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Abstract

This paper presents a weak-intrusive stochastic finite element method for solving stochastic struc-

tural dynamics equations. In this method, the stochastic solution is decomposed into the sum-

mation of a series of products of random variables, spatial vectors and temporal functions. An

iterative algorithm is proposed to compute each triplet of the random variable, spatial vector and

temporal function one by one. The original stochastic dynamics problem is firstly transformed into

spatial-temporal coupled problems (i.e. deterministic structural dynamics equations), which can

be solved efficiently by existing FEM solvers. Based on the solution of the spatial-temporal cou-

pled problem, the original problem is then transformed into stochastic-temporal coupled problems

(i.e. one-dimensional second-order stochastic ordinary differential equations), which are solved

by a proposed sampling method. All random sources are embedded into the stochastic-temporal

coupled problems. The proposed sampling method can solve the stochastic-temporal problems of

hundreds of dimensions with low computational costs. Thus the curse of dimensionality in high-

dimensional stochastic spaces is avoided with great success. Three numerical examples, including

low- and high-dimensional stochastic problems, are used to demonstrate the good accuracy and

the high efficiency of the proposed method.

Keywords: Stochastic structural dynamics; Stochastic finite element method; Weak-intrusive
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approach; Curse of dimensionality;

1. Introduction

Partial differential equations (PDEs) provide powerful tools to describe physical models in sci-

ence and engineering. Discretization techniques usually perform numerical simulations of PDEs.

One of the state-of-the-art methods is the finite element method (FEM). FEM offers a simple way

to solve very high-resolution solutions in various physics models [1]. As predicting uncertainty

propagation on the response of models has become an essential part of the analysis and design of

practical engineering systems, a growing interest has been devoted to the propagation of uncer-

tainties through physical models governed by stochastic PDEs [2, 3]. As an extension of FEM, the

stochastic finite element method (SFEM) is also used to solve high-resolution stochastic solutions

of physical models involving uncertainties [4, 5, 6].

In this paper, we consider that the governing equation with n degrees of freedom for linear

stochastic structural dynamics analysis is given as

M(θ)ü(t, θ) + C(θ)u̇(t, θ) + K(θ)u(t, θ) = F(t, θ), t ∈ [0,T ] , (1)

where M(θ), C(θ), K(θ) ∈ Rn×n and F(t, θ) are obtained by the classical finite element discretiza-

tion. Initial values are given by u(0, θ) = u0(θ) and u̇(0, θ) = u1(θ). M(θ), C(θ) and K(θ), known

as the stochastic mass, damp and stiffness matrices, are usually induced by stochastic material

properties and F(t, θ), known as the stochastic force vector, is induced by stochastic forces. The

modelling of uncertainties is defined in a suitable probability space (Θ,Ξ,P), where Θ denotes the

space of elementary events, Ξ is a σ-algebra defined on Θ and P is a probability measure. We

consider the stochastic solution u (t, θ) of Eq. (1) to be a stochastic function with value in a certain

functional space. We focus on solving u (t, θ) efficiently and accurately in this paper.

Over the last few decades, several methods have been developed to solve Eq. (1). They are

usually extended from the methods for solving time-independent (or called static) stochastic prob-

lems. These methods are divided into non-intrusive and intrusive ways. A powerful non-intrusive
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method is the Monte Carlo simulation (MCS) [7, 8, 9]. MCS is easy to be executed by repeatedly

solving deterministic problems. It can be applied to solve high-dimensional stochastic problems

due to the dimensionality-independent convergence. However, a large number of deterministic

problems are solved to achieve a good accuracy, which is computationally expensive, especially

for large-scale problems. Some improvements are developed to save the computational cost of

MCS, e.g. quasi-MCS and multilevel MCS [8, 10, 11]. Other non-intrusive methods are also pro-

posed to solve Eq. (1), e.g. adaptive sampling methods and response surface methods [12, 13, 14].

