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Abstract 

Gearbox plays a vital role in a wide range of mechanical power transmission systems in many 

industrial applications, including wind turbines, vehicles, mining and material handling 

equipment, oil and gas processing equipment, offshore vessels, and aircraft. As an inevitable 

phenomenon during gear service life, gear wear affects the durability of gear tooth and reduces 

the remaining useful life of the gear transmission system. The propagation of gear wear can 

lead to severe gear failures such as gear root crack, tooth spall, and tooth breakage, which can 

further cause unexpected equipment shutdown or hazardous incidents. Therefore, it is 

necessary to monitor gear wear propagation progression in order to perform predictive 

maintenance. Vibration analysis is a widely used and effective technique to monitor the 

operating condition of rotating machinery, especially for the diagnosis of localized failures 

such as gear root crack and tooth surface spalling. However, vibration-based techniques for 

gear wear analysis and monitoring are very limited, mainly due to the difficulties in identifying 

the complex vibration characteristics induced by gear wear propagation. Understanding the 

effect of gear wear on vibration characteristics is essential to develop vibration-based 



 
 

techniques for monitoring and tracking gear wear evolution. However, no research work has 

been previously published to summarize the research progress in vibration-based gear wear 

monitoring and prediction. To fill the research gap, this review paper aims to conduct a state-

of-the-art comprehensive review on vibration-based gear wear monitoring, including studying 

the gear surface features caused by different gear wear mechanisms, investigating the 

relationships between gear surface features and vibration characteristics, and summarizing the 

current research progress of vibration-based gear wear monitoring. This review also makes 

some recommendations for future research work in this area. It is expected that this review will 

provide useful information for further development of vibration-based techniques for gear wear 

monitoring and remaining useful life predictions.  

Keywords: vibration analysis, gear wear, wear monitoring, wear mechanism identification, 

wear prediction, remaining useful life prediction, comprehensive review
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1. Introduction 

Gearbox has many advantages, including compact structures, stable transmission capability, 

and low noise, and thus the gearboxes have been extensively applied in a wide range of 

industries, such as renewable energy, advanced manufacturing, vehicle, mining, aerospace, 

material handling, oil and gas, and power industry [1-6], as shown in Figure 1. Gear wear is a 

progressive material loss due to the relative motion of the meshing tooth surface [7, 8]. It is a 

common and inevitable phenomenon during gear service life [9-11], and Figure 2 shows some 

typical gear wear patterns. The propagation of gear wear reduces the durability of the gear 

surface, deteriorates the contact lubrications of engaging gears, increases the friction/noise, and 

leads to the formation of stress concentrations [12-14]. These consequences can further induce 

other failure modes, such as gear cracks [15] and gear tooth breakage, which would result in 

the sudden shutdown of the gear transmission system and unexpected economic loss or even 

cause serious accidents [16-18]. For example, in wind turbines, gear wear would contaminate 

the lubrication oil and increase the friction between the engaging gears, which could increase 

the risk of gear breakage and cause the unexpected shutdown of the transmission system of the 

wind turbines. Wind turbines are generally built in deserted areas, on hilltops, or near the ocean. 

Thus, it may take a couple of weeks or even months to conduct the maintenance for the gearbox. 

Consequently, the electricity production of wind turbines would be suspended, leading to both 

electricity loss and economic loss. The gearbox is also a critical component of the vehicle 

transmission system. Gear wear would degrade the transmission performances. Severe gear 

wear would damage the whole transmission system, potentially causing serious accidents. 

Therefore, it is vital to monitor and predict the gear wear propagation, in order to improve the 

health management of transmission systems. 
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Figure 1 Applications of the gearbox transmission: some examples [19] 

 
Figure 2 Some typical gear wear patterns [20] 

To date, wear particle analysis still plays a vital role in gear wear monitoring and has been 

widely used in industrial practice [21-26]. The gear wear propagation status can be indicated 

by analyzing particle number, size, shape, and concentration [27-32]. However, wear particle 

analysis is usually conducted offline and is often accomplished in an oil analysis laboratory 

[11, 33, 34]. It would result in a delay in analyzing wear debris, and during this period of wear 

particle analysis, the operating condition of the gear transmission system might have 

experienced significant changes. Therefore, the development of online gear wear monitoring 

techniques is essential to obtain real-time information on gear wear for industrial applications. 

Vibration analysis, as an online technique, has been widely used to conduct condition 

monitoring for rotating machinery [35-42]. A rotating machine under normal operating 

Severe abrasive wear Gear surface scuffing Gear fatigue pitting 
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conditions has the corresponding vibration signature/feature to reflect its running status. The 

presence of a fault changes the vibration signature to some degree that can be relevant to the 

fault [35, 43-48]; therefore, vibration analysis has become a practical and popular tool to 

monitor the operating conditions of machines [49-55]. Compared with the technique of wear 

particle analysis, vibration-based analysis has some advantages. For example, vibration 

analysis responds immediately to dynamic change in a mechanical system (e.g., a gearbox) and 

can thus be used as a permanent tool for intermittent monitoring of its health condition. Also, 

vibration analysis, together with some advanced signal processing methods and diagnostics 

techniques, is able to identify the actual faulty component and quantify its severity [56-62]. 

Thanks to the advantages mentioned above, vibration analysis has become to be an efficient 

and prevalent method for monitoring machine operating conditions. 

Vibration analysis has been well developed and widely applied for the diagnostics of common 

gear failures such as tooth surface spalling [63-65], gear crack [66-70], and gear breakage [71-

75]. Several review papers were published to summarize the vibration-based analysis 

approaches for monitoring common gear failures, from dynamic modeling to gear prognostics, 

such as [2, 76-82]. On the contrary, research on vibration-based gear wear monitoring is limited 

but is receiving increasing attention from the research community and industry practice. 

However, there is no a systematic review to summarize the progress of vibration-based gear 

wear monitoring development. Such a review can help researchers and engineers have a better 

understanding of gear wear degradation behaviors and characteristics, so that predictive 

maintenance-based decisions can be made to ensure the safe operation of the gearbox 

transmission system. This paper is intended to bridge this research gap. 

There is a complex interaction between gear surface wear and gear dynamics [10, 83-85], and 

this interaction brings difficulties for vibration-based analysis. It has been recognized that the 

dynamic load and its distribution would be altered during the gear wear propagation 
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progression [83, 86]. As a result of the wear-induced change to the tooth surface, the 

transmission ratio of the gear system would no longer be stationary [11, 86], especially for spur 

gearbox systems, whose transmission errors and dynamic responses through vibration signals 

are highly sensitive to wear [87], and the gear system vibration characteristics would change 

considerably. In turn, because of the change in dynamic contact load and its distribution, the 

gear wear propagation progression changes. Due to there being an interactive process between 

gear wear and gear dynamics; thus, the effects of gear wear would manifest themselves as 

changes in vibration features, and a vibration-based tool can be used for gear wear monitoring. 

However, the complex interactions between gear wear and gear dynamics lead to the generation 

of vibration characteristics with high complexity, which makes it challenging to extract the 

vibration features related to wear and develop effective vibration-based technique(s) or 

indicator(s) for wear monitoring. Therefore, it is necessary to investigate and fully understand 

the physical relationship between gear wear and vibration characteristics, which can 

significantly benefit the development of vibration-based techniques for gear wear monitoring. 

With the effective vibration-based gear wear monitoring techniques, the gear system operation 

condition can be reflected and monitored in real-time so that proper maintenance strategies can 

be scheduled in advance to avoid unexpected shutdowns and even serious accidents.  

This review paper aims to comprehensively investigate and summarize the effects of gear wear 

on vibration characteristics under different wear mechanisms. Firstly, the gear wear mode and 

its consequences on the gear tooth profile alteration are introduced. Then through investigating 

the internal relations between gear surface features and vibration characteristics, the existing 

works on gear wear monitoring are reviewed and summarized, from the aspects of signal 

processing and modeling techniques. After that, the wear prediction techniques for the common 

wear phenomena are discussed and reviewed. This review paper provides a comprehensive 
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overview of vibration-based gear wear monitoring and prediction technique developments, 

from the root cause of gear wear to the wear propagation prediction techniques.  

This paper is organized as follows: Section 2 introduces the typical gear wear modes and their 

corresponding consequences on the gear tooth surface. The gear wear effects on vibration 

characteristics are investigated and summarized in Section 3. Existing works on vibration-

based gear wear monitoring are discussed and summarized in Sections 4 and 5. Specifically, 

the existing signal processing algorithms for gear wear identification and monitoring are 

reviewed in Section 4, while the development of gear wear monitoring using modeling 

techniques is presented in Section 5. Section 6 gives an overview of the development of gear 

wear prediction. A conclusion and some research prospects are presented in Section 7. 

2. Gear wear 

Common causes for gear failure include bending fatigue, root crack, breakage, scuffing, 

spalling, and wear.  Different categorizations have been used for classifying gear failure modes 

[17, 88-95]. In this section, some typical gear wear modes will be introduced, as described in 

Refs. [88, 90-93]. For the purpose of supplementing, the wear types from some international 

standards will also be listed to show different classifications. Then, the effects of gear wear on 

gear tooth surface will be investigated and summarized. It should be noted that the introduction 

of several typical gear wear modes is not intended to give a  new gear wear mode classification; 

instead, it only helps readers better understand the common wear mechanisms in industrial 

applications. 
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2.1 Typical gear wear modes 

Surface wear is a common and inevitable phenomenon during the gear service life [13, 96]. 

When gear pairs mesh with each other, the tooth flanks maintain contact under an applied load. 

The motion of the tooth surfaces is a combination of sliding motion and rolling motion [97, 

98]. The sliding component appears where the surface velocities of the two contacting teeth 

are different [99]. The sliding motion can cause material removal from the gear teeth, which 

results in gear mass reduction, that is, gear wear. 

It should be noted that currently there is no unified framework to classify the wear modes. Even 

some existing standards give different classifications, as shown in Table 1. In this situation, the 

readers can refer to the relevant standards for wear mode classification based on the 

requirements of different industrial scenarios. 

