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Abstract 

The dynamical model for friction-induced vibration of two rigid circular plates in point contact is 

studied in this paper. Besides the rotational motion in the circumferential direction that is normally 

regarded as the principal direction of relative motion, the two-dimensional translational motion is also 

considered for both rigid plates. The coupling of the translational motion and the rotational motion 

causes the direction of relative motion and friction force to shift from the circumferential direction and 

vary during vibration (in relation to the situation in which translational motion is absent), thereby greatly 

increasing the complexity of the dynamics of the friction-excited system. The system dynamics 

comprises two distinct states of motion, i.e., slip and stick, and the friction force during sticking is a 

reaction force enforcing the constraint of zero relative velocity, which cannot be explicitly expressed as 

a function of state variables, therefore the values of state variables and friction force in the state of stick 

cannot be directly obtained from the integration of equations of motion. To address this problem, two 

different methods are proposed and the accuracy and efficiency of the two numerical methods are 

subsequently examined. Both the linear stability and the nonlinear steady-state responses of the system 

are investigated. The numerical study demonstrates that the coupling of the translational motion and the 

rotational motion of the two rigid plates greatly expands the ranges of operating parameters for dynamic 

instability compared with those of the situation where the two rigid plates undergo only rotational 

motion, and results in rich bifurcation behaviours. Therefore this study underlies the necessity to take 

into account the oscillations of components that seem not to be in the principal direction of relative 

motion in the research of friction-induced vibration of mechanical systems. 

Keywords: friction-induced vibration, stick-slip, coupling of translation and rotation, nonlinear 

contact kinematics, bifurcation. 

1. Introduction 

Friction-induced vibration is widely encountered in engineering and in daily life, e.g., musical sound 

of string instruments [1], squeaking joints of robots [2], chattering machine tools [3], stick-slip 

oscillations of drill strings [4] and automobile brake noise [5], etc. Among them, automobile brake noise 
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attracts great attention in engineering and scientific communities due to its noise impact and scientific 

intricacy of this problem. In essence, automobile brake noise originates from the vibration of the brake 

system caused by the pad-disc frictional contact in the braking process [6]. 

From past studies, the mechanisms for the occurrence of friction-induced vibration in mechanical 

systems generally fall into four categories: the negative friction slope [7], the stick-slip motion [8], the 

sprag-slip motion [9] and the mode-coupling instability [10]. In the mechanism of the negative friction 

slope, a negative damping created by the negative friction-velocity slope is thought to cause dynamic 

instability in the mechanical systems with friction [11]. The stick-slip motion is characterized by 

alternating stick and slip regimes brought about by the non-smooth nature of dry friction. Popp et al. 

[12,13] studied discrete and continuous models exhibiting friction-induced stick-slip vibration. Ouyang 

et al. [14,15] investigated the stick-slip-separation vibration of mass-slider-on-rotating-disc models 

under the constant and time-varying disc speed. Lin [16] presented a numerical study of stick-slip 

mitigation for a lumped-parameter drill-string system. The sprag-slip is not a tribological but a 

geometrical instability. Hoffmann et al. [17,18] found that the frictional system having no static solution 

for certain parameter values could be a sufficient condition for the occurrence of sprag-slip instability 

by examining the dynamics of a tilted-beam-moving-belt model. In the mechanism of mode-coupling 

instability, the complex eigenvalue analysis shows that some modes become unstable when coupling 

with other modes of the friction system. Hoffmann et al. [19,20] clarified the physical mechanism 

underlying the mode-coupling instability and the effect of viscous damping on the mode-coupling 

instability, respectively. Hervé et al. [21] analysed the effects of the gyroscopic actions on the mode-

coupling instability. A combination of different mechanisms for friction-induced vibration may be seen 

in a mechanical system with friction. Elmaian et al. [22] investigated the friction-induced vibration of 

a 3-DoF (degree-of-freedom) model that displayed the stick-slip, the sprag-slip and mode-coupling 

instabilities and the links of different instability mechanisms with different categories of noises. Liu 

and Ouyang [23] analysed the suppression of friction-induced vibration caused by three factors, i.e. the 

negative friction slope, the mode coupling instability and the effect of moving load. 

Friction-induced vibration in mechanical systems can exhibit rich dynamic behaviours, e.g.,  

bifurcations, chaos, non-stationary effect, etc. Popp and Stelter [24] analysed the bifurcation behaviours 

of the stick-slip oscillations of a 1-DoF slider-on-belt system under external harmonic excitation and a 

2-DoF slider-on-belt system. Li and Feng [25] found that chaotic motions could appear in even a 1-DoF 

system with the LuGre friction model containing one internal variable. Weiss et al. [26] studied the 

stability behaviour and the post bifurcation behaviour of the resulting limit cycle of a ball joint subject 

to friction-induced oscillations. Kruse et al. [27] explored the effect of joints on the stability and 

bifurcation behaviour of friction-induced flutter. It was shown that subcritical bifurcations, bifurcations 

from infinity and detached limit cycles could arise when the joint with nonlinear dynamic behaviour is 

integrated in the system. Wei et al. [28] established a 3-DoF dynamic model of a brake system consisting 



3 

 

of two-layer pads and a rigid disc and bifurcation and chaotic behaviours of system responses dependent 

on the variations of brake pressure and the parameters of pads were observed. Liu et al. [29] investigated 

the multi-stable characteristics of the torsional stick-slip vibrations in a lumped-parameter model of the 

drill-string system. Pilipchuck et al. [30] examined the non-stationary effects in friction-induced 

vibration of a 2-DoF slider-on-belt model with linearly decreasing belt speed. Liu and Ouyang [31] 

analysed the bifurcation behaviours in the friction-induced vibration of a 5-DoF dynamic model with 

multiple types of nonlinearities. Papangelo et al. [32] explored multiple spatially localized dynamical 

states occurring in a ‘snake-like’ bifurcation pattern in a chain of friction-excited oscillators.  

In the existing studies on friction-induced vibration, the directions of friction force are usually 

known a priori, e.g., the horizontal direction in the friction model with a moving belt, or the 

circumferential direction in the friction model with a rotating disc, in the assumption that the oscillations 

in other directions are negligible. However, due to the factors such as external disturbance, 

manufacturing errors, non-rigid connections, etc, in engineering practices, oscillations of a frictional 

system may happen in any direction and therefore cause the direction of friction force to vary with time, 

which then further increases the complexity of the dynamics of the friction-excited system. In view of 

the above, it is essential to consider the direction of vibration to be unknown a priori and to be 

determined when studying the friction-induced dynamics of some mechanical systems. Kinkaid et al. 

[33] studied the dynamics of a 4-DoF system with a two-dimensional friction force and found the 

change of direction of the friction force could excite unstable vibration. Antali and Stepan [34] 

examined the dynamics of a rigid body in three-dimensional sliding or rolling contact with a rigid plane 

in the presence of dry friction. Ma and Wang [35] dealt with planar multiple-contact problems subject 

to unilateral and bilateral kinetic constraints with static Coulomb friction. Charroyer et al. [36,37] 

studied the self-excited vibration of a non-smooth contact dynamical system with planar friction. 

