
An Impossibility Result in Automata-Theoretic
Reinforcement Learning ?

Ernst Moritz Hahn1 , Mateo Perez2 , Sven Schewe3 , Fabio Somenzi2 ,
Ashutosh Trivedi2 , and Dominik Wojtczak3

1 University of Twente, The Netherlands
2 University of Colorado Boulder, USA

3 University of Liverpool, UK

Abstract. The expanding role of reinforcement learning (RL) in safety-
critical system design has promoted ω-automata as a way to express
learning requirements—often non-Markovian—with greater ease of ex-
pression and interpretation than scalar reward signals. When ω-automata
were first proposed in model-free RL, deterministic Rabin acceptance
conditions were used in an attempt to provide a direct translation from
ω-automata to finite state “reward” machines defined over the same au-
tomaton structure (a memoryless reward translation). While these initial
attempts to provide faithful, memoryless reward translations for Rabin
acceptance conditions remained unsuccessful, translations were discov-
ered for other acceptance conditions such as suitable, limit-deterministic
Büchi acceptance or more generally, good-for-MDP Büchi acceptance
conditions. Yet, the question “whether a memoryless translation of Ra-
bin conditions to scalar rewards exists” remained unresolved.
This paper presents an impossibility result implying that any attempt to
use Rabin automata directly (without extra memory) for model-free RL
is bound to fail. To establish this result, we show a link between a class of
automata enabling memoryless reward translation to closure properties
of its accepting and rejecting infinity sets, and to the insight that both the
property and its complement need to allow for positional strategies for
such an approach to work. We believe that such impossibility results will
provide foundations for the application of RL to safety-critical systems.

1 Introduction

The empirical success of reinforcement learning (RL, [26]) in solving challenging
problems, even in the absence of an explicit model of the environment, has
made its application to the design of safety-critical systems inevitable. However,
traditional RL relies on expert inputs in the form of scalar reward signals that
are often designed in intuitive, empirical fashion. A rigorous approach to the

? This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreements 864075 (CAESAR),
and 956123 (FOCETA). This work is supported in part by the National Science
Foundation (NSF) grant CCF-2009022 and by NSF CAREER award CCF-2146563.

http://orcid.org/0000-0002-9348-7684
http://orcid.org/0000-0003-4220-3212
http://orcid.org/0000-0002-9093-9518
http://orcid.org/0000-0002-2085-2003
http://orcid.org/0000-0001-9346-0126
http://orcid.org/0000-0001-5560-0546

2 E. M. Hahn, M. Perez, S. Schewe, F. Somenzi, A. Trivedi, and D. Wojtczak

design of safety-critical systems demands formal specifications at every stage
of the design process. Consequently, there is an increased interest in formal
languages that express learning requirements and in their automatic translation
to reward signals for model-free RL. This paper concerns an impossibility result
on the automatic reward translations when requirements are specified using an
important class of formal languages: the ω-regular objectives.

Omega-regular languages [27,21] have been used to specify high level objec-
tives in the safety-critical system-design community for decades—often in the
form of declarative specifications in Linear Temporal Logic [23]. Omega-regular
objectives express qualitative properties for infinite-horizon behaviors, extend-
ing what regular languages do for finite-horizon behaviors: they are expressive,
robust, and support efficient, automatic analysis. However, unlike regular lan-
guages, for which deterministic finite automata provide a de facto canonical
machine model, the machine models for ω-regular objectives are characterized
by infinitary acceptance conditions to be satisfied by the infinite-horizon be-
havior. Widely adopted acceptance conditions include Büchi, parity, Rabin, and
Streett conditions [2], and the name of the acceptance condition customarily
precedes “automata” to specify the kind of ω-automata. Deterministic parity,
Rabin, Streett, and nondeterministic Büchi automata capture the same class of
languages and characterize the class of ω-regular languages; while, deterministic
Büchi automata are strictly less expressive.

It is known that unrestricted nondeterminism is not compatible with the
computation of optimal strategies when they are used to express the properties
of probabilistic systems modeled as Markov decision processes (MDPs). This has
motivated the study of a restricted form of nondeterminism formalized as the
good-for-MDPs automata [15,9,30]. Notably, good-for-MDPs Büchi automata
are expressive enough to represent all ω-regular objectives. The optimal control
problem for MDPs against ω-automata based specifications has been studied
extensively [6,1,22]. These solution methods, however, require a model of the
environment dynamics. In the RL framework, the system, specified as an MDP,
is unknown. Model-free RL algorithms synthesize a strategy without creating an
explicit model of the dynamics. Thus, when designing a model-free translation
from an ω-automaton to rewards, the rewards should not depend directly on
the unknown transition structure of the MDP. Model-free reward translations
for good-for-MDPs Büchi automata [13,5] and parity automata [16] have been
demonstrated; they assign reward from the transitions of the automaton.

When choosing a type of ω-automata to use for a model-free reward transla-
tion, one must consider that there are optimal positional strategies in MDPs for
discounted and average reward RL [24]. This means that, if a model-free reward
translation results in an MDP where optimal strategies for the ω-regular objec-
tive require additional memory, then this construction is incorrect. For instance,
if one forms the synchronous product between a deterministic Streett automa-
ton and an MDP, optimal policies in the resulting product MDP may require
finite memory, so there is no faithful reward assignment on this product MDP.

An Impossibility Result for Automata-Theoretic RL 3

Good-for-MDPs Büchi, deterministic parity, and deterministic Rabin automata
admit positional optimal strategies in the product MDP.

