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Abstract—We consider an infinite directed graph with vertices numbered by integers . . . ,−2,−1, 0, 1, 2, . . .,
where any pair of vertices j < k is connected by an edge (j, k) that is directed from j to k and
has a random weight vj,k ∈ [−∞,∞). Here {vj,k, j < k} is a family of independent and identi-
cally distributed random variables that take either finite values (of any sign) or the value −∞.
A path in the graph is a sequence of connected edges (j0, j1), (j1, j2), . . . , (jm−1, jm) (where
j0 < j1 < . . . < jm), and its weight is the sum

∑m
s=1 vjs−1,js ≥ −∞ of the weights of the edges.

Let w0,n be the maximal weight of all paths from 0 to n.
Assuming that P(v0,1 > 0) > 0, that the conditional distribution P(v0,1 ∈ · | v0,1 > 0) is
nondegenerate, and that E exp(Cv0,1) < ∞ for some C = const > 0, we study the asymptotic
behaviour of the random sequence w0,n as n→∞. In the domain of the normal and moderately
large deviations we obtain a local limit theorem when the distribution of random variables vi,j
is arithmetic and an integro-local limit theorem if this distribution is non-lattice.

Key words: directed graph, maximal path weight, skeleton and renewal points, normal and
moderate large deviations, integro-local limit theorem.
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1. INTRODUCTION, MAIN NOTATION AND THE MAIN RESULT

We consider an infinite directed graph G(Z, E), with vertices indexed by all integers Z =
{. . . ,−2,−1, 0, 1, 2, . . .}, whose edges E = {e = (j, k), j < k, j, k ∈ Z} are all edges directed
from smaller to bigger vertices. We assume that there no directed edges from bigger to smaller
vertices and that there is no loops of the form (j, j).

Every edge e ∈ E gets a weight ve, that may be either a number (positive or negative) or −∞.
We assume that the random variables {vj,k, j < k} are mutually independent and distributed as a
random variable v taking values in [−∞,∞). Let p = P(v > −∞) and p+ = P(v > 0). Let v+ be
a random variable with distribution

P(v+ < t) = P(v < t |v > 0), t > 0. (1.1)
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100 KONSTANTOPOULOS et al.

Throughout the paper, we assume that the following conditions hold:

p+ > 0, P(v+ = c) < 1 for any c > 0, E eCv
+
<∞ for some C > 0, (1.2)

i.e. the random variable v takes positive values with positive probability, its distribution on the
positive halfline is non-degenerate, and the right tail of its distribution is relatively light.

In the literature, one can also find another interpretation of the model: if ve = −∞, then one
can say that there is no edge e, and if ve > −∞, then the edge exists and its weight equals ve.
In the latter setting, we get two independent “randomnesses”: an edge may either exist or not,
and if it exists, then its weight is an independent of everything random variable with distribution
P(v ∈ · |v > −∞).

A path π of length L(π) = m is a sequence ofm connected edges e1 = (j0, j1), e2 = (j1, j2), . . . , em =
(jm−1, jm) where the end vertex of each edge coincides with the initial vertex of the next edge and
j0 < j1 < . . . < jm, and we say that this is a path from j0 to jm and write ei ∈ π, i = 1, . . . , L(π).
The weight w(π) of the path is defined as the sum of the weights of its edges, i.e.

w(π) =

L(π)∑
s=1

vjs−1,js =
∑
e∈π

ve.

Clearly, the path weight is finite if and only if all weights of its edges are finite.

For j < k, let Πj,k be the family of all paths from j to k having finite weights (i.e. w(π) > −∞
for all π ∈ Πj,k) and let wj,k be the maximal weight of all paths from j to k. Then

wj,k = max
π∈Πj,k

w(π)

with probability 1, since we follow the standard convention that the maximum over empty set is
−∞. We also let wj,j = 0, for all j.

Such graphs with random weights naturally appear in various applications. For example, if the
edge weight takes only two values, 1 (the edge exists) or −∞ (no edge), i.e.

p = P(v = 1) = 1−P(v = −∞), (1.3)

then such a graph may describe ordering of jobs in a computer network (see, e.g. [1, 2]), where
vertices represent jobs and edges their time constraints (if vj,k = 1, then service of job k cannot
start before service of job j ends); or functioning of biological models (see, e.g., [3, 4]) where
vertices represent types of animals and paths describe ”food chains”: if vj,k = 1, then type k may
be considered as a food for type j).

Introduce two mutually exclusive conditions:

[R] The distribution of the random variable v is non-lattice, this means that, for any a and h > 0,
the probability that v takes values in the lattice of span h shifted by a is strictly smaller than

1,
∞∑

s=−∞
P(v = a+ sh) < 1.

[Z] The distribution of random variable v is arithmetic, i.e.
∞∑

s=−∞
P(v = sh) = 1, for some h > 0.

Without loss of generality, we may assume further that the lattice span is h = 1, this means
that v is an integer-valued random variable and the greatest common divisor of the set {k ≥ 1 :
P(v = k) > 0} equals one.1.

1 Conditions [R] and [Z] may be also formulated in terms of the characteristic function f(z) = Eeizv of
random variable v. Namely,
[R] |f(2πz)| < 1 for all z 6= 0;
[Z] f(2πz) = 1 for all z ∈ Z and |f(2πz)| < 1 for all z ∈ R \ Z.
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LIMIT THEOREMS FOR THE MAXIMUM WEIGHT 101

Notice that we have excluded the case v+ = const (see (1.2)) and the case of lattice, but
non-arithmetic distributions.

We are interested in the asymptotic behaviour of the random sequence w0,n as n→∞. We will
consider the domain of the normal and moderately large deviations and prove a local limit theorem
under condition [Z] and an integro-local limit theorem under condition [R].

The proof of these statements is split into two steps. In the first step (Section 2) we first
introduce an embedded regenerative sequence with corresponding “weights” (using the methods
developed in the papers [5, 6]) and then show that both the lengths of regenerative cycles τk and
the corresponding cycle weights ζk have finite exponential moments (precise definitions of these
variables are given in Section 3). Note that the sequence {(τk, ζk)}∞k=1 contains independent, for
k ≥ 1, and identically distributed, for k ≥ 2, two-dimensional random vectors that have, for k ≥ 2,
a common distribution with a random vector (τ, ζ), whose coordinates do typically depend on each
other.