Lisowski et al. [38] identified the nonlinear dynamics of the double torsion pendulum with planar 

friction and elastic barriers.  

Xia [39] investigated the dynamics of a model of wedge dampers of trucks in the presence of two-

dimensional dry friction. Sanliturk and Ewins [40] presented an approach to the modelling of two-

dimensional behaviour of a point friction contact which facilitated the computation of the nonlinear 

dynamic response of a structure with joints constrained by friction. Menq et al. [41] put forward an 

approximate method for analysing the dynamic responses of structures having a two-dimensional 

frictional constraint. As an extension to the above studies,  this paper proposes a novel dynamical model 

composed of two rigid circular plates in point frictional contact and investigates its dynamics. In this 

new dynamic model, the translational motion couples with the rotational motion for both rigid plates 

through friction so that nonlinear kinematics of the frictional contact is resulted. The responses of the 

present model are compared with the results of the reduced model of only rotation for studying friction-
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induced vibration, i.e., in the reduced model the centres of the two rigid plates are rigidly constrained 

and therefore there is only rotational motion of plates around their respective centres.  

The rest of the paper is arranged as follows. In Section 2 the mechanical model is introduced and the 

equations of motion for the system in two distinct states, i.e., slip and stick, are derived. The conditions 

for the transitions between the two states are determined. In Section 3 the numerical algorithms to 

calculate the transient dynamic responses of the system are established. In Section 4 the numerical study 

of the linear stability and nonlinear steady-state responses of the system is conducted. Finally in Section 

5 the important conclusions are drawn. 

2. Mechanical model and dynamic equations 

The model of the proposed frictional system is shown in Fig. 1, which consists of two rigid circular 

plates in point frictional contact. The upper rigid plate, which is stationary initially, is elastically 

constrained at its centre 𝑂1 by two translational springs 𝑘px and 𝑘py in the directions of 𝑥1 and 𝑦1, and 

to its centre by torsional spring 𝑘pϕ in the  circumferential direction, respectively. The lower rigid plate, 

which rotates at the angular velocity 𝛺, is elastically constrained at its centre 𝑂2 by two translational 

springs 𝑘dx  and 𝑘dy in the directions of 𝑥2  and 𝑦2 , and to its centre by torsional spring 𝑘dψ  in the 

circumferential direction. The two plates are preloaded by a normal compressive force 𝑁 to be in point 

contact at the distance 𝑟 to the centre 𝑂1. The friction force generated at the point contact P will cause 

planar vibrations of both rigid plates and will itself fluctuate in a complicated manner too. Points 𝑂1 

and 𝑂2 have identical planar coordinates initially. 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 1 The model of the frictional system. 

In Fig. 2,  the nonlinear kinematics of the frictional contact of the two plates during vibration is 

illustrated, where the axes 𝐞𝑥 and 𝐞𝑦 are fixed in space, 𝐞n1 and 𝐞n2 represent the unit vectors of the 

velocities of the upper and lower plate at the contact point, respectively. And the equations of motion 

of the system can be written as, 

𝑥2 

𝑥1 �̇� 

𝛺 + �̇� 

𝑂1 

𝑂2 

𝑦2 

𝑦1 

𝑃 
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{
  
 

  
 
𝑚p�̈�1 + 𝑐px�̇�1 + 𝑘px𝑥1 = 𝐅f ∙ 𝐞𝑥
𝑚p�̈�1 + 𝑐py�̇�1 + 𝑘py𝑦1 = 𝐅f ∙ 𝐞𝑦
𝑚d�̈�2 + 𝑐dx�̇�2 + 𝑘dx𝑥2 = −𝐅f ∙ 𝐞𝑥
𝑚d�̈�2 + 𝑐dy�̇�2 + 𝑘dy𝑦2 = −𝐅f ∙ 𝐞𝑦

𝐽p�̈� + 𝑐pϕ�̇� + 𝑘pϕ𝜙 = 𝑟𝐅f ∙ 𝐞n1
𝐽d�̈� + 𝑐dψ�̇� + 𝑘dψ𝜓 = −𝑅𝐅f ∙ 𝐞n2

                                         (1) 

where 𝑚p , 𝐽p  and 𝑚d , 𝐽d  are the mass and rotational inertia of the upper and lower rigid plates, 

respectively, 𝑐px , 𝑐py , 𝑐dx , 𝑐dy , 𝑐pϕ , 𝑐dψ  represent the viscous damping in parallel with the 

corresponding translational and torsional springs. 𝑅 is the distance between the contact point and the 

centre of the lower rigid plate, which is, 

𝑅 = √(𝑥1 − 𝑥2 + 𝑟cos𝜙)
2 + (𝑦1 − 𝑦2 + 𝑟sin𝜙)

2                                    (2)  

 

 

 

 

 

 

 

 

 

 

  

 

 

Fig. 2 The schematic plot of the position of contact point during vibration. 

𝐅f = 𝐹fx𝐞𝑥 + 𝐹fy𝐞𝑦 is the friction force between the two plates, which, in the state of slip (𝐯r ≠ 𝟎), can 

be formulated as, 

𝐅f = −𝜇(‖𝐯r‖)𝑁
𝐯r

‖𝐯r‖
                                                           (3) 

where 𝜇(‖𝐯r‖) represents the coefficient of kinetic friction that is a function of relative velocity, and  a 

popular expression of 𝜇(‖𝐯r‖) formulated as an exponential decay function is employed here [42], i.e., 

 𝜇(‖𝐯r‖) = 𝜇k + ∆𝜇e
−𝛼‖𝐯r‖                                                    (4) 

where ∆𝜇 = 𝜇s − 𝜇k, 𝜇k and 𝜇s are the asymptotic value and maximum value of the friction coefficient, 

𝛼 is the exponential decay factor, 𝐯r is the relative velocity between the two plates at the contact point, 

namely, 𝐯r = 𝐯c
p
− 𝐯c

d, and, 

𝐯c
p
= �̇�1𝐞𝑥 + �̇�1𝐞𝑦 + �̇�𝑟𝐞n1                                                  (5) 

𝑥2 

𝑦2 

𝑦1 

𝑥1 

𝑟 

𝜙 

𝐞n2 𝐞n1 

𝐞𝑥 

𝐞𝑦 

𝑅 

𝑂 

𝑂2 

𝑂1 

𝜃 

𝑃 
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𝐯c
d = �̇�2𝐞𝑥 + �̇�2𝐞𝑦 + (𝛺 + �̇�)𝑅𝐞n2                                               (6) 

The unit vectors 𝐞n1 and 𝐞n2 can be expressed as, 

𝐞n1 = −sin𝜙𝐞𝑥 + cos𝜙𝐞𝑦                                                      (7) 

𝐞n2 = −sin𝜃𝐞𝑥 + cos𝜃𝐞𝑦 = −
𝑦1−𝑦2+𝑟sin𝜙

𝑅
𝐞𝑥 +

𝑥1−𝑥2+𝑟cos𝜙

𝑅
𝐞𝑦                        (8) 