Since good-for-MDPs Büchi and deterministic parity automata are known to
have faithful model-free reductions, one may consider if a faithful model-free re-
duction exists for Rabin automata with no additional memory. Attempts at this
[25] have later been shown to be incorrect [13]. We show that no such reduction
exists. This somewhat surprising result explains why no attempt at using Rabin
automata in RL has been successful. We observe connections between the exis-
tence of a model-free reward translation and the closure sets of Muller automata.
We also show how the positional nature of optimal strategies for the complement
of an automaton affects the existence of a model-free reward translation.

We begin the technical discussion by introducing ω-automata (Section 2)
and their closure properties (Section 3). Section 4 formalizes MDPs and the RL
framework with both automata-theoretic rewards and non-Markovian scalar re-
wards. Section 5 introduces the idea of “memoryless” translations and associated
impossibility theorems for Rabin. Section 6 provides concluding remarks.

2 Omega-Automata

A finite word over an alphabet Σ is a finite concatenation of symbols from Σ.
Similarly, an ω-word w over Σ is a function w : ω → Σ from the natural numbers
to Σ. We write Σ∗ and Σω for the set of finite and ω-strings over Σ. We write
B for the binary alphabet {0, 1}.

Definition 1. An ω-automaton A = 〈Σ,Q, q0, δ, α〉 consists of a finite alphabet
Σ, a finite set of states Q, an initial state q0 ∈ Q, a transition function δ :
Q×Σ → 2Q, and an acceptance condition α ⊆ Qω. A deterministic automaton
is such that δ(q, σ) is a singleton for every state q and alphabet letter σ. For
deterministic automata, we write δ(q, σ) = q′ instead of δ(q, σ) = {q′}.

A run of an automaton A = 〈Σ,Q, q0, δ, α〉 on word w ∈ Σω is a function
ρ : ω → Q, such that ρ(0) = q0 and ρ(i + 1) ∈ δ(ρ(i), w(i)) holds. A run ρ is
accepting if ρ ∈ α. A word w is accepted by A if there exists an accepting run
of A on w. The language of A, written L(A), is the set of words accepted by A.

The set of states that appear infinitely often in ρ is written Inf(ρ). A de-
terministic automaton D has exactly one run for each word in Σω. We write
InfD(w) for the set of states that appear infinitely often in the unique run of D
on w. When the deterministic automaton D is clear from the context, we drop
the superscript and simply write Inf(w).

Definition 2 (Acceptance Conditions.). Several ways to give finite presen-
tations of α acceptance conditions4 are in use. We recall the most common ones
so as to fix notation. They are all defined in terms of Inf(ρ).

4 Abusing notation, we sometimes use α to denote the indicator function α : Qω → B.

4 E. M. Hahn, M. Perez, S. Schewe, F. Somenzi, A. Trivedi, and D. Wojtczak

– A Büchi acceptance condition is specified by a set F ⊆ Q such that

α = {ρ ∈ Qω : Inf(ρ) ∩ F 6= ∅}.

– A co-Büchi acceptance condition is specified by a set F ⊆ Q such that

α = {ρ ∈ Qω : Inf(ρ) ∩ F = ∅}.

– A generalized Büchi condition is specified by a set of sets F⊆2Q such that

α = {ρ ∈ Qω : ∀F ∈ F . Inf(ρ) ∩ F 6= ∅}.

– A generalized co-Büchi condition is specified by a set of sets F⊆2Q such that

α = {ρ ∈ Qω : ∃F ∈ F . Inf(ρ) ∩ F = ∅}.

– A parity acceptance condition of index k is specified by a function π : Q →
{0, . . . , k− 1} that assigns a priority to each state of the automaton, so that

α = {ρ ∈ Qω : π(Inf(ρ)) is odd},

where π(S) = max{π(s) : s∈S} is the maximum priority of states in S ⊆ Q.

– A Rabin acceptance condition of index k is specified by k pairs of sets of
states, {〈Ri, Gi〉}1≤i≤k. Intuitively, a run should visit at least one set of Red
(ruinous) states finitely often and its matching Green (good) set of states
infinitely often. Formally,

α = {ρ ∈ Qω : ∃ i . 1 ≤ i ≤ k and Inf(ρ) ∩Ri = ∅ and Inf(ρ) ∩Gi 6= ∅}.

– A Streett acceptance condition of index k is specified by k pairs of sets of
states, {〈Gi, Ri〉}1≤i≤k. Intuitively, a run should visit each Red set of states
finitely often or its matching Green set of states infinitely often. Formally,

α = {ρ ∈ Qω : ∀ i . 1 ≤ i ≤ k → Inf(ρ) ∩Ri = ∅ or Inf(ρ) ∩Gi 6= ∅}.

– A Muller acceptance condition is specified by a collection of sets of states
C ⊆ 2Q such that

α = {ρ ∈ Qω : Inf(ρ) ∈ C}.

The name of the acceptance condition customarily precedes automata to spec-
ify the kind of ω-automata, e.g. ω-automata with Büchi acceptance conditions
are called Büchi automata. A Büchi (or co-Büchi) automaton where, in every
strongly connected component (SCC) of the automaton, either all or none of the
states is in F , is called weak.