In the second step of the proof (Section 3), we note that vectors (τk, ζk) form a stationary
compound renewal process (CRP), and one can apply to its study methods and results from the
paper [7]. Then we prove that, in the limit theorems, the asymptotics of the sequence w0,n coincides
with that of the introduced CRP, and this completes the proof of our results.

In order to formulate our results, it is left to introduce the rate function for the CRP driven by

random vector (τ, ζ)
d
= (τ2, ζ2). For (λ, µ) ∈ R2, let

A(λ, µ) := ln Eeλτ+µζ . (1.4)

Introduce the convex set

A≤0 := {(λ, µ) : A(λ, µ) ≤ 0}

and let

D(α) := sup
(λ,µ)∈A≤0

{λ+ µα}.

The rate function D(α) plays a certain role in the description of the logarithmic asymptotics of
the large deviations probabilities for the CRP determined by vector (τ, ζ), and it has been studied
quite thoroughly (see, e.g., [8]). Notice that this is a convex non-negative function that takes value
0 at only one point α = a where

a =
E ζ

E τ
> 0. (1.5)

Under our assumptions, function D(α) is analytic in a neighbourhood of point α = a and, further,

D(a) = 0, D′(a) = 0, D′′(a) =
1

σ2
,

where

σ2 :=
E(ζ − aτ)2

E τ
. (1.6)

We present now the main result of the paper.

Theorem 1. Assume that conditions (1.2) hold.

I. If the random variable v satisfies conditions [Z], then, for any sequence x = xn ∈ Z such that
α := x/n→ a as n→∞, the following asymptotic relation holds:

P(w0,n = x) ∼ 1

σ
√

2πn
e−nD(α). (1.7)
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102 KONSTANTOPOULOS et al.

If, in addition, yn := x− an = o(n2/3), then we get

P(w0,n = x) ∼ 1

σ
√

2πn
e−

y2n
2nσ2 .

II. If the random variable v satisfies conditions [R], then, for a certain sequence of positive

numbers ∆
(0)
n = o(1) and for any sequence x = xn ∈ R such that α := x/n → a n → ∞, the

following asymptotic relation holds:

P(w0,n ∈ [x, x+ ∆n)) ∼ ∆n

σ
√

2πn
e−nD(α), (1.8)

where sequence ∆n = o(1) satisfies relations ∆n ≥ ∆
(0)
n (i.e. converges to 0 sufficiently

slowly). If, in addition, yn := x− an = o(n2/3), then we get

P(w0,n ∈ [x, x+ ∆n)) ∼ ∆n

σ
√

2πn
e−

y2n
2nσ2 .

Remark 1. One can strengthen the results of Theorem 1 by considering, along with the normal
and moderately large deviations of the type α := x/n → a, the large deviations of the type

|α−a| ≤ δ for some (generally speaking, small) δ > 0. In this case the constant
1

σ
√

2π
that appears

in the right-hand sides of relations (1.7), (1.8) should be replaced by a more complicated function
that depends on parameter α = x/n. However, for determining this function, one needs to produce
additional complicated constructions. This is why we have decided to restrict our consideration in
Theorem 1 to the normal and moderately large deviations.

Remark 2. The statements of Theorem 1 are presented in terms of rate function D(α) that is
determined by the distribution of random vector (τ, ζ) that is introduced implicitly and depends
on parameters c1 and c2 that are chosen arbitrarily from a certain interval (see Lemma 1). In
Theorem 3 below, we will show that the results of Theorem 1 do not depend on a particular choice
of these parameters.

The asymptotic properties of sequence w0,n, as n→∞, have been studied earlier in the papers
[5,6,9,10]. In the paper [9], the authors consider the case P(v > 0) = 1 and prove the strong law of
large numbers and the central limit theorem assuming that the third moment of random variable
v is finite, and limit theorems of another type if the latter condition is violated. The central limit
theorem is the case of signed random variable v is proved in [10]. In the earlier papers [5, 6], the
case of weights (1.3) was studied. We should mention also the paper [11] where the asymptotics
for the minimal path length from 0 to n were considered, as n→∞, in the case where the weights
are constant, but the probabilities of existence of edges depend on distances between the vertices.

The rest of the paper includes three Sections. In Sections 2 and 3 we provide the proofs of our
results following the scheme presented above, and Section 4 contains an auxiliary result.

2. CONSTRUCTION OF REGENERATIVE SEQUENCE AND ITS PROPERTIES

In this Section, we introduce a construction that allows us to determine an a.s. infinite random
set of vertices {Γi}i∈Z (in what follows, we call them renewal vertices – see Definition 3 below),
where . . . < Γ−2 < Γ−1 < 0 ≤ Γ0 < Γ1 < . . . , such that:

1. Sequence of two-dimensional vectors

(Γn − Γn−1, wΓn−1,Γn), n 6= 0, (2.1)

consists of independent and identically distributed vectors that do not depend on (Γ−1,Γ0, wΓ−1,0, w0,Γ0).
Using the terminology of the theory of point processes, one can say that sequence {(Γn, wΓn−1,Γn)}
forms a stationary marked point process with marks {wΓn−1,Γn}, that determines the CRP.
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LIMIT THEOREMS FOR THE MAXIMUM WEIGHT 103

2. For some C > 0, all four exponential moments

E exp(CΓ0), E exp(C(Γ1 − Γ0)), E exp(Cw0,Γ0), E exp(CwΓ0,Γ1) (2.2)

are finite. Then, for C1 = C/2, the following moments are finite with necessity, too:

E exp(C1(Γ0 + w0,Γ0)) and E exp(C1(Γ1 − Γ0 + wΓ0,Γ1)). (2.3)

3. For any 0 ≤ m ≤ n, if Γm ≤ n, then

w0,n = w0,Γ0 + wΓ0,Γ1 + . . .+ wΓm−1,Γm + wΓm,n (2.4)

(recall that we assume wj,j = 0, for j ∈ Z).

We need a number of auxiliary statements. We will partially follow the scheme of the proof of
one of the main results in [9] where the weights were assumed to take either positive values or value
−∞ and where conditions for existence of the first and second moments of random variables Γ0

and w0,Γ0 were studied.