By substituting Eqs. (5)-(8) into the expression of 𝐯r, it is obtained that,  

𝐯r = [�̇�1 − �̇�2 − 𝑟�̇�sin𝜙 + (𝛺 + �̇�)(𝑦1 − 𝑦2 + 𝑟sin𝜙)]𝐞𝑥 + [�̇�1 − �̇�2 + 𝑟�̇�cos𝜙 − (𝛺 + �̇�)(𝑥1 − 𝑥2 + 𝑟cos𝜙)]𝐞𝑦   (9) 

In the state of stick, the friction force serves to sustain the relative static state, i.e., 𝐯r = 𝟎, and thus 

can be obtained from the dynamic equations of the system, Eq. (1). As both 𝐯c
p
 and 𝐯c

d during sticking 

are unknown a priori, a new method to derive the values of the state variables and the friction force in 

the state of stick must be proposed. The condition for the system to stay in the state of stick is, 

‖𝐅f‖ ≤ 𝜇s𝑁                                                                     (10) 

Therefore, at the time instant when the condition Eq. (10) is violated, the transition from stick to slip 

happens and the friction force will be governed by Eq. (3); at the time instant when 𝐯r = 𝟎 and the 

condition Eq. (10) is satisfied, the transition from slip to stick occurs and the value of friction force will 

be obtained from the dynamic equations of the system, and the method proposed in Section 3. 

3.  Mathematical Treatment 

The friction force in the state of slip is an explicit function of the state variables, therefore the 

equations of motion of the system during slipping are standard ordinary differential equations (ODEs) 

which can be integrated by the fourth-order Runge-Kutta algorithm [43] with good accuracy. However, 

the friction force during sticking is a reaction force enforcing 𝐯r = 𝟎, which is not explicitly expressed 

as the function of state variables, therefore the equations of motion of the system during sticking cannot 

be directly integrated. Here, two methods to determine the values of the state variables and the friction 

force in the state of stick are presented. 

In the first method, 𝐯r = 𝟎 results in the following relations of the state variables during sticking as, 

{
 
 
 
 

 
 
 
 

�̇�2 = �̇�1 − 𝑟�̇�sin𝜙 + (𝛺 + �̇�)(𝑦1 − 𝑦2 + 𝑟sin𝜙)

�̇�2 = �̇�1 + 𝑟�̇�cos𝜙 − (𝛺 + �̇�)(𝑥1 − 𝑥2 + 𝑟cos𝜙)

�̈�2 = �̈�1 − 𝑟(�̈�sin𝜙 + �̇�
2cos𝜙) + (�̇� + �̈�)(𝑦1 − 𝑦2 + 𝑟sin𝜙) + (𝛺 + �̇�)(�̇�1 − �̇�2 + 𝑟�̇�cos𝜙)

�̈�2 = �̈�1 + 𝑟(�̈�cos𝜙 − �̇�
2sin𝜙) − (�̇� + �̈�)(𝑥1 − 𝑥2 + 𝑟cos𝜙) − (𝛺 + �̇�)(�̇�1 − �̇�2 − 𝑟�̇�sin𝜙)

𝑥2(𝑡) = 𝑥1(𝑡) + ∫ [−𝑟�̇�sin𝜙 + (𝛺 + �̇�)(𝑦1 − 𝑦2 + 𝑟sin𝜙)]d𝑡
𝑡

𝑡s
+ 𝑥2(𝑡s) − 𝑥1(𝑡s)

𝑦2(𝑡) = 𝑦1(𝑡) + ∫ [𝑟�̇�cos𝜙 − (𝛺 + �̇�)(𝑥1 − 𝑥2 + 𝑟cos𝜙)]d𝑡
𝑡

𝑡s
+ 𝑦2(𝑡s) − 𝑦1(𝑡s)

      (11) 
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where 𝑡s is the time at the onset of stick. Given that very small time steps are used in the simulation of 

dynamic responses during sticking, the trapezoidal integration rule [44] is applied to calculate the values 

of the state variables 𝑥2 and 𝑦2 in Eq. (11).  

The trapezoidal integration rule is a basic and popular method of numerical integration and has been 

widely used in numerical analysis, when it is necessary to adopt appropriate step lengths to guarantee 

the accuracy. There are also strategies proposed for the trapezoidal integration method to achieve good 

accuracy with low computation cost [45-49]. By means of the trapezoidal integration rule, the following 

equations are resulted, 

(𝑥2 − 𝑥1)𝑡𝑛 =
𝛬−

∆𝑡

2
(𝛺+�̇�)

𝑡𝑛
𝛱

1+
∆𝑡2

4
(𝛺+�̇�)

𝑡𝑛

2  ,  (𝑦2 − 𝑦1)𝑡𝑛 =

∆𝑡

2
(𝛺+�̇�)

𝑡𝑛
𝛬+𝛱

1+
∆𝑡2

4
(𝛺+�̇�)

𝑡𝑛

2                              (12) 

where  

𝛬 = (𝑥2 − 𝑥1)𝑡𝑛−1 +
∆𝑡

2
[(−𝑟�̇�sin𝜙 + (𝛺 + �̇�)(𝑦1 − 𝑦2 + 𝑟sin𝜙))

𝑡𝑛−1
+ (−𝑟�̇�sin𝜙 + 𝑟(𝛺 + �̇�)sin𝜙)

𝑡𝑛
] 

𝛱 = (𝑦2 − 𝑦1)𝑡𝑛−1 +
∆𝑡

2
[(𝑟�̇�cos𝜙 − (𝛺 + �̇�)(𝑥1 − 𝑥2 + 𝑟cos𝜙))

𝑡𝑛−1
+ (𝑟�̇�cos𝜙 − 𝑟(𝛺 + �̇�)cos𝜙)

𝑡𝑛
] 

and (∙)𝑡𝑛−1, (∙)𝑡𝑛 are the values of the quantities in the parentheses at time instants 𝑡𝑛−1 and  𝑡𝑛 during 

sticking, respectively;  ∆𝑡 = 𝑡𝑛 − 𝑡𝑛−1 . From Eqs. (11) and (12), the values of 𝑥2 , 𝑦2  and their 

derivatives at the current time instant can be obtained from the values of other state variables at the 

current time instant and the values of state variables at the previous time instant, in the state of stick. 