A kind of intrusive Galerkin spectral stochastic method and its extensions [3, 4, 15, 16, 17, 18]

are proposed to solve time-independent stochastic finite element equations. It has been proven

efficient for time-dependent stochastic problems. In this kind of method, the stochastic solution

u(t, θ) is decomposed into the summation of a series of products of polynomial chaos (PC) basis

and time-dependent deterministic functions [4, 15]. The Galerkin projection is then used to trans-

form Eq. (1) into an augmented deterministic dynamics equation whose size is much larger than

the original problem. The size of the augmented equation increases dramatically as the stochastic

dimension and the order of PC basis increase [19, 20]. The computational cost for solving the

augmented equation is prohibitively expensive, especially for large-scale and high-dimensional

stochastic problems. More often than not, this kind of method suffers from the curse of dimen-

sionality when dealing with a large number of random parameters that are derived from the dis-

cretized input random fields [21, 22]. Although several improvements are presented to reduce

computational requirements, e.g. Krylov-type iteration and sparse PC approximation [23, 24], it

is still attractive to develop efficient and general-purpose methods to solve large-scale and high-

dimensional stochastic dynamics problems in the context of PC-based methods. Also, other meth-

ods are also proposed to solve Eq. (1), e.g. ANOVA methods [25, 26], non-parametric meth-

ods [27, 28, 29], etc.

Another method that has received much attention is known as the proper generalized decom-

position (PGD) method, which is firstly introduced in [30]. This kind of method explores a pri-

ori separated representations of the stochastic solutions and does not require prior knowledge of

the stochastic solutions. PGD methods have been successfully applied to time-dependent prob-

lems [31, 32, 33, 34]. In the PGD method, the stochastic solution of time-dependent problems is
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decomposed into the summation of a set of products of the triplet of stochastic, spatial and tempo-

ral components. Alternating minimization algorithms are used to compute corresponding random

variables, spatial vectors and temporal function [35]. The stochastic version of PGD, named gen-

eralized spectral decomposition (GSD) method [17], has been used to solve stochastic transient

heat diffusion problems and high-dimensional stochastic problems [20, 36, 37, 38]. PGD and

GSD methods provide efficient and valuable ways for structural dynamics analysis. These meth-

ods have a few applications in stochastic structural dynamics analysis, e.g. PGD-based stochastic

structural dynamic analysis in frequency domain [39] and comparative analysis between GSD-

based stochastic structural dynamic analysis and the ANOVA method [26].

In this paper, we propose a PGD-like expansion of the stochastic solution and develop an al-

ternating iterative algorithm to solve the components of the stochastic expansion. The iterative

procedure of the classical PGD method is to fix two components in three components and then

update the other. However, it is numerically unstable for some cases (this will be discussed in

Section 2 and the numerical example in Section 6). To develop a numerically stable iteration, we

fix one component in three components, and coupled equations are used to solve the other two

components. Decoupling of the two coupled components is computed via singular value decom-

position (SVD) of the coupled solution. Specifically, the proposed iterative procedure relies on two

steps: The first step is to transform the original problem into a spatial-temporal coupled problem

under a given random variable, and the spatial vector is computed via SVD of the spatial-temporal

solution. The second step is to transform the original problem into a stochastic-temporal coupled

problem under the spatial vector obtained by the first step, and the updated random variable is

then computed via SVD of the stochastic-temporal solution. The stochastic-temporal problem is a

one-dimensional second-order stochastic ordinary differential equation (SODE). An efficient sam-

pling method is used to solve the SODE of hundreds of dimensions, which avoids the curse of

dimensionality in high-dimensional stochastic spaces. The proposed method is considered to be a

weak-intrusive method and it combines the advantages of intrusive and non-intrusive methods.

The paper is organized as follows: Approximations of the stochastic solution are introduced

in Section 2, including the PC-based approximation and the PGD expansion. In Section 3, we

present an alternating iterative algorithm to solve the components of each triplet of the stochastic
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solution. High-dimensional stochastic problems are briefly discussed in Section 4. Following this,

the algorithm implementation of the proposed method is elaborated in Section 5. In Section 6,

three numerical examples of low- and high-dimensional cases are presented to demonstrate the

performance of the proposed method, and conclusions and discussions follow in Section 7.

2. Approximation of stochastic solutions

To simplify the representation, we introduce the stochastic operator L = M(θ) ∂
2

∂t2 + C(θ) ∂
∂t +

K(θ). Eq. (1) thus becomes

L u(t, θ) = F (t, θ) . (2)

In the context of PC-based methods [4, 15], the stochastic solution u(t, θ) is approximated in

the form

u(t, θ) =

P∑
i=1

Γi(θ)di(t), (3)

where {Γi(θ)}Pi=1 are a set of PC (or generalized PC) basis, {di(t)}Pi=1 are deterministic time-dependent

vectors that need to be solved and di(t j) ∈ Rn for each time t j ∈ [0,T ]. The number P of the trun-

cated term is given by P =
(r+p)!
r!p! , where r is the number of random variables and p is the order of

PC basis. Substitute Eq. (3) into Eq. (2) and apply the stochastic Galerkin projection [19] we get

a system of equations about unknown {di(t)}Pi=1,

P∑
i=1

E
{
Γ j(θ)Γi(θ)L

}
di(t) = E

{
Γ j(θ)F (t, θ)

}
, j = 1, · · · , P, (4)

which can be written as an augmented system
LΓ,11 · · · LΓ,1P

...
. . .

