Nitrogen doping of indium oxide for enhanced photocatalytic reduction of CO₂ to methanol

Yuxiang Yang ^a, Yun-Xiang Pan^{b,*}, Xin Tu^{c,*}, Chang-jun Liu^{a,*}

^a Collaborative Innovation Center of Chemical Science & Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
 ^b Department of Chemical Engineering, School of Chemistry and Chemical Engineering,

Shanghai Jiao Tong University, Shanghai 200240, P. R. China

^c Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, United Kingdom

* Corresponding authors.

E-mail address: cjL@tju.edu.cn (C. -J. Liu); yxpan81@sjtu.edu.cn (Y.-X. Pan); Xin.Tu@liverpool.ac.uk (X. Tu).

Abstract

Herein, the nitrogen-doped indium oxide (N-In₂O₃) photocatalyst was confirmed to be highly active and stable for photocatalytic reduction of CO₂ to methanol in an aqueous solution at ambient conditions. The efficiency of N-In₂O₃ in producing methanol can be flexibly improved by tuning the nitrogen doping content. The highest formation rate of methanol reaches to 394 μ mol g_{cat}⁻¹ h⁻¹, with a methanol selectivity of 63%, at a nitrogen doping content of 3.74%. Nitrogen doping generates mid-gap energy states and reduces the bandgap of In₂O₃, thus boosting photon absorption and electron-hole separation. Nitrogen doping creates more oxygen vacancies on In₂O₃, thus forming more active sites for CO₂ adsorption and conversion. Nitrogen doping also enhances the activity of the surface frustrated Lewis pairs (SFLPs), which further promotes CO₂ adsorption and activation. The multiple-role of nitrogen doping results in the highly active and stable photocatalytic reduction of CO₂ to methanol.

Keywords: nitrogen doping; In₂O₃; CO₂; methanol; photocatalytic reduction

1. Introduction

Climate change originated from CO_2 accumulation in the atmosphere has become the most urgent global issue [1-6]. Solar-driven photocatalytic reduction of CO_2 is one of the most promising strategies to solve the CO_2 -related issue, as it utilizes green and sustainable solar energy to reduce CO_2 emission whilst converting CO_2 into valuable fuels and chemicals, *e.g.* methanol (CH₃OH) [7-9], carbon monoxide (CO) [10-13], and methane (CH₄) [14-17]. Fabricating efficient photocatalysts for the photocatalytic reduction of CO_2 has thereby become a hot topic.

As an n-type semiconductor, In₂O₃ has been widely applied for photocatalytic conversions [18-26]. The narrow bandgap (~2.8 eV), high conductivity, good stability and photo-corrosion resistance make In₂O₃ be a promising alternative to popular photocatalysts like TiO₂. In₂O₃ is efficient in adsorbing and activating CO₂, benefitted from its oxygen vacancies and abundant hydroxyl groups. The positions of conduction band (CB) and valence band (VB) of In₂O₃ have been proved to meet the reduction potentials for driving the photocatalytic reduction of CO₂. However, pristine In₂O₃ shows poor activity for photocatalytic reduction of CO₂ under ambient conditions, suffering from the rapid recombination of the photogenerated electrons and holes as well as the uncontrolled reactions of radicals [18]. The pristine In₂O₃ is in a pale-yellow colour, and can only respond to the ultraviolet light region, which accounts for only 7% of sunlight. Tuning the surface property and crystal structure of In₂O₃ has been considered to be an efficient strategy to improve the efficiency of In₂O₃ in the photocatalytic reduction of CO₂. For example, creating more oxygen vacancies on In2O3 to fabricate In2O3-x changes the colour of the material into black, and the light absorption is thus extended to the visible light region, which accounts for about 43% of sunlight [19]. In addition, the black In₂O_{3-x} also shows a stronger ability in separating the photogenerated electron-hole pairs as well as adsorbing and activating CO₂, as compared with pristine In₂O₃, due to the more oxygen vacancies [19]. Black In₂O_{3-x}/In₂O₃ composite with amorphous non-stoichiometric In₂O_{3-x} on a core of crystalline

stoichiometric In₂O₃ has a broader light absorption, from the ultraviolet region to the visible region, and improves electron-hole separation, thus enhancing the photocatalytic reduction of CO₂ [20-22]. Doping In₂O₃ by metal or non-metal elements (*e.g.* N and C) can also improve light absorption, electron-hole separation and CO₂ adsorption, thus enhancing photocatalytic reduction of CO₂ [18,23-25]. Wang *et al.* [26] found that the main product was methane in the photocatalytic reduction of CO₂ on Pt-decorated In₂O₃ nanorods. The In₂O₃ nanorods promoted light absorption and electron-hole separation, while the supported Pt nanoparticles provided active sites to generate hydrogen atoms for reducing CO₂ into methane. However, how to exactly control the amounts of doped elements on In₂O₃ is a long-term objective for the studies on the photocatalytic reduction of CO₂. Excessive doped elements induce fast electron-hole recombination, thus reducing photoreduction efficiency.

On the other hand, as the heterogeneous hydrogenation of CO_2 [27], tuning the product selectivity of photocatalytic reduction of CO_2 is still a challenge. It is very important not only for the potential applications but also for the fundamental understanding on the structureperformance relationship of photocatalysts. Herein, we efficiently tune the product selectivity of photocatalytic reduction of CO_2 from CO evolution to methanol formation by doping nitrogen on In_2O_3 . We confirm that nitrogen doping endows the N-In₂O₃ with enhanced light absorption capacity, superior charge separation efficiency, improved photocatalytic activity and significantly increased methanol yield. The methanol formation rate can be efficiently improved by tuning nitrogen doping content, which enables the controllable photocatalytic production of methanol.