An Impossibility Result for Automata-Theoretic RL 5

3 Closure Properties of Acceptance Conditions

Definition 3 (Eventual Sets). An eventual set of a deterministic automaton
A = 〈Σ,Q, q0, δ, α〉 is a set of states E ⊆ Q such that E = Inf(w) for some
w ∈ Σω. An eventual set is accepting if it satisfies the acceptance condition α;
otherwise, it is rejecting. We denote the set of all eventual sets of A by EA.
The set of accepting (rejecting) eventual sets of A is written EAa (EAr). Note that
EAa ∪ EAr = EA and EAa ∩ EAr = ∅. When the automaton A is clear from the
context, we drop the superscript and simply write, E, Ea, Er.

For a Muller automaton with acceptance condition C, for example, Ea = E ∩ C
and Er = E \C. For a Büchi automaton with acceptance condition F , Ea = {E ∈
E : E ∩ F 6= ∅} and so on.

Definition 4 (Upward-Closure and Closure under Union). A set S ⊆ E
of eventual sets is upward-closed if, whenever E1 ∈ S, E2 ∈ E, and E1 ⊆ E2,
it is also the case that E2 ∈ S. The set S is closed under union if, whenever
E1, E2, . . . , En are in S, and E1 ∪E2 ∪ · · · ∪En ∈ E, then it is also the case that
E1 ∪ E2 ∪ · · · ∪ En ∈ S. Note that upward closure implies closure under union
because E1 ∪ E2 ∪ · · · ∪ En ⊇ E1.

We define “closure under union” in terms of union of n sets instead of just
pairs to account for cases like this: we have rejecting eventual sets E1, E2, E3

such that their pairwise unions are not in E , but the union of all three is. We
still want the union to be in Er. E1, E2, E3 may form a ring that is only strongly
connected when all three are taken together.

Table 1 summarizes the requirements that Ea and Er must satisfy for the ac-
ceptance condition of a deterministic Muller automaton to be translated into an
equivalent acceptance condition of different type for the same transition struc-
ture. Dual types of acceptance condition (e.g., Streett and Rabin) must satisfy
dual requirements. A weak automaton may be regarded as both a Büchi automa-
ton and a co-Büchi automaton. Hence, it has the most restrictive conditions.
Likewise, a parity automaton may be seen as both a Rabin automaton and a
Streett automaton. Hence the constraints imposed on parity conditions combine
those of Rabin and Streett conditions.

Remark 1. The result for generalized Büchi acceptance extends [18, Theorem 4.2],
because it says that, with generalized Büchi acceptance, one is not only guar-
anteed the existence of a deterministic Büchi automaton equivalent to the given
Muller automaton, but is also told that one exists with the same transition
structure as long as a generalized acceptance condition is used. Any standard
technique to “degeneralize” that automaton may be applied to recover an au-
tomaton with plain Büchi acceptance.

As an example of how Table 1 is arrived at, we prove the following result.
Analogous results are in [32, Lemma 13] and [21, Proposition 4.4.5].

6 E. M. Hahn, M. Perez, S. Schewe, F. Somenzi, A. Trivedi, and D. Wojtczak

Table 1. Closure conditions that Ea and Er must satisfy for a Muller condition to
be expressed as another type of condition. Positional and co-positional refer to the
(guaranteed) existence of positional optimal policies for maximizing the chance that
a run in Ea and Er, respectively, is produced. The final column lists which of these
target types permit memoryless reward translations (MRT) to scalar values with convex
aggregator functions, which allows for using them in reinforcement learning.

target type Ea Er positional co-positional MRT

weak upward upward yes yes yes

Büchi upward union yes yes yes

co-Büchi union upward yes yes yes

generalized Büchi upward no yes no

generalized co-Büchi upward yes no no

parity union union yes yes yes

Streett union no yes no

Rabin union yes no no

Theorem 1 (Muller to Rabin). A Muller condition is expressible in Rabin
form if, and only if, Er is closed under union.

Proof. To see that, in a Rabin condition {〈Ri, Gi〉}1≤i≤k, Er is closed under
union, let, for j = 1, . . . , n, Ej be an element of Er. Then, for every i ∈ {1, . . . , k},
Ej∩Ri 6= ∅ or Ej∩Gi = ∅ holds. If any Ej intersects Gi, so does E1∪E2∪· · ·∪En.
In the remaining case, no Ej intersects Ri, but then neither does E1∪E2∪· · ·∪En.

To prove the other direction, i.e., that closure under union of Er guarantees
the existence of an equivalent Rabin condition, we observe that closure under
union of Er implies that, for E ∈ Ea, the set

SE =
⋃
{S ∈ Er : S ⊆ E}

is a proper subset of E. (Otherwise, E would belong to both Ea and Er.) There-
fore, a Rabin condition equivalent to the given Muller condition such that Er is
closed under union consists of one pair 〈Q \ E,E \ SE〉 for each element E of
Ea. Every set E ∈ Ea is accepting in the Rabin automaton thanks to the pair
〈Q\E,E \SE〉 because E \SE is not empty. For a set D ∈ Er and a generic pair
〈Q \ E,E \ SE〉 of the Rabin condition, we consider two cases. If D ⊂ E, then
D ∩ (E \ SE) = ∅. If, however, D 6⊂ E, given that D 6= E and D 6= ∅, it must be
D ∩ (Q \E) 6= ∅. Hence, no pair in the Rabin condition makes D accepting. ut

Example 1. For the deterministic Muller automaton of Figure 1,

Ea = {{q0}, {q1}}
Er = {{q0, q1}} .