...

LΓ,P1 · · · LΓ,PP




d1 (t)
...

dP (t)

 =


FΓ,1(t)
...

FΓ,P(t)

 , (5)

where the operator LΓ,i j = E
{
Γi(θ)Γ j(θ)L

}
, the vector FΓ, j(t) = E

{
Γ j(θ)F (t, θ)

}
, E {·} is the ex-

pectation operator. It is noted that the size of the solution
[
dT

1 (t j), · · · ,dT
P(t j)

]T
(at the time t j) of

Eq. (5) is n × P, which is much larger than the original stochastic problem. For instance, the size
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of Eq. (5) is 5.15 × 107 when n = 1 × 104, r = 100 and p = 2, which leads to the curse of dimen-

sionality and the computational effort for solving Eq. (5) is very high. Some methods have been

proposed to reduce the computational effort of classical PC-based methods [23, 24, 40].

In this paper, we develop a new method to solve Eq. (2). Inspired by the expansion of PGD

methods [33], we let the stochastic solution u(t, θ) be a form u (t, θ) =
∑∞

i=1 λi (θ) digi (t) and trun-

cate it at the k-th term,

uk (t, θ) =

k∑
i=1

λi (θ) digi (t) = DG(t)Λ(θ), (6)

where D = [d1, · · · ,dk] ∈ Rn×k, G(t) = diag
[
g1(t), · · · , gk(t)

]
and Λ(θ) = [λ1(θ), · · · , λk(θ)]T ∈ Rk,

λi(θ) ∈ S, i = 1, · · · , k. S is a stochastic space for real valued random variables with second

moments.

A suitable way is to solve the triplet {λi(θ),di, gi(t)} one by one since it is not easy to de-

termine {λi(θ),di, gi(t)}ki=1 once time. Based on this idea, we assume that the first k − 1 terms

{λi(θ),di, gi(t)}k−1
i=1 have been determined and the goal is to solve the k-th triplet {λk(θ),dk, gk(t)}.

We rewrite Eq. (6) as

uk (t, θ) = uk−1(t, θ) + λk (θ) dkgk (t) , (7)

where uk−1(t, θ) =
∑k−1

i=1 λi (θ) digi (t). A new stochastic dynamics equation about the unknown

triplet {λk(θ),dk, gk(t)} is obtained by transforming Eq. (2) into

L {λkdkgk(t)} = Fk (t, θ) , (8)

where Fk (t, θ) = F (t, θ) −L uk−1(t, θ).

The classical PGD method is an available way to iteratively compute λk(θ), dk and gk(t) in (8),

which is corresponding to

Step 1: For a given random variable λk(θ) and a given spatial vector dk,[
dT

k E
{
λ2

k(θ)L
}

dk

]
gk(t) = dT

k E {λk(θ)F (t, θ)} (9)

is used to compute the temporal function gk(t). Eq. (9) is a second-order ODE and existing numer-

ical techniques [41] can be used to solve it efficiently.

6



Step 2: For the given random variable λk(θ) (same value as that in Step 1) and the temporal function

gk(t) obtained by Step 1,[∫ T

0
gk(t)E

{
λ2

k(θ)L
}

gk(t)dt
]

dk =

∫ T

0
gk(t)E {λk(θ)F (t, θ)} dt (10)

is used to compute the spatial vector dk. Eq. (10) is a time-independent finite element equation

and classical FEM numerical methods [1, 42] can be used to solve it efficiently. It is noted that we

only adopt FEM for the discretization in this paper but other discretization techniques can also be

used, e.g. the finite volume method and the finite difference method.

Step 3: For the spatial vector dk obtained by Step 2 and the temporal function gk(t) obtained by

Step 1, [
dT

k

∫ T

0
gk(t)L gk(t)dtdk

]
λk(θ) = dT

k

∫ T

0
gk(t)F (t, θ) dt (11)

is used to compute the updated random variable λk(θ). Eq. (11) is a time-independent one-

dimensional stochastic algebraic equation and classical numerical techniques can be used to solve

it, e.g. PC-based methods and sampling methods [43].