2. Experimental and calculation methods

2.1. Photocatalysts preparation

In this work, a discharge-enhanced nitrogen doping *via* dielectric barrier discharge (DBD) plasma was employed for the preparation of N-In₂O₃ photocatalysts. This kind of plasma has

been commercially applied for ozone generation, polymer treatment and others. Plasma is the fourth form of matter. Different from solid, liquid and gas, plasma is a collection of molecules, free radicals, excited species, ions, photons and electrons [28]. It is normally generated by partial ionization or dissociation of gas molecules between two electrodes under some high voltages. DBD contains one or two electrodes covered by the dielectric barrier, which plays an important role in the stabilization of the discharge. It can be operated at atmospheric pressure and as low as room temperature. However, its electron energy is very high with average electron temperature ranged from 10,000 to 100,000 K (1-10 eV) [28]. DBD is also highly effective and efficient for the nitrogen doping of catalysts [29,30].

The DBD reactor applied here is shown in Fig. S1. To dope nitrogen onto In_2O_3 , the pristine In_2O_3 was firstly placed in the discharge chamber. A gas mixture of NH₃ and argon was running into the discharge chamber, with a flowrate of 20 mL min⁻¹, at atmospheric pressure. Finally, DBD was initiated for nitrogen doping. During the discharge-enhanced doping, NH₃ was ionized and dissociated into energetic nitrogen and hydrogen species, causing the doping of nitrogen into In_2O_3 . The temperature during the doping was ~150 °C, according to the measurement by the infrared imaging (Icron 100PHT). More details of the operation of the DBD setup have been given in our previous works [31,32]. The experimental study shows the time of the discharge-enhanced nitrogen doping has a significant effect, and there is an optimum time (10 min) for nitrogen doping. In the following discussions, the pristine In_2O_3 is denoted as M1, while the photocatalysts with nitrogen doping times of 2, 5, 10, 20, 30 and 40 min are assigned as M2, M3, M4, M5, M6 and M7, respectively. Fig. S2 shows the photos of M1-M7.

2.2. Characterization

X-ray diffraction (XRD) analyses were performed on a Rigaku D/MAX-2500 diffractometer with a scan speed of 4° min⁻¹ over the 2 θ range of 10-90°. The diffractometer was equipped with a Cu K α radiation source ($\lambda = 1.54056$ Å). The diffraction patterns were compared with the data from the Joint Committee on Powder Standards (JCPDS) database to identify the crystalline phase of the catalysts. High-resolution transmission electron microscopy (HRTEM) analyses were carried out on a JEM-F200 microscope with an accelerating voltage of 200 kV. Before the test, each catalyst was dispersed in ethanol and ultrasonicated for 30 min. The upper suspension was dripped on an ultra-thin carbon film to dry naturally. The element mapping patterns were characterized *via* energy-dispersive X-ray spectroscopy (EDS) using JEM-F200. X-ray photoelectron spectroscopy (XPS) analyses were performed on an ESCA 2000 X-ray photoelectron spectrophotometer (VG Scientific, monochromated Mg K α X-ray). The results of the XPS depth profile were collected by a Thermo Fisher Scientific K-Alpha+ spectrometer equipped with an Al K α X-ray. The Ar⁺ sputtering speed was ca. 0.1 nm s⁻¹ with Ta₂O₃ as standard material. The binding energies were calibrated by the C 1*s* peak at 284.8 eV.

 N_2 adsorption-desorption isotherms were determined on a Micromeritics TriStar II 3020 instrument at 77 K. The Brunauer-Emmett-Teller (BET) model was used to calculate the specific surface area of the catalyst. All the catalysts were outgassed at 150 °C for 6 h before the test. The ultraviolet-visible diffuse reflectance spectroscopy (UV-vis-DRS) observations were done at room temperature on a UV-2600 ultraviolet-visible spectrophotometer (Shimadzu Corporation) equipped with an integrating sphere. Photoluminescence (PL) spectra were measured on an FSL-1000 (Edinburgh Instruments) system at room temperature, using a 325 nm laser as the excitation source. The time-resolved fluorescence decay spectra were recorded with 440 nm as the emission center. The average fluorescence lifetime (τ_{avg}) was calculated by fitting the single exponential function. Photocurrents were measured on an electrochemical workstation (CHI760E, CH Instrument, Inc.) at room temperature.

 CO_2 temperature-programmed desorption (CO_2 -TPD) profiles were obtained on a Micromeritics Autochem II 2920 chemisorption analyzer equipped with a Hiden HPR-20 EGA mass spectrometer (MS). 300 mg catalyst was placed in a U-shaped quartz tube, which was heated to 200 °C at 10 °C min⁻¹ in a helium atmosphere and kept for 60 min. Then the catalyst

was cooled to 50 °C in flowing helium naturally. CO_2 was adsorbed at 50 °C for 2 h. After purging with flowing helium for 1 hour to remove the physically absorbed CO_2 , the catalyst was heated to 700 °C at 10 °C min⁻¹ for the temperature-programmed desorption. The signal collected by the mass spectrometer at m/z = 44 and 28 represented CO_2 and CO, respectively. *In situ* diffuse reflectance infrared Fourier-transform spectroscopy (DRIFT) analyses were performed on a PerkinElmer Spectrum 3 FTIR spectrometer. Before measurement, the catalyst was purged with Ar at 50 °C for 1 hour and cooled down to room temperature subsequently. The catalyst was then exposed to the CO_2 stream (20 ml min⁻¹, 50 vol%) for 20 min.