Besides, the equations of motion of the system, i.e., Eq. (1), can be rewritten as, 

{
 
 

 
 

𝑚p�̈�1 +𝑚d�̈�2 + 𝑐px�̇�1 + 𝑐dx�̇�2 + 𝑘px𝑥1 + 𝑘dx𝑥2 = 0

𝑚p�̈�1 +𝑚d�̈�2 + 𝑐py�̇�1 + 𝑐dy�̇�2 + 𝑘py𝑦1 + 𝑘dy𝑦2 = 0

𝐽p�̈� + 𝑐pϕ�̇� + 𝑘pϕ𝜙 − 𝑟[(𝑚p�̈�1 + 𝑐py�̇�1 + 𝑘py𝑦1)cos𝜙 − (𝑚p�̈�1 + 𝑐px�̇�1 + 𝑘px𝑥1)sin𝜙] = 0

𝐽d�̈� + 𝑐dψ�̇� + 𝑘dψ𝜓 + 𝑅 [(𝑚p�̈�1 + 𝑐py�̇�1 + 𝑘py𝑦1)
𝑥1−𝑥2+𝑟cos𝜙

𝑅
− (𝑚p�̈�1 + 𝑐px�̇�1 + 𝑘px𝑥1)

𝑦1−𝑦2+𝑟sin𝜙

𝑅
] = 0

(13) 

Then, by substituting Eqs. (11) and (12) into Eq. (13), the original 6-DoF equations of motion 

involving 𝑥1, 𝑦1, 𝑥2, 𝑦2, 𝜙, 𝜓 and their derivatives are converted into a 4-DoF equations of motion 

involving 𝑥1, 𝑦1, 𝜙, 𝜓 and their derivatives in the state of stick. By integrating the 4-DoF equations of 

motion, the values of 𝑥1, 𝑦1, 𝜙, 𝜓 (also including their derivatives) during sticking are determined, and 

the values of 𝑥2, 𝑦2 (also including their derivatives) during sticking can also be acquired from Eqs. 

(11) and (12). Besides, the components 𝐹fx and 𝐹fy of the friction force during sticking can be obtained 

from the first and second equation (or the third and fourth equation) in Eq. (1). 

In the second method, as the friction force during sticking can be regarded as a Lagrange multiplier 

enforcing the constraint 𝐯r = 𝟎 , various values of 𝐹fx  and 𝐹fy  can be tried when integrating the 

equations of motion (i.e., Eq. (1))  until 𝐹fx and 𝐹fy that enable 𝐯r = 𝟎 are found, which are exactly the 
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values of 𝐹fx  and 𝐹fy  during sticking. And the values of the state variables during sticking can be 

obtained simultaneously by integration. Unlike those in the first method, the equations of motion do not 

have to be alternated between the states of slip and stick, but multiple times of integrations need to be 

done at each time step in the state of stick in order to find the accurate value of friction force.  

The conditions for the transition of states are monitored at each time step of the numerical algorithms. 

Within the time step in which the transition of states occurs, the bisection method is employed to capture 

the precise time instant of transition. After the transition point, the state changes and in the first method, 

the equations of motion switch, while in the second method, only the friction force is obtained 

differently. For the sake of differentiation, the first and the second numerical method can also be named 

‘method of alternated equations of motion (AEOM method)’ and ‘method of no alternated equations of 

motion (NAEOM method)’, respectively.  

4. Numerical study 

4.1 Stability analysis  

The stability of the equilibrium point of the system, i.e., the steady sliding state, is analysed, which 

can be used for the initial estimation of unstable modes that possibly lead to self-excited vibration. The 

procedure to carry out the stability analysis is as follows.  

Firstly, the nonlinear algebraic equations whose solution is the equilibrium point are obtained, 

𝐊𝐱 = 𝐛                                                                 (14) 

where 𝐱 = [𝑥1, 𝑦1, 𝑥2, 𝑦2, 𝜙, 𝜓]
T , 𝐊 = diag(𝑘px, 𝑘py, 𝑘dx, 𝑘dy, 𝑘pϕ, 𝑘dψ), 𝐛 = [𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5, 𝑏6]

T , 

and the expressions of components 𝑏𝑖 (𝑖 = 1,2,3,4,5,6) are given in the Appendix. By solving Eq. (14), 

the equilibrium point of the system can be found. 

Then, a linearized system is derived by linearizing the equations of motion of the system, i.e., Eq. 

(1), around the equilibrium point, namely, 

𝐌L�̈̅� + 𝐂L�̇̅� + 𝐊L�̅� = 𝟎                                                (15) 

where �̅� = 𝐱 − 𝐱e, 𝐱e = [𝑥1e, 𝑦1e, 𝑥2e, 𝑦2e, 𝜙e, 𝜓e]
T represents the equilibrium point. The entries in the 

matrices 𝐌L, 𝐂L and 𝐊L are also provided in the Appendix. The eigenvalues of the linearized system 

are subsequently obtained. Negative real parts of all the eigenvalues indicate a stable equilibrium point, 

while positive real parts of at least one of the eigenvalues indicate unstable equilibrium point and 

occurrence of friction-induced self-excited vibration in the system. 

In the numerical analysis, the structural parameters are assigned with values in Table 1 if not 

specified otherwise. Fig. 3 shows the ranges of operating parameters 𝑁 and 𝛺 leading to a stable and 

unstable equilibrium point of the system. It is observed that the equilibrium point of the system is 

unstable at sufficiently low 𝛺  and large 𝑁 . Besides, ∆𝜇  and 𝛼  also have significant effects on the 
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stability of the equilibrium point of the system, specifically, the increase of ∆𝜇 and 𝛼 expands and 

narrows the range of operating parameters (𝑁, 𝛺) for instability, respectively. In Fig. 4, the results of 

linear stability analysis of the present model are compared with those of the reduced model in which 

the two rigid plates have no translational motion but only rotational motion, which show that the 

unstable ranges of (𝑁, 𝛺) (i.e., the values of parameters leading to an unstable equilibrium point) of the 

present model are significantly larger than those of the reduced model. That is to say, the nonlinear 

kinematics of contact brought about by the coupling of translational motion and rotational motion of 

the two rigid plates promotes the occurrence of dynamic instability. 

Table 1 The values of structural parameters in the numerical analysis 

𝑚p 𝑚d 𝐽p 𝐽d 𝑐px 𝑘px 𝑐py 𝑘py 𝑐dx 

1kg 10kg 0.5kg·m2 5kg·m2 0.1N·s/m 300N/m 0.1N·s/m 300N/m 0.1N·s/m 

𝑘dx 𝑐dy 𝑘dy 𝑐pϕ 𝑘pϕ 𝑐dψ 𝑘dψ 𝑟  

3000N/m 0.1N·s/m 3000N/m 0.1N·m·s 100N·m 0.1N·m·s 1000N·m 0.2m  

 

Fig. 3 The ranges of operating parameters (𝑁, 𝛺) leading to stable and unstable equilibrium point of 

the system with : (a) ∆𝜇 = 0.1, 0.2, 0.3, 𝛼 = 5 and (b) 𝛼 = 2, 5, 10, ∆𝜇 = 0.1. (𝜇k = 0.2). 
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Fig. 4 The ranges of operating parameters (𝑁, 𝛺) leading to stable and unstable equilibrium point of 

the system of the present model and the reduced model. (𝜇k = 0.2). 

4.2 Transient dynamic analysis 

In this section, the steady-state responses of this nonlinear friction-excited system are investigated 

by means of the transient dynamic analysis with the two numerical methods in Section 3. The values of 

the structural parameters are the same as those in Table 1.  