The final solution of the triplet {λk(θ),dk, gk(t)} is obtained by iteratively solving Eq. (9), (10)

and (11). However, the above PGD iteration maybe fail to convergence (see the example in Sec-

tion 6.1 and a similar conclusion can also be found in [33] for the deterministic problems with

non-symmetric differential operators). As far as the stochastic dynamic analysis is concerned in

this paper, the deterministic matrix
∫ T

0
gk(t)E

{
λ2

k(θ)L
}

gk(t)dt ∈ Rn×n may be ill-conditioned for

solving the spatial vector dk. Also, the random variable dT
k

(∫ T

0
gk(t)L gk(t)dt

)
dk ∈ S may take

a value of zero (or very close to zero), which makes Eq. (11) unstable to compute the random

variable λk(θ). In our experience, the integral operations of gk(t), ġk(t), g̈k(t) in Eq. (10) and

(11) usually induce the ill conditions and unstableness, that is,
∫ T

0
gk(t)ġk(t)dt > 0 (or < 0) and∫ T

0
gk(t)g̈k(t)dt > 0 (or < 0) cannot hold for some problems and their values may be zero.

3. A weak-intrusive SFEM for solving stochastic dynamics equations

In order to overcome the above shortcoming of the classical PGD iteration, a residual mini-

mization method is used in [33]. In this paper, we introduce a new iterative procedure to avoid
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the shortcoming. Specifically, we firstly consider a spatial-temporal coupled representation d̃k(t)

instead of the separated form dkgk(t) in Eq. (8),

L
[
λk(θ)̃dk(t)

]
= Fk(t, θ). (12)

The stochastic Galerkin method is used to solve Eq. (12), that is, for a given random variable λk(θ),

we solve d̃k(t) by

Lkd̃k(t) = fk(t), (13)

where the deterministic operator Lk = E
{
λ2

k(θ)L
}

= E
{
λ2

k(θ)M(θ)
}
∂2

∂t2 +E
{
λ2

k(θ)C(θ)
}
∂
∂t +E

{
λ2

k(θ)K(θ)
}

and the deterministic force vector is given by fk(t) = E{λk(θ)Fk(t, θ)} = E{λk(θ) [F(t, θ) −L uk−1(t, θ)]}.

Eq. (13) can be considered as a deterministic structural dynamics equation and it has good numer-

ical stability. Existing numerical methods can be used to solve d̃k(t) ∈ Rn×nt (nt is the total time

step) in Eq. (13) efficiently and accurately, e.g. the Newmark method and the central difference

method [44].

Based on the solution d̃k(t) obtained by Eq. (13), the Eq. (11)-like way to compute the random

variable λk(θ) still causes numerical unstableness. In order to avoid this problem, we decouple

d̃k(t) in spatial and temporal spaces. d̃k(t) is approximated by the rank-one SVD,

d̃k(t) ≈ dkgk(t), dk(t) ∈ Rn, gk(t) ∈ R1×nt , (14)

which provides an optimal rank-one approximation of d̃k(t) [45]. A more accurate SVD approxi-

mation of d̃k(t) is d̃k(t) ≈ dk,1gk,1(t) + dk,2gk,2(t) + · · · . In this paper, only the first term is retained

and dk in the stochastic solution Eq. (7) is approximated by dk,1. Although the single-term approx-

imation in Eq. (14) has low accuracy, the accuracy of the stochastic solution u(t, θ) still increases

as the number k of retained terms increases. In other words, the accuracy of u(t, θ) can be im-

proved by summing a series of low-accuracy terms. In practical computations, we orthogonalize

the solution dk by Gram-Schmidt orthogonalization, which is corresponding to

dk = dk −

k−1∑
i=1

dT
k di

dT
i di

di = (In − DDT )dk, (15)

where {di}
k−1
i=1 are orthonormal vectors meeting dT

i d j = δi j, δi j is the Kronecker delta function,

In ∈ Rn×n is the identity matrix.
8



Based on the spatial vector dk obtained by Eq. (14), we consider a stochastic-temporal coupled

form g̃k(t, θ) instead of the separated form λk(θ)gk(t) in Eq. (8),

L
[
dkg̃k(t, θ)

]
= Fk(t, θ) (16)

which is solved via a Galerkin procedure,

Skg̃k(t, θ) = hk(t, θ), (17)

where the stochastic operator Sk = dT
k L dk = mk(θ) ∂

2

∂t2 + ck(θ) ∂∂t + kk(θ), the random variables

mk(θ) = dT
k M(θ)dk, ck(θ) = dT

k C(θ)dk, kk(θ) = dT
k K(θ)dk ∈ S, hk(t, θ) = dT

k [F(t, θ) −L uk−1(t, θ)].