2.3. Density functional theory (DFT) calculation method

All periodic DFT calculations were performed using the Vienna ab initio simulation package (VASP 5.4.4), a periodic DFT code with projector augmented wave (PAW) potentials [33]. The generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) functional was applied to describe the electronic exchange-correlation energy [34]. The 4*d*, 5*s* and 5*p* states of In were treated explicitly as valence states within the scalar-relativistic PAW approach [35]. A plane wave basis with a cutoff energy of 400 eV and a Monkhorst-Pack mesh with a grid of $(3 \times 3 \times 1)$ *k*-points were applied. Both the conjugate gradient algorithm and the quasi-Newton method were used in the structural optimization until the forces on all unconstrained atoms were less than 0.03 eV Å⁻¹. The cubic In₂O₃(111) facet was modelled by a periodic supercell slab with three atomic layers, which contained 72 O and 48 In atoms and was separated by a vacuum height of 12 Å in the *z*-direction to eliminate the unphysical interactions between the periodic surface slabs. During the calculations, the bottom layer of atoms was fixed, while the rest of the surface layer atoms were allowed to relax.

The energy of substitution (ΔE_{sub}) was calculated according to Equation (1).

$$\Delta E_{\rm sub} = E_{\rm N-slab} - E_{\rm O-slab} - xE_{\rm N-atom} + xE_{\rm O-atom} \tag{1}$$

where $E_{\text{N-slab}}$ and $E_{\text{O-slab}}$ represented the total energy of N-In₂O₃(111) and In₂O₃(111) slab models, respectively. $E_{\text{N-atom}}$ and $E_{\text{O-atom}}$ represented the energy of nitrogen and oxygen atoms in the vacuum, respectively.

The energy of adsorption (ΔE_{ads}) was defined as Equation (2).

$$\Delta E_{\rm ads} = E_{\rm M/N-slab} - E_{\rm N-slab} - E_{\rm M} \tag{2}$$

where $E_{M/N-slab}$, E_{N-slab} , and E_M represented the total energy of N-In₂O₃(111) slab model with the adsorbate, the clean N-In₂O₃(111) slab model, and the free molecule, respectively.

2.4. Photocatalytic performance

Photocatalytic reduction of CO₂ with H₂O was performed in a closed gas circulationevacuation reactor. 100 mg photocatalyst was firstly dispersed in an aqueous solution (100 mL) containing triethanolamine (TEOA) (10 vol%) which served as a sacrificial reagent. The reactor was then evacuated and refilled with CO₂ three times to remove the air inside. Finally, the reactor was filled with CO₂ until the pressure reached 1.01 bar. During the photoreduction, the reactor was irradiated by a Xe-lamp (300 W) under vigorous stirring. The temperature of the reactor was kept at 25 °C by using cooling water. The effluent was analyzed by gas chromatography (Agilent 7890A) with a thermal conductivity detector (TCD) and a flame ionization detector (FID). To determine the source of the carbon in the products, isotopic experiments were carried out under identical reaction conditions. The products were analyzed by gas chromatography-mass spectrometry (GC-MS).

3. Results

Fig. 1. Morphology and structure of photocatalysts. (a) HRTEM image of M1. (b) HRTEM image of M4. (c) Element mapping patterns of M4. (d) XRD patterns of M1-M7. (e) N 1*s* and (f) O 1*s* XPS spectra of M1-M7.

In the HRTEM images (Figs. 1a and 1b), M1 and M4 exhibit well-defined lattice fringes with an inter-planar distance of 0.293 nm, which correspond to the (222) facet of cubic In₂O₃. As reflected by the elemental mapping patterns (Fig. 1c), in addition to In and O, N is uniformly distributed on the surface of M4. N₂ adsorption-desorption measurements suggest that the specific surface area of M4 (90.5 m²/g) is close to that of M1 (103.1 m²/g). The XRD patterns of M2-M7 are similar to that of pristine In_2O_3 (M1), except that the peak attributed to the (222) facet of M4 and M5 shifts to a lower 2θ direction (Fig. 1d). This shift could be resulted from the doping of nitrogen into the lattice of In₂O₃. The covalent radius of N (0.71 Å) is larger than that of O (0.63 Å). [36] Doping of N into the lattices of In₂O₃ causes the substitution of lattice O atoms by N. The larger covalent radius of N induces the shift of the XRD peaks to the lower 2θ direction. Fig. 1e shows the N 1s XPS spectra of M1-M7. The N 1s XPS peak at ca. 400.3 eV can be seen for M2-M7. This confirms the doping of N on M2-M7. According to the XPS spectra, the nitrogen doping content on M2-M7 is calculated to be 1.50%, 1.67%, 3.74%, 2.50%, 1.65% and 1.45%, respectively. Therefore, M4 shows the highest nitrogen doping content (3.74%). Evidently, increasing the discharge-enhanced doping time from 0 to 10 min increases the nitrogen doping content on N-In₂O₃. However, further increasing the discharge time from 10 to 40 min reduces the nitrogen doping content. In addition, doping N into the lattice of In₂O₃ creates oxygen vacancies on In₂O₃. This makes the content of oxygen vacancies on N-In₂O₃ higher than that on pristine In₂O₃, as reflected by the O 1s XPS spectra (Figs. 1f and S3).