2.1. Construction of skeleton and renewal points

We will introduce consequently four random subsets of the set Z of vertices: the set S of skeleton,
the set S+ of skeleton-plus, the set R of renewal, and the set R+ of renewal-plus vertices.

Definition 1. Vertex x ∈ Z is called a skeleton vertex if it is connected to any other vertex by
a path of finite weight, i.e. for any j < x and k > x inequalities wj,x > −∞ and wx,k > −∞ hold.
Denote by S the random set of skeleton vertices.

If p = P(v > −∞) = 1, then every vertex x ∈ Z is a skeleton vertex. If p ∈ (0, 1), then Lemmas
5–7 from [6] imply the following five statements.

1. The probability for vertex x to be a skeleton vertex is strictly positive and is the same for all
x ∈ Z.

2. The sequence of events {x ∈ S}, x = . . . ,−2,−1, 0, 1, 2, . . . is stationary ergodic and, therefore,
with probability one there are infinitely many skeleton points {ti}.

3. The sequence {ti} (where . . . t−2 < t−1 < 0 ≤ t0 < t1 < . . . ) forms a stationary renewal process
(in discrete time) and, in particular, the lengths of the intervals {ti − ti−1, i ∈ Z, i 6= 0} are
independent and identically distributed random variables that do not depend on the pair of
random variables (t−1, t0), and the latter random variables depend on each other and t0 has the
same distribution as |t−1| − 1. Further, P(t−1 = −i) = P(t1 − t0 ≥ i)/E(t1 − t0), i = 1, 2, . . . .

4. For some C > 0,

E eCt0 <∞ and hence E eC(t1−t0) <∞. (2.5)

5. For any j < k denote by

Lj,k = max
π∈Πj,k

L(π) (where the maximum over an empty set is −∞)

the maximal path length among the paths from Πj,k. Then, for each n > 0, if L0,n > 0, then
any path of length L0,n from 0 to n has to include all intermediate skeleton points (if there are
any). Namely, assume that 0 ≤ t0 < t1 < . . . < tm ≤ n < tm+1, for some m ≥ 0. Then any
path of maximal length from 0 to n, that belongs to the set Π0,n, has to include every vertex
t0, . . . , tm. Further, with necessity, all values Lt0,t1 , . . . , Ltm−1,tm are strictly positive and

L0,n = L0,t0 + Lt0,t1 + . . .+ Ltm−1,tm + Ltm,n.
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104 KONSTANTOPOULOS et al.

Along with the set of paths Πj,k (introduced in Section 1) that include only edges of finite
weights, we introduce also the set of paths Π+

j,k from j to k that include only edges with positive

weights (i.e. ve > 0 for every e ∈ π, given π ∈ Π+
j,k) and let

w+
j,k := max

π∈Π+
j,k

w(π).

Definition 2. Vertex x ∈ Z is a skeleton-plus vertex if it is connected to any other vertex by
a path with edges of positive weights only, i.e., for and j < x and k > x, there is a path π from
j to x and a path π̃ from x to k such that ve > 0 for all e ∈ π and all e ∈ π̃ and, in particular,
inequalities w+

j,x > 0 and w+
x,k > 0 hold. Denote by S+ = {t+i } the set of skeleton-plus vertices.

Notice that since we assume that p+ > 0, the results from the paper [6] are also applicable to
the set S+ and, in particular, exponential moments in (2.5) stay finite if one replaces {ti} by {t+i }.

Now we introduce the sets R of renewal and R+ of renewal-plus vertices. Let c1 ≥ c2 > 0 be
two fixed numbers. For x ∈ Z, introduce the following events:

Arx(c1) =
∞⋂
i=1

{wx,x+i ≥ c1i},

A0
x(c2) =

∞⋂
j,i=1

{vx−j,x+i < c2(j + i)},

Alx(c1) =
∞⋂
j=1

{wx−j,x ≥ c1j}.

Here event Arx(c1) means that vertex x is connected to any vertex on its right by a path of a finite
weight and, moreover, all corresponding maximal path weights are strictly positive and increase at
least linearly ( with speed not smaller than c1) with growth of distance from x. Similarly, event
Alx(c1) means that vertex x is connected to any vertex on its left by a path of a finite weight and,
moreover, all corresponding maximal path weights are strictly positive and grow at least linearly
with growth of distance from x. In particular, if both events Arx(c1) and Alx(c1) occur, then vertex
x is necessarily a skeleton vertex and, in addition, wx−j,x+i ≥ c1(j + i), for all j, i ≥ 0. If, in
addition, event A0

x(c2) takes place, then (by c2 ≤ c1), for any j, i ≥ 0, any path of maximal weight
from vertex x− j to vertex x+ i must necessarily include vertex x.

Definition 3. Vertex x is a renewal vertex if all three events Alx(c2), A0
x(c1) and Arx(c2) occur.

Let R = {Γi} be the random set of renewal vertices.

Since the events {x ∈ R} form a stationary ergodic sequence, the “0-1” law holds: with prob-
ability one, the set R is either infinite or empty. Assume it is infinite, then its elements may be
ordered as

. . . < Γ−1 < 0 ≤ Γ0 < Γ1 < . . . ,

and representation (2.4) holds. It is this representation that helps us to study the asymptotics of
sequence w0,n, as n grows to infinity.

In analogy to the notation above, we introduce events

Ar+x (c1) =
∞⋂
i=1

{w+
x,x+i ≥ c1i},

A0+
x (c2) ≡ A0

x(c2) =
∞⋂
j,i=1

{vx−j,x+i < c2(j + i)},

PROBLEMS OF INFORMATION TRANSMISSION Vol. 57 No. 2 2021
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Al+x (c1) =
∞⋂
j=1

{w+
x−j,x ≥ c1j}.

Here the event Ar+x (c1) means that vertex x is connected to any vertex on its right by a path
with edges of positive weights only and, moreover, all related maximal path weights grow at least
linearly with the distance from vertex x. Similarly, the event Al+x (c1) means that vertex x is
connected to any vertex on its left by a path with edges of positive weights only and, moreover, all
related maximal path weights grow at least linearly with the distance from vertex x. Necessarily,
Al+x (c1) ⊆ Alx(c1) and Ar+x (c1) ⊆ Arx(c1), for any c1 > 0.

