wt−1 ∈ L(At−1)
such that ϕ(w1)M1 . . . ϕ(wt−1)Mt−1ϕ(w)

−1 = Mt.

The following lemma will play an important role in the proof of the inductive step in Proposi-
tion 17. Informally speaking, it states that when we consider all possible Smith normal forms UDV
for a fixed D, we can assume that U comes from a finite set of matrices.

Lemma 18. Let D =

[

m 0
0 mn

]

be a diagonal matrix in the Smith normal form and let U0, . . . , Uk

be representatives of the right cosets of H(n) in GL(2,Z). Then

{UDV : U, V ∈ GL(2,Z)} =

k
⋃

i=0

{UiDV : V ∈ GL(2,Z)}.

Proof. Consider a matrix M = UDV for some U, V ∈ GL(2,Z) and choose i such that U ∈ UiH(n).
In this case we have that U−1

i U ∈ H(n), and thus (U−1
i U)D belongs to GL(2,Z) by Proposition 11.

Let V ′ = (U−1
i U)DV ∈ GL(2,Z). Then we have an equality M = UDV = UiDV ′, and hence

M ∈ {UiDV : V ∈ GL(2,Z)}. The inclusion in the other direction is obvious.

Proof of Proposition 17. The proof will be done by induction of t. The base case when t = 2
follows from Proposition 16. Now suppose the proposition holds for t − 1, and thus we have a
construction for the automata of the form F(A1, . . . ,At−2,M1, . . . ,Mt−2;Mt−1) which satisfy the
properties (1) and (2) above. Using these automata, we will show how to construct an automaton
F(A1, . . . ,At−1,M1, . . . ,Mt−1;Mt).

Let Dt−1 =

[

m 0
0 mn

]

be equal to the Smith normal form of the matrix Mt−1 and let U0, . . . , Uk

be representatives of the right cosets of H(n), which can be computed by Theorem 12. Then we
define F(A1, . . . ,At−1,M1, . . . ,Mt−1;Mt) to be an automaton that recognizes the following union
of regular languages

k
⋃

i=0

L
(

F(A1, . . . ,At−3, At−2, M1, . . . ,Mt−3, Mt−2UiDt−1; Mt) · F(At−1,Mt−1;UiDt−1)
)

.
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To see that the first property holds for F(A1, . . . ,At−1,M1, . . . ,Mt−1;Mt), let’s take w1 ∈
L(A1), . . . , wt−1 ∈ L(At−1), and suppose there is a matrix A ∈ GL(2,Z) which satisfies the equation

ϕ(w1)M1 . . . ϕ(wt−1)Mt−1A = Mt.

By Lemma 18, there is i ∈ {0, . . . , k} and V ∈ GL(2,Z) such that ϕ(wt−1)Mt−1A = UiDt−1V . So
the above equation is equivalent to the following system of equations

ϕ(w1)M1 . . . ϕ(wt−2)Mt−2UiDt−1V = Mt,

ϕ(wt−1)Mt−1AV
−1 = UiDt−1.

Since V ∈ GL(2,Z), by the inductive hypothesis there is a word u such that

u ∈ L
(

F(A1, . . . ,At−3, At−2, M1, . . . ,Mt−3, Mt−2UiDt−1; Mt)
)

and
ϕ(w1)M1 . . . ϕ(wt−2)Mt−2UiDt−1ϕ(u)

−1 = Mt.

Moreover, since AV −1 ∈ GL(2,Z), by Proposition 16, there is a word v ∈ L(F(At−1,Mt−1;UiDt−1))
such that ϕ(wt−1)Mt−1ϕ(v)

−1 = UiDt−1. Combining the last two equations together we obtain that

ϕ(w1)M1 . . . ϕ(wt−1)Mt−1ϕ(v)
−1ϕ(u)−1 = Mt

or, equivalently,
ϕ(w1)M1 . . . ϕ(wt−1)Mt−1ϕ(uv)

−1 = Mt.