The automaton accepts the language L = (Σ∗aω)∪(Σ∗bω). Since Er is (trivially)
closed under union, the acceptance condition can be written in Rabin form. The
construction of Theorem 1 yields {〈{q1}, {q0}〉, 〈{q0}, {q1}〉}. Since Ea is not

An Impossibility Result for Automata-Theoretic RL 7

q0 q1 C = {{q0}, {q1}}a

b

b

a

Fig. 1. A deterministic Muller automaton on the alphabet Σ = {a, b}.

closed under union, the automaton of Figure 1 cannot be equipped with a parity
condition so that it still accepts L.

A deterministic Muller automaton for L that may be equipped with a parity
acceptance condition is shown in Figure 2. State q0 is given priority 2, while the
other two states are given priority 1.

Remark 2. If acceptance is defined in terms of transitions instead of states, the
smallest deterministic Rabin automaton for the language L of Example 1 has
one state, while the smallest deterministic parity automaton has two states. In
general, translation from Rabin to parity may incur a factorial blow-up [19].

4 Markov Decision Processes

Let R be the set of real numbers. Let D(S) be the set of distributions over the
set S. A Markov decision process (MDP)M is a tuple (S, s0, A, T,AP,L), where
S is a finite set of states, s0 ∈ S is the initial state, A is a finite set of actions,
T : S×A→ D(S) is the probabilistic transition function, AP is the set of atomic
propositions, and L : S → 2AP is the labeling function.

For any state s ∈ S, A(s) denotes the set of actions that may be selected in
state s. An MDP is a Markov chain if A(s) is singleton for all s ∈ S. For states
s, s′ ∈ S and a ∈ A(s), T (s, a)(s′) equals p(s′|s, a), that is, the probability that
the MDP moves from state s to state s′ if action a is chosen. A run of M is
an ω-word 〈s0, a1, s1, . . .〉 ∈ S × (A × S)ω such that p(si+1|si, ai+1)>0 for all
i ≥ 0. A finite run is a finite such sequence (〈s0, a1, s1, . . .〉 ∈ S × (A × S)∗).
For a run r = 〈s0, a1, s1, . . .〉 we define the corresponding labeled run as L(r) =
〈L(s0), L(s1), . . .〉 ∈ (2AP)ω. We write RunsM(FRunsM) for the set of runs
(finite runs) of the MDP M from its initial state and RunsM(s)(FRunsM(s))
for the set of runs (finite runs) of the MDP M starting from the state s. When

q0qa qb C = {{qa}, {qb}}
a

b

a

b

b

a

Fig. 2. A deterministic Muller automaton, equivalent to the one of Figure 1, that may
be equipped with a parity condition.

8 E. M. Hahn, M. Perez, S. Schewe, F. Somenzi, A. Trivedi, and D. Wojtczak

the context resolves ambiguity, we drop the superscript and simply write Runs
and FRuns. We write last(r) for the last state of a finite run r.

A strategy forM is a function σ : FRunsM → D(A) such that supp(σ(r)) ⊆
A(last(r)), where supp(d) denotes the support of the distribution d. A strategy
σ is pure if σ(r) is a point distribution for all runs r ∈ FRunsM and is mixed
otherwise. Let RunsMσ (s) denote the subset of runs RunsM(s) that are possible
under strategy σ from state s. We say that σ is stationary if last(r) = last(r′)
implies σ(r) = σ(r′) for all runs r, r′ ∈ FRunsM. A stationary strategy can be
given as a function σ : S → D(A). A strategy is positional if it is both pure and
stationary. We write ΣM for the set of all strategies on M and ΠM for the set
of positional strategies on M.

An MDP M under a strategy σ results in a Markov chain Mσ. If σ is a
finite memory strategy, then Mσ is a finite-state Markov chain. The behavior
of an MDP M under a strategy σ and starting state s ∈ S is defined on a
probability space (RunsMσ (s),FRunsMσ (s),PrMσ (s)) over the set of infinite runs of

σ with starting state s. Given a random variable f : RunsM → R, we denote by
EMσ (s) {f} the expectation of f over the runs of M from s under strategy σ.

4.1 Optimal Strategies Against ω-Automata

Given an MDP M = (S, s0, A, T,AP,L) and deterministic automaton A =
〈Σ,Q, q0, δ, α〉 with Σ = 2AP , a strategy σ determines sequences Xi, Qi, and Yi
of random variables denoting the ith state of the MDP, state of the automaton,
and action, respectively, where Q0 = q0 and, for i > 0, Qi = δ(Qi−1, L(Xi−1)).
We define the optimal satisfaction probability PSemMA (s) as

PSemMA (s) = sup
σ∈ΣM

EMσ (s) {α(〈Q0, Q1, . . .〉)} .

We say that a strategy σ ∈ ΣM is optimal for A if

PSemMA (s) = EMσ (s) {α(〈Q0, Q1, . . .〉)} .

4.2 Optimal Strategies Against Scalar Rewards

Reinforcement learning [26] is a sequential optimization approach where a de-
cision maker learns to optimally resolve a sequence of choices from feedback
provided by an unknown or partially known environment. This feedback takes
the form of rewards and punishments with strength proportional to the fitness
of the decisions taken by the agent as judged by the environment towards some
higher-level objectives. RL is inspired by the way dopamine-driven organisms
latch on to past rewarding actions. Historically, RL paradigms integrated a my-
opic way of looking at the reward sequences in the form of discounted reward,
with additional notions such as average reward being introduced more recently.

For simplicity, we take an abstract interpretation of RL as a sampling-based
optimization approach that asymptotically converges to the optimal values and

An Impossibility Result for Automata-Theoretic RL 9

policies for a given cost objective Agg. We will make some assumptions on RL
that are known to hold for popular RL algorithms based on total reward, dis-
counted reward, multi-discounted reward, and average reward RL.