4.2.1 The accuracy and efficiency of numerical methods 

The accuracy and efficiency of the two numerical methods for the calculation of the transient 

dynamics of the system are firstly examined. For both numerical methods, there exist numerical errors 

accumulated by using Runge-Kutta algorithm to integrate the differential equations. In the AEOM 

method, there are extra numerical errors produced when applying the trapezoidal integral rule for the 

integration of Eq. (11) in order to obtain the values of the state variables and the friction force in the 

state of stick. In the NAEOM method, however, the unknown friction force during sticking can be 

precisely obtained, though multiple trials of integrations have to be done to find the values of the friction 

force enabling the constraint of stick at every time step, which is time-consuming. Therefore, the 

NAEOM method has an advantage in accuracy but a disadvantage in efficiency over the AEOM method. 

In the following, the accuracy and efficiency of the two numerical methods are examined in a numerical 

example  In Figs. 5 and 6, the steady-state responses of 𝜙 and ‖𝐅f‖ for 𝛺 = 5rad/s, 𝑁 = 50N, 𝜇k =

0.2, ∆𝜇 = 0.1, 𝛼 = 5 calculated by the two numerical methods with various time steps are shown. In 

both figures, it is found that the steady-state responses with ∆𝑡 = 0.0001s and ∆𝑡 = 0.00001s are 

nearly the same, which, however, are quite different from the results with ∆𝑡 = 0.001s, 0.01s, 0.1s. 

Therefore, the accuracy of results obtained by the two numerical methods can only be guaranteed when 

sufficiently small time steps are used. Besides, it is observed from Figs. 5 and 6 that the results 

calculated by the AEOM method are almost identical to the results obtained from the NAEOM method , 

which thus demonstrates the credibility of the results from the AEOM method.  
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The time costs of the computation of transient dynamic responses (0~100s) by the two numerical 

methods with various time steps are given in Table 2. When ∆𝑡 = 0.1s or 0.01s, there are no sticking 

phases in the results from either numerical method, hence the same computation time is taken by the 

two numerical methods. When ∆𝑡 = 0.001s, 0.0001s or  0.00001s, the sticking phases are found, and 

described in Table 2. The computation time taken by the NAEOM method is much longer than that by 

the AEOM method, which indicates that the AEOM method is much more efficient than the NAEOM 

method.  

In addition, the computations of dynamic responses of the system by the two numerical methods 

with various time steps are also done for many other sets of parameter values, from which similar 

observations to those in the above example are made, i.e., (1) for both numerical methods, sufficiently 

small time steps need to be employed to obtain accurate results; (2) the results calculated by the AEOM 

method are nearly equal to the results obtained by the NAEOM method when the time step is small; (3) 

the AEOM method has much higher efficiency than the NAEOM method. For these reasons, it is 

preferable to conduct the transient dynamic analysis by the AEOM method. 

 

Fig. 5 The steady-state responses of 𝜙 and ‖𝐅f‖ calculated by the AEOM method with various 

time steps. 
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Fig. 6 The steady-state responses of 𝜙 and ‖𝐅f‖ calculated by the NAEOM method with various 

time steps. 

Table 2 The computation time of transient dynamic responses (0~100s) by the two numerical methods 

∆𝑡 the AEOM method the NAEOM method 

0.1s 0.08s 0.08s 

0.01s 0.49s 0.49s 

0.001s 3.46s 958.15s 

0.0001s 31.36s 9,581.69s 

0.00001s 406.53s 95,814.03s 

4.2.2 The bi-stability in the system dynamics 

A bi-stability phenomenon is also found in this frictional system. Fig. 7 exhibits the time-history 

responses of 𝜙  and 𝜓  for three different values of 𝛺  and 𝑁 = 50N , 𝜇k = 0.2 , ∆𝜇 = 0.1 , 𝛼 = 5 

acquired from two different sets of initial conditions, i.e., one far from the equilibrium point and the 

other near the equilibrium point. It is observed that when 𝛺 = 5rad/s, the dynamic responses from two 

different initial conditions will approach the same stick-slip oscillation; when 𝛺 = 12rad/s , the 

dynamic responses from both initial conditions will approach the equilibrium point; when 𝛺 =

8.5rad/s, one set of initial condition leads to a stick-slip oscillation, the other leads to the equilibrium 

point in the steady state. The above results indicate the coexistence of two stable steady-state responses 

for certain values of operating parameters, i.e., bi-stability.  

70 70.5 71 71.5 72

time [s]

(b)

2

4

6

8

10

12

14

16

||
F

f||
 [

N
]

70 70.5 71 71.5 72

time [s]

(a)

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026
 [

ra
d
]

t=0.1s t=0.01s t=0.001s t=0.0001s t=0.00001s



13 

 

 
Fig. 7 The time responses of 𝜙 and 𝜓 when 𝛺 = 5rad/s (a)(b), 𝛺 = 8.5rad/s (c)(d), 𝛺 =

12rad/s (e)(f) and 𝜇k = 0.2, ∆𝜇 = 0.1, 𝛼 = 5, 𝑁 = 50N from two different initial conditions: 

(a)(c)(e) far from the equilibrium point and (b)(d)(f) near the equilibrium point. 

According to the types of steady-state responses, the parameter plane of (𝑁, 𝛺) can be divided into 

three different regions I, II,  III that contain the values of the operating parameters leading to a single 

stable stick-slip oscillation, coexistence of a stable stick-slip oscillation and a stable equilibrium point, 

and a single stable equilibrium point, respectively, as displayed in Fig. 8. 

 

Fig. 8 The ranges of (𝑁, 𝛺) leading to three different types of steady-state responses. 

Fig. 8 indicates that a low 𝛺 or a high 𝑁 promotes stick-slip oscillation. Therefore, if undesirable 

stick-slip oscillation occurs in some engineering applications such as automotive brake noise, these two 

factors can be used to hinder or disrupt stick-slip oscillation. A recent study by the authors’ team found 

a time-varying normal force could have a profound influence on stick-slip vibration behaviour [50]. 
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4.2.3 The characteristics of the stick-slip oscillations 

It has been revealed in Section 4.2.2 that the system has stable stick-slip oscillations for certain 

values of the operating parameters. To have a better understanding of the system dynamics, the 

characteristics of the stick-slip oscillations will be further analysed.  

First of all, the ranges of the operating parameters where the stick-slip oscillation can occur, i.e., the 

sum of the parameter regions I and II as shown in Fig. 8, for four dynamic models, are compared. These 

four models are the present model (Model 1), the model in which the two rigid plates have the rotational 

motion around the centres and the translational motion in the fixed direction of 𝑥1, 𝑥2 (Model 2), the 

model in which the two rigid plates have the rotational motion around the centres and the translational 

motion in the fixed direction of 𝑦1, 𝑦2 (Model 3), and the reduced model with only rotational motion 

for the two rigid plates (Model 4). The results of the parameter ranges in which the stick-slip oscillation 

can occur for the four dynamic models with 𝜇k = 0.2, ∆𝜇 = 0.1, 𝛼 = 5 are presented in Fig. 9 as the 

domains below corresponding curves. It is shown that the ‘stick-slip’ domain for the reduced model 

with only rotational motion is significantly smaller than those for other three models, which 

demonstrates that the addition of the translational motion increases the possibility of occurrence of 

stick-slip oscillation in the system. 