Note that

uv ∈ L
(

F(A1, . . . ,At−3, At−2, M1, . . . ,Mt−3, Mt−2UiDt−1; Mt) · F(At−1,Mt−1;UiDt−1)
)

and hence uv ∈ L(F(A1, . . . ,At−1,M1, . . . ,Mt−1;Mt)). Therefore, property (1) holds.
To show the second property, let’s take w ∈ L(F(A1, . . . ,At−1,M1, . . . ,Mt−1;Mt)). Then there

is i ∈ {0, . . . , k} such that

w ∈ L
(

F(A1, . . . ,At−3, At−2, M1, . . . ,Mt−3, Mt−2UiDt−1; Mt) · F(At−1,Mt−1;UiDt−1)
)

.

Therefore, there are words u and v such that

u ∈ L
(

F(A1, . . . ,At−3, At−2, M1, . . . ,Mt−3, Mt−2UiDt−1; Mt)
)

.

and v ∈ L(F(At−1,Mt−1;UiDt−1)). By Proposition 16, there is wt−1 ∈ L(At−1) such that

ϕ(wt−1)Mt−1ϕ(v)
−1 = UiDt−1.

Furthermore, by the inductive hypothesis, there are w1 ∈ L(A1), . . . , wt−2 ∈ L(At−2) such that

ϕ(w1)M1 . . . ϕ(wt−2)Mt−2UiDt−1ϕ(u)
−1 = Mt.

Combining the last two equation together we obtain

ϕ(w1)M1 . . . ϕ(wt−1)Mt−1ϕ(v)
−1ϕ(u)−1 = Mt.

Note that ϕ(w)−1 = ϕ(v)−1ϕ(u)−1, and hence we have ϕ(w1)M1 . . . ϕ(wt−1)Mt−1ϕ(w)
−1 = Mt.

Therefore, property (2) holds.
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Theorem 19. Let M1, . . . ,Mt be nonsingular matrices from Z2×2 and let S1, . . . ,St be regular
subsets of GL(2,Z). Then it is decidable whether there exist matrices A1 ∈ S1, . . . , At ∈ St such
that A1M1 . . . At−1Mt−1At = Mt.

Proof. Let A1, . . . ,At be finite automata such that Si = ϕ(L(Ai)), for each i = 1, . . . , t. Now
consider an automaton F(A1, . . . ,At−1,M1, . . . ,Mt−1;Mt) which was constructed in the proof of
Proposition 17. We will show the following equivalence: there exist matrices A1 ∈ S1, . . . , At ∈ St

that satisfy the equation A1M1 . . . At−1Mt−1At = Mt if and only if

L
(

Can(Inv(At))
)

∩ L
(

Can(F(A1, . . . ,At−1,M1, . . . ,Mt−1;Mt))
)

6= ∅.

The statement of the theorem then follows from the decidability of the emptiness problem for regular
languages.

First, suppose there are matrices A1 ∈ S1, . . . , At ∈ St such that A1M1 . . . At−1Mt−1At = Mt.
Then there are words w1 ∈ L(A1), . . . , wt ∈ L(At) such that

ϕ(w1)M1 . . . ϕ(wt−1)Mt−1ϕ(wt) = Mt.

By property (1) of Proposition 17, there is a word u ∈ L(F(A1, . . . ,At−1,M1, . . . ,Mt−1;Mt)) such
that

ϕ(w1)M1 . . . ϕ(wt−1)Mt−1ϕ(u)
−1 = Mt.

In particular, we have ϕ(wt) = ϕ(u)−1. Furthermore, by the construction of Inv(At), there is a
word v ∈ L(Inv(At)) such that ϕ(v) = ϕ(wt)

−1. So we have ϕ(u) = ϕ(wt)
−1 = ϕ(v), that is, u ∼ v.

Let w be the canonical word that is equivalent to u and v. Then

w ∈ L
(

Can(Inv(At))
)

∩ L
(

Can(F(A1, . . . ,At−1,M1, . . . ,Mt−1;Mt))
)

.