To explore the nitrogen doping depth on N-In₂O₃, depth profile XPS analyses with Ar⁺⁻ sputtering were conducted on M4. The depth profile XPS spectra are shown in Fig. S4 as a function of Ar⁺-sputtering time. Along with increasing the sputtering time from 0 to 120 s, the depth detected increases from 0 to about 12 nm below the surface of the initial photocatalyst. As shown in Fig. S4, the XPS peaks of N and O, assigned to oxygen vacancy, become weaker with the increasing sputtering time. No evident XPS peaks of N can be observed at the sputtering time longer than 120 s. Therefore, the doping depth of N on N-In₂O₃ is less than 16 nm. This means the doped N atoms are located on the surface of N-In₂O₃.

The photocatalytic reduction of CO₂ with H₂O is carried out in an aqueous solution with 10 vol% TEOA at 25 °C under light irradiation. TEOA serves as a sacrificial reagent for capturing the photogenerated holes, thus releasing more photogenerated electrons for reducing CO₂ with H₂O. As illustrated in Figs. 2a and 2b, M1 has no photocatalytic activity. Doping N onto In₂O₃ triggers the photocatalytic reduction of CO₂ with H₂O efficiently (Figs. 2a and S3). During the photocatalytic reduction, CH₃OH and CO are the two detectable carbon-containing products. The formation rates of other carbon-containing products like CH₄ are all less than 0.1 µmol g_{cat}⁻¹ h⁻¹, which can be ignorable. The ratios of CH₃OH and CO in the measurable carboncontaining products are used to denote the selectivity of CH₃OH and CO, respectively. Among all the N-In₂O₃ photocatalysts, M4 is the most efficient for the photocatalytic reduction of CO₂ with H₂O. On M4, the formation rate and selectivity of methanol are 394 μ mol g_{cat}⁻¹ h⁻¹ and 63%, respectively, while those of CO are 230 µmol g_{cat}⁻¹ h⁻¹ and 37%, respectively. The methanol and CO formation rates on M4 are much higher than those on other photocatalysts. The stability of M4 in the photocatalytic reduction of CO₂ with H₂O is explored in five consecutive runs (Fig. 2c). After each run (6 h), the light is stopped, and the reactor is then evacuated and refilled with CO₂ of 1.01 bar, without washing the photocatalyst or adding fresh reaction solution. After five runs, the CH₃OH and CO yields over M4 are almost unchanged, indicating the excellent stability of M4 for the photocatalytic reduction of CO₂. Table S1 presents a comparison of the activity of M4 with the reported photocatalysts for the photocatalytic reduction of CO₂. The efficiency of M4 for the photocatalytic reduction of CO₂ into methanol is higher than the reported photocatalysts.

Fig. 2. Photocatalytic performance of photocatalysts. (a) CH_3OH and CO formation rates on M1-M7. (b) CH_3OH and CO selectivities on M1-M7. (c) Stability of M4. (d) Mass spectroscopy signals observed during the photocatalytic reduction of ${}^{13}CO_2$ with H_2O on M4.

To understand the origin of the CH₃OH and CO formed on M4, three control experiments are carried out, including (i) CO₂ reduction with H₂O using M4 in the absence of light; (ii) CO₂ reduction with H₂O using light without M4; (iii) reduction of H₂O without CO₂ over M4 with light. Neither CH₃OH nor CO is detected in the control experiments, implying that CH₃OH and CO are produced from the photocatalytic reduction of CO₂ with H₂O on M4. An isotopic experiment with ¹³CO₂ and H₂O as the reactants of the photocatalytic reduction is also carried out to further determine the origin of CH₃OH and CO. In the isotopic experiment, m/z signals of H, H₂, ¹³CH, ¹³CH₂, ¹³CH₃, OH, H₂O, ¹³CH, ¹³CH₀, ¹³CH₃OH and ¹³CO₂

are visible with no species containing 12 C, revealing that CH₃OH and CO are originated from CO₂ (Fig. 2d).

During the photocatalytic reduction of CO₂ with H₂O, the H₂ evolution is the main competitive reaction for CO₂ reduction, as it consumes H and photogenerated electrons, which are the key species for reducing CO₂. During the photocatalytic H₂O splitting in the absence of CO₂, the H₂ evolution rate on M1, M2, M3, M4, M5, M6 and M7 is 90, 974, 1108, 1954, 1424, 1038 and 906 μ mol g_{cat}⁻¹ h⁻¹, respectively (Fig. S5). As such, M4 has a higher activity to splitting H₂O than other photocatalysts. Furthermore, TEOA serves as a sacrificial reagent for capturing the photogenerated holes and the O atoms from H₂O splitting. Thus, there is no O₂ evolution observed in the absence of CO₂ (Fig. S6). In the photocatalytic reduction of CO₂ with H₂O, the evolution rate of H₂ on M1, M2, M3, M4, M5, M6 and M7 is 86, 862, 826, 494, 624, 848 and 892 μ mol g_{cat}⁻¹ h⁻¹, respectively (Fig. S5). In addition to H₂, a small amount of O₂ is detected in the presence of CO₂ (Fig. S6). This is due to the combination of O atoms from H₂O splitting. During the photocatalytic reduction of CO₂ with H₂O, part of H from H₂O splitting is consumed by CO₂ reduction, thus decreasing the H₂ evolution rate as compared with those in the reactions without CO₂. As reflected by the H₂ evolution rate, M4 could have a higher ability in suppressing the combination of H atoms to form H₂. DFT studies demonstrate that the H₂ generation energy of N-In₂O₃ becomes higher with the increasing nitrogen doping content (Fig. S7). Nitrogen doping can effectively suppress the combination of H atoms. Therefore, the higher nitrogen doping content on M4 than those on other photocatalysts is the origin for the higher ability of M4 in suppressing the H combination. The suppressed H combination makes more H atoms available for the photocatalytic reduction of CO₂.