 

Fig. 9 The ranges of the operating parameters in which stick-slip vibration can occur  

Then, as with many previous works on friction-induced vibration [51-57], the focus of investigation 

will be on the characteristics of the circumferential oscillation of the driven upper rigid plate, i.e., the 

response of 𝜙. In Fig. 10, the steady-state stick-slip oscillations at different normal forces with 𝜇k =

0.2, ∆𝜇 = 0.1, 𝛼 = 5, 𝛺 = 0.5rad/s are exhibited in terms of time histories, phase plots and frequency 

spectra of 𝜙 . It is seen that by varying 𝑁 , distinct dynamic responses are produced. A periodic 

oscillation of almost only one amplitude peak at the frequency of 1.46Hz is shown in Fig. 10(a), 

indicating the vibration of  𝜙 is nearly harmonic at 𝑁 = 30N. When 𝑁 = 50N, 70N, 90N, 110N, the 

responses of 𝜙 are also periodic but not harmonic, with the fundamental frequency of 0.99Hz, 0.78Hz, 
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𝑁 = 120N, however, 𝜙 is non-periodic, as shown in Fig. 10(f). This example demonstrates the rich 

bifurcation behaviours of the stick-slip oscillations of the system with parameter variations.  

 

        Fig. 10 Time histories, phase plots and frequency spectra of 𝜙 at different normal forces: (a) 𝑁 =

30N, (b) 𝑁 = 50N, (c) 𝑁 = 70N, (d) 𝑁 = 90N, (e) 𝑁 = 110N and (f) 𝑁 = 120N. 

Besides, the direction of relative motion between the two plates during vibration is examined. Fig. 

11 exhibits the variations of the angle of 𝐯r  relative to the gross circumferential direction during 

vibration at 𝑁 = 30N and 𝑁 = 120N. The angle between the direction of relative motion and the 

circumferential direction varies periodically within [5°, 15°] at 𝑁 = 30N and non-periodically within 

[0°, 20°] at 𝑁 = 120N, as exhibited by the blue solid curves. In contrast, the relative motion between 

the two plates is always along the fixed circumferential direction when the centres of the two rigid plates 

are rigidly constrained,  which is represented by the red dashed lines in Fig. 11. The variation of the 

direction of relative motion also acts as a significant indicator of the rich dynamics of the system. 

 

Fig. 11 The angle of relative motion relative to the gross circumferential direction during vibration: 

(a) ) 𝑁 = 30N and (b) 𝑁 = 120N. 
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To get a complete picture of the bifurcation behaviours of 𝜙, the bifurcation diagrams using the 

operating parameters (𝑁, 𝛺) and friction parameters (∆𝜇, 𝛼) as the control parameters, in which the 

peak values of 𝜙 in the steady state are shown, are presented in Fig. 12 and Fig. 13, respectively. Fig. 

12 shows that the bifurcations of 𝜙 with the variations of operating parameters are monotonous, namely, 

the response of 𝜙 changes from periodic stick-slip oscillation with growing period to non-periodic 

stick-slip oscillation with the increase of 𝑁  and decrease of 𝛺 . However, the monotonicity is not 

displayed in the bifurcations with the variations of the friction parameters. By increasing ∆𝜇 , the 

response of 𝜙 changes from periodic oscillation to non-periodic oscillation and eventually back to 

periodic oscillation. By increasing 𝛼 , the response of 𝜙  changes from periodic oscillation to non-

periodic oscillation, and then back to periodic oscillation and non-periodic oscillation in turn, and 

eventually back to periodic oscillation. 

 
       Fig. 12 Bifurcation diagrams of 𝜙 using 𝑁 (𝛺 = 0.5rad/s) (a) and 𝛺 (𝑁 = 50N) (b) as the 

control parameter. (𝜇k = 0.2, ∆𝜇 = 0.1, 𝛼 = 5). 

 

         Fig. 13 Bifurcation diagrams of 𝜙 using ∆𝜇 (𝛼 = 5) (a) and 𝛼 (∆𝜇 = 0.1) (b) as the control 

parameter. (𝜇k = 0.2, 𝑁 = 50N, 𝛺 = 0.5rad/s). 

In comparison, Fig. 14 gives the bifurcation diagrams of 𝜙 with the variations of 𝑁 and 𝛺 for other 

three dynamic models. It is observed that for the two models with the rotational motion and the 

translational motion in the fixed direction for the rigid plates, periodic stick-slip oscillations with 

different periods (or frequencies) appear as 𝑁 or 𝛺 varies. For the reduced model with only rotational 

motion for the rigid plates, however, no bifurcation appears, i.e, 𝜙 has periodic stick-slip oscillation 

with unchanged period (or frequency) with the variation of 𝑁 or 𝛺. In Fig. 15, a representation of the 

response in the reduced model in which the two rigid plates undergo only rotational motion is shown. 

The comparison between the results in Fig. 12 and Fig. 14 demonstrates that the addition of the two-
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dimensional translational motion for both rigid plates greatly enhances the variability of the frequency 

spectra (the periodicity) of the response of 𝜙 within the operating range.  

 

   Fig. 14 Bifurcation diagrams of 𝜙 with the variations of 𝑁 (𝛺 = 0.5rad/s) and 𝛺 (𝑁 = 50N) in the 

model in which the two rigid plates have the rotational motion around the centres and the translational 

motion in the fixed direction of 𝑥1, 𝑥2 (a)(b) and 𝑦1, 𝑦2 (c)(d) and the two rigid plates have no 

translational motion but only rotational motion (e)(f). (𝜇k = 0.2, ∆𝜇 = 0.1, 𝛼 = 5). 

 

   Fig. 15 A representation of the response of 𝜙 in the reduced model where the two rigid plates 

undergo only rotational motion 
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where 𝑋 represents a response of the system, 𝑋e is the value of the equilibrium point, 𝑇 is a time period 

in the steady state. Fig. 16(a) and (b) show the intensity of oscillation of 𝑟𝜙 in the reduced model and 
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the model studied in this paper, respectively, which indicate that the addition of the two-dimensional 

translational motion for both rigid plates has no significant effect on the intensity of oscillation of 𝑟𝜙. 

Besides, the intensity of oscillation of the translational motion of the upper rigid plate is illustrated in 

Fig. 16(c), which has the same-order magnitude as that of 𝑟𝜙, therefore close attention should also be 

paid to the amplitudes of the oscillations of components that seem not to be in the principal direction of 

relative motion. 

 

   Fig. 16 The intensity of oscillation of system responses: (a) 𝑟𝜙 in the reduced model, (b) 𝑟𝜙 in the 

model studied in this paper, (c) the translational motion of the upper rigid plate. 