Table 1 Wear mode classification based on existing standards 

References Wear mode classification 

DIN 50320 [100] Abrasion, adhesion, surface fatigue, and tribochemical reaction 

ISO 15243 [101] Abrasive wear and adhesive wear 

ISO 10825 [102] Sliding wear, corrosion, overheating, erosion, and electric erosion 

ANSI/AGMA 9005-E2 [103] Abrasive wear, adhesive wear, corrosive wear, erosive wear, fatigue wear, 
and fretting wear 

ANSI/AGMA 1010-F14 [89] Abrasion, adhesion, polishing, corrosion, fretting, scaling, white layer 
flaking, cavitation, cavitation, erosion, and electric discharge 

 

In the following, some typical wear mechanisms of the gear system in industrial applications 

are summarized and presented in Figure 3, based on the definitions and discussions in Refs.[88, 

90-93]. It should be mentioned that the classification of gear wear modes shown in Figure 3 is 

slightly different from some research papers, standards, and industry technical reports, as 

presented in Table 1. The reason is that Figure 3 does not aim to introduce a new wear 
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classification standard; instead, it is used to demonstrate some typical gear wear mechanisms 

found in the majority of industrial applications. 

 
Figure 3 Typical gear wear modes 

The typical gear wear modes shown in Figure 3 will be introduced in detail as follows: 

• Abrasive wear: Particle contamination or a lack of lubrication could lead to sliding 

contact, resulting in abrasive wear. Abrasive wear leaves radial scratches on the gear 

surface and results in gear tooth geometry profile change [104], as shown in Figure 4. 

Abrasive wear can be categorized as two-body abrasive wear and three-body abrasive 

wear. Two-body abrasive wear is generated from the rubbing of a softer surface by a 

hard rough surface, while three-body abrasive wear is caused by hard particles 

entrapped between two sliding surfaces. In gear transmission system, the engaging 

gears are usually made from the same materials; therefore, the three-body abrasive wear 

is one research aspect of this review paper, which will be discussed in the following 

sections. 

 

Gear wear 

Other modes Corrosive wear Adhesive wear Fatigue pitting Abrasive wear 
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Figure 4 Extremely worn gear due to abrasive particles [13] 

• Fatigue pitting: As a common surface fatigue phenomenon, fatigue pitting is caused by 

cyclic loading conditions, resulting in fatigue cracks either on the gear tooth surface or 

subsurface (shallow depth below the surface). The initial crack usually propagates 

roughly parallel to the tooth surface for a short distance, before turning or branching to 

the gear tooth surface. When the fatigue crack grows long enough to separate a piece 

of the surface material from the gear tooth, fatigue pitting is formally formed [89], as 

shown in Figure 5. In this paper, fatigue pitting is the product of fatigue crack 

propagation and refers in particular to mechanical pitting. Therefore, fatigue pitting in 

this paper is different from electrical pitting (which belongs to electrical erosion) and 

pitting corrosion (which belongs to corrosion). 
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Figure 5 Gear fatigue pitting [13] 

Fatigue pitting will be referred to in this paper as micro-pitting, and the macro-pitting 

will be called spalling in this paper to avoid potential confusion. Mirco-pitting has 

negligible impacts on the gear tooth geometry profile, unless it is significantly severe 

and already developed to be macro-pitting (that is, spalling). 

• Adhesive wear: Adhesion of gear tooth is caused by the transfer of material from one 

gear tooth surface to another one due to tearing and microwelding [89]. 

 
Figure 6 Typical adhesion in gears [89] 

• Corrosive wear: Corrosive wear is a visible wear type as a gear tooth surface 

deterioration, as shown in Figure 7. It is mainly caused by chemical or electrochemical 

reactions with active ingredients in the lubricant [89, 104]. Mild corrosive wear in gear 
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pairs is usually induced by lubricant additives that are intended for preventing scuffing 

failure, such as the extreme contact pressure additives [92]. 

 
Figure 7 Corrosion damage [89] 

The above-discussed wear phenomena cover the main modes of wear in machinery, which 

probably account either individually or collectively for over 95% of the wear experienced in 

present-day machinery [90]. However, there are many other wear types that exist during the 

service life of the gearbox transmission system, such as erosion, impact chipping, polishing, 

fretting, scaling, cavitation, and electric discharge. These wear modes are distinct from the 

above-discussed major wear types. Since this paper focuses on reviewing the development of 

vibration-based gear wear monitoring techniques, these wear modes will not be discussed in 

detail. 

In practical applications, abrasive wear and fatigue pitting are the two most common wear 

phenomena in gear transmission systems [17, 58, 105]. Therefore, considerable research has 

been focused on these two wear mechanisms, such as [58, 105-108]. Based on the above 

descriptions, the wear mechanisms of abrasive wear and fatigue pitting and their impacts on 

gear surface are summarized and highlighted here. Abrasive wear is the material removal 

induced by gear sliding contact, and it often acrosses the entire face width; generally, every 

piece of material that removes from the gear tooth contributes to a change in its geometry 
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profile. In general, abrasive wear is caused by a lack of lubrication or particle contamination. 

In contrast, fatigue pitting is one kind of material loss included by fatigue behaviors. Even 

though the gear tooth has fatigue pitting, the effective working profile of engaging gears (across 

the entire tooth face width) often remains unchanged (unless fatigue pitting of gears is 

extremely severe). Fatigue pitting usually originates from a subsurface crack. In general, 

fatigue pitting occurs initially at the gear tooth dedendum or near the gear pitch line, caused by 

the high contact stress and repetitive rolling-sliding contact [13]. In this review paper, these 

two are chosen as the subjects for investigation and reviewing.  

There are some research works that are focused on gear adhesive wear modeling and 

mechanism investigation [109-111]. For example, an adhesive wear model of rough gear 

surface was built in Ref. [109], and the influences of surface roughness, major geometrical 

parameters, and operational conditions on the wear depth were investigated. Also, the 

mechanism of adhesive wear was investigated and discussed in [110], and the influences of 

surface roughness, major geometrical parameters, and operational conditions on the wear depth 

were investigated. Besides, the mechanism of adhesive wear was investigated and discussed in 

[111]. However, research on vibration-based adhesive wear monitoring is much less in 

comparison with abrasive wear and fatigue pitting. The underlining reason might be that two 

bodies would adhere to one another locally, resulting in a much more complex surface 

morphology change and then generating a vibration signal with higher complexity compared 

with abrasive wear. Accordingly, vibration-based adhesive wear propagation becomes to be 

very challenging, and thus rare research has been found on this topic. This paper mainly focuses 

on reviewing vibration-based techniques for gear wear monitoring instead of wear modeling 

techniques and wear mechanism investigations; therefore, adhesive wear will not be defined as 

the primary research objective of this review paper, like other wear mechanisms. However, 
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vibration-based adhesive wear progression monitoring should deserve more attention from the 

research community and industry practices. 

2.2 Differences between abrasive wear and fatigue pitting 

Based on the comparison of abrasive wear and fatigue pitting shown in Figure 4 and Figure 5, 

there are two major differences between these two surface degradation mechanisms. First, 

abrasive wear often has a high wear rate and can result in noticeable accumulated material 

removal in the gear tooth thickness, i.e., changing the gear tooth profile over a certain period. 

Typically, tooth profile change is in millimeters and can be regarded as macro-level wear, 

illustrated in Figure 8. In contrast, fatigue pitting has a low wear rate in the tooth thickness 

direction, and thus it has negligible effects on the geometry profile of gear tooth unless it is 

extremely severe. Therefore, these two wear mechanisms can often be differentiated in macro-

scale for abrasive wear vs. micro-scale for fatigue pitting. 

 
Figure 8 Deviations from ideal tooth profile due to abrasive wear [112] 

Second, in view of surface morphology, compared with fatigue pitting, abrasive wear tends to 

produce a surface with a relatively short wavelength in the direction of sliding, which results 

in a high spatial frequency [113], as demonstrated in Figure 9. As for fatigue pitting, the 
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material fragments detachment from the gear tooth surface results in valleys with long-

wavelength, which corresponds to the low spatial frequency, as demonstrated in Figure 10.  

 
Figure 9 The gear tooth morphology changes caused by the abrasive wear (micro-level): (a) a new gear tooth 

surface morphology; (b) a worn gear surface caused by abrasive wear [13] 

 
Figure 10 The gear tooth morphology changes caused by the fatigue pitting (micro-level): (a) a new gear tooth 

surface morphology; (b) a mild pitted gear surface [13] 

The differences in the features/characteristics of abrasive wear and fatigue pitting are 

summarized in Table 2.  

Table 2 Differences between abrasive wear and fatigue pitting in surface features 
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Wear types Wear rate  Morphology (spatial 
frequency) Final form 

Abrasive wear High High Tooth profile change (together with a 
rough gear surface) 

Fatigue pitting Low Low Valleys on the certain region of gear 
tooth (between gear root and pitch line) 

3. Effects of gear wear on vibrations of gear systems 

There is a complex interaction between the gear wear process and gear system dynamic 

response. In general, gear wear can result in the alteration of gear tooth profile geometry or a 

reduction of the contact area. This changes the geometric transmission error (GTE) and 

meshing stiffness of the gear system, and then the dynamic characteristics of the gear system 

will be affected, including the dynamic contact force and its distribution. As a consequence, 

the vibration level and noise increase [114]. In turn, the change of dynamic contact force could 

alter and accelerate the gear wear process. The dynamic interaction between gear surface wear 

and gear dynamics produces extremely complex gear dynamic response and vibration feature 

(as shown in Figure 11), which brings significant challenges in condition monitoring of gear 

wear compared with other failures, such as gear root crack, tooth surface spalling, and tooth 

breakage.  

 
Figure 11 The interaction between gear wear and gear dynamics, and its induced vibrations [115] 
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With consideration of the contact patterns, abrasive wear and fatigue pitting have different 

impacts on the vibrations of the gear system on two different scales: macro-level and micro-

level. Therefore, an understanding of gear wear effects on vibrations will be discussed in terms 

of these two scales below. 

Macro-level wear (usually as tooth profile change) is a kind of geometric deviation of gear 

tooth from the ideal one, and it is serviced as geometric transmission error to the gear system. 

The macro-level wear can lead to an increase in the magnitudes of gear meshing harmonics 

[116]. Meanwhile, due to the wear-induced tooth profile change, the load distribution on the 

tooth surface is also altered, and thus the dynamic characteristics of mating gears will change. 