4. Discussions

It is well known that photon absorption, separation of the photogenerated electron-hole pairs and CO₂ adsorption/activation are key steps in the photocatalytic reduction of CO₂. The process of photon absorption and electron-hole separation is closely related to the intrinsic properties of the photocatalyst, while the CO₂ adsorption/activation process is highly dependent on the surface of the photocatalyst.

Fig. 3. Electronic properties of photocatalysts. (a) UV-vis-DRS spectra and (b) Tauc plots of M1-M7. (c) Bandgap as a function of nitrogen doping content. (d) DFT-simulated DOS plots and band structure of pristine In₂O₃ without N. (e) DFT-simulated DOS plots and band structure of N-In₂O₃. (f) Photocurrent-time profiles of M1-M7. (g) PL spectra of M1 and M4.

Fig. 3a shows the UV-vis-DRS spectra of M1-M7. The bandgaps of M1-M7 are obtained after the transformation by using the Tauc equation (Fig. 3b). As compared with pristine In₂O₃ (M1), the bandgap of the N-In₂O₃ photocatalysts becomes narrower distinctly (Fig. 3b). M4 has the narrowest bandgap among all the photocatalysts, with a bandgap of about 2.6 eV, which is about 0.2 eV smaller than that of M1. This reveals that the nitrogen doping content affects the bandgap of N-In₂O₃. As shown in Fig. 3c, there is a strong negative linear relationship between the nitrogen doping content and the bandgap of the photocatalyst, indicating that a higher nitrogen doping content leads to a narrower bandgap. To further understand the bandgap narrowing of N-In₂O₃ photocatalysts in the presence of nitrogen dopants, DFT calculations are performed to investigate the electronic structure of N-In₂O₃. As revealed by the density of states (DOS) of pristine In₂O₃ and N-In₂O₃ in Figs. 3d and 3e, additional electronic states are created above the original valence band maximum (VBM) after nitrogen doping. This results in the reduction of the bandgap. The DOS of N-In₂O₃ (Fig. 3e) indicates that the additional electronic states are mainly composed of N 2p orbitals, which are completely mixed with In 3d and O 2p orbitals in N-In₂O₃. The narrower bandgap is beneficial for enhancing the absorption of visible light, which is the main part of sunlight. This leads to the highest photocatalytic activity of M4 with the narrowest bandgap.

Photocurrents are measured to explore the ability of M1-M7 in separating the photogenerated electron-hole pairs (Fig. 3f). The photocurrent is originated from the transfer of the photogenerated electrons into the circuit for measuring the photocurrents. A higher photocurrent indicates that a more efficient electron-hole separation is achieved with more electrons transferred into the circuit. As demonstrated in Fig. 3f, the photocurrents of all N-In₂O₃ photocatalysts are higher than that of pristine In₂O₃ (M1). M4 exhibits the largest photocurrent intensity, which is about 3 times higher than that of M1, indicating the significantly improved electron-hole separation on M4 as compared with that on M1. The

higher electron-hole separation efficiency of M4 is further confirmed by the significantly decreased PL emission peak as compared with that of M1. As shown in Fig. 3g, the PL spectrum of M1 exhibits a strong green emission peak at ca. 440 nm, which is attributed to the recombination of the photogenerated electrons trapped in the conduction band and the photogenerated holes trapped in the valence band [23,37]. In contrast, the emission peak at ca. 440 nm is almost invisible in the PL spectrum of M4. As revealed by DFT calculations (Fig. 3e), the doped N creates an additional state above the original valence band. The additional state acts as hole traps to capture the holes, thus inhibiting the electron-hole recombination. The more efficient electron-hole separation on M4 is also demonstrated by the difference in fluorescence lifetime in Fig. S8. The nitrogen doping extends the fluorescence lifetime from 0.45 ns to 0.57 ns. The longer fluorescence lifetime implies a more efficient electron-hole separation on M4. The higher electron-hole separation efficiency is a reason for the enhanced photocatalytic activity of M4.

In order to compare the ability of M1 and M4 in CO₂ adsorption, CO₂-TPD experiments are performed. As shown in Fig. 4a, the CO₂-TPD signal of M1 and M4 can be divided into three main regions. In region I, a strong CO₂ desorption peak is observed for M1 and M4 at ca. 100 °C, which corresponds to the physical desorption of CO₂. In region II, both M1 and M4 have a significant desorption peak at ca. 250 °C, which can be attributed to the chemisorption of negatively charged CO₂ [38,39]. There is also a clear CO desorption peak in region II, which is consistent with the CO signal detected in the products of the photocatalytic reduction of CO₂. It also matches well with previous reports that oxygen vacancies on In₂O₃ not only enhance the adsorption and activation of CO₂ but also promote the dissociation of CO₂ to CO [40]. Region III is located in the high-temperature region (350-600 °C). In this region, two weak desorption peaks can be observed for M1 and M4 clearly, which can be attributed to the decomposition of surface HCO₃⁻ and CO₃²⁻ species [37]. In general, M4 has stronger CO₂ desorption peaks, which indicates that M4 has more CO₂ adsorption sites (i.e., oxygen vacancies), and thereby has a higher ability in adsorbing and activating CO_2 . The results of XPS analyses also confirm that more oxygen vacancies are present on N-In₂O₃ photocatalysts. In addition, the CO₂ desorption peak of M4 shifts to higher temperatures as compared with that of M1, suggesting that the binding strength of CO₂ with M4 is stronger than that of CO₂ with M1. The improved CO₂ adsorption on M4 is another reason for the enhanced photocatalytic activity of M4.