A rewardful MDP is a tuple M = (S, s0, A, T, ρ,Agg) where S, s0, A, and T
are defined in a similar way as for MDPs, ρ : S×A×S → D(C) is a (stochastic)
reward function with values in a given set C of colors, and the aggregator function
Agg : Cω → R is a real-valued optimization objective that converts infinite
sequences of colors to real numbers. Traditionally, the set of colors C is often the
set of real numbers encoding a scalar reward signal; however permitting more
general sets of colors has paved the way for more expressive reward aggregations,
such as state-dependent discounting, reachability reward, and average reward-
per-cost objectives. We extend ρ from transitions to runs by ρ̂ : Runs → D(C)ω in
a straightforward manner. Some common aggregator functions are listed below.

– The reachability-sum (also, stochastic shortest path [3]) aggregator Reach :
(R× {0, 1})ω → R is defined as

Reach : 〈(r0, b0), (r1, b1), . . .〉 7→ lim inf
n→∞

∑
0≤i<min{j≤n:bj=1}

ri ,

and provides the sum of rewards until the first appearance of bi=1 (reacha-
bility). If bi=0 for all i, one obtains the total-sum aggregator Total : Rω → R.

– The variable-discounted-sum (also, state-dependent discounted) [11] aggre-
gator D : (R×[0, 1))ω→R is defined as

D : 〈(r0, λ0), (r1, λ1), . . .〉 7→ lim
n→∞

∑
i<n

[∏
0≤j<i

λj

]
ri.

When the discount is a constant λ, variable-discounted-sum recovers the
classical discounted-sum aggregator Dλ : Rω → R.

– The reward-per-cost [4] aggregator RpC : (R×R)ω → R is defined as

RpC : 〈(r0, c0), (r1, c1) . . .〉 7→ lim inf
n→∞

∑
0≤i<n ri∑
0≤i<n ci

,

with suitable assumptions on the cost sequence 〈c0, c1, . . .〉 to avoid divi-
sion by zero. For the cost sequence 〈1, 1, . . .〉, reward-per-cost reduces to the
average aggregator Avg : Rω → R.

– The limit inferior [8] LimInf : Rω → R is defined as

LimInf : 〈r0, r1, . . .〉 7→ lim inf
n→∞

ri .

The limit superior aggregator LimSup : Rω → R is defined analogously.

Since an optimization problem over an MDP is specified by a reward function
and an aggregator, we refer to aggregators as optimization objectives (or simply
objectives). A rewardful MDP M under a strategy σ determines a sequence

10 E. M. Hahn, M. Perez, S. Schewe, F. Somenzi, A. Trivedi, and D. Wojtczak

of random colors ρ(Xi−1, Yi, Xi)i≥1, where Xi and Yi are the random variables
denoting the ith state and action, respectively. For an objective Agg and an
initial state s, we define the optimal reward as

AggM∗ (s) = sup
σ∈Σ

EMσ (s) {Agg(ρ̂(〈X0, Y1, X1, . . .〉))} .

We say that a strategy σ is optimal for the objective Agg if, for all s ∈ S,

AggM∗ (s) = EMσ (s) {Agg(ρ̂(〈X0, Y1, X1, . . .〉))} .

Definition 5 (Positional objectives). An optimization objective Agg is po-
sitional if, for every MDP M, there exists a positional optimal strategy for Agg.

Definition 6 (Convex combination of strategies). We say that a strategy
σ ∈ Σ is a convex combination of strategies σ1, σ2 ∈ Σ if, for some β ∈ [0, 1],
for every run r ∈ FRuns and every a ∈ A, σ(r)(a) = βσ1(r)(a)+(1−β)σ2(r)(a).

Definition 7 (Convex objectives). An objective Agg is convex, if the set
of optimal stationary strategies, for every MDP M, is convex. In particular, an
objective Agg is convex if any convex combination of positional optimal strategies
for Agg is a stationary optimal strategy.

The objectives listed above are both positional and convex. (See, e.g., [24]
for the discounted and average objectives.)

5 Memoryless Reward Translations for RL

We are interested in memoryless reward translation from ω-regular acceptance
conditions to optimization problems with various aggregation semantics. Our
notion of a memoryless reward translation is similar in spirit to the notion of
Blackwell optimality [24] in reducing the average reward to discounted-reward
that continues to operate on the same MDP state space, but accommodates the
presence of a hyperparameter (the discount factor). Another example of such
memoryless translation is the reduction of [13] from limit-deterministic Büchi
automata to average-reward objectives with an unknown hyperparameter ζ.

5.1 Memoryless Reward Translation

To compute strategies that maximize the probability that an MDP M satisfies
an ω-regular objective by reinforcement learning, one defines a rewardful MDP
M× such that, from the optimal strategies for M×, strategies may be derived
for M that maximize the probability that a run of M satisfies the objective.
The construction of M× that we consider builds a product of the transition
structures of the MDPM and the automaton A that accepts the objective. The
reward for a state-action pair of M× depends on the state of the automaton
and, possibly, on a fixed set of parameters whose values depend onM. Finally, a

An Impossibility Result for Automata-Theoretic RL 11

suitable objective must be chosen. This way of converting an ω-regular objective
into an RL objective is quite general and encompasses the approaches adopted
in the literature, e.g., [25,13,16,5]. The fixed set of parameters stand for the
hyperparameters of reinforcement learning.