The effect of macro-level wear on vibrations is illustrated in Figure 12. 

 
Figure 12 Typical vibration spectrum due to wear [112] 

As explained in Section 2.1, abrasive wear can easily result in the gear tooth profile change, 

while fatigue pitting usually does not modify the gear tooth profile if gears are lubricated with 

a relatively low wear rate. However, both gear abrasive wear and gear fatigue pitting have 

significant impacts on the micro-geometry of the gear surface. Abrasive wear and fatigue 

pitting can induce different surface morphologies, which are at the micro-level. Abrasive wear 

can lead to a creation of protrusions (i.e., lumps) distributed from gear root to tip uniformly, 
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while fatigue pitting induces the occurrences of valleys on the gear surface, normally 

distributed from gear root to pitch line, as shown in Figure 9 and Figure 10 respectively. 

The micro-level wear generates a rough gear surface, which increases the friction force 

between the meshing gears, increasing the overall vibration level and changing its frequency 

characteristics [117]. The energy induced by micro-level wear might be low in comparison 

with the macro-geometry of the gear surface. The micro-level wear would induce a random 

vibration, namely sliding vibrations [118], so it could not be represented in gear meshing 

harmonics (deterministic signals). Thus, it is difficult to distinguish and extract micro-level 

wear information from other effects in originally measured vibration and its deterministic 

components [119]. 

Based on the above discussions, the effects of abrasive wear and fatigue pitting, in both macro-

level and micro-scale, on vibrations are summarized in Table 3. 

Table 3 Effects of wear on vibrations [112, 118, 120, 121] 

Wear type 

Macro-level Micro-level 

Change in gear meshing harmonics 
(deterministic components) 

Change in sliding induced vibration 
(random components) 

Magnitude 

Abrasive wear Significant  Increase 

Fatigue pitting Slight Increase 

As noticed from Table 3, these two wear mechanisms have distinct impacts on different 

vibration features. In practice, when fatigue pitting propagates, abrasive wear may co-exist due 

to oil contamination [17]. The abrasive wear could help remove high asperities, then lead to a 

smooth gear surface and good lubrication, which can help prevent the occurrence of fatigue 

pitting. In contrast, the occurrence of fatigue pitting can break the oil film and lead to a contact 

pressure concentration, which could advance the abrasive wear process [105]. There is a 
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coupling effect between abrasive wear and fatigue pitting. This coupling effect results in 

complex nonlinear vibration characteristics and makes it challenging to extract gear wear-

related vibration features/characteristics and develop specific vibration-based technique(s) or 

indicator(s) for gear wear mechanism identification and evolution tracking. In the following, 

the existing vibration-based gear surface wear monitoring methodology, using vibration 

features and models, will be reviewed, discussed, and summarized. 

4. Vibration feature-based gear wear monitoring 

The existing wear monitoring work (using vibration features) mainly focuses on gear wear 

evolution tracking. Moreover, most of the studies aim at monitoring gear tooth profile change 

(at the macro-level). In contrast, only a handful of studies are designed for micro-level wear 

monitoring, such as detecting surface roughness changes or monitoring fatigue pitting 

propagation. Compared with wear evolution tracking techniques, the vibration-based 

techniques for gear wear mechanism identification are less. Therefore, in the following, the 

existing vibration-based research works for wear evolution tracking are presented first, then 

the studies for wear mechanism identification will be presented and summarized. 

4.1 Vibration feature-based wear evolution tracking 

As discussed in Section 2.2, abrasive wear (or extreme severe fatigue pitting) could lead to gear 

tooth profile change (macro-level wear) with an increase in the overall energy of vibration 

signal and the magnitude of gear meshing harmonics. Therefore, the relationship between 

signal energy or gear meshing harmonics and gear wear severity is worth investigating. 

Root mean square (RMS) (as given in Eq. (1)) has been widely used for reflecting the vibration 

amplitude and energy of the signal in the time domain. Considering that the worn gear would 
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bring in geometric deviation from ideal gear tooth involute, resulting in a stronger vibration, 

some research works [58, 122] use the RMS to monitor the propagation of gear wear. It was 

found that the RMS value has a positive relationship with the gear wear severity. In addition, 

to improve the sensibility and reliability of RMS for detecting gear wear change, a sample 

parameter, namely matched filtered RMS, was proposed in [123]. This developed parameter 

was set to be the logarithmic value (which is expressed in dB) of the averaged power ratio 

between components of the current vibration signal and those of the reference vibration signal. 

Compared with classical parameters such as kurtosis, RMS, and peak values, the matched 

filtered RMS is easy to trend and performs better in tracking the gear wear process [11]. 

RMSx = �
1
N
�� (xi)2

N

i=1
� (1) 

As an extended version of RMS, an indicator named energy ratio (ER) was proposed in Ref. 

[124]. The ER is calculated using Eq. (2) as the difference signal 𝑑𝑑 divided by the RMS of the 

signal which contains only the normal meshing components 𝑦𝑦𝑑𝑑 [125]. 

ER =
RMSd
RMSyd

(2) 

The ER increases with wear severity when it occurs uniformly on the tooth surface since it 

would be expected that RMSd would increase while RMSyd would decrease in this case. 

However, RMS and its extended versions mainly focus on the signal’s power changes and thus 

may not have the capability of reflecting the signal spectral distribution changes, which also 

have a close relationship with gear wear. Therefore, some studies investigated the signal 

spectral distribution changes due to the gear wear processes. 

Taking into consideration of the gear wear pattern, the uniform wear effects on gear mesh 

harmonics were explored and investigated in Ref. [112], and it was found that systematic wear 
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would tend to generate a kind of tooth profile deviation, which is indicated in an exaggerated 

form in Figure 8. Consequently, the higher harmonics of the tooth meshing increase. Therefore, 

the higher-order gear meshing harmonics’ amplitudes could be a reliable and effective tool for 

detecting and diagnosing uniform gear surface wear at its early stage. With this knowledge as 

a basis, the first three meshing harmonics of the spectrum and quefrencies of cepstrum were 

investigated and used in study [126] to track the gear surface wear propagation. 

However, the average gear tooth working profile geometry steadily deviates from the initially 

designed ideal involute gear profile in the gear wear propagation progression, but the gear 

meshing harmonics changes are not stable and determinate. That is, all the gear meshing 

harmonics could vary in different behaviors, and each harmonic’s amplitude may keep 

increasing in one period but start to decrease in another period. Considering this complex 

situation, the use of only a specific gear meshing harmonic may not be effective enough or 

sufficient to track and monitor the propagation of gear wear. Therefore, all the gear meshing 

harmonics with significant energy were taken into consideration in Ref. [11], then a sideband 

ratio (SBR) proposed in Ref. [127] was extended and modified into two new indicators: the 

averaged logarithmic ratio (ALR) and the moving averaged logarithmic ratio (mALR). The 

ALR can be utilized to reflect the gear wear effects on the gear running status, while the mALR 

shows the changes in the gear running status within short time intervals. The performance of 

these two indicators was evaluated and validated by two sets of tests with different initial gear 

surfaces. 

In theory, gear surface wear can cause a gradual change in the mechanical properties and 

contact characteristics of the engaging gears (most notably in gear tooth profile and gear 

meshing stiffness); therefore, a gradual change occurs in vibration characteristics of the gear 

system compared with its initial state. Thus, the difference between vibrations with healthy 

gears and vibrations with worn gears can be used to represent the gear wear process. For 
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example, an indicator named model prediction error (MPE) was proposed to track the gear 

wear process (tooth profile change) [128]. In the developed MPE, an auto-regressive (AR) 

model was used to predict the current state of the vibration signal based on the historical data; 

then, the prediction error, which is the difference between the predicted signal and the current 

measured signal, was used to indicate the gear wear process. A comparison with FM0, FM4, 

NA4, and RMS was made to show that MPE has a better performance than those indicators in 

gear wear monitoring. 

Compared with the above-mentioned research on macro-level wear severity assessment, there 

is less research on micro-level wear monitoring. The reason is that the micro-level wear 

induced vibration is a random vibration with low energy, which is not easy to distinguish 

micro-level wear information from other effects in the originally measured vibration. In the 

following, the existing research for micro-level wear assessment will be introduced. 

Recent developments [13, 118, 120, 129] showed that the surface roughness (induced by 

abrasive wear or fatigue pitting) information can be detected using a cyclostationary based 

approach, considering the unique kinematics characteristics of gear systems as demonstrated 

in Figure 13. An indicator that quantifies the second-order cyclostationarity of vibrations,  ICS2 

proposed in Ref. [130], was used to monitor the gear surface roughness change in Ref. [120], 

see Eq. (3):  

ICS2𝒜𝒜h,H =
∑ max

n∈𝒜𝒜h
(SES[n]2)h=1:H

SES[0]2
(3) 

where h denotes the harmonic order of gear meshing frequency, 𝒜𝒜ℎ with ℎ = 1, 2, … , H is the 

equivalent sets for the corresponding gear mesh harmonics, and a tolerance band is set in Eq. 

(3) in the case of the deviations of expected cyclic frequency. For gear case, to monitor gear 

surface wear progression, 𝒜𝒜1 is set to be the gear meshing frequency. The SES is the squared 

envelope spectrum. In the experimental part, a high correlation coefficient was found between 
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ICS2 and gear surface roughness. However, the connection between ICS2 and surface 

roughness was found to be much more complex by a further investigation [118], which 

involved a wider range of surface roughness values and a longer duration of the experiment. 

To date, there are insufficient conclusions drawn. With studies [118, 120] as the basis, in Ref. 

[13], the carrier frequency 𝑓𝑓, instead of the cyclic frequency 𝛼𝛼, was further investigated, and 

an informative band that contains the most informative surface morphology was selected, then 

in the selected bands, the fatigue pitting propagation and surface roughness change induced by 

abrasive wear could be well monitored and tracked. Also, an autoregressive conditional 

heteroskedasticity model was used in [129] to represent the random vibration signals with 

cyclic amplitude modulation, and the surface roughness change was effectively evaluated. The 

capability of cyclic correntropy in monitoring gear wear propagation was investigated and 

proven in [131], and a novel cyclostationary indicator was developed for gear wear monitoring. 