5. Conclusions 

This paper presents a study of the friction-induced planar vibration of two elastically constrained 

circular rigid plates in sliding friction contact. The coupling of the translational motion with the 

rotational motion for both rigid plates results in direction variation of the relative motion and friction 

force that will usually be not along the circumferential direction, and thus produces nonlinear 

kinematics of contact and complicates the dynamics of the friction-excited system. The system 

dynamics consists of two distinct states of motion, i.e., slip and stick. Two methods are proposed to 

determine the values of the state variables and friction force in the state of stick, which cannot be directly 

acquired from the integration of the equations of motion because the friction force during sticking is a 

reaction force enforcing zero relative velocity rather than explicitly expressed as a function of the state 

variables. The accuracy and efficiency of the two numerical methods for the calculation of the transient 

dynamic responses of the system are examined. Based on the observations from the numerical study, 

the following conclusions can be drawn, 

1. The equilibrium point of the system is unstable at a sufficiently low rotational speed of lower rigid 

plate (𝛺) and large normal force (𝑁). In addition, the increase of ∆𝜇 and 𝛼 (parameters in the friction 

law) expands and narrows the range of operating parameters (𝑁, 𝛺) leading to unstable equilibrium 

points, respectively. Besides, the nonlinear kinematics of contact brought about by the coupling of 
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translational motion and rotational motion of the two rigid plates promotes the occurrence of 

dynamic instability. 

2.  Bi-stability occurs for a certain range of values of operating parameters. The plane of operating 

parameters can be divided into three different regions that contain the values leading to a single 

stable stick-slip oscillation, coexistence of a stable stick-slip oscillation and a stable equilibrium 

point, and a single stable equilibrium point, respectively. 

3. The frequency spectra (the periodicity) of the circumferential oscillation of the driven upper rigid 

plate, i.e., the response of 𝜙 , in the present model with the coupling of the two-dimensional 

translational motion and the rotational motion around the centres for the two rigid plates turn out to 

experience higher degree of variability within the operating range than that in the reduced model 

where the two rigid plates have no translational motion but only rotational motion. 

4. The inclusion of the translational motion for both rigid plates has no significant effect on the intensity 

of oscillation of 𝜙. Besides, close attention should also be paid to the amplitudes of the oscillations 

of components that seem not to be in the principal direction of relative motion in the research of 

friction-induced vibration of mechanical systems. 

. 

Appendix 

The components 𝑏𝑖 (𝑖 = 1,2,3,4,5,6) in Eq. (14) are, 

𝑏1 = −
𝑁(𝑦1 − 𝑦2 + 𝑟sin𝜙) [𝜇k + (𝜇s − 𝜇k)e

−𝛼𝛺√(𝑦1−𝑦2+𝑟sin𝜙)
2+(𝑥1−𝑥2+𝑟cos𝜙)

2
 ]

√(𝑦1 − 𝑦2 + 𝑟sin𝜙)
2 + (𝑥1 − 𝑥2 + 𝑟cos𝜙)

2
, 

𝑏2 =
𝑁(𝑥1 − 𝑥2 + 𝑟cos𝜙) [𝜇k + (𝜇s − 𝜇k)e

−𝛼𝛺√(𝑦1−𝑦2+𝑟sin𝜙)
2+(𝑥1−𝑥2+𝑟cos𝜙)

2
 ]

√(𝑦1 − 𝑦2 + 𝑟sin𝜙)
2 + (𝑥1 − 𝑥2 + 𝑟cos𝜙)

2
, 

𝑏3 = −𝑏1, 𝑏4 = −𝑏2, 

𝑏5 =
𝑁𝑟[(𝑦1 − 𝑦2 + 𝑟sin𝜙)sin𝜙 + (𝑥1 − 𝑥2 + 𝑟cos𝜙)cos𝜙] [𝜇k + (𝜇s − 𝜇k)e

−𝛼𝛺√(𝑦1−𝑦2+𝑟sin𝜙)
2+(𝑥1−𝑥2+𝑟cos𝜙)

2
 ]

√(𝑦1 − 𝑦2 + 𝑟sin𝜙)
2 + (𝑥1 − 𝑥2 + 𝑟cos𝜙)

2
, 

  𝑏6 = −𝑁√(𝑦1 − 𝑦2 + 𝑟sin𝜙)
2 + (𝑥1 − 𝑥2 + 𝑟cos𝜙)

2 [𝜇k + (𝜇s − 𝜇k)e
−𝛼𝛺√(𝑦1−𝑦2+𝑟sin𝜙)

2+(𝑥1−𝑥2+𝑟cos𝜙)
2
 ].   (A.1) 

The mass matrix, damping matrix and stiffness matrix of the linearized system in Eq. (16) are, 

𝐌L = diag(𝑚p, 𝑚p, 𝐽p, 𝑚d, 𝑚d, 𝐽d), 𝐂L = (𝐶𝑖𝑗)6×6 = 𝐂L
T, 𝐊L = (𝐾𝑖𝑗)6×6 ≠ 𝐊L

T, 1 ≤ 𝑖 ≤ 6, 1 ≤ 𝑗 ≤ 6   (A.2) 

where, 

𝐶11 = 𝑐px − 𝑁 [(
𝛼∆𝜇e−𝛼𝑣re

𝑣re
2 +

𝜇e

𝑣re
3) 𝑣re

𝑥 2 −
𝜇e

𝑣re
], 𝐶21 = −𝑁𝑣re

𝑥 𝑣re
𝑦
(
𝛼∆𝜇e−𝛼𝑣re

𝑣re
2 +

𝜇e

𝑣re
3),  𝐶31 = 𝑐px − 𝐶11, 



20 

 

𝐶41 = −𝐶21,  𝐶51 = 𝑁𝑟 [(
𝛼∆𝜇e−𝛼𝑣re

𝑣re
2 +

𝜇e

𝑣re
3) (sin(𝜙e)𝑣re

𝑥 2 − cos(𝜙e)𝑣re
𝑥 𝑣re

𝑦
) − 𝜇e

sin(𝜙e)

𝑣re
], 

𝐶61 = 𝑁 [(
𝛼∆𝜇e−𝛼𝑣re

𝑣re
2 +

𝜇e

𝑣re
3)

𝑋e𝑣re
𝑥 𝑣re

𝑦
−𝑌e𝑣re

𝑥 2

𝑣re
2 + 𝜇e

𝑌e

𝑣re
], 𝐶22 = 𝑐py −𝑁 [(

𝛼∆𝜇e−𝛼𝑣re

𝑣re
2 +

𝜇e

𝑣re
3) 𝑣re

𝑦 2
−

𝜇e

𝑣re
], 

𝐶32 = −𝐶21, 𝐶42 = 𝑐py − 𝐶22, 𝐶52 = 𝑁𝑟 [(
𝛼∆𝜇e−𝛼𝑣re

𝑣re
2 +

𝜇e

𝑣re
3) (sin(𝜙e)𝑣re

𝑥 𝑣re
𝑦
− cos(𝜙e)𝑣re

𝑦 2
) + 𝜇e

cos(𝜙e)

𝑣re
], 

𝐶62 = 𝑁 [(
𝛼∆𝜇e−𝛼𝑣re

𝑣re
2 +

𝜇e

𝑣re
3)