With this scheme, even if the strategies computed forM× are positional, the
strategies forM require the memory supplied by the transition structure of the
automaton. Since the reward only depends on the state of the automaton, and
on no other memory, we call this translation memoryless.

In detail, let A = 〈Σ,Q, q0, δ, α〉 be an automaton and P a set of parameter
values. A reward assignment function for A and P is a function f : Q×Σ×Q×
P → D(C). Given an MDP M, an automaton A, a reward assignment function
f , values for the parameters P̂ , and an aggregator Agg, we define the rewardful
product MDP

M× = (S×Q, (s0, q0), A×Q,T×, ρ×,Agg) ,

where T× : (S×Q)× (A×Q)→ D(S×Q) is such that

T×((s, q), (a, q′))((s′, q′)) = T (s, a)(s′)

if q′ ∈ δ(q, L(s)) and 0 otherwise. This definition of T× delegates to the strategy
for M× the resolution of nondeterminism for nondeterministic automata. The
reward function ρ× : (S×Q)× (A×Q)× (S×Q)→ D(C) is defined by

ρ×((s, q), (a, q′), (s′, q′)) = f(q, a, q′, P̂)

if q′ ∈ δ(q, L(s)) and 0 otherwise.

Definition 8 (Memoryless Translation). Given A = 〈2AP , Q, q0, δ, α〉 and
payoff Agg, we say that a memoryless translation exists from the acceptance
condition α to the aggregator function Agg, and we write α ↪→ Agg, when there
exists a reward function f : Q× 2AP ×Q× P → D(C) such that, for any MDP
M with atomic propositions AP and for any two strategies σ1, σ2 ∈ ΣM,

EM
×

σ1
(s){α(〈Q0, Q1, . . .〉)} < EM

×

σ2
(s){α(〈Q0, Q1, . . .〉)}

if, and only if, for every ε > 0 there exists P̂ ∈ P (that may depend on the
MDP) such that

EM
×

σ1
(s){Agg(ρ̂×(〈X0, Y1, X1 . . .〉))} < EM

×

σ2
(s){Agg(ρ̂×(〈X0, Y1, X1 . . .〉))}+ ε

on the product M× defined by M, A, and f(·, ·, ·, P̂).

Theorem 2. The following translations are memoryless:

1. good-for-MDPs Büchi objective to reachability-sum aggregator [13];
2. good-for-MDPs Büchi objective to variable-discounted-sum aggregator [5];
3. good-for-MDPs Büchi objective to average aggregator [14];

12 E. M. Hahn, M. Perez, S. Schewe, F. Somenzi, A. Trivedi, and D. Wojtczak

4. good-for-MDPs Büchi objective to total-sum aggregator [14]; and
5. parity objective to reachability-sum aggregator [16].

Note that, although the reduction of [25] for Rabin automata does not use ad-
ditional memory, it is incorrect [13], so it is not a memoryless translation. We
will show in the next subsection that a memoryless translation for deterministic
Rabin automata is impossible if the aggregator is convex.

5.2 Conditions for Memoryless Reductions

We are now in a position to discuss what the properties of acceptance conditions
of ω-automata discussed in Section 2 entail for a memoryless translation to exist.

Definition 9 (Test MDP). A test MDP for the set of atomic propositions AP
is

MAP = (2AP , s0, 2
AP , T, AP,L) ,

with one state and one action for each subset of AP , such that, for all states,
L(s) = s, and p(s′|s, s′) = 1. The initial state s0 is a subset of AP .

All sequences of labels in 2AP that start with s0 may be produced by this test
MDP.

Theorem 3. Let A = 〈2AP , Q, q0, δ, α〉 be a deterministic automaton and let
Agg be a convex objective. Then α ↪→ Agg implies that EAa and EAr are closed
under union.

Proof. Suppose E1, . . . , En ∈ Ea (resp. ∈ Er) are accepting (resp. rejecting)
eventual sets of A such that their union is in E . Let MT be a test MDP for A
such that

⋃
iEi is reachable from δ(q0, s0). Such an s0 exists because all eventual

sets are reachable from the automaton’s initial state. Let M× be the rewardful
product defined by MT , A, and a reward function f for which α ↪→ Agg.

For each Ei there exists a stationary strategy ξi such that a run from any
state in 2AP ×

(
{q0} ∪

⋃
iEi
)

eventually dwells in Ei. Since α ↪→ Agg and
Agg is convex, ξ1, . . . , ξn are ε-maximal (resp. ε-minimal), so are their convex
combination, and such combination strategies also maximize (resp. minimize)
the probability of satisfying α. Since there are combination strategies that visit
all states in E1∪· · ·∪En infinitely often, Ea (resp. Er) is closed under union. ut

Corollary 1. There exist a Rabin automaton with acceptance conditions α such
that, if α ↪→ Agg, then Agg is not convex.

Proof. The deterministic Rabin automaton in Figure 3 is such that Ea is not
closed under union. Application of Theorem 3 yields the desired result. ut

Remark 3. Note that the complement of α for the Rabin automaton in Fig-
ure 3—a Streett condition that requires that both q1 and q2 be visited in-
finitely often—is not positional. Since Ea is not closed under union and Er =
{{q0, q1, q2}} is upward closed, the acceptance condition of the automaton of

An Impossibility Result for Automata-Theoretic RL 13

q0q1 q2
R1 = {q2}, G1 = {q0, q1}
R2 = {q1}, G2 = {q0, q2}

p

¬p

>

>

Fig. 3. A Rabin automaton on the alphabet Σ = 2{p}.