On the other hand, suppose there is a word w such that

w ∈ L
(

Can(Inv(At))
)

∩ L
(

Can(F(A1, . . . ,At−1,M1, . . . ,Mt−1;Mt))
)

.

Then there are words u and v such that u ∼ v ∼ w and u ∈ L(F(A1, . . . ,At−1,M1, . . . ,Mt−1;Mt))
and v ∈ L(Inv(At)). Hence there is wt ∈ L(At) such that ϕ(wt) = ϕ(v)−1. Also by property (2) of
Proposition 17, there are words w1 ∈ L(A1), . . . , wt−1 ∈ L(At−1) such that

ϕ(w1)M1 . . . ϕ(wt−1)Mt−1ϕ(u)
−1 = Mt.

Since v ∼ u, we have that ϕ(u)−1 = ϕ(v)−1 = ϕ(wt). Therefore, the above equation is equivalent to

ϕ(w1)M1 . . . ϕ(wt−1)Mt−1ϕ(wt) = Mt.

Now if we let A1 = ϕ(w1), . . . , At = ϕ(wt), then for each i = 1, . . . , t the matrix Ai belongs to Si,
and hence we have A1M1 . . . At−1Mt−1At = Mt.

4 Appendix

4.1 Construction of the automaton Can(A)

Let A be a finite automaton with alphabet Σ. We will construct a new automaton Can(A) such that
the language of Can(A) contains only canonical words and Can(A) ∼ A, that is, ϕ(L(Can(A))) =
ϕ(L(A)). In order to do this, we will define a sequence of transformations called Red, FN and FX

which will have the following properties:
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• Can(A) = FX ◦ Red ◦ FN (A),

• L(FN (A)) ⊆ {X,S,R}∗ ∪N{X,S,R}∗, that is, FN (A) accepts only those words that have at
most one occurrence of N which may appear only in the first position,

• L(Red ◦ FN (A)) ⊆ {X,S,R}∗ ∪N{X,S,R}∗ and, moreover, Red ◦ FN (A) accepts only those
words that do not contain subwords of the form XX , SXαS and RXα1RXα2R for any
α,α1, α2 ∈ {0, 1},

• FX ◦Red ◦ FN (A) accepts only canonical words,

• finally, we will have the equivalences A ∼ FN (A) ∼ Red◦FN (A) ∼ FX◦Red◦FN (A) = Can(A).

We now describe each of these transformations in detail.
Transformation FN . We will make use of the following equivalences which can be easily verified:

X ∼ NXN , S ∼ NXSN , and R ∼ NSR2SN .

First, for every transition q
X
−→ q′ which appears in A, we add new states p1, p2 and a new path

of the form q
N
−→ p1

X
−→ p2

N
−→ q′. Note that since X ∼ NXN , the addition of such paths produces

an equivalent automaton. Similarly, for any transition q
S
−→ q′ in A, we add new states p1, p2, p3

and a path q
N
−→ p1

X
−→ p2

S
−→ p3

N
−→ q′. Finally, for any transition q

R
−→ q′ in A, we add new states

p1, p2, p3, p4, p5 and a path q
N
−→ p1

S
−→ p2

R
−→ p3

R
−→ p4

S
−→ p5

N
−→ q′. Again, the addition of such

paths produces an equivalent automaton. Let us call this automaton A1.
Now for every pair of states q, q′ in A1, which are connected by a path labelled with NN , we add

an ε-transition q
ε
−→ q′. We repeat this procedure iteratively until no new ε-transitions of this type

can be added. Let A2 be the resulting automaton. Note that since NN is equivalent to the empty
word, which represents the identity matrix I, the automaton A2 is equivalent to A1 and hence to A.