Definition 4. Call x a renewal-plus vertex if Al+x (c1) ∩ A0+
x (c2) ∩ Ar+x (c1) occurs, and denote

by R+ the set of all renewal-plus vertices. Note that this set is also either infinite a.s. or empty
a.s.

The following relations hold:

R+ ⊆ R ⊆ S and R+ ⊆ S+ ⊆ S. (2.6)

In addition, the sets R and R+ increase as c2 increases and c1 decreases.

2.2. Regenerative structure and existence of exponential moments

For formulation of the next statement, we need the distribution of random variable v+ that was
defined in (1.1). Let ess inf v+ = inf{t > 0 : P(v+ < t) > 0} and V = E min

t+0 ≤i<j≤t
+
1

v+
i,j . Clearly,

ess inf v+ < V if the distribution of random variable v+ does not degenerate. Let γ+ =
1

E(t+1 − t
+
0 )

.

From Lemmas 5–7 in [6], we get the following result.

Lemma 1. Assume that condition (1.2) holds. If

γ+ ess inf v+ < c2 ≤ c1 < γ+V, (2.7)

then, for any x ∈ Z, P(Al+x (c1) ∩A0
x(c2) ∩Ar+x (c1)) > 0 and the set R+ is infinite with probability

1. Therefore, the set R is infinite with probability 1, too.

Remark 3. In paper [6], renewal points have been introduced in the case c1 = c2 and corre-
sponding results have been proved in this case only. However, one can easily check that the proofs
of these results remain unchanged (apart from minor changes in notation) under the more general
conditions (2.7).

Introduce the following cycles

C+
k :=

(
Γ+
k − Γ+

k−1;
{
v+

Γ+
k−1+j

,Γ+
k−1+i

, 0 ≤ j < i ≤ Γ+
k − Γ+

k−1

})
, k ∈ Z,

and
Ck :=

(
Γk − Γk−1;

{
vΓk−1+j ,Γk−1+i

, 0 ≤ j < i ≤ Γk − Γk−1

})
, k ∈ Z.

The following results take place.

Lemma 2. Under conditions (1.2) and (2.7), the following two statements hold:

(I) Random elements {C+
k , k ∈ Z} are mutually independent and random elements {C+

k , k ∈
Z\{0}} are identically distributed. The process

(
Γ+
k , w

+
Γ+
k−1

,Γ+
k

)
k ∈ Z is a stationary marked

point process in discrete time and it generates a stationary CRP, i.e. its first coordinates Γ+
k

form a stationary point process with corresponding marks w+
Γ+
k−1

,Γ+
k

.

PROBLEMS OF INFORMATION TRANSMISSION Vol. 57 No. 2 2021



106 KONSTANTOPOULOS et al.

(II) The previous statement remains valid for cycles Ck, with natural replacements of Γ+
k by Γk

and w+
Γ+
k−1

,Γ+
k

by wΓk−1,Γk .

Note that the first statement of Lemma 2 is a direct consequence of Lemma 3.8 from [9] and
that the schemes of the proofs of both statements of Lemma 2 are identical.

We will formulate and prove now the first of the main statements of this Section.

Lemma 3. Assume that conditions (1.2) and (2.7) hold. Then there exists constant C > 0 such
that

E eCΓ+
0 <∞ and hence E eC(Γ+

1 −Γ+
0 ) <∞. (2.8)

Since the sequence {Γ+
n } is a subsequence of {Γn}, the statement (2.8) remains valid after the

replacement of Γ+
0 and Γ+

1 by, correspondingly, Γ0 and Γ1, i.e. both first expectations in (2.2) are
finite, for some C > 0.

Proof. We borrow from [9] a number of auxiliary constructions. Introduce a set U = {x ∈ Z :
I(Al+x (c1)) = 1}. It is not difficult to see that R+ ⊆ U . Enumerate the elements of the set U in
the increasing order . . . , ρ−1, ρ0, ρ1, . . . where ρ0 is its smallest non-negative element. Define a new
sequence of cycles: for k ∈ Z,

Dk =
(
ρk − ρk−1;

{
v+
ρk−1+j,ρk−1+i, 0 ≤ j < i ≤ ρk − ρk−1

})
.

The next result folllows from Lemma 3.10 of [9].

Lemma 4. Assume that conditions (1.2) and (2.7) hold. Then cycles (Dk, k ∈ Z) are mutually
independent random elements where (Dk, k ∈ Z \ {0}) are identically distributed, and sequence ρn,
n ∈ Z forms a stationary point process that generated the corresponding CRP.

The statement of Lemma 4 may be easily explained in simple terms. For that, introduce for d > 0
events

Al+x,d(c1) :=
d⋂
j=1

{
w+
x−j,x ≥ c1j

}
.

Note that, for any integers k ≥ 0 and 0 ≤ s0 < s1 < . . . < sk, the event {ρ0 = s0, . . . , ρk = sk} is
uniquely determined by the collection of random variables Bsk := {vi,j , i < j ≤ sk} and, on this
event, the equality ρk+1 − ρk = m holds if and only if m = min

{
d > 0 : I

(
Al+sk,sk+d(c1)

)
= 1

}
, and

the latter is determined by the random variables Bsk,sk+m := {v+
i,j , sk ≤ i < j ≤ m}. It is not

difficult to see that the families of random variables Bsk and Bsk,sk+m are mutually independent and
that the distribution of random variables from Bsk,sk+m does not depend on k and sk. Essentially
these facts imply the statement of Lemma 4.

For d > 0, introduce auxiliary events

Ar+x,d(c1) :=
d⋂
i=1

{w+
x,x+i ≥ c1i},

A0+
x,d(c2) :=

∞⋂
1≤i≤d, j≥1

{vx−j,x+i < c2(j + i)}.