Recently, based on the dispersion theory, a novel similarity-based status characterization 

methodology was developed in [14] to monitor the gear surface wear propagation progression, 

and a series of endurance tests (under different lubrication and operation conditions) were 

applied to prove the effectiveness of the developed methodology. 



22 
 

 
Figure 13 Conceptual link between the gear vibration second-order cyclostationary (CS2) and varying gear 
contact force and the sliding velocity exiting in engaging gears; (a) gear contact force; (b,c) each tooth pair 

sliding velocities; (d) CS2 amplitude-modulated gear random vibration signal [13] 

In addition, the strength of frequency modulation and amplitude was assumed to be correlated 

to the gear wear severity in Ref. [132] , and the correlation coefficient was used to quantify the 

difference between the reference signal (vibrations with healthy gears) and the current 

measured vibrations, then the correction coefficient was linked to gear wear severity. Five 

natural pitting propagation tests were conducted to verify the effectiveness of the approach 

proposed in [132]. It should note that a residual signal, after removing gear meshing and shaft 

harmonics, was used in Ref. [132] for correlation coefficient calculation. And the difference 

between Ref. [132] and Ref. [128] is that the correlation coefficient used in Ref. [132] is for 

monitoring fatigue pitting propagation (micro-level wear), whose information is hard to detect 

in the deterministic part of the vibration signal.  



23 
 

Based on the above literature review, the existing vibration feature-based technique for gear 

wear evolution monitoring can be summarised in Table 4. From Table 4, it can be seen that the 

vibration feature-based techniques for gear monitoring are quite limited and general. Most of 

the studies focus on tracking macro-level wear progression (tooth profile change), which can 

be easily detected and monitored in deterministic components of vibrations. In contrast, the 

studies for micro-level wear, such as fatigue pitting or abrasive wear induced surface roughness 

change, are rather limited. The reason is that the vibration characteristics of micro-level wear 

are weak, and most of them are contained in the random components of vibrations, which are 

easily masked by background noise. This challenge brings huge difficulties in extracting and 

monitoring micro-level wear evolution. Therefore, research works on investigating the internal 

relations between micro-level wear and vibration features, which could benefit the 

development of vibration-based fatigue pitting propagation, are in demand. 

Table 4 Studies of vibration feature-based gear wear evolution tracking 

References Main techniques Purpose 

[11, 58, 121-
123] RMS and its extension versions Accumulated gear wear evolution 

tracking (at macro-level) 

[112, 126] Gear mesh harmonics or quesfrencies Accumulated gear wear evolution 
tracking (at macro-level) 

[11, 126] Sideband energy ratio, sidebands Accumulated gear wear evolution 
tracking (at macro-level) 

[128] Auto-regressive model, then prediction error Accumulated gear wear evolution 
tracking (at macro-level) 

[132] Correlation coefficient-based approach Fatigue pitting propagation 
monitoring (at micro-level) 

[118, 120] ICS2 to monitor roughness change Gear surface roughness 
monitoring (at micro-level) 

[129] ARCH model to monitor roughness change Gear surface roughness 
monitoring (at micro-level) 

[13] ICS2 to monitor fatigue pitting propagation and 
surface roughness (induced by abrasion) change 

Fatigue pitting propagation and 
surface roughness (induced by 
abrasion) monitoring (at micro-

level) 
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[131] A novel cyclic correntropy based indicator to 
monitor gear wear progression 

Gear surface roughness 
monitoring (induced by abrasive 

wear and fatigue pitting) 

[14] A novel similarity-based status characterization 
methodology to monitor gear wear progression 

Gear surface roughness 
monitoring (induced by abrasive 

wear and fatigue pitting) 

4.2 Vibration feature-based wear mechanism identification 

Up to date, there is very limited work on using vibration-based methodologies for identifying 

wear mechanisms. The existing techniques for identifying wear mechanisms mainly rely on 

visual examination/inspection of a worn gear surface and/or its wear particles/debris generated 

from the gear surface. Based on the literature review, the development of gear wear mechanism 

identification using vibration-based techniques will be presented as follows. 

A phenomenon was found in study [133], that is, fatigue pitting information is in the low-

carrier frequency range. In study [133], artificial pits were introduced to all the teeth of the 

pinion with different sizes to simulate different pitting severities, then the mean frequency 

variation of a scalogram was used to detect the pitting damage. The experiment results showed 

that the mean frequency decreased when the pitting became severer and severer. This suggested 

that pitting has effects on the low-frequency part of vibrations. 

Even though insufficient conclusions were drawn in studies [118, 120], it was suggested that 

surface morphology information could be detected in sliding induced vibration. It was also 

shown that the wavelength of surface asperities might impact the surface roughness monitoring 

results [118]. This information can be used to identify the gear abrasive wear and fatigue pitting. 

Based on the research findings in [118, 120, 133, 134], the carrier frequency information of 

sliding induced vibrations was explored in [13] for its potential in identifying fatigue pitting 

and abrasive wear. The relationship between the surface morphology spatial frequency 𝑓𝑓𝑣𝑣 (Hz) 

and the sliding vibration frequency 𝑓𝑓𝑠𝑠(1/m) was established [13], see Eq. (4): 
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𝑓𝑓𝑣𝑣 ∝ 𝑣𝑣𝑠𝑠 ∙ 𝑓𝑓𝑠𝑠 (4) 

where 𝑣𝑣𝑠𝑠(m/s)  is the engaging gear surface sliding velocity. The manners of excitation 

induced by gear wear were described in Figure 14 and Figure 15 [13]. It should be noted that 

a system transfer function would shape the measured response, and the observed dominant 

vibration carrier frequencies of the measured vibration signal in the cyclostationarity content 

would also depend on gear transmission resonances and the applied cyclostationary tool which 

is used for their detection and diagnostics. To verify the phenomenon shown in Figure 14 and 

Figure 15, spectral coherence map of vibrations and ICS2-based frequency band selection 

approaches were used to analyze the measured vibrations from two run-to-failure tests under 

different lubrication conditions to identify abrasive wear and fatigue pitting. Besides, the wear 

mechanism identification results were confirmed using power spectral density (PSD) analysis 

techniques, which were applied to the scanned gear surface images. The definition of spectral 

coherence is  

γx(α, f) =
𝑆𝑆𝑥𝑥(𝛼𝛼,𝑓𝑓)

�𝑆𝑆𝑥𝑥(0,𝑓𝑓)𝑆𝑆𝑥𝑥(0,𝑓𝑓 − 𝛼𝛼)
(5) 

where 𝑆𝑆𝑥𝑥(𝛼𝛼,𝑓𝑓) represents the ordinary power spectral density at frequency 𝑓𝑓. The CS content 

at frequency 𝑓𝑓 is normalized by the power at frequencies 𝑓𝑓 and 𝑓𝑓–𝛼𝛼 in the stationary part of 

the signal. 
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Figure 14 The sliding vibration characteristics induced by fatigue pitting [13] 

 

 
Figure 15 The sliding vibration characteristics induced by abrasive wear [13] 

Table 5 summarizes the current development in vibration-based wear mechanism identification 

and the relevant works. Based on Table 5 and the above literature review, it can be seen that 

the investigation of unique surface morphology features induced by different gear wear 

mechanisms is at the outset, and vibration analysis has shown its significant benefits to wear 

mechanism identification. The sliding vibration characteristics can help reveal the gear tooth 

contact mechanisms with details. Therefore, more vibration feature-based techniques for gear 

wear monitoring with consideration of unique vibration characteristics induced by different 

gear wear mechanisms are needed. 

Table 5 Developments of vibration-based gear wear mechanism identification and the relevant work 

References Main observation or contribution Wear mechanism 
identification 

[133] The mean frequency of the scalogram will decrease when the pit size 
increases × 

[118, 120] Surface morphology information could be detected in sliding induced 
vibration × 

[13] The relationship between surface morphology and sliding vibration is 
built; the abrasion and fatigue pitting are identified. √ 
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5. Model-based gear wear monitoring techniques 

Gear wear simulation has significant benefits to gear wear monitoring and prediction. The gear 

wear simulation mainly uses the gear meshing mechanism, wear mechanism, and vibration 

characteristics to establish dynamic models, tribological (wear) models, and their interactions. 

Then, with the help of the established models, dynamic responses (such as vibrations and 

contact force) in different health conditions can be evaluated and simulated, and fault 

symptoms of the gear system can be disclosed and concluded for fault diagnostics and 

prognostics [135-137]. In the gear wear simulation, gear dynamic models are concerned with 

the relationship between dynamic properties (stiffness, transmission error, friction, etc.) and 

system responses such as vibration responses (dynamic forces and vibration signals) [138-141]. 

Tribological models rely on wear mechanism theory or experimental data to establish a damage 

propagation model, in which pressure distribution, oil film thickness and/or wear rate are 

studied based on certain inputs, including the load, lubricant viscosity, sliding velocity, and 

surface roughness [142-144]. In the following sections, the research progress on gear wear 

model developments will be discussed. 

5.1 Dynamic models of spur gearboxes 

The gearbox is usually modeled by the techniques of lumped parameter modeling (LPM) and 

finite element modeling (FEM) [2]. As for the lumped parameter model techniques, the 

modeling components are considered to be rigid, and the masses are concentrated at a set of 

points [145]. In contrast, in the finite element modeling techniques, the physical model is 

discretized into disjoint components of simple geometry called finite elements, and its system 

response is obtained by connecting or assembling all elements [145]. Each modeling technique 

has its unique advantages; thus, it is hard to simply justify which method is better. As 
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introduced in Ref. [146], the two methods could be equally accurate, if the corresponding 

degree of discretization and boundary conditions are well defined; Also, the solution costs of 

these two methods are different, which depend on the discretization characteristics of the LPM 

and various FEM derivations as well as the efficiency of the programmer. LPM, FEM, and 

their combinations have been applied for gear wear monitoring to achieve a reliable and 

efficient wear analysis, which will be introduced together with the existing gear wear 

monitoring methodologies in this section. Since the focus of this review paper is on gear wear 

monitoring, thus, the developments of gearbox dynamic modeling techniques will not be 

introduced and reviewed. Instead, some critical parameters of the dynamic model closely 

related to the gear wear progression will be introduced and reviewed in the following. 