To solve Eq. (17), we introduce a sample-based method [43] and adopt the Newmark method for

the explanation of this method. We remark that other methods can also be implemented by the

proposed scheme, e.g. central difference method.

According to the Newmark method, the solution g̃k(t, θ) of Eq. (17) at the time t + ∆t is solved

by

qk(θ)̃gk(t + ∆t, θ) = h̃k(t + ∆t, θ), (18)

where the random variable qk(θ) is

qk(θ) = α1mk(θ) + α2ck(θ) + kk(θ) ∈ S (19)

and the random variable h̃k(t + ∆t, θ) is given by

h̃k(t + ∆t, θ) = hk(t + ∆t, θ) + α9,k(θ)̃gk(t, θ) + α10,k(θ) ˙̃gk(t, θ) + α11,k(θ) ¨̃gk(t, θ) ∈ S. (20)

The parameters α1, · · · , α8 are inherited from the classical Newmark method. They are given

by α1 = 1
β∆t2 , α2 =

γ

β∆t , α3 = 1
β∆t , α4 = 1

2β−1, α5 =
γ

β
−1, α6 = ∆t

2

(
γ

β
− 2

)
, α7 = ∆t (1 − γ), α8 = γ∆t.

These parameters are fixed for the given time discretization and the chosen parameters γ, β. The

parameters α9,k(θ), α10,k(θ) and α11,k(θ) are random variables given by α9,k(θ) = α1mk(θ) + α2ck(θ),

α10,k(θ) = α3mk(θ) + α5ck(θ), α11,k(θ) = α4mk(θ) + α6ck(θ). It is noted that qk(θ) > 0 holds for all

θ ∈ Θ, thus Eq. (18) is numerically stable for solving the solution g̃k(t, θ).

In order to avoid the curse of dimensionality in high-dimensional stochastic spaces, we solve

Eq. (18) by a sampling method,

g̃k

(
t + ∆t, θ(i)

)
=

h̃k

(
t + ∆t, θ(i)

)
qk

(
θ(i)) (21)
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for i = 1, · · · , ns, which solves ns solutions of Eq. (18). However, solving Eq. (18) for each sample

θ(i), i = 1, · · · , ns is a bit time-consuming since the computational cost is strongly dependent on

the sample size ns. An accelerated method is to adopt a vector-based form,

g̃k(t + ∆t, θ) = h̃k(t + ∆t, θ) � qk (θ) , (22)

where θ = {θ(i)}
ns
i=1 is the sample vector (or matrix), g̃k(t + ∆t, θ), hk(t + ∆t, θ), qk (θ) ∈ Rns , the

operator � represents the element-wise division of the vectors h̃k(t + ∆t, θ) and qk (θ), also known

as the Hadamard division operator. Eq. (22) is easy to implement and its computational effort is

weakly dependent on the sample size. Further, we can compute the first and second derivatives of

g̃k(t, θ) by

¨̃gk(t + ∆t, θ) = α1

(̃
gk(t + ∆t, θ) − g̃k(t, θ) − α3

˙̃gk(t, θ) − α4
¨̃gk(t, θ)

)
(23)

and

˙̃gk(t + ∆t, θ) = ˙̃gk(t, θ) + α7
¨̃gk(t, θ) + α8

¨̃gk(t + ∆t, θ), (24)

which can also be computed by use of the sample vectors g̃k(t, θ), ˙̃gk(t, θ), ¨̃gk(t, θ), g̃k(t + ∆t, θ) ∈

Rns .

Similar to Eq. (14), we decouple g̃k(t, θ) in stochastic and temporal spaces,

g̃k(t, θ) ≈ λk(θ)gk(t), (25)

In the practical computation, it is calculated in a sample form g̃k(t, θ) ∈ Rns×nt by the rank-one

SVD,

g̃k(t, θ) ≈ λk(θ)gk(t), λk(θ) ∈ Rns , (26)

where λk(θ) ∈ Rns is the sample vector of the random variable λk(θ) and gk(t) ∈ R1×nt is the

normalized deterministic vector. Eq. (26) provides a sample-based description for the random

variable λk(θ) and the probability characteristic of λk(θ) can be computed via the random samples

λk(θ) ∈ Rns .