Let µ = inf
{
d > 0 : I

(
A0+

0,d(c2)∩Ar+0,d(c1)
)

= 0
}
. Note that P(µ =∞) = P(A0+

0 (c2)∩Ar+0 (c1)) >
0. Define recursively random variables σ0, µ0, . . . , σK , µK , where K = min{k ≥ 0 : µk =∞}. Let

σ0 = ρ0, µ0 = inf
{
d > 0 : I

(
A0+
σ0,σ0+d(c2) ∩Ar+σ0,σ0+d(c1)

)
= 0

}
,
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ρ00

µ0

ρ1
σ1

µ1

ρ2 ρ3
σ2

µ2

ρ4
σ3

ρ5

µ3 =∞

Fig. 1. The process of construction of sequence σk. Here K = 3 and σ3 = ρ4 is the moment of
regeneration that goves an upper bound for Γ0

.

and, for k = 0, 1, . . . , if µk <∞, then

σk+1 = inf{x ∈ U : x ≥ σk + µk},

µk+1 = inf
{
d > 0 : I

(
A0+
σk,σk+d(c2) ∩Ar+σk,σk+d(c1)

)
= 0

}
.

The process of construction of this sequence is presented more transparently in Figure 1.

As it follows from the construction, σk ∈ U for k ≤ K and σK ∈ R+ and, therefore, σK ≥ Γ+
0 a.s.

Moreover, the random variables {µk} form a sequence of independent and identically distributed
random variables having a common distribution with µ. Therefore, the random variable K is
geometrically distributed with parameter q and, in particular, its exponential moments E eCK

are finite for C < −1/ ln q. In addition, for any k ≥ 1, given {K = k}, the random variables
µ0, . . . , µk−1 are conditionally independent and distributed as P(µ0 ∈ · |µ0 <∞).

Since ρk − ρk−1 ≥ 1,

σK ≤ ρM = ρ0 +
M∑
k=1

(ρk − ρk−1), (2.9)

where M :=
K−1∑
j=0

µj .

Therefore, if we show that the term on the right-hand side of (2.9) has a finite exponential
moment, then σK also has a finite exponential moment, and this in turn implies the statement
of Lemma 3. Given Lemma 9 from Section 4 and the elementary inequality ex+y < e2x + e2y for
x, y ≥ 0, it is sufficient to show that, firstly, random variable ρ1 − ρ0 has also a finite exponential
moment (then the same holds for ρ0) and, secondly, the probabilities P(µ0 = m |µ0 < ∞) decay
exponentially fast in m.

Due to the independence of ρ0 and ρ1 − ρ0 and since, for any natural n > 0, given occurrence
of event Al+0 (c1), events Al+n (c1) and Al+n,n(c1) either occur or not simultaneously, we get that the

distributions of random variables ρ1 − ρ0 and ν := min{n : I(Al+n,n(c1)) = 1} coincide:

P(ρ1 − ρ0 = m) = P(ρ1 − ρ0 = m |ρ0 = 0) = P(ν = m |ρ0 = 0) = P(ν = m), m = 1, 2, . . . ,

and existence of an exponential moment of random variable ν follows from Proposition 3.12 in [9].

Further,

P(µ = d) = P
((
A0+

0,d(c2) ∩Ar+0,d(c1)
)c ∩ (A0+

0,d−1(c2) ∩Ar+0,d−1(c1)
))

≤ P
((
A0+

0,d(c2)
)c ∩A0+

0,d−1(c2)
)

+ P
((
Ar+0,d(c1)

)c ∩Ar+0,d−1(c1)
)

≤ P
(

sup
j≥1

(
v+
−j,d − c2j

)
> c2d

)
+ P(w+

0,d < c1d)
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≤
∞∑
j=1

P
(
v > c2(d+ j)

)
+ P

(
w+

0,d < c1d
)
.

In the last line, the sum of probabilities
∞∑
j=1

P(v > c2(d+ j)) decays in d exponentially fast, thanks

to (1.2). In order to show that the very last probability decreases exponentially fast in d too, we
choose ε > 0 such that c̃ := c1(1 + 3ε) also satisfies (2.7). Let η(d) = max{k : t+k ≤ d} (where, by
convention, the maximum over empty set is −∞). Then, for r = γ+(1 + ε)−1,

P
(
w+

0,d < c1d
)
≤ P(t+0 > d) + P

(
w+
t+0 ,t

+
η(d)

< c1d, t
+
0 ≤ d

)
≤ P(t+0 > d) + P

(
η(d) < [rd]

)
+ P

( [rd]∑
i=1

w+
ti−1,ti < c1d

)

≤ P(t+0 > d) + P

( [rd]∑
1

(t+i − t
+
i−1) > d

)
+ P

( [rd]∑
i=1

w+
ti−1,ti < c1d

)
,

where [rd] is the integer part of rd. In the last line of these inequalities all three summands decrease
exponentially fast in d: the first summand since t+0 has a finite exponential moment, the second
summand since the increments t+i − t

+
i−1 have a finite exponential moment, E(t+1 − t

+
0 )r < 1, and,

by the exponential Chebyshev inequality with h > 0,

P

( [rd]∑
i=1

(t+i − t
+
i−1) > d

)
≤
((

E exp
(
h(t+1 − t

+
0 )
))r
e−h

)d
,

where the right-hand side decays exponentially fast in d, if one takes h > 0 sufficiently small.
Finally, the third summand decays exponentially fast because of a well-known fact: for any sequence
X,X1, X2, . . . of independent and identically distributed positive random variables with finite mean

EX and for any δ ∈ (0, 1) the probabilities P
( n∑
i=1

Xi < (1−δ)nEX
)

decrease exponentially fast as

n grows. In our case, n = [rd] ≥ rd−1, Xi = wt0i−1,t
0
i
, Ewt+0 ,t

+
1
≥ V and c1d ≤ c1(1+n)(1+ε)/γ+ ≤

c1(1 + 2ε)nV/γ+ < (1− δ)nV for all sufficiently large n, where δ = ε/(1 + 3ε).

Thus, the probabilities P(µ = d) and, therefore, the probabilities P(µ = d |µ < ∞) decrease
exponentially fast as d grows. This completes the proof of Lemma 3. 4

We will proceed now with the proof of finiteness of the two last mathematical expectations in
(2.2).

Lemma 5. Assume that conditions (1.2) and (2.7) hold. Then E exp(Cw0,Γ0) <∞ and, there-
fore, E exp(CwΓ0,Γ1) <∞, for some C > 0.