Let FN (A) be an automaton that recognizes the intersection L(A2)∩ ({X,S,R}∗∪N{X,S,R}∗).
Obviously, the language of FN (A) is a subset of {X,S,R}∗ ∪N{X,S,R}∗, so we only need to show
that FN (A) ∼ A. Take any w1 ∈ L(FN (A)), then w1 ∈ L(A2) and since A2 ∼ A, there is w2 ∈ L(A)
such that w1 ∼ w2. Next, we need to prove that for any w2 ∈ L(A), there is w1 ∈ L(FN (A)) such
that w2 ∼ w1.

Let us take any w2 ∈ L(A). To construct the required word w1, we first need to find all oc-
currences of letter N in w2. For example, suppose that w2 = u1Nu2N . . . un−1Nun, where each
ui ∈ {X,S,R}∗. If the number of N ’s is odd, then in each subword ui with odd i we replace every
occurrence of X, S, and R with NXN , NXSN , and NSR2SN , respectively, and leave ui’s with even
i unchanged. On the other hand, if the number of N ’s is even, then we apply such substitution to
each ui with even i and leave ui’s with odd i unchanged. Let w′ be the resulting word. Then by
construction w′ ∼ w2 and w′ ∈ L(A1). Next, we repeatedly remove all occurrences of the subword
NN from w′. This will give us a word w1 ∼ w′ ∼ w2 such that w1 ∈ L(A2) and w1 contains at most
one letter N , which may appear in the first position. Hence w1 ∈ L(FN (A)). This idea is illustrated
by the following example. Let w2 = SXNRNRSNS ∈ L(A), so w2 contains an odd number of N ’s
and hence

w′ = (NXSN )(NXN )NRN (NSR2SN )(NXSN )NS

= NXS(NN )X(NN )R(NN )SR2S(NN )XS (NN )S.

In the above formula parentheses are inserted only to visually separated subwords in w′. After
removing subwords NN from w′ we obtain w1 = NXSXRSR2SXSS ∈ L(FN (A)) such that w1 ∼ w2.
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The next example illustrates the same idea for an even number of N ’s. Let w2 = SXNRNRSNSN ∈
L(A), then

w′ = SXN (NSR2SN )NRSN (NXSN )N

= SX (NN )SR2S(NN )RS (NN )XS (NN ).

After removing NN from w′ we obtain w1 = SXSR2SRSXS ∈ L(FN (A)) such that w1 ∼ w2. This
completes the proof that FN (A) ∼ A.

Transformation Red. To construct Red ◦FN (A) from FN (A) we will make use of the following
equivalences SS ∼ X and RRR ∼ X. We will also use the fact that X commutes with S, R, and
N , and that XX is equivalent to the empty word.

First, we apply the following procedure to FN (A):

(1) For any pair of states q, q′ in FN (A) that are connected by a path labelled with XX , we add
an ε-transition q

ε
−→ q′.

(2) For any pair of states q, q′ in FN (A) that are connected by a path labelled with SXαS, where

α ∈ {0, 1} (recall that X0 denotes the empty word), we add a new transition q
Xβ

−−→ q′, where
β = 1− α.

(3) For any pair of states q, q′ in FN (A) that are connected by a path labelled with RXα1RXα2R,

where α1, α2 ∈ {0, 1}, we add a new transition q
Xγ

−−→ q′, where γ ∈ {0, 1} is such that γ ≡
α1 + α2 + 1 mod 2.

We repeat the above steps iteratively until no new transitions can be added.
Let A′ be the resulting automaton. By construction, we have A′ ∼ FN (A). Let LRed be the

regular language which consists of all words in alphabet Σ that do not contain subwords of the form
XX , SXαS and RXα1RXα2R for any α,α1, α2 ∈ {0, 1}. Define Red ◦ FN (A) as an automaton
that accepts the language L(A′) ∩ LRed. It is not hard to see that the language of Red ◦ FN (A) is
contained in LRed ∩ ({X,S,R}∗ ∪N{X,S,R}∗).