Fig. 4. Surface chemistry of photocatalysts. (a) CO₂-TPD profiles of M1 and M4. (b) CO₂ adsorption energy as a function of nitrogen doping content. (c) Bader charge difference between the active In and O species. (d) CO₂-DRIFT spectra for M1-M7. (e) Electronic localization function (ELF) contour mappings of pristine In₂O₃ and N-In₂O₃.

DFT calculations were carried out to further investigate the influence of nitrogen doping on CO_2 adsorption on the photocatalysts. Previous studies have shown that the $In_2O_3(111)$ facet is active toward CO_2 adsorption and activation with high stability [41]. Figs. 1a and 1b confirm the exposure of $In_2O_3(111)$ facet on pristine In_2O_3 (M1) and N-In₂O₃ (M4). The stability of the surface oxygen atoms is evaluated on the $In_2O_3(111)$ facet on which there are four kinds of oxygen atoms (Fig. S9 and Table S2). According to the stability of surface oxygen atoms, the oxygen vacancy and nitrogen doping sites are determined. Fig. 4b plots the DFT-calculated CO_2 adsorption energy as a function of nitrogen doping content. It shows that increasing nitrogen doping content significantly enhances the adsorption energy of CO_2 at oxygen vacancies. This finding is consistent with the results of CO_2 -TPD. When the nitrogen doping content increases to 3.36%, the CO_2 adsorption energy reaches the maximum, and remains unchanged even further rising the nitrogen doping content.

To explain the promotion effect of nitrogen doping on CO_2 adsorption, the Bader charge distributions of pristine In_2O_3 and $N-In_2O_3$ are analysed. It has been reported that the unsaturated In and adjacent O species caused by oxygen defects may form SFLPs sites, which are more active to adsorb and activate CO_2 [42-45]. The active In specie that is most likely to form SFLPs is selected as the center to examine the effect of nitrogen doping. As shown in Fig. 4c, the Bader charge difference between the related Lewis acid (In^{3+}) and Lewis base (O^{2-} or N^{3-}) substantially increases after nitrogen doping, forming more active SFLPs, which is easier to adsorb and activate CO_2 . It can also be visually observed that the difference in charge density between the active In and O species increases after nitrogen doping (Fig. 4e).

The adsorption of CO₂ on M1-M7 is also studied by DRIFT spectra (Fig. 4d). At room temperature and CO₂ atmosphere, gaseous CO₂ fingerprint patterns are observed at 3,500-3,800 cm⁻¹ and 2,300-2,400 cm⁻¹ [20]. The fingerprint peaks of gaseous CO₂ (3,500-3,800 cm⁻¹) decrease gradually from M1 to M4, indicating that the CO₂ adsorption capacity of the photocatalysts increases. These suggest that the CO₂ adsorption capacity of the photocatalyst is closely related to the content of nitrogen doping. For N-In₂O₃ photocatalysts, a higher nitrogen doping content results in a stronger CO₂ adsorption, which is in good agreement with the results of CO₂-TPD and DFT calculations. The *in situ* DRIFT spectra of M1-M7 are shown in Fig. S10.

On the basis of the above discussions, the mechanism of the photocatalytic reduction of CO_2 on N-In₂O₃ photocatalysts is proposed as follows. The doped nitrogen creates some additional states in the band structure of In₂O₃, thus making the bandgap of M4 smaller than that of pristine In₂O₃ (M1). This leads the light absorption range of M4 to be evidently extended as compared to that of M1 without nitrogen. Nitrogen doping also promotes the separation of the photogenerated electron-hole pairs, releasing more electrons for the photocatalytic reduction of CO₂ on M4. Furthermore, nitrogen doping not only creates more oxygen vacancies on M4, forming more reaction sites, but also alters the charge distribution on the surface, resulting in more active SFLPs. Thus, nitrogen doping effectively promotes the adsorption and activation of CO₂ on M4. The presence of the nitrogen dopants efficiently suppresses the evolution of H₂, producing more active hydrogen atoms for the photocatalytic reduction of CO₂ on M4. It is the multiple roles of nitrogen doping that lead to the boosted photocatalytic reduction of CO₂ on N-In₂O₃ photocatalysts.

5. Conclusions

In summary, the present study confirms that $N-In_2O_3$ is a highly active photocatalyst for selective photocatalytic reduction of CO_2 to methanol. The doped nitrogen generates mid-gap

energy states, reducing the bandgap of the photocatalyst but increasing the collection efficiency of solar photons and facilitating the generation and separation of the photogenerated charge carriers. Moreover, the presence of nitrogen dopants alters the charge distribution on the surface of N-In₂O₃ photocatalysts, resulting in increased activity of SFLPs. This significantly enhances CO_2 adsorption and activation. Nitrogen doping onto In₂O₃ also helps to suppress the combination of H atoms to form H₂, thus generating more active H atoms for the photocatalytic reduction of CO_2 . The efficiency of N-In₂O₃ in producing methanol from the photocatalytic reduction of CO_2 can be efficiently tuned by changing the nitrogen doping content on N-In₂O₃. Nitrogen doping also provides a convenient and low-temperature approach for the preparation of highly efficient and stable N-In₂O₃ photocatalysts not only for photocatalytic reduction of CO_2 but also for other photocatalytic reactions like photocatalytic H₂O splitting.