Contact force is an essential input of the tribological models. Based on the contact force, the 

contact pressure of engaging gear pairs can be calculated based on Hertzian contact theory [147, 

148], then the wear propagation behaviors can be simulated using tribological (wear) models. 

There are lots of research works using empirical equations or finite element models to evaluate 

contact force and its distribution between meshing gear pairs, such as references [149-154]; 

however, most of them are effective under quasi-static conditions. Without considering the 

inertia effects due to gear dynamics, the gear contact force under quasi-static conditions can be 

easily simulated using finite element models and empirical equations. However, in industrial 

practices, the gear system is usually operated under dynamic operating conditions, and the 

corresponding system responses are very different from those under quasi-static operating 

conditions [83]. Usually, owing to the inertia effects, the dynamic gear meshing forces are 

usually larger than the corresponding contact forces under quasi-static conditions, and their 

waveforms and magnitudes are significantly different [83]. Therefore, the dynamic contact 

force and its distribution should be properly evaluated to guarantee that wear propagation 

behaviors can be simulated and wear-induced dynamic responses can be exhibited.  
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To obtain proper/accurate dynamic contact force during gear wear progress, a dynamic model 

of the gear transmission system, which can also generate wear-induced dynamic responses 

(such as vibrations) for wear analysis, is required. In general, the dynamic model includes many 

parameters. Figure 16 shows a typical gear dynamic model, reproduced from references [155, 

156], and the equations of motion of the gear system can be written as  

𝐌𝐌𝐱̈𝐱 + 𝐂𝐂𝐱̇𝐱 + 𝐊𝐊𝐊𝐊 = 𝐅𝐅 (6) 

where  

𝐱𝐱 = �𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝,𝜃𝜃𝑝𝑝, 𝑥𝑥𝑔𝑔,𝑦𝑦𝑔𝑔,𝜃𝜃𝑔𝑔�
𝑇𝑇 (7) 

represents the translational and angular displacements of the modeled gear system. 𝐂𝐂, 𝐊𝐊, and 𝐅𝐅  

are the corresponding damping, stiffness, and force matrices. In the dynamic model, the 

vibrations of the gear systems are caused by two kinds of sources of excitations: one is the 

external excitations coming from the fluctuation of the applied load and input operating rotating 

speed, and the other is the internal excitations related to meshing stiffness-𝑘𝑘(𝑡𝑡) and GTE- 𝑒𝑒(𝑡𝑡).  

 
Figure 16 Dynamic model of a spur gearbox [155, 156] 

The gear wear directly impacts the internal excitations of the dynamic model. The contact force 

of meshing gears can be calculated as 

�
𝐹𝐹𝑘𝑘 = 𝑘𝑘𝑚𝑚(𝑡𝑡) �𝑟𝑟𝑏𝑏𝑏𝑏𝜃𝜃𝑝𝑝(𝑡𝑡) − 𝑟𝑟𝑏𝑏𝑏𝑏𝜃𝜃𝑔𝑔(𝑡𝑡) + 𝑦𝑦𝑝𝑝(𝑡𝑡) − 𝑦𝑦𝑔𝑔(𝑡𝑡) + 𝑒𝑒(𝑡𝑡)�

𝐹𝐹𝑐𝑐 = 𝐶𝐶𝑚𝑚(𝑡𝑡)�𝑟𝑟𝑏𝑏𝑏𝑏𝜃𝜃𝑝𝑝(𝑡𝑡)̇ − 𝑟𝑟𝑏𝑏𝑏𝑏𝜃𝜃𝑔𝑔(𝑡𝑡)̇ + 𝑦𝑦𝑝𝑝(𝑡𝑡)̇ − 𝑦𝑦𝑔𝑔(𝑡𝑡)̇ + 𝑒𝑒(𝑡𝑡)̇ �
(8) 

𝒆𝒆(𝒕𝒕) 

𝑪𝑪𝒎𝒎(𝒕𝒕) 
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It should be noted that the gear meshing stiffness is usually estimated by the FEM model or the 

potential energy method as follows [157]: 

𝑘𝑘𝑚𝑚(𝑡𝑡) = �
1

1 𝑘𝑘ℎ,𝑖𝑖⁄ + 1 𝑘𝑘𝑏𝑏1,𝑖𝑖⁄ + 1 𝑘𝑘𝑠𝑠1,𝑖𝑖⁄ + 1 𝑘𝑘𝑎𝑎1,𝑖𝑖⁄ + 1 𝑘𝑘𝑏𝑏2,𝑖𝑖⁄ + 1 𝑘𝑘𝑠𝑠2,𝑖𝑖⁄ + 1 𝑘𝑘𝑎𝑎1,𝑖𝑖⁄
𝑚𝑚

𝑗𝑗=1
(9) 

where 𝑘𝑘ℎ, 𝑘𝑘𝑏𝑏, 𝑘𝑘𝑠𝑠 and 𝑘𝑘𝑎𝑎 are Hertzian contact stiffness, bending stiffness, shear stiffness, and 

axial compressive stiffness, respectively. 𝑗𝑗  denotes the 𝑗𝑗 th pair of the meshing teeth. The 

driving gear and driven gear are indicated by subscripts 1 and 2, respectively. The 𝐶𝐶𝑚𝑚(𝑡𝑡) is a 

major unknown factor, which is difficult to be determined in industrial practice. The 𝐶𝐶𝑚𝑚(𝑡𝑡) can 

be evaluated based on the 𝑘𝑘𝑚𝑚(𝑡𝑡) (as shown in Eq. (10)) [158], nevertheless, its accuracy still 

needs to be further checked. 

𝐶𝐶𝑚𝑚 = 2𝜁𝜁�𝑘𝑘𝑚𝑚
𝑚𝑚1𝑚𝑚2

𝑚𝑚1 + 𝑚𝑚2
(10) 

where 𝜁𝜁  is the damping ratio, 𝑚𝑚1  and 𝑚𝑚2  are the masses of driving and driven gears, 

respectively. 

Generally, when gear wear occurs, the contact patterns between engaging gear pairs can be 

substantially modified, that is, tooth profile change (e.g., from abrasive wear) and contact area 

reduction (e.g., from fatigue pitting). Tooth profile change is one kind of GTE. Both tooth 

profile change and contact area reduction can alter the gear meshing stiffness 𝑘𝑘𝑚𝑚(𝑡𝑡) . 

Consequently, the gear wear will affect the dynamic contact force of the meshing gears and 

change the responses of the gear system. There are some research works that investigate the 

relationship of gear wear with meshing stiffness and GTE. In the following, research on 

meshing stiffness and GTE with gear wear will be reviewed and discussed. 
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5.1.1 Effects of gear wear on meshing stiffness 

The meshing stiffness of the planetary gearbox was evaluated in [159], with consideration of 

wear-induced tooth profile change. The numerical results indicated that the gear wear could 

decrease meshing stiffness, and the reduction depends on the severity of gear wear. In [160], 

the gear meshing stiffness of gears in the shearer cutting section under different degrees of 

wear was analyzed, and it was found that the gear wear could cause a decrease in meshing 

stiffness. Besides, the helical gear meshing stiffness change due to wear was investigated in 

[161]. It should be mentioned that studies [159-161] only consider the wear-induced tooth 

profile change, which is mainly caused by gear abrasive wear. Unlike abrasive wear, fatigue 

pitting can bring localized valleys to the gear tooth surface and then reduce the gear meshing 

stiffness differently. Therefore, some researchers investigated the impacts of surface pitting on 

meshing stiffness. Initially, a single pit was considered, and its impact on meshing stiffness 

was investigated (such as [162-164]). Afterwards, the meshing stiffness calculation equation 

was derivated to study the influence of multiple tooth pits on the meshing stiffness of an 

external spur gear pair [165]. However, single pits or multiple pits distributed evenly is far 

different from the pitting propagation in engineering practices. Therefore, with consideration 

of the appearance and propagation process of gear surface pitting, a new model was established 

to describe gear pitting based on the probability distribution (see Figure 17), and a finite 

element model was applied to verify the effectiveness of the proposed analytical model [166]. 
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Figure 17 Distribution of pits on the tooth surface [166] 

However, it should be noted that no matter whether it is abrasive wear induced gear tooth 

profile change or surface pitting, the deformation change caused by meshing stiffness reduction 

is much smaller than wear induced tooth profile change, even at the micro-level. Therefore, 

considering the scale of gear wear-induced geometric error, the meshing stiffness change 

induced by gear wear can be neglected since it is significantly less important than the 

transmission error effect at both micro and macro levels [10, 104, 116, 167]. In the following 

sections, studies on wear-induced transmission error of the dynamic model will be reviewed.  

5.1.2 Effects of gear wear on the geometric transmission error 

Owing to the wear-induced GTE, the dynamic load and its distribution between the meshing 

gear pairs are altered, leading to a dynamic transmission error (DTE) and thus resulting in 

changes in vibration and noise level. Different from the other parameters in the dynamic model, 

such as backlash, manufacturing error, and tooth relief, gear wear can cause a tooth profile 

change with particular distribution, which is almost zero around the pitch line and generally 

has a maximum value at the root or tip of the gear tooth [168-171], see Figure 18. Different 

tooth profile changes can cause different dynamic characteristics and responses; therefore, to 

acquire accurate wear-induced dynamic characteristics and responses, GTE should be properly 
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obtained or simulated according to the characteristics of wear-induced gear tooth profile 

changes. There are two possible approaches to obtaining wear-induced GTE: simulation-based 

and experimental methods. In the following, studies relevant to the GTE for gear wear analysis 

will be introduced. 

 
Figure 18 Wear distribution (abrasive wear) [172] 

Experimentally, GTE can be measured using a special device. For example, a mass of lead 

traces was obtained using a gear coordinate measurement machine in [173]; each trace contains 

around 200 measurement points, which are aligned using a single profile trace to obtain a three-

dimensional comprehensive measurement of the actual gear tooth surface. This approach can 

acquire wear-induced GTE accurately. However, when measuring and evaluating the tooth 

surface changes, the gearbox needs to be dismantled, which may bring other failure modes into 

the gearbox, such as shaft misalignment. Therefore, many researchers choose the simulation-

based approach. For example, a finite element model was applied to simulate the wear-induced 

tooth profile change in [174]. 