Proof. Choose any path π from vertex 0 to vertex Γ0 and assume that it includes d+1 vertices,

0 = x0 < x1 < . . . < xd = Γ0. Since
d∑

k=1
(xk − xk−1) = Γ0, we get

w0,Γ0 =
d∑

k=1

vxk−1,xk ≤ Γ0 +
d∑

k=1

(vxk−1,xk − (xk − xk−1))+

≤ Γ0 +
∑

0≤x<y≤Γ0

(vx,y − (y − x))+

≤ Γ0 +
Γ0−1∑
x=0

Zx, (2.10)
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where
{
Zx := max

y>x
(vx,y − (y − x))+

}
x∈Z is a sequence of independent and identically distributed

random variables. By condition (1.2), the tail distribution

P(Z0 > m) ≤
∞∑
k=1

P(v > m+ k)

decays exponentially fast in m. To complete the proof, it is enough to use the inequality ex+y <
e2x + e2y and Lemma 9. 4

We complete Section 2 with a short proof of a simple fact.

Lemma 6. Let p ∈ (0, 1] and assume that conditions (1.2) and (2.7) hold. Then P(Γ1 − Γ0 =
1, wΓ0,Γ1 ≥ y) > 0 for any y ∈ (c2, ess sup v+).

Proof. The following two events coincide:

{Γ0 = 0, Γ1 − Γ0 = 1, wΓ0,Γ1 ≥ y} = Al0(c1) ∩A0+
0,1(c2) ∩ {v0,1 ≥ y} ∩B1,1(c2) ∩Ar1(c1), (2.11)

where

B1,1(c2) =
∞⋂
j=1

{v0,1+j < c2(1 + j)}.

Since all five events in the right-hald side of (2.11) are mutually independent and each of them has
positive probability, the result follows. 4

3. ANALYSIS OF THE COMPOUND RENEWAL PROCESS AND PROOF OF THE MAIN
THEOREM

We analyse here the CRP determined by the stationary marked process (Γk, wΓk−1,Γk), k ∈ Z.
Using results from the previous Section and from [7], and also the classical Stone’s theorem [12],
we will show that, for any admissible constants c1, c2, the corresponding CRP has the same exact
asymptotics with sequence w0,n in the domain of the normal and moderately large deviations (this
is the result of Theorem 1). Next, we apply a corresponding change of measure in order to remove
the “defect” of the CRP. Then we conclude with the statement that parameters α, σ2 and D(α)
that appear in Theorem 1, in fact, do not depend on constants c1 and c2.

In what follows, it will be convenient to us to introduce some notation that in corrrespondence
with notation from [7]:

(τk,uk) := (τk, (uk,1, . . . , uk,τk)), k = 1, 2, . . . , (3.1)

where

(τ1, (u1,1, . . . , u1,τ1)) := (Γ0, (w0,1, . . . , w0,Γ0)),

(τk, (uk,1, . . . , uk,τk)) := (Γk−1 − Γk−2, (wΓk−2,Γk−2+1, . . . , wΓk−2,Γk−1
)), for k ≥ 2.

It was shown in Section 2 that vectors (τk,uk), k ≥ 2, are indentically distributed, and we will use
notation

(τ,u) := (τ, (u1, . . . , uτ )) (3.2)

for any vector having this distribution. We let also ζ = uτ and ζk = uτk , for k ≥ 1. Then, in
particular, {(τk, ζk)} is a sequence of independent random vectors that have the same distribution
for k ≥ 2 with vector (τ, ζ).

We will list now statements from Section 2 (based on Lemmas 2, 3, 5 and 6) that we need here.
Let p ∈ (0, 1] and let c1, c2 satisfy condition (2.7).
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SI. The sequence (3.1) consists of independent random vectors, and,for k ≥ 2, the random vectors
(τk,uk) have the same distribution.

SII. The random variables u1,τ1 and u1, . . . , uτ are positive, and

max{u1, . . . , uτ−1} ≤ uτ .

SIII. For some C > 0,

E eCτ1 <∞, E eCτ <∞, E eCu1,τ1 <∞, E eCuτ <∞.

SIV. The probability P(τ = 1, uτ ≥ y) is strictly positive for any y ∈ (c2, ess sup v+) .

Denote

(τ, ζ) := (τ, uτ ), (τk, ζk) := (τk, uk,τk), k = 1, 2, . . . (3.3)

Then the sequence {(τk, ζk)} consists of independent random vectors that have, for k ≥ 2, a common
distribution with vector (τ, ζ). The results above imply

Corollary 1. Let conditions (1.2) and (2.7) hold. Then the following statements take place.

(I) If the random variable v satisfies condition [Z], then

[ZZ] The distribution of the random vector (τ, ζ) is arithmetic and is concentrated on the lattice
of span 1 for each of its coordinates.

(II) If the random variable v satisfies condition [R], then (τ, ζ)

[ZR] The marginal distribution of the first coordinate of vector (τ, ζ) is arithmetic with span 1
and the marginal distribution on the second coordinate is non-lattice.2.

We turn now to the proof of the main result.

Proof of Theorem 1. Consider sequence {(τk, ζk)}∞k=1 of independent random vectors, having
for k ≥ 2 the same distribution as (τ, ζ) (see formula (3.2) and notation after it). Introduce
sequences of partial sums

Tn :=
n∑
k=0

τk, Zn :=
n∑
k=0

ζk, n ≥ 0,

where (τ0, ζ0) := (0, 0). Let

η+(n) := min{k ≥ 1 : Tk > n},
ν+(n) := max{k ≥ 0 : Tk ≤ n} = η+(n)− 1,

γ+(n) := n− ν+(n).

Introduce our CRP (we will call it the “first CRP”) by

Z+(n) :=

ν+(n)∑
k=0

ζk.

Let us clarify that we consider here notation Z+(n) with low case + just to reconcile our notation
with that from the paper [7], where, in addition to notation Z+(n), ν+(n), γ+(n), further notation

2 In terms of the characteristic function f(z, l) := E eizτ+ilζ of random vector (τ, ζ), these two conditions
may be presented as:
[ZZ ] f(2πz, 2πt) = 1 for any (z, t) ∈ Z2 and |f(z, t)| < 1 for any (z, t) /∈ Z2.
[ZR] f(2πz, 0) = 1 for any z ∈ Z, |f(2πz, 0)| < 1 for any z /∈ Z and |f(0, t)| < 1 for any t 6= 0.
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Z(n), ν(n), γ(n) have been used. We like to point out that thus “plus” does not relate to that in
notation w+

j,m.