The above iterative procedure is summarized as following,

→ λk, j(θ)
d̃k, j(t)
−−−−→ dk, j

g̃k, j(t,θ)
−−−−−→

 λk, j+1(θ)→

gk, j+1(t)
⇒ {λk(θ),dk, gk(t)} , (27)

10



where the iteration in the box is used to compute the triplet {λk(θ),dk, gk(t)}. The solutions d̃k, j(t)

and g̃k, j(t, θ) of the j-th loop are intermediates. They are only used to compute dk, j and λk, j+1(θ)

and do not arise in the next iteration. For each iteration, only the random variable λk, j(θ) (or the

vector dk, j if starting from d0) is inherited from the previous iteration, which is very different

from the classical PGD iteration. In the classical PGD method, two of λk, j(θ), dk, j, gk, j(t) are

passed to the next iteration. It is also seen from Eq. (27) that the original stochastic dynamics

equation is transformed into the deterministic dynamics equation and the one-dimensional SODE.

The deterministic dynamics equation (i.e. Eq. (13)) is used to solve the solution d̃k, j(t) and only

deterministic computations are involved, thus it is easily applied to large-scale problems. The one-

dimensional SODE (i.e. Eq. (17)) is used to solve the stochastic solution g̃k, j(t, θ). The sampling

method proposed to solve the one-dimensional SODE has low computational effort and it can be

easily applied to high-dimensional stochastic problems.

By use of the above iteration, we compute each triplet {λk(θ),dk, gk(t)} in a sequential way.

However, the stochastic solution uk (t, θ) approximated by Eq. (8) does not exactly meet the origi-

nal problem Eq. (2), and it may have low accuracy for some problems. We introduce a recalcula-

tion process to improve the accuracy of the stochastic solution uk (t, θ). We rewrite Eq. (2) under

the approximation Eq. (6),

L [DG(t)Λ(θ)] = F(t, θ). (28)

Similar to Eq. (16), we solve a stochastic-temporal coupled solution G̃(t, θ) ∈ Rk×nt based on the

known matrix D ∈ Rn×k instead of computing the separated form G(t)Λ(θ) in Eq. (28). By use of

the Galerkin approach we have [
DTL D

]
G̃(t, θ) = DT F(t, θ), (29)

which is rewritten as

m̃ (θ) ¨̃G (t, θ) + c̃ (θ) ˙̃G (t, θ) + k̃ (θ) G̃ (t, θ) = f̃ (t, θ) , (30)

where m̃ (θ) = DT M (θ) D, c̃ (θ) = DT C (θ) D, k̃ (θ) = DT K (θ) D ∈ Rk×k, f̃ (t, θ) = DT F (t, θ) ∈ Rk.

We solve Eq. (30) by using the sampling method, that is, the solution of Eq. (30) is solved for

each random sample. Total computational costs are still low thanking to the fact that the size k of
11



Eq. (30) is usually small. The proposed method is similar to classical reduced-order methods, e.g.

proper orthogonal decomposition methods [21, 46], but an efficient way is proposed to construct

the reduced basis.

In order to obtain the Eq. (6)-like decoupled approximation, we expand the solution G̃(t, θ) in

Eq. (29) by use of Karhunen–Loève (KL) expansion [22, 47, 48],

G̃(t, θ) =

m∑
i=1

λ∗i (θ)g∗i (t), g∗i (t) ∈ Rk×nt , (31)

where m is the number of truncated terms, {λ∗i (θ)} and {g∗j(t)} are eigenvalues and eigenvectors of

the autocorrelation matrix CG̃G̃ of G̃(t, θ), respectively. They meet

E
{
λ∗i (θ) λ∗j (θ)

}
= E

{
λ∗2i (θ)

}
δi j, Tr

(
g∗Ti (t) g∗j (t)

)
= δi j, (32)

where Tr (·) represents the trace of the matrix. In practice, the autocorrelation matrix CG̃G̃ is

calculated by

CG̃G̃ =
[
E

{
G̃ (pi, θ) G̃

(
p j, θ

)}]knt

i, j=1
∈ Rknt×knt , (33)

where {pi}i is the discretization of the physical coordinate (k, t), pi =
(
k(i), t(i)

)
, k(i) ∈ [1, · · · , k],

t(i) ∈
[
t1, · · · , tnt

]
. It is noted that the size of the eigenvectors of CG̃G̃ is knt × 1 and g∗i (t) ∈ Rk×nt in

Eq. (31) is obtained by rearranging the i-th eigenvector according to the physical coordinate (k, t).