Wear on Tooth Tip 

Wear on Tooth Root 

Pitch line 
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Since wear-induced tooth profile change is complex, therefore, it is not easy to use simple 

equations such as sine/cosine functions to represent it accurately. Considering that, some 

researchers use the tribological (wear) models to obtain the wear-induced tooth profile changes 

(such as [83, 84, 175, 176]). This approach can be regarded as an integration of dynamic and 

tribological models, and it will be introduced in Section 5.3. In the following, tribological 

models to simulate and represent wear propagation behaviors will be presented first, followed 

by a review of the integration of the dynamic model and the tribological model. 

5.2 Tribological (wear) models for monitoring wear depth and pitting density 

There are different approaches to establishing tribological models with consideration of wear 

modes (abrasive wear, scoring, corrosive wear, etc.). The tribological can help reveal the 

contact status of the engaging gears, which is beneficial to the gear design. For example, with 

the help of tribological models, the impact of gear meshing behaviors on the lubrication status 

(such as the minimum film thickness) was investigated in [177]; the results can provide useful 

guidance for gear design and then improving its lubricating performance. Since abrasive wear 

and fatigue pitting are common wear mechanisms during gear service life and also the 

objectives of this review, tribological models of these two wear mechanisms will be reviewed 

in this sub-section.  

As for abrasive wear, even though researchers proposed a large number of advanced wear 

models using different methodologies and parameter sets [178-182], the Archard wear model 

[183] is the most widely used one for various materials, such as plastic [184] and steel [98]. 

The theoretical basis of the Archard wear model is the Archard wear equation: 

ℎ = �𝐾𝐾𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃          (11) 
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where ℎ denotes the wear depth, 𝜈𝜈 is the sliding velocity at time 𝑡𝑡, 𝑃𝑃 represents the contact 

pressure and 𝐾𝐾𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 is a dimensional wear coefficient. The 𝜈𝜈 and 𝑃𝑃 can be determined by the 

parameters of the gearbox and dynamic model; in contrast, 𝐾𝐾𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 will be different in different 

lubrication conditions; therefore, the wear coefficient 𝐾𝐾𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 is a major unknown factor and it 

is usually determined/obtained from experiments or by an approximate wear coefficient model 

[87, 185-187]. The wear coefficient model is established based on the effect of surface 

roughness and oil film thickness [187]. It is challenging to measure the wear coefficient directly 

from experiments [188]. Therefore, the widely used approach is to evaluate and determine the 

wear coefficient using empirical models/equations. 

In the determination of wear coefficient using empirical models/equations, lubrication plays an 

important role, and its effect is considered based on the oil film thickness-to-surface roughness 

amplitude ratio defined as λ = ℎ𝑚𝑚𝑚𝑚𝑚𝑚 𝑅𝑅⁄ . The minimum film thickness ℎ𝑚𝑚𝑚𝑚𝑚𝑚 can be determined 

by empirical equations [189]. And, 𝑅𝑅 = (𝑅𝑅1 + 𝑅𝑅2) 2⁄ , where 𝑅𝑅1 and 𝑅𝑅2 are root mean square 

values of surface roughness on the pinion and gear [189]. Based on the value of the calculated 

λ, three lubrication regions are considered in the simulations to represent the level of interaction 

between the mating surfaces, and the wear coefficient 𝐾𝐾𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 is calculated as follows: 

a) if λ > 4, it means the film thickness is sufficient to separate the engaging surface and 

avoid direct engaging surface contact, gear wear is neglected and 𝐾𝐾𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 is set to be zero. 

b) if λ ≤ 0.5, it indicates a strong interaction, wear is maximum and 𝐾𝐾𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  is usually 

determined and evaluated based on the experiment results and measurements. 

c) in the intermediate zone, in theory, 𝐾𝐾𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  is supposed to be calculated by linear 

interpolations based on λ. 

The relationship between λ and 𝐾𝐾𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 can be summarized in Eq. (12) [83]: 
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𝐾𝐾𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 =
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2

 
2
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𝑘𝑘0(4 − 𝜆𝜆),   

1
2

< 𝜆𝜆 < 4

0,                𝜆𝜆 > 4

(12) 

It can be seen that the values of 𝐾𝐾𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  depend on the oil film thickness and gear surface 

roughness, which are used to determine 𝜆𝜆. Note that 𝑘𝑘0 is an initial value of wear coefficient. 

In a gearbox, the engaging gear teeth are always in sliding and rolling motion against each 

other and under high contact pressure, which means that the lubrication state/condition is most 

likely in the boundary or mixed lubrication regime [190]. Therefore, tribological models to 

simulate abrasive wear behaviors are almost always under boundary lubrication or mixed 

elastohydrodynamic lubrication (EHL). In the following paragraph, research on abrasive wear 

models under boundary lubrication or mixed EHL will be briefly introduced.  

As introduced in Eq. (12), surface roughness is an important factor in determining the empirical 

wear coefficient 𝐾𝐾𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤. However, initially, tribological models for abrasive wear were built 

without considerating the surface roughness update; in other words, wear coefficient 𝐾𝐾𝑤𝑤𝑤𝑤𝑤𝑤𝑟𝑟 is 

a constant value during the abrasive wear propagation process [173, 175, 191-195]. In these 

research works, to achieve a gear wear profile that is close to actual worn gear, [173, 175] used 

a comprehensive finite element model to calculate the meshing gear pairs’ contact pressure. 

However, the wear coefficient 𝐾𝐾𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 has not been updated based on Eq. (12), which means 

surface roughness remains to be a fixed value without updating, which is not true during the 

actual gear wear process. The surface roughness update issue was addressed in studies [196-

198]. Time-varying gear contact parameters (the radii of curvature, normal load, surface 

velocities, and slide-to-roll ratio) and wear coefficient 𝐾𝐾𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  updating based on surface 

roughness were considered in a proposed transient mixed EHL model [196], then the transient 

behaviour of this model was studied. The model proposed in Ref. [196] was employed in 
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studies [197, 198] to establish a gear fatigue model, and a relatively more accurate wear 

assessment result can be achieved by considering surface roughness updating during the wear 

process.  

From the above literature review, it can be found that the wear coefficient 𝐾𝐾𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  in most 

existing tribological models is an empirical value, even considering surface roughness updating 

during the gear wear process. However, in actual practice, in addition to the surface roughness, 

lots of other factors can also affect the wear coefficient 𝐾𝐾𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤, such as contamination of the 

lubricant, operation condition change, etc. Therefore, to accurately simulate wear propagation 

behaviors, it is necessary to obtain the actual accurate wear coefficient 𝐾𝐾𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 based on actual 

measurements using efficient and reliable tools. 

Compared with abrasive wear, studies on simulating gear surface pitting progression behaviors 

are sparser, although there are plenty of publications focusing on explaining the process of 

surface pitting initiation [197, 199-201]. In study [202], a multi-axial fatigue criterion and an 

EHL model [196] were combined to develop a fatigue pitting model; with the developed model, 

the progression of pits in the micro-level on the tooth surface is simulated. Similarly, based on 

the fatigue formula and EHL model, simulation of fatigue pitting propagation behaviors under 

mixed elastohydrodynamic lubrication conditions was achieved in [105]. Different from [202], 

the competition behaviors between fatigue pitting and abrasive wear induced mild wear were 

also investigated. Research works [105] and [202] involve the EHL model, which is time-

consuming due to its high complexity, and high-level expert knowledge is required for model 

establishment. It brings huge challenges to application in industrial practices. Therefore, it is 

vital to develop more efficient models/tools to simulate fatigue pitting behaviors. To address 

this issue, based on the Lundberg-Palmgren model [203], a modified fatigue model with high 

computational efficiency was proposed in research [204], and the results from spur gearbox 

test rig trials and material analyses were presented to demonstrate the effectiveness of the 
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proposed fatigue pitting model. Also, considering the time-varying surface morphology, 

lubrication conditions, and operational conditions, a novel fatigue pitting model was developed 

in [17], and its capability of simuating the surface degradation hebiavors caused by fatigue 

pitting was verified by the moprhohlogy of real worn gear surface. 

5.3 Integration of dynamic and tribological models for gear wear monitoring 

As mentioned in Section 5.1, GTE is a crucial parameter of the gear dynamic model for gear 

wear analysis, but it is challenging to acquire an accurate tooth wear profile solely relying on 

experimental or simple analytical approaches (e.g., sine or cosine curve). The tribological 

(wear) model can be used to generate the wear curve on the tooth flank, then the generated 

wear curve can be incorporated into the gear dynamic model to generate vibrations induced by 

gear wear. This integration of dynamic and tribological models can reveal the relationship 

between gear wear and vibration characteristics, which significantly benefits gear wear 

monitoring and gear design. For example, the dynamic model was integrated with the Archard 

wear model in [205], and the impacts of tip relief modifications on the gear wear propagation 

were investigated. 

However, there are only limited research works [83-85, 168, 176] using the integration of 

tribological and dynamic models for gear wear monitoring. Among them, Refs. [83, 84, 168] 

combined the tribological model and dynamic model to study the dynamic interaction between 

gear surface wear and gear dynamics (such as meshing stiffness, contact force, and vibrations). 

This approach was extended to the planetary gearbox in references [85, 176]. A single-degree-

of-freedom torsional dynamic model was employed in [83], and it was then integrated with a 

wear prediction model [173] to investigate the dynamic interactions between the gear surface 

wear and the gear system’s dynamic characteristics. However, an accurate and reliable 

prediction for gear dynamic characteristics relies on a comprehensive dynamic model that can 
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simulate the behaviors of the actual running rig. Only the torsional deflections and responses 

were considered in gear-shaft systems [83], and the impacts of translational responses coming 

from the bearing radial deflections and shaft bending were not considered, which could 

significantly degenerate the wear analysis accuracy. To solve this problem, a 4-degree-of-

freedom model, including translational motions of gears, was introduced in [84], and a new 

dynamic wear analysis method was proposed to study the interactions between tooth surface 

wear and gear dynamics. However, simple sine/cosine functions were used to represent the 

meshing stiffness and GTE [84], while the meshing stiffness and GTE are much more complex 

in real applications. An improper evaluation of meshing stiffness and GTE of the gear dynamic 

model could cause degeneration of the accuracy of the wear analysis. This issue was addressed 

by using the FEM model to simulate the gear contact mechanism with gear wear [168]. It 

should be mentioned that only numerical results were demonstrated in references [83-85, 168, 

176], and there is no model validation involved with the association of actual measurements, 

which is a crucial procedure for industry practice. 