Credit authorship contribution statement

C.-J. Liu conceived and directed the project. C.-J. Liu and X. Tu designed the nitrogen doping. Y. X. Yang and Y.-X. Pan conducted the experiments. Y. X. Yang, Y.-X. Pan and X. Tu wrote the manuscript. Y. X. Yang performed theoretical calculations. All authors analysed the data, discussed the results and commented on the manuscript.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22138009), the Fundamental Research Funds for the Central Universities and the funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 823745.

Appendix A. Supplementary data

Supplementary data to this article can be found online at

References

- [1] L. Pan, S. Sun, Y. Chen, P. Wang, J. Wang, X. Zhang, J.-J. Zou, Z.L. Wang, Adv. Energy Mater. 10 (2020) 2000214.
- B. Dai, G.M. Biesold, M. Zhang, H. Zou, Y. Ding, Z.L. Wang, Z. Lin, Chem. Soc. Rev. 50 (2021) 13646-13691.
- [3] Y. Zheng, W. Zhang, Y. Li, J. Chen, B. Yu, J. Wang, L. Zhang, J. Zhang, Nano Energy 40 (2017) 512-539.
- [4] S. Navarro-Jaén, M. Virginie, J. Bonin, M. Robert, R. Wojcieszak, A.Y. Khodakov, Nat. Rev. Chem. 5 (2021) 564-579.
- [5] A.A. Tountas, G.A. Ozin, M.M. Sain, Nat. Catal. 4 (2021) 934-942.
- Y. Dong, P. Duchesne, A. Mohan, K.K. Ghuman, P. Kant, L. Hurtado, U. Ulmer, J.Y.Y.
 Loh, A.A. Tountas, L. Wang, A. Jelle, M. Xia, R. Dittmeyer, G.A. Ozin, Chem. Soc. Rev.
 49 (2020) 5648-5663.
- J. Hou, S. Cao, Y. Wu, F. Liang, Y. Sun, Z. Lin, L. Sun, Nano Energy 32 (2017) 359-366.
- [8] F. Li, L. Zhang, J. Tong, Y. Liu, S. Xu, Y. Cao, S. Cao, Nano Energy 27 (2016) 320-329.
- Y.A. Wu, I. McNulty, C. Liu, K.C. Lau, Q. Liu, A.P. Paulikas, C.-J. Sun, Z. Cai, J.R.
 Guest, Y. Ren, V. Stamenkovic, L.A. Curtiss, Y. Liu, T. Rajh, Nat. Energy 4 (2019) 957-968.
- [10] H.-X. Zhang, Q.-L. Hong, J. Li, F. Wang, X. Huang, S. Chen, W. Tu, D. Yu, R. Xu, T. Zhou, J. Zhang, Angew. Chem. Int. Ed. 58 (2019) 11752-11756.
- [11] J.-H. Zhang, W. Yang, M. Zhang, H.-J. Wang, R. Si, D.-C. Zhong, T.-B. Lu, Nano Energy 80 (2021) 105542.
- [12] L. Liang, X. Li, J. Zhang, P. Ling, Y. Sun, C. Wang, Q. Zhang, Y. Pan, Q. Xu, J. Zhu, Y.
 Luo, Y. Xie, Nano Energy 69 (2020) 104421.
- [13] F. Wang, T. Hou, X. Zhao, W. Yao, R. Fang, K. Shen, Y. Li, Adv. Mater. 33 (2021)

2102690.

- [14] J. Li, H. Huang, W. Xue, K. Sun, X. Song, C. Wu, L. Nie, Y. Li, C. Liu, Y. Pan, H.-L. Jiang, D. Mei, C. Zhong, Nat. Catal. 4 (2021) 719-729.
- T. Billo, I. Shown, A.k. Anbalagan, T.A. Effendi, A. Sabbah, F.-Y. Fu, C.-M. Chu, W.-Y. Woon, R.-S. Chen, C.-H. Lee, K.-H. Chen, L.-C. Chen, Nano Energy 72 (2020) 104717.
- [16] X. Wang, K. Li, J. He, J. Yang, F. Dong, W. Mai, M. Zhu, Nano Energy 78 (2020) 105388.
- [17] K. Feng, S. Wang, D. Zhang, L. Wang, Y. Yu, K. Feng, Z. Li, Z. Zhu, C. Li, M. Cai, Z.
 Wu, N. Kong, B. Yan, J. Zhong, X. Zhang, G.A. Ozin, L. He, Adv. Mater. 32 (2020)
 2000014.
- [18] J. He, P. Lyu, B. Jiang, S. Chang, H. Du, J. Zhu, H. Li, Appl. Catal. B 298 (2021) 120603.
- [19] X.-Y. Meng, C. Peng, J. Jia, P. Liu, Y.-L. Men, Y.-X. Pan, J. CO₂ Util. 55 (2022) 101844.
- [20] L. Wang, Y. Dong, T. Yan, Z. Hu, A.A. Jelle, D.M. Meira, P.N. Duchesne, J.Y.Y. Loh, C. Qiu, E.E. Storey, Y. Xu, W. Sun, M. Ghoussoub, N.P. Kherani, A.S. Helmy, G.A. Ozin, Nat. Commun. 11 (2020) 2432.
- [21] Z. Zhang, C. Mao, D.M. Meira, P.N. Duchesne, A.A. Tountas, Z. Li, C. Qiu, S. Tang, R. Song, X. Ding, J. Sun, J. Yu, J.Y. Howe, W. Tu, L. Wang, G.A. Ozin, Nat. Commun. 13 (2022) 1512.
- [22] Y. Qi, L. Song, S. Ouyang, X. Liang, S. Ning, Q. Zhang, J. Ye, Adv. Mater. 32 (2020) 1903915.
- [23] Y.-X. Pan, Y. You, S. Xin, Y. Li, G. Fu, Z. Cui, Y.-L. Men, F.-F. Cao, S.-H. Yu, J.B. Goodenough, J. Am. Chem. Soc. 139 (2017) 4123-4129.
- [24] Q. Wang, Y. Chen, X. Liu, L. Li, L. Du, G. Tian, Chem. Eng. J. 421 (2021) 129968.
- [25] L.B. Hoch, P.G. O'Brien, A. Jelle, A. Sandhel, D.D. Perovic, C.A. Mims, G.A. Ozin, ACS Nano 10 (2016) 9017-9025.