Based on Eq. (31), we reconstruct the stochastic solution u(t, θ) as

u(t, θ) = DG̃(t, θ) =

m∑
i=1

λ∗i (θ)Dg∗i (t). (34)

In the sense of minimizing the mean squared error, Eq. (34) provides the optimal stochastic-

deterministic decomposition of the stochastic solution u(t, θ) under the known matrix D. Also,

we can estimate the PDF of the stochastic solution u
(
xk, t j, θ

)
at the point

(
xk, t j

)
by the random

samples
m∑

i=1
λ∗i (θ)D (xk) g∗i

(
t j

)
∈ Rns . In this way, the proposed method provides a weak-intrusive

approximation of PDF of the stochastic solution, which combines the high efficiency of intrusive

methods and the weakly dimensionality-dependent property of non-intrusive methods.

Although we only consider the linear case in this paper, the proposed method also works on

the stochastic nonlinear dynamics problems. The decoupling Eq. (14) and (25) are independent

12



of the type of problems and can be computed efficiently for both linear and nonlinear stochastic

problems. However, for nonlinear problems, Eq. (13) becomes deterministic nonlinear dynamics

equations and Eq. (17) becomes second-order nonlinear SODEs. Solving Eq. (13) and (17) of

nonlinear stochastic dynamics problems are usually time-consuming.

4. High-dimensional stochastic problems

In this section, we show that the proposed method can be applied to high-dimensional stochas-

tic problems without any modification. Without loss of generality, we assume that matrices M, C

and the force vector F(t) are deterministic and the stochastic matrix K(θ) can be represented as a

separated form

K (θ) =

r∑
j=0

ξ j (θ) K j, (35)

where ξ0 (θ) ≡ 1 and K0 is the deterministic component of the stochastic stiffness matrix K (θ). For

the unseparated forms, series expansion methods can be used to provide separated representations,

e.g. KL expansion and PC expansion. In this paper, we introduce high-dimensional stochastic

spaces by setting a large value r in Eq. (35).

We rewrite L = L1 + K(θ), where L1 = M ∂2

∂t2 + C ∂
∂t represents the deterministic component

of the stochastic operator L . We still adopt Eq. (13) to compute d̃k(t), which is corresponding to

L1d̃k(t) +

 r∑
j=0

β jkkK j

 d̃k(t) = fk (t) , (36)

where

fk (t) =
E {λk (θ)}

E
{
λ2

k (θ)
}F (t) −

k−1∑
i=1

L1
[
digi (t)

]
+

 r∑
j=0

β jikK j

 digi (t)

 (37)

and

βi jk =
E

{
ξi (θ) λ j (θ) λk (θ)

}
E

{
λ2

k (θ)
} . (38)

The total number of
{
βi jk

}
i, j

to be computed is (r + 1)× k. By adopting a sample-based strategy, we

13



compute all coefficients
{
βi jk

}
i, j

at once, which is corresponding to

βk =
ξ(θ)T (λ(θ) � λk(θ))

λk(θ)Tλk(θ)
=



β01k · · · β0kk

β11k · · · β1kk

...
. . .

...

βr1k · · · βrkk


∈ R(r+1)×k, (39)

where βk is a matrix including all coefficients
{
βi jk

}
i, j

, the sample matrices ξ(θ), λ(θ) and the

sample vector λk(θ) are given by

ξ(θ) =
[
ξ0(θ), ξ1(θ), · · · , ξr(θ)

]
=


1 ξ1(θ1) · · · ξr(θ1)
...

...
. . .

...

1 ξ1(θns) · · · ξr(θns)

 ∈ Rns×(r+1),

λk(θ) =
[
λk(θ1), · · · , λk(θns)

]T
∈ Rns×1,

λ(θ) = [λ1(θ), · · · , λk(θ)] ∈ Rns×k, (40)

and the operator � represents the element-by-element multiplication, which meets

λ(θ) � λk(θ) =


λ1(θ1)λk(θ1) · · · λk(θ1)λk