5.4 Summary 

Table 6 summarizes the key developments of the model-based gear wear monitoring. Based on 

the discussion of the publications in Sections 5.1-5.3 and Table 6, it can be seen that research 

on fatigue pitting simulation is far less than abrasive wear. Nevertheless, fatigue pitting is a 

common degradation phenomenon in the lubricating system. Thus, more attention should be 

paid on developing gear fatigue pitting to better understand its propagation behaviors. In 

addition, studies on the interaction of tribological and dynamic models for assessing gear wear 

processes are still needed with consideration of a comprehensive dynamic model together with 

proper parameters (stiffness and GTE) evaluation and necessary model validation. Therefore, 

it is necessary to establish a comprehensive dynamic model with proper meshing stiffness and 
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GTE, then validate it with the association of actual measurements, which could simulate 

realistic wear-induced vibrations (compared with the actual running rig) for wear analysis. 

Table 6 Developments of model-based gear wear monitoring 

References Research objectives 

[173, 175, 191-196] Tribological model for abrasive wear 

[17, 105, 197, 198, 202, 204] Tribological model for fatigue pitting 

[10, 17, 83-85, 98, 168, 176] Integration of dynamic and tribological models 

6. Wear prediction techniques 

Having the capability of predicting the gear wear process would bring enormous and significant 

benefits in cost and safety to various industries. In the following, the existing studies of 

vibration-based gear wear prediction techniques will be reviewed and discussed. 

6.1 Prediction of tooth profile change from abrasive wear 

With the help of the Archrad wear model, the wear distribution on gear tooth was predicted in 

research [206] under dry conditions, and experimental observations validated the prediction 

results, that is, the maximum wear occurs in the dedendum and addendum regions of gears. 

However, the gear system usually operates under lubrication conditions instead of dry 

conditions [207-209], and good lubrication can reduce wear on the gear tooth, reduce noise and 

vibration, and improve the power conversion efficiency as less energy irrecoverably. To 

address this issue, an EHL model was applied to simulate the wear propagation behaviors and 

predict the accumulated wear depth under lubrication conditions [210]. However, the applied 

EHL model in study [210] is time-consuming and requires a high level of expert knowledge 

for establishment. To reduce the computation cost of the EHL model, a simplified EHL model 
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was developed in [211]; also, temperature factors were considered, and the wear predicted 

results were validated by isothermal formulas defined in [212]. However, in studies [206, 210, 

211], the contact force was calculated using empirical equations without considering the actual 

worn tooth profile geometry, which could degrade the accuracy of prediction results.  

To obtain a relatively reliable contact force, the finite element model was used in several studies 

by considering the worn tooth profile instead of using the empirical formula. A gear surface 

wear prediction methodology for helical gears was proposed in [173]. In the proposed 

methodology, in conjunction with Archard’s wear model, a finite elements-based gear model 

was developed to predict gear wear propagation. To guarantee the accuracy of prediction 

results, a special measurement machine was used to acquire the real worn tooth profile during 

the gear wear process as an input of the finite element model, and the prediction results were 

validated through comparison with experimental results. However, in the approach proposed 

in [173], when measuring the tooth profile, the gearbox should be dismantled, which could 

bring in other failure modes into the gearbox. Similarly, a finite element model was applied in 

[213, 214] to provide contact force for the Archard wear model; then, with the Archard wear 

model, the wear depth of spur and planetary gears could be monitored and predicted. The finite 

element model was improved in [215, 216] to provide more accurate contact pressure with less 

computation cost, so that the wear prediction results can be improved. However, there is a 

drawback of using a simple finite element model (without well-defined boundary conditions 

and mesh generations), that is, the dynamic characteristics induced by inertia could not be 

properly represented. With the finite element model, the simulated contact force is usually 

under quasi-static conditions. However, in actual practice, the gearbox is running under 

dynamic operation conditions, and the dynamic contact force is different from the quasi-static 

contact force in both magnitude and waveform [83, 217]. Therefore, the use of a simple finite 

element model could bring noticeable errors to wear prediction, unless the worn tooth profile 
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can be timely corrected using gear tooth profile geometry measurement devices as 

demonstrated in [218, 219] and the finite element model is improved significantly to include 

the dynamic system characteristics. Thus, a dynamic model, after necessary validations, is 

required to provide the dynamic contact force, whose response is close enough to the actual 

running test rig. 

Besides physical model-based gear wear prediction, some other approaches were also proposed 

to monitor and predict wear-induced tooth profile change. For example, an integrated 

prognostics method was proposed for wear prediction in terms of wear depth change [114]. In 

this hybrid approach, the Archrad wear model was used to simulate wear behaviors, and the 

Bayesian update process was implemented to determine the wear coefficient during the wear 

process. The prediction results were validated using a run-to-failure test on the planetary 

gearbox. Also, a novel updating methodology was developed in [10, 17, 98]. The novel 

updating methodology was implemented on the Arachard wear models to update the wear 

coefficients if necessary, by regularly comparing with measured vibrations. The run-to-failure 

tests under different lubrication conditions were used to demonstrate and validate the 

effectiveness of the vibration-based updating methodologies [10, 17, 98] in wear monitoring 

and predictions; compared with the wear prediction purely relying on physics models or 

experiments, the results suggested that the integration of the wear model and actual 

measurements could achieve a more reliable and accurate wear prediction. The relationship 

between gear hobbing processing technique and gear geometric deviation was modeled by 

applying the improved particle swarm optimization (PSO) and back propagation algorithm (BP) 

in [220]. The accuracy of both algorithms was evaluated by the root mean square error between 

the predicted and experimental values. In [221], the artificial neural network was applied to 

predict the film thickness and lubrication conditions during the gear wear progression so that 

the severity of wear can be indicated. An approach for slow-speed gear wear monitoring was 
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developed in [222], and this approach consists of an automated feature selection process, 

random forest regression, and gradient boosted regression tree. The effectiveness of this gear 

wear monitoring approach was validated using actual wear mass loss [222]. A statistical model 

with statistical parameters was proposed to monitor and predict the gear behaviors with extreme 

tooth profile alteration induced by abrasive wear [223], and the effects of applied load and 

sliding distance of mating teeth were statistically and physically analyzed. Furthermore, a 

fusion of ultra-complete independent component analysis and parameter estimation was 

developed in [224] to monitor and predict the severity of gear wear. Even though promising 

prediction results were achieved in [220, 223, 224], these statistical model-based approaches 

could not reveal the wear behaviors and gear dynamic responses change during the wear 

process. Also, most of the statistical model-based or artificial-intelligence-based approach 

heavily relies on a large amount of experimental data, which limits its capability to apply in 

industrial practice. Therefore, a vibration-based tool, which can reveal the gear wear and 

dynamic behaviors and also requires a small amount of experimental data for model parameter 

updating/calibration, is urgently needed for gear wear monitoring and prediction in industrial 

applications. 

6.2 Prediction of surface pitting propagation 

The focus of the research described in Section 6.1 was on the prediction of the change in the 

gear profile caused by abrasive wear. There are some research works involving fatigue pitting 

propagation prediction [105, 204]. In [105], an EHL model and fatigue equation were 

combined to simulate fatigue pitting propagation and mild tooth profile change (caused by 

abrasive wear) under mixed elastohydrodynamic lubrication conditions, even though the 

competition behaviors between abrasive wear and fatigue pitting were exhibited during the 

gear wear process, this approach is time-consuming and high level of expert knowledge is 
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required to realize the EHL model. Compared with the research in [105], a more efficient 

approach was proposed in [204], Archard wear model and empirical fatigue pitting formula 

were used to predict both the abrasive wear (in terms of wear depth) and fatigue pitting (in 

terms of surface pitting) propagation. Inspired by the fatigue model in [204], a novel efficient 

fatigue pitting propagation model was developed in [17] to predict the pitting severity and 

distribution. The co-existing abrasive wear propagation was taken into consideration in [17]. 

In addition, a statistical formulation was proposed in Ref. [225] to depict the asperity shape 

evolution induced by plastic deformations and wear under mixed lubrication, and an asperity 

strain-hardening model was developed to predict the surface roughness change and fatigue 

pitting propagation. Although there is an almost perfect agreement between the model 

predictions and the experimental reference measurements in [225], the model predictions must 

rely on a huge amount of experimental evaluations for a more decisive validation and a final 

judgment on their precision, which brings great challenges to the application in industrial 

practices. The wear propagation processes were not timely examined nor calibrated by actual 

measurements to accommodate changes in operating and lubrication conditions as well as wear 

conditions and rates [105, 204, 225].  

In practice, the abrasive wear and fatigue pitting propagation rate would be influenced by the 

lubrication contamination, roughness change, operation condition change, etc. Therefore, 

without real-time examination and updating, the accuracy of prediction results is uncertain and 

may decrease significantly during the wear propagation. Therefore, reliable, effective, and 

efficient vibration tools are needed to predict gear wear propagation progress, with 

consideration of actual measurements. 

In addition to the above-mentioned physical model-based approaches, other techniques were 

also developed for fatigue pitting prediction. For example, the artificial neural network (ANN) 

was used in [226] to predict the severity of gear fatigue pitting. American Gear Manufacturing 
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Association (AGMA) design standard was employed in Ref. [227] to predict fatigue pitting 

and fatigue crack initiation caused by bending behaviors along the gear tooth profile. Based on 

the ISO standard of gear micropitting (ISO/TR 15144-1:2020) and taking into consideration of 

the operating conditions (load and speed), a theoretical study was conducted in [228] to assess 

and quantify the risk of gear micropitting by determining the local contact temperature, contact 

pressure, sliding parameter and thickness of lubricant oil film along the action line of gear tooth 

contact. Generally, a large set of experimental data is required to train the ANN or 

determine/optimize the parameters in the AGMA and ISO standards. In real applications and 

industry practice, it is hard to obtain sufficient historical data for training or parameter 

optimization. Also, having the ability to demonstrate the fatigue pitting propagation behaviors 

can help understand the fatigue mechanisms. However, ANN, AGMA or ISO standards can 

not reveal the fatigue pitting propagation behaviors with details. 