Figure 3 may be expressed as a generalized co-Büchi condition, but not as a
plain co-Büchi condition. Correspondingly, the complementary condition may
be expressed as a generalized Büchi condition, but not as a plain Büchi condi-
tion for the transition structure of Figure 3.

The connection between closure under union of both Ea and Er (a property
called ‘Ea has no splits’ there) and the existence of positional optimal strategies
for both players was first established in [20, Theorem 6.2].

To be self-contained, we provide a proof for the direction we need, namely
that closedness under union of Er entails memoryless strategies for a maximizer,
while closedness under union of Ea entails memoryless strategies for a minimizer.

Lemma 1. Let A = 〈2AP , Q, q0, δ, α〉 be a deterministic automaton and let Ac
be the automaton obtained from A by complementing the acceptance condition
(so that EAa = EAcr and EAr = EAca). If no strategy to produce an accepting word
on A (Ac) is positional, then EAr (EAa) is not closed under union.

Proof. Suppose that there is no positional strategy for A (Ac). Then, for every
E ∈ EAa (E ∈ EAca), there exist states in E for which a pure strategy that visits
all of E chooses different successors depending on the run up to that point. For
at least one such state, the strategy depends on memory essentially, in the sense
that, if the strategy is made positional at that state by choosing one successors
among all successors chosen by the strategy, the resulting eventual set is a proper
subset of E that belongs to EAr (EAcr). Moreover, depending on which successor
is chosen, there must be more than one distinct restriction of E that is contained
in EAr (EAcr), and the union of all such restrictions must be E. This shows that
EAr (EAcr) is not closed under union. Observing that EAca = EAr (EAa = EAcr)
completes the proof. ut

Together with Lemma 1, we obtain the following corollary.

Corollary 2. Let A = 〈2AP , Q, q0, δ, α〉 be a deterministic automaton, let Agg
be a convex objective, and let Ac be the automaton obtained from A by comple-
menting the acceptance condition (so that EAa = EAcr and EAr = EAca). Then A
and Ac have optimal positional strategies.

Lemma 1 shows that a memoryless translation with a convex aggregator
does not exist for deterministic Rabin and Streett automata. Lemma 1 provides
a sufficient condition to check for the application of Theorem 3. Intuitively, if we

14 E. M. Hahn, M. Perez, S. Schewe, F. Somenzi, A. Trivedi, and D. Wojtczak

could compute the strategy for Rabin automata with RL, then we could compute
positional strategies for the complement of the Rabin condition by maximizing
the negative reward. Since the complement of a Rabin condition does not admit
positional strategies in general, this is impossible. This impossibility also applies
to generalized co-Büchi automata, as observed in Remark 3, as well as to their
duals (Streett as the dual to Rabin and generalized Büchi automata as the dual
to generalized co-Büchi), with the dual argument: here, it is the strategy of the
maximizer itself that requires memory.

Theorem 3, and Corollary 2 provide the entries for the last three columns of
Table 1.

6 Conclusion

The study of ω-regular specifications for systems modeled as Markov decision
processes was initiated in [30] and [9] resulting in a thriving research community
(probabilistic model checking) developing principled techniques [2] and analysis
tools [17] for the analysis of probabilistic systems. Reinforcement learning is a
classical area of machine learning undergoing remarkable transformation under
the deep learning revolution [12]; [26] provide a snapshot of both classical and
recent results.

A combination of ω-regular specifications with RL has potential to posi-
tively impact both research fields: for probabilistic model checking, RL offers the
twinned advantages of scalability and an ability to reason with system without
an explicit model; while for RL, ω-regular objectives provide a rich specification
language to express learning requirements instead of scalar rewards. As a re-
sult, the study of integrating formal requirements in RL in a way that is correct
and efficient has attracted considerable interest [13,5,16]. At the same time, the
machine learning community has advocated the need for non-Markovian reward
signals in RL [28,10]. These representations often take the form of weighted
automata called reward machines [28]. Automata-based rewards also serve as
a memory mechanism for reasoning over partially observable environments [29],
are useful for defining reward shaping functions to mitigate sparse reward signals
[7], and can facilitate explanations of RL systems [31].

When ω-regular objectives were first used in model checking MDPs, deter-
ministic Rabin automata were used to represent the objectives. The same was
attempted by the reinforcement learning community when they first turned to
ω-regular objectives: they tried the tested route through deterministic Rabin
[25], but that translation fails as shown in [13]. This paper answers why any
translation of Rabin conditions, even from a deterministic automaton, directly
into scalar values is not possible for common reward aggregators used in re-
inforcement learning, like discounted and average reward. In a broader sense,
this paper highlights the existence of positional optimal strategies that may not
be computed by reinforcement learning. In so doing, the paper underscores the
need for theoretical machine learning research at the promising intersection of
the overlapping fields of probabilistic model checking and reinforcement learning.