Using the introduced notation, we obtain the representation

w0,n = Z+(n) + wn−γ+(n),n = Zν+(n) + wν+(n),n.

Consider a random vector (of random length), given by formula (3.2):

(τ, (u1, u2, · · · , uτ )),

whose coordinates clearly satisfy the following constraints:

τ ≥ 1, min
1≤i≤τ

ui ≥ c1 > 0, max
1≤i≤τ

ui ≤ uτ .

Next, introduce a random vector (τ∗, ζ∗), taking values (i, y) ∈ Z× R, i ≥ 0, y ≥ 0, by

P(τ∗ = i, ζ∗ ∈ dy) :=
1

Q
P(τ ≥ i+ 1, ui ∈ dy),

(we assume u0 = 0 a.s.), where

Q :=
∞∑
i=0

∞∫
0

P(τ ≥ i+ 1, ui ∈ dy) =
∞∑
i=0

P(τ ≥ i+ 1) = Eτ.

It follows from condition SIII that there exists a constant C > 0 such that

E eCτ
∗
<∞, E eCζ

∗
<∞.

Along with the sequence {(τk, ζk)} that determines CRP Z+(n) and the functionals ν+(n), γ+(n),
we introduce another sequence {(τ∗k , ζ∗k)} by

(τ∗1 , ζ
∗
1 ) := (τ1, ζ1) + (τ∗, ζ∗), (τ∗k , ζ

∗
k) := (τk, ζk) for k ≥ 2,

where the random vector (τ∗, ζ∗) does not depend on the sequence {(τk, ζk)}. The new sequence
{(τ∗k , ζ∗k)} determines a new CRP Z∗+(n) and new functionals ν∗+(n) and γ∗+(n).

Lemma 7. Assume that conditions SI–SIV hold. Then, for any n ≥ 2 and any real x ≥ c1 and
∆ > 0, the following equality takes place:

P
(
Z+(n) + wn−γ+(n),n ∈ [x, x+ ∆), τ1 ≤ n

)
= QP

(
Z∗+(n) ∈ [x, x+ ∆), γ∗+(n) = 0

)
. (3.4)

Proof. We have

Pn := P
(
Z+(n) + wn−γ+(n),n ∈ [x, x+ ∆), τ1 ≤ n

)
=
∞∑
k=1

P
(
Tk = n, Zk ∈ [x, x+ ∆)

)
+
∞∑
k=1

n∑
i=1

∞∫
0

P
(
Tk = n− i, Zk + y ∈ [x, x+ ∆), τk+1 ≥ i+ 1, uk+1,i ∈ dy

)
.

Since P(τ ≥ 1, u0 = 0) = 1 and since (τk+1, uk+1,i) and (Tk, Zk) are independent for each k,

Pn =
∞∑
k=1

P
(
Tk = n, Zk ∈ [x, x+ ∆)

)
P(τ ≥ 1, u0 = 0)
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+
∞∑
k=1

n∑
i=1

∞∫
0

P
(
Tk = n− i, Zk + y ∈ [x, x+ ∆)

)
P(τ ≥ i+ 1, ui ∈ dy)

= Q
∞∑
k=1

n∑
i=0

∞∫
0

P
(
Tk = n− i, Zk + y ∈ [x, x+ ∆)

) 1

Q
P(τ ≥ i+ 1, ui ∈ dy)

= Q
∞∑
k=1

n∑
i=0

∞∫
0

P
(
Tk = n− i, Zk + y ∈ [x, x+ ∆)

)
P(τ∗ = i, ζ∗ ∈ dy)

= Q
∞∑
k=1

P
(
T ∗k = n, Z∗k ∈ [x, x+ ∆)

)
= QP

(
Z∗+(n) ∈ [x, x+ ∆), γ∗+(n) = 0, ν∗+(n) ≥ 1

)
= QP

(
Z∗+(n) ∈ [x, x+ ∆), γ∗+(n) = 0

)
−QP

(
Z∗+(n) ∈ [x, x+ ∆), γ∗+(n) = 0, ν∗+(n) = 0

)
= QP

(
Z∗+(n) ∈ [x, x+ ∆), γ∗+(n) = 0

)
,

where the last equality follows from the fact that, for x > 0,

P(Z∗+(n) ∈ [x, x+ ∆), ν∗+(n) = 0) = 0. 4

In the particular case where v has an arithmetic distribution, we ∆ = 1 in Lemma 7 and take
x ∈ Z to obtain the following corollary of Lemma 7.

Lemma 8. Assume that conditions SI–SIV hold and let v satisfy condition [Z]. Then, for any
integers n ≥ 2 and x ≥ 1, we get

P
(
Z+(n) + wn−γ+(n),n = x, τ1 ≤ n) = QP

(
Z∗+(n) = x, γ∗+(n) = 0

)
. (3.5)

We continue now with the proof of Theorem 1.

I. Consider the arithmetic case first. In order to apply results from the paper [7], we need to
introduce, in addition to CRP Z+(n), another CRP Z(n), since the main results in [7] are obtained
for CRP Z(n)).

For n ≥ 1, let
ν(n) := max{k ≥ 1 : Tk < n}, γ(n) := n− ν(n).

Then
Z(n) := Zν(n).

It is easy to see (we assume that the processes Z(n) and Z+(n) are constructed on a common
probability space based on the same sequence {(τk, ζk)}) that, for any n ≥ 1,

ν+(n) = ν(n+ 1), Z+(n) = Z(n+ 1), γ+(n) = γ(n)− 1. (3.6)

In particular, the defect γ(n) takes values {1, 2, . . .} and the defect γ+(n) takes values {0, 1, 2, . . .}.
We will use similar notation for CRP {(τ∗k , ζ∗k)} and the corresponding functionals, with adding an
extra upper-case “∗′′, for example:

ν∗(n), ν∗+(n), Z∗(n), Z∗+(n), γ∗(n), γ∗+(n), etc.