- [26] Y. Wang, J. Zhao, Y. Li, C. Wang, Appl. Catal. B 226 (2018) 544-553.
- [27] Z. Zhang, C. Shen, K. Sun, X. Jia, J. Ye, C.-j. Liu, J. Mater. Chem. A 10 (2022) 5792-5812.
- [28] Z. Wang, Y. Zhang, E.C. Neyts, X. Cao, X. Zhang, B.W.L. Jang, C.-j. Liu, ACS Catal. 8 (2018) 2093-2110.
- [29] Y. Wang, F. Yu, M. Zhu, C. Ma, D. Zhao, C. Wang, A. Zhou, B. Dai, J. Ji, X. Guo, J. Mater. Chem. A 6 (2018) 2011-2017.
- [30] Q. Chen, A. Ozkan, B. Chattopadhyay, K. Baert, C. Poleunis, A. Tromont, R. Snyders,
 A. Delcorte, H. Terryn, M.-P. Delplancke-Ogletree, Y.H. Geerts, F. Reniers, Langmuir
 35 (2019) 7161-7168.
- [31] N. Rui, X. Zhang, F. Zhang, Z. Liu, X. Cao, Z. Xie, R. Zou, S.D. Senanayake, Y. Yang,J.A. Rodriguez, C.-J. Liu, Appl. Catal. B 282 (2021) 119581.
- [32] Y.-x. Pan, P. Kuai, Y. Liu, Q. Ge, C.-j. Liu, Energy Environ. Sci. 3 (2010) 1322-1325.
- [33] G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169-11186.
- [34] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868.
- [35] P.E. Blöchl, Phys. Rev. B 50 (1994) 17953-17979.
- [36] P. Pyykkö, M. Atsumi, Chem.-Eur. J. 15 (2009) 186-197.
- [37] T. Yan, N. Li, L. Wang, W. Ran, P.N. Duchesne, L. Wan, N.T. Nguyen, L. Wang, M. Xia,G.A. Ozin, Nat. Commun. 11 (2020) 6095.
- [38] S. Li, Y. Xu, Y. Chen, W. Li, L. Lin, M. Li, Y. Deng, X. Wang, B. Ge, C. Yang, S. Yao,
 J. Xie, Y. Li, X. Liu, D. Ma, Angew. Chem. Int. Ed. 56 (2017) 10761-10765.
- [39] O. Martin, A.J. Martín, C. Mondelli, S. Mitchell, T.F. Segawa, R. Hauert, C. Drouilly,D. Curulla-Ferré, J. Pérez-Ramírez, Angew. Chem. Int. Ed. 55 (2016) 6261-6265.
- [40] J. Wang, G. Zhang, J. Zhu, X. Zhang, F. Ding, A. Zhang, X. Guo, C. Song, ACS Catal.11 (2021) 1406-1423.
- [41] S. Dang, B. Qin, Y. Yang, H. Wang, J. Cai, Y. Han, S. Li, P. Gao, Y. Sun, Sci. Adv. 6

(2020) eaaz2060.

- [42] L.B. Hoch, P. Szymanski, K.K. Ghuman, L. He, K. Liao, Q. Qiao, L.M. Reyes, Y. Zhu,M.A. El-Sayed, C.V. Singh, G.A. Ozin, Proc. Natl. Acad. Sci. 113 (2016) E8011.
- [43] K.K. Ghuman, L.B. Hoch, P. Szymanski, J.Y.Y. Loh, N.P. Kherani, M.A. El-Sayed, G.A.Ozin, C.V. Singh, J. Am. Chem. Soc. 138 (2016) 1206-1214.
- [44] M. Ghoussoub, S. Yadav, K.K. Ghuman, G.A. Ozin, C.V. Singh, ACS Catal. 6 (2016) 7109-7117.
- [45] T. Yan, L. Wang, Y. Liang, M. Makaremi, T.E. Wood, Y. Dai, B. Huang, A.A. Jelle, Y. Dong, G.A. Ozin, Nat. Commun. 10 (2019) 2521.