An Impossibility Result for Automata-Theoretic RL 15

References

1. de Alfaro, L.: Formal Verification of Probabilistic Systems. Ph.D. thesis, Stanford
University (1998)

2. Baier, C., Katoen, J.P.: Principles of Model Checking (Representation and Mind
Series). The MIT Press (2008)

3. Bertsekas, D.: Reinforcement learning and optimal control. Athena Scientific (2019)

4. Bouyer, P., Brinksma, E., Larsen, K.G.: Optimal infinite scheduling for multi-
priced timed automata. Formal Methods in System Design 32(1), 3–23 (2008)

5. Bozkurt, A.K., Wang, Y., Zavlanos, M.M., Pajic, M.: Control synthesis from linear
temporal logic specifications using model-free reinforcement learning. In: Interna-
tional Conference on Robotics and Automation (ICRA). pp. 10349–10355 (2020)

6. Buhrke, N., Lescow, H., Vöge, J.: Strategy construction in infinite games with
Streett and Rabin chain winning conditions. In: Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 96). pp. 207–225 (1996), LNCS
1055

7. Camacho, A., Toro Icarte, R., Klassen, T.Q., Valenzano, R.A., McIlraith, S.A.: LTL
and beyond: Formal languages for reward function specification in reinforcement
learning. In: IJCAI. vol. 19, pp. 6065–6073 (2019)

8. Chatterjee, K., Doyen, L., Henzinger, T.A.: A survey of stochastic games with
limsup and liminf objectives. In: 36th Internatilonal Colloquium on Automata,
Languages and Programming: Part II. p. 1–15 (2009)

9. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J.
ACM 42(4), 857–907 (Jul 1995)

10. Gaon, M., Brafman, R.: Reinforcement learning with non-Markovian rewards. In:
Proceedings of the AAAI Conference on Artificial Intelligence. vol. 34-04, pp. 3980–
3987 (2020)

11. Gimbert, H., Zielonka, W.: Limits of multi-discounted Markov decision processes.
In: Symposium on Logic in Computer Science (LICS 2007). pp. 89–98 (2007)

12. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep learning, vol. 1. MIT
Press (2016)

13. Hahn, E.M., Perez, M., Schewe, S., Somenzi, F., Trivedi, A., Wojtczak, D.: Omega-
regular objectives in model-free reinforcement learning. In: Tools and Algorithms
for the Construction and Analysis of Systems. pp. 395–412 (2019), LNCS 11427

14. Hahn, E.M., Perez, M., Schewe, S., Somenzi, F., Trivedi, A., Wojtczak, D.: Faith-
ful and effective reward schemes for model-free reinforcement learning of omega-
regular objectives. In: ATVA: Automated Technology for Verification and Analysis.
pp. 108–124 (2020), LNCS 12302

15. Hahn, E.M., Perez, M., Schewe, S., Somenzi, F., Trivedi, A., Wojtczak, D.: Good-
for-MDPs automata for probabilistic analysis and reinforcement learning. In: Tools
and Algorithms for the Construction and Analysis of Systems. pp. 306–323 (2020),
LNCS 12078

16. Hahn, E.M., Perez, M., Schewe, S., Somenzi, F., Trivedi, A., Wojtczak, D.: Model-
Free Reinforcement Learning for Stochastic Parity Games. In: CONCUR: Inter-
national Conference on Concurrency Theory. pp. 21:1–21:16 (Sep 2020), LIPIcs
171

17. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic
real-time systems. In: Computer Aided Verification. pp. 585–591 (Jul 2011), LNCS
6806

16 E. M. Hahn, M. Perez, S. Schewe, F. Somenzi, A. Trivedi, and D. Wojtczak

18. Landweber, L.H.: Decision problems for ω-automata. Mathematical Systems The-
ory 3(4), 376–384 (1969)

19. Löding, C.: Optimal bounds for the transformation of omega-automata. In: Foun-
dations of Software Technology and Theoretical Computer Science. pp. 97–109
(1999), lNCS 1738

20. McNaughton, R.: Infinite games played on finite graphs. Annals of Pure and Ap-
plied Logic 65, 149–184 (1993)

21. Perrin, D., Pin, J.É.: Infinite Words: Automata, Semigroups, Logic and Games.
Elsevier (2004)

22. Piterman, N., Pnueli, A.: Faster solutions of Rabin and Streett games. In: Sympo-
sium on Logic in Computer Science. pp. 275–284 (2006)

23. Pnueli, A.: The temporal logic of programs. In: IEEE Symposium on Foundations
of Computer Science. pp. 46–57 (1977)

24. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. John Wiley & Sons, New York, NY, USA (1994)

25. Sadigh, D., Kim, E., Coogan, S., Sastry, S.S., Seshia, S.A.: A learning based ap-
proach to control synthesis of Markov decision processes for linear temporal logic
specifications. In: Conference on Decision and Control (CDC). pp. 1091–1096 (Dec
2014)

26. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
second edn. (2018)

27. Thomas, W.: Handbook of Theoretical Computer Science, chap. Automata on
Infinite Objects, pp. 133–191. The MIT Press/Elsevier (1990)

28. Toro Icarte, R., Klassen, T., Valenzano, R., McIlraith, S.: Using reward machines
for high-level task specification and decomposition in reinforcement learning. In:
International Conference on Machine Learning. pp. 2107–2116 (2018)

29. Toro Icarte, R., Waldie, E., Klassen, T., Valenzano, R., Castro, M., McIlraith,
S.: Learning reward machines for partially observable reinforcement learning. Ad-
vances in Neural Information Processing Systems 32, 15523–15534 (2019)

30. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite state pro-
grams. In: Foundations of Computer Science. pp. 327–338 (1985)

31. Xu, Z., Wu, B., Ojha, A., Neider, D., Topcu, U.: Active finite reward automa-
ton inference and reinforcement learning using queries and counterexamples. In:
Machine Learning and Knowledge Extraction. pp. 115–135 (2021), lNCS 12844

32. Zielonka, W.: Infinite games on finitely coloured graphs with applications to au-
tomata on infinite trees. Theoretical Computer Science 200(1-2), 135–183 (1998)

	An Impossibility Result in Automata-Theoretic Reinforcement Learning