The following relations in the domain of the normal and moderately large deviations follow from
formulae (3.6) of Theorem 2.1, Corollary 2.1 and Theorem 2.1∗ of the paper [7] in the case where
x ∈ N, x− na = o(n): as n→∞,

P(Z(n) = x) ∼ P(Z+(n) = x) ∼ P(Z∗(n) = x) ∼ P(Z∗+(n) = x) ∼ 1

σ
√

2πn
e−nD( x

n
), (3.7)
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P
(
Z∗+(n) = x, γ∗+(n) = 0

)
∼ P

(
Z+(n) = x, γ+(n) = 0

)
∼ 1

Eτ
P(Z∗+(n) = x). (3.8)

Here equivalences (3.7) show that, under our assumptions, differences between processes Z(n) and
Z+(n), as well as diffecences related to inhomogeneity disappear for local theorems in the domain
of normal and moderately large deviations.

Applying Lemma 8 and noticing that Q = Eτ and that, for some h > 0,

P
(
Z+(n) + wn−γ+(n),n = x

)
= P

(
Z+(n) + wn−γ+(n),n = x, τ1 > n

)
+ P

(
Z+(n) + wn−γ+(n),n = x, τ1 ≤ n

)
= P

(
Z+(n) + wn−γ+(n),n = x, τ1 ≤ n

)
+O(e−nh),

we obtain from (3.7) and (3.8) the statement of part I of Theorem 1:

P
(
Z+(n) + wn−γ+(n),n = x

)
∼ 1

σ
√

2πn
e−nD( x

n
).

II. Our proof of part II of Theorem 1 is based on the integro-local theorem in the domains of the
normal, moredately large and large deviations obtained by Stone [12]. We formulate this theorem
in notation that is convenient to us. We define the rate function for random vector (τ, ζ) as

Λ(θ, α) := sup
λ,µ
{λθ + µα−A(λ, µ)}.

Next, we denote by |Λ′′(θ, α)| the determinant of matrix Λ′′(θ, α) of the second derivatives of the
rate function Λ(θ, α).

Theorem 2 [12]. Let the distribution of vector (τ1, ζ1) coincide with the distribution of (τ, ζ)
and let conditions SIII and [ZR] hold. Then, for some δ > 0 and for a certain sequence ∆(0) :=

∆
(0)
n > 0 that tends to zero as n→∞, and for any (x, y) ∈ Z×R such that |θ− aτ |+ |α− aζ | ≤ δ,

where (θ, α) :=
(x
n
,
y

n

)
, the following equality holds:

P
(
Tn = x, Zn ∈ [y, y + ∆)

)
=

∆
√
|Λ′′(θ, α)|
2πn

exp{−nΛ(θ, α)}(1 + o(1)),

where ∆ := ∆n ≥ ∆
(0)
n and ∆n → 0 as n → ∞, and the remaining term o(1) = εn(x, y) satisfies

the relation

lim
n→∞

sup
(x,y)∈Z×R

|θ−aτ |+|α−aζ |≤δ

|εn(x, y)| = 0.

Note that, by applying statements SI–SIV and repeating all phases of the proofs of Theorems 2.1
and 2.1∗ and of Corollary 2.1 from [7], we obtain natural analogues of these statements where
symbols = x are replaced by ∈ [x, x+ ∆) and an additional coefficient ∆ appears in the right-hand
side. The rest of the proof of part II completely repeats the corresponding piece of the proof of
part I. 4

We formulate and prove now the last results.

Theorem 3. The characteristics a, σ and D(α) that are used in Theorem 1 do not depend on
a choice of admissible constants c1 and c2.

Proof. We have shown that the local theorems in the domains of the normal and moderately
large deviations for processes w0,n and Z+(n) look identical, and the formulation of Theorem 1
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includes characteristics a, σ and D(α) that are uniquely determined by vector (τ, ζ) (see (1.4)–
(1.6)) that “drives” CRP Z+(n). Since random vector (τ, ζ) is defined in terms of arbitrarily
chosen constants c1 and c2 that satisfy condition (2.7), one can guess that the characteristics a,
σ and D(α) may depend on these constants too. However, we will show now that this is not the
case. Namely, we will show that, for any other pair of constants c̃2 ≤ c̃1 satisfying (2.7), the
corresponding characteristics ã, σ̃ and D̃(α) determined by vector (τ̃ , ζ̃) coincide, in fact, with a,
σ and D(α).

Based on what have we proved already, one can see that, for the processes w0,n and Z̃+(n), a
similar local theorem holds, with corresponding characteristics ã, σ̃ and D̃(α). This means that,
for the process w0,n, two local theorems take place, and their statements differ in characteristics
a, σ,D(α) and ã, σ̃, D̃(α) only. The local theorems in the domain of the normal deviations clearly
lead to the corresponding laws of large numbers: for any ε > 0, one has

lim
n→∞

P(|w0,n − an| ≤ nε) = 1, lim
n→∞

P(|w0,n − ãn| ≤ nε) = 1.

Then ã = a, with necessity.

Next, we may rewrite the statements of these local theorems using equality ã = a and arrive at
the equivalence

1

σ
√
n
e−nD( x

n
) ∼ 1

σ̃
√
n
e−nD̃( x

n
),

that is valid for any x = xn ∈ Z in the area
∣∣∣x
n
− a

∣∣∣ = o(1). Again, necessarily, the latter

equivalence implies equality σ = σ̃ and identity of analytic (in a neighbourhood of point α = a)
functions D̃(α) = D(α). 4

4. AUXILIARY RESULT

In our proofs, we use an auxiliary result that is not original. We include its proof because it is
very short.

Lemma 9. Let Sn =
n∑
i=1

Xi, n = 1, 2, . . . be a sequence of independent and identically distributed

non-negative random variables {Xi} and let N be a counting random variable. Assume that

E eCX1 <∞ and E eCN <∞. for some C > 0.

Then one can choose a constant b > 0 such that

E ebSN <∞.

Proof. Take any a > EX1. Then

SN =
N∑
i=1

(Xi − a) + aN ≤ sup
n≥0

(Sn − na) + aN ≡ R+ aN, (4.1)

here we let S0 = 0. From (4.1) and from the elementary inequality ex+y ≤ e2x + e2y, for any b > 0
we have

ebSN ≤ e2bR + e2baN ≤ 1 +
∞∑
n=1

e2b(Sn−na) + e2baN

and, therefore,

E ebSN ≤ 1 +
∞∑
n=1

(
E e2b(X1−a))n + E e2baN . (4.2)

Since a > EX1, then one can choose b > 0 so small that 2bmax(1, a) < C and E e2b(X1−a) < 1.
For such b, the right-hand side of (4.2) is finite too. 4
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