6.3 Prospects of the digital twin technologies in gear wear prediction 

The digital twin (DT) is a virtual representation (mirror) of a physical structure or a system in 

real space along its lifecycle [229]. Through real-time interaction between the virtual model 

and physical structure, the degradation status of the system and its RUL can be reflected and 

evaluated effectively. Thanks to its unique feature, DT has received considerable attention from 

the research community over the last decades [230]. However, due to the complex structures 

and harsh operation conditions, research on DT-based gearbox transmission system RUL 

prediction is rather rare. And existing conceptual approaches [229, 231, 232] have limitations 

in indicating the specific contact status and providing insights on degradation stages of gearbox 

transmission systems, all of which are of high value to RUL prediction. Therefore, the 

development of a systematic and practical digital twin technology for gear wear monitoring 

and RUL prediction will provide significant benefits to industrial applications. 
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The rudiment of digital twin techniques in gear wear monitoring can be found in several studies. 

For example, an integrated prognostics method was proposed for gear wear prediction [114]. 

In this integrated method, the Archard wear model could be recognized as the virtual model, 

and the connection between the virtual model and the physical structure was the collected wear 

particle mass. The experimental results proved the effectiveness of the proposed integrated 

prognostics. Also, comprehensive dynamic wear models were established as virtual models [10, 

17, 98], and a novel updating procedure was proposed to help the virtual (wear) model 

communicate with physical measurement, that is, vibration signal. The endurance tests under 

different lubrication conditions demonstrated and validated the proposed vibration-based gear 

wear prediction methodology. The flexible and evolving nature of the prediction approaches 

shown in Refs. [10, 17, 98, 114] means that they could be easily executed and deployed within 

existing digital twin frameworks, which can bring enormous potential benefits to gear system 

prognostics in practice. 

6.4 Summary 

Table 7 summarizes the developments of wear prediction techniques. From Table 7 and the 

above review on wear (abrasive wear and fatigue pitting) prediction techniques, it can be seen 

that most of the existing wear prediction techniques are designed for predicting abrasive wear 

induced tooth profile change, while the fatigue pitting prediction techniques have not yet been 

fully developed. The main reason might be that i) there are few effective and efficient 

models/tools for simulating fatigue pitting propagation behaviors, ii) abrasive wear usually co-

exists with the fatigue pitting propagation, which leads to a complex surface degradation 

process; and iii) the fatigue pitting induced vibration feature is weak and difficult to be 

extracted. These challenges restrict the development of vibration-based fatigue pitting 
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propagation monitoring and prediction. Nevertheless, a reliable, effective, and efficient fatigue 

pitting model/tool is required to uncover fatigue pitting propagation behaviors. 

Table 7 Gear wear prediction techniques 

References Main methodoligies/techniques Research objective 

[173, 206, 210, 211, 
213-216] Tribological model-based techniques Tooth profile change prediction (mainly 

caused by abrasive wear) 

[220-224] Data-driven based techniques Tooth profile change prediction (mainly 
caused by abrasive wear) 

[105, 204] Tribological model-based tecniques Fatigue pitting propagation prediction 

[225-228] Data-driven based techniques Fatigue pitting propagation prediction 

[10, 17, 98, 114] Digital twin techniques Gear wear predictions (abrasive wear or 
fatigue pitting) 

From the review of the existing research on gear wear prediction, it is noted that the physical-

based approach has been widely used. Compared with the statistical model-based approach, 

artificial intelligence-based approach, and standard-based approach, the physical (wear) model 

has its unique advantage in that the surface degradation behaviors can be directly determined 

for understanding the wear mechanism and its consequences to the gear system. However, the 

existing model-based wear prediction methodology has not been fully calibrated using actual 

measurements, which could degrade the wear prediction accuracy. Thereby, it is necessary to 

develop a vibration-based tool for gear wear prediction, in which the wear model can be 

established following a complete understanding of the wear mechanism, and the model 

parameters can be timely calibrated and updated with a reasonable amount of experimental 

data available. 
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7. Conclusion and recommendation for future work 

Research progress on vibration-based gear wear monitoring developments has been reviewed 

and summarized in the preceding sections. This section presents the conclusion and 

recommendations for future research in this area.  

7.1 Conclusion 

From the literature review of vibration feature-based gear wear monitoring, it was noticed that 

most of the existing research works are focused on tracking the abrasive wear-induced tooth 

profile change, which is usually at millimeter level (macro-level wear). On the contrary, fatigue 

pitting monitoring (usually at micro-level wear) and wear mechanism identification have 

received less attention mainly due to weak vibration characteristics related to fatigue pitting, 

which are easily submerged and masked by background noise. In reviewing the progress of 

vibration model-based gear wear monitoring, it was observed that the Archard wear equation 

still plays an important role in modeling the abrasive wear behaviors. In contrast, analytical 

models for fatigue pitting are limited, and the combination of the EHL model and fatigue 

criterion is currently the primary approach to theoretically investigate fatigue pitting 

propagation behaviors, which is a time-consuming process and requires a high level of expert 

knowledge for establishing the model. More effective and efficient models/tools for simulating 

fatigue pitting propagation behaviors would be highly desired to further understand fatigue 

pitting propagation. 

Moreover, in industrial practices, abrasive wear and fatigue pitting can both arise in the gear 

surface degradation progression, either simultaneously or individually appearing at different 

times on the same gear. Therefore, it would be better if both the gear tooth profile change and 
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surface pitting density could be simultaneously monitored and predicted. To do so, it would 

require to quantify the wear-induced tooth profile change/alteration (in terms of wear depth) 

and the surface pitting density in situations when these two wear events take place separately 

or simultaneously. 

From the perspective of industrial applications, the cyclostationary analysis approach could 

bring significant benefits to various industrial scenarios. The cyclostaionary analysis is a real-

time nondestructive monitoring method. Performing the cyclostationary analysis can identify 

the wear mechanisms and assess the wear severity. The information obtained from the 

cyclostationary enables engineers to have a deep insight into the current degradation status of 

the gearbox, analyze the possible cause of the degradations, and then make reliable predictive 

maintenance-based decisions. 

The digital twin techniques discussed in Section 6.3 also have enormous potential benefits to 

industry practice. The virtual models (such as the dynamic and tribological models) can help 

reveal the actual running status of the gearbox without disrupting its operations. Also, the real-

time communication of virtual models and actual measurements from the gearbox can 

guarantee accurate gear operating status representations and remaining useful life predictions, 

which are of great interest to analysts and engineers. Moreover, with some transfer learning 

techniques or adaptive model updating techniques, the virtual models can be applied to various 

applications, thereby significantly reducing labor costs and bringing substantial economic 

benefits. 

7.2 Recommendations for future work 

From the above discussions, there are some potential topics for future research in this area, 

which are listed as follows: 
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1) Vibration-based adhesive wear progression monitoring 

As discussed in Section 2.1, the studies on adhesive wear are much less than those on abrasive 

wear and fatigue pitting, especially for the vibration-based wear progression monitoring. The 

adhesive wear is caused by the shear of adhesive bonding and is a common form of dry wear 

in industrial practices. Severe adhesive wear would induce noticeable changes in vibration 

features. Therefore, the investigations of the relationship between adhesive wear and vibration 

characteristics could benefit the development of vibration-based adhesive wear progression 

monitoring techniques, which are of great significance for the health management of gear 

transmission systems. 

2) Vibration-based fatigue pitting evolution tracking 

As reviewed in Section 4.1, many studies were focused on tracking the tooth profile change, 

which is mainly caused by abrasive wear, while fatigue pitting propagation tracking has been 

less considered in the literature. Analytical techniques that can extract or enhance the weak 

features induced by fatigue pitting are needed to be developed for tacking fatigue pitting 

propagation. On the other hand, sliding vibration contains rich information of gear surface 

morphology [233]. More studies on extracting the useful information existing in sliding 

vibrations are deserved. 

3) Vibration-based wear mechanism identification 

As stated in Section 4.2, the online wear mechanism identification techniques via vibrations 

have not been well developed. Investigating the micro-level surface morphology difference 

could facilitate the development of vibration-based gear wear mechanism identification. For 

example, the different wear mechanisms have different spatial frequencies, resulting in 

different vibration frequencies. Also, the surface roughness levels of different wear 

mechanisms are different, which might lead to vibrations with different magnitudes. 
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4) Development of fatigue pitting model 

Unlike abrasive wear, there are no simple and widely used models to simulate fatigue pitting 

propagation. Most of the existing research used the EHL model and combined it with fatigue 

criteria. However, establishing the EHL model requires a high level of expert knowledge and 

is time-consuming. An efficient, effective, and reliable fatigue pitting model is highly 

anticipated for practical utilization in industrial applications.  

5) Vibration-based techniques to understand multiple wear mechanisms and predict their 

propagation 

Even though there are several approaches to predict the wear propagation as introduced in 

Section 6, most of them were focused on a single wear mechanism/event, either abrasive wear 

or fatigue pitting. In practical engineering, multiple wear phenomena co-exist in the wear 

process during the gear service life. Vibration-based techniques, which can accurately predict 

these wear events separately or simultaneously, would offer significant benefits to industrial 

applications. 

6) Digital twin based model for gear system monitoring during the gear wear propagation 

progression 

Digital twin-based model can help reveal the gear wear propagation behaviors by using 

numerical simulations and limited measured data. This model would virtually provide deep 

insights into the wear mechanisms and contribute to a deep understanding of the degradation 

of the gear transmission system. Valuable information from the digital twin-based model can 

help create smart maintenance scheduling and gear design. 

7) RUL prediction of the gearbox transmission system 

Gearbox transmission system is widely used in many industrial areas, and its reliable operation 

is a key for mechanical power transmission in rotating machinery. Gear wear is an inevitable 
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phenomenon during gear service life. It is beneficial to predict the RUL of the gear system so 

that predictive maintenance can be scheduled in advance. The artificial intelligence approaches 

and digital twin methodologies can help predict the RUL of the gear transmission system. 
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