𝑋e𝑣re
𝑦 2

−𝑌e𝑣re
𝑥 𝑣re

𝑦

𝑣re
2 − 𝜇e

𝑋e

𝑣re
], 𝐶33 = 𝑐dx − 𝐶31, 𝐶43 = 𝐶21, 𝐶53 = −𝐶51, 𝐶63 = −𝐶61, 

𝐶44 = 𝑐dy − 𝐶42, 𝐶54 = −𝐶52 , 𝐶64 = −𝐶62, 𝐶55 = 𝑐pφ − 𝑁𝑟 [(
𝛼∆𝜇e−𝛼𝑣re

𝑣re
2

+
𝜇e

𝑣re
3
) (𝑟cos(𝜙e)𝑣re

𝑦
− 𝑟sin(𝜙e)𝑣re

𝑥 )2 −
𝜇e

𝑣re
], 

𝐶65 = 𝑁𝑟 [(
𝛼∆𝜇e−𝛼𝑣re

𝑣re
2

+
𝜇e
𝑣re

3
) (cos(𝜙e)𝑣re

𝑦
− sin(𝜙e)𝑣re

𝑥 )(𝑋e𝑣re
𝑦
− 𝑌e𝑣re

𝑥 ) − 𝜇e
(sin(𝜙e)𝑌e + cos(𝜙e)𝑋e)

𝑣re
], 

𝐶66 = 𝑐dψ − 𝑁 [(
𝛼∆𝜇e−𝛼𝑣re

𝑣re
2

+
𝜇e
𝑣re

3
) (𝑋e𝑣re

𝑦
− 𝑌e𝑣re

𝑥 )
2
− 𝜇e

𝑋e
2 + 𝑌e

2

𝑣re
]. 

and there is 𝐶𝑗𝑖 = 𝐶𝑖𝑗(2 ≤ 𝑖 ≤ 6, 1 ≤ 𝑗 ≤ 5, 𝑗 < 𝑖) as the matrix 𝐂L is symmetric. The entries in the matrix 𝐊L 

are,  

𝐾11 = 𝑘px +𝑁𝛺 (
𝛼∆𝜇e−𝛼𝑣re

𝑣re
2 +

𝜇e

𝑣re
3) 𝑣re

𝑥 𝑣re
𝑦
,  𝐾12 = −𝑁𝛺 [(

𝛼∆𝜇e−𝛼𝑣re

𝑣re
2 +

𝜇e

𝑣re
3) 𝑣re

𝑥 2 −
𝜇e

𝑣re
], 𝐾13 = 𝑘px − 𝐾11, 

𝐾14 = −𝐾12, 𝐾15 = −𝑁𝛺𝑟 [(
𝛼∆𝜇e−𝛼𝑣re

𝑣re
2 +

𝜇e

𝑣re
3) (cos(𝜙e)𝑣re

𝑥 2 + sin(𝜙e)𝑣re
𝑥 𝑣re

𝑦
) − 𝜇e

cos(𝜙e)

𝑣re
], 𝐾16 = 0, 

𝐾21 = 𝑁𝛺 [(
𝛼∆𝜇e−𝛼𝑣re

𝑣re
2 +

𝜇e

𝑣re
3) 𝑣re

𝑦 2
−

𝜇e

𝑣re
], 𝐾22 = 𝑘py −𝑁𝛺 (

𝛼∆𝜇e−𝛼𝑣re

𝑣re
2 +

𝜇e

𝑣re
3) 𝑣re

𝑥 𝑣re
𝑦
, 𝐾23 = −𝐾21, 

𝐾24 = −𝐾13, 𝐾25 = −𝑁𝛺𝑟 [(
𝛼∆𝜇e−𝛼𝑣re

𝑣re
2 +

𝜇e

𝑣re
3) (sin(𝜙e)𝑣re

𝑦 2
+ cos(𝜙e)𝑣re

𝑥 𝑣re
𝑦
) − 𝜇e

sin(𝜙e)

𝑣re
], 𝐾26 = 0, 

𝐾31 = 𝐾13, 𝐾32 = −𝐾12, 𝐾33 = 𝑘dx − 𝐾13, 𝐾34 = −𝐾14, 𝐾35 = −𝐾15, 𝐾36 = 0,   

𝐾41 = −𝐾21, 𝐾42 = 𝐾24, 𝐾43 = −𝐾23, 𝐾44 = 𝑘dy − 𝐾24, 𝐾45 = −𝐾25, 𝐾46 = 0, 

𝐾51 = 𝑁𝛺𝑟 [(
𝛼∆𝜇e−𝛼𝑣re

𝑣re
2

+
𝜇e
𝑣re

3
) (cos(𝜙e)𝑣re

𝑦 2
− sin(𝜙e)𝑣re

𝑥 𝑣re
𝑦
) − 𝜇e

cos(𝜙e)

𝑣re
], 

𝐾52 = −𝑁𝛺𝑟 [(
𝛼∆𝜇e−𝛼𝑣re

𝑣re
2 +

𝜇e

𝑣re
3) (cos(𝜙e)𝑣re

𝑥 𝑣re
𝑦
− sin(𝜙e)𝑣re

𝑥 2) + 𝜇e
sin(𝜙e)

𝑣re
], 𝐾53 = −𝐾51, 𝐾54 = −𝐾52, 

𝐾55 = 𝑘pφ −𝑁𝛺𝑟 (
𝛼∆𝜇e−𝛼𝑣re

𝑣re
2 +

𝜇e

𝑣re
3) (cos(𝜙e)𝑣re

𝑥 + sin(𝜙e)𝑣re
𝑦
)(−sin(𝜙e)𝑣re

𝑥 + cos(𝜙e)𝑣re
𝑦
), 𝐾56 = 0, 

𝐾61 = −𝑁𝛺 [(
𝛼∆𝜇e−𝛼𝑣re

𝑣re
2 +

𝜇e

𝑣re
3) (𝑋e𝑣re

𝑦 2
− 𝑌e𝑣re

𝑥 𝑣re
𝑦
) − 2𝜇e

𝑋e

𝑣re
], 𝐾63 = −𝐾61, 

𝐾62 = 𝑁𝛺 [(
𝛼∆𝜇e−𝛼𝑣re

𝑣re
2 +

𝜇e

𝑣re
3) (𝑋e𝑣re

𝑥 𝑣re
𝑦
− 𝑌e𝑣re

𝑥 2) + 2𝜇e
𝑌e

𝑣re
], 𝐾64 = −𝐾62, 

𝐾65 = 𝑁𝛺𝑟 [(
𝛼∆𝜇e−𝛼𝑣re

𝑣re
2 +

𝜇e

𝑣re
3) (cos(𝜙e)𝑣re

𝑥 + sin(𝜙e)𝑣re
𝑦 )(𝑋e𝑣re

𝑦
− 𝑌e𝑣re

𝑥 ) + 2𝜇e
cos(𝜙e)𝑌e−sin(𝜙e)𝑋e

𝑣re
], 𝐾66 = 𝑘dψ. 

in which, 

𝑋e = 𝑥1e − 𝑥2e + 𝑟cos(𝜙e), 𝑌e = 𝑦1e − 𝑦2e + 𝑟sin(𝜙e), 𝑣re
𝑥 = 𝛺𝑌e, 𝑣re

𝑦
= −𝛺𝑋e, 
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𝑣re = 𝛺√𝑋e
2 + 𝑌e

2
, 𝜇e = 𝜇k + ∆𝜇e

−𝛼𝑣re. 
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