What is left to show is that Red ◦ FN (A) ∼ FN (A). If w1 ∈ L(Red ◦ FN (A)), then w1 ∈ L(A′),
and hence w1 ∼ w2 for some w2 ∈ L(FN (A)) because A′ ∼ FN (A). On the other hand, if w2 ∈
L(FN (A)), then we can repeatedly remove subwords XX from w2 and replace subwords of the form
SXαS and RXα1RXα2R, for α,α1, α2 ∈ {0, 1}, with Xβ and Xγ , respectively, where β = 1 − α
and γ ∈ {0, 1} is such that γ ≡ α1 + α2 + 1 mod 2. Let w1 be a resulting word that does not
contain subwords XX , SXαS and RXα1RXα2R for any α,α1, α2 ∈ {0, 1}. Then w1 ∼ w2 and
w1 ∈ L(A′) ∩ LRed = L(Red ◦ FN (A)).

Transformation FX . The words accepted by Red ◦ FN (A) are almost in canonical form with
the exception that the letter X may appear in the middle of a word. To get rid of such X’s we
use a similar idea as in the construction of FN (A). Namely, we will use the following equivalences:
S ∼ XSX and R ∼ XRX . Note that we will not need the equivalence N ∼ XNX because the letter
N can appear only at the beginning of a word.

To construct Can(A) = FX ◦Red◦FN (A) from Red◦FN (A), we do the following. First, for every

transition q
S
−→ q′ which appears in Red ◦ FN (A), we add new states p1, p2 and a new path of the

form q
X
−→ p1

S
−→ p2

X
−→ q′. Similarly, for every transition q

R
−→ q′ which appears in Red ◦ FN (A), we

add new states p1, p2 and a new path of the form q
X
−→ p1

R
−→ p2

X
−→ q′. After that we iteratively

add ε transitions q
ε
−→ q′ for every pair of states q, q′ that are connected by a path with label XX .

We do this until no new ε-transitions can be added.
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Let A′ be the resulting automaton, which is by construction equivalent to Red ◦ FN (A). Let
LCan be the regular language which consists of all canonical words in alphabet Σ. Define Can(A) =
FX ◦ Red ◦ FN (A) as an automaton that accepts the language L(A′) ∩ LCan. Therefore, Can(A)
accepts only canonical words.

The proof that Can(A) ∼ Red ◦ FN (A) is similar to the proof that FN (A) ∼ A given above. If
w1 ∈ L(Can(A)), then w1 ∈ L(A′) and hence w1 ∼ w2 for some w2 ∈ L(Red ◦ FN (A)) because
A′ ∼ Red ◦FN (A). On the other hand, if w2 ∈ L(Red ◦FN (A)), then to construct w1 ∈ L(Can(A))
such that w1 ∼ w2 we first find all occurrences of the letter X in w2. For example, let w2 has the form
w2 = Nu1Xu2X . . . un−1Xun or the form w2 = u1Xu2X . . . un−1Xun, where each ui ∈ {S,R}∗. If
the number of X’s is odd, then in each ui with odd i we replace every occurrence of R and S with
XRX and XSX , respectively, and leave ui’s with even i unchanged. If the number of X’s is even,
then we do the same substitution in all ui’s with even i and leave ui’s with odd i unchanged. After
that we remove all occurrences of XX . If w1 is a resulting word, then w1 ∼ w2 and w1 ∈ L(A′).
Moreover, since w1 is in canonical form, we also have w1 ∈ L(Can(A)). This idea is illustrated by
the following example. Suppose w2 = NSRXSXRRX , then after replacing suitable occurrences of
R and S with XRX and XSX , respectively, we obtain the word

N(XSX )(XRX )XSX (XRX )(XRX )X

=NXS(XX )R(XX )S(XX )R(XX )R(XX ).

After removing all occurrences of XX we obtain the word w1 = NXSRSRR ∼ w2 which is in
canonical form, and hence w1 ∈ L(Can(A)). This completes the construction of Can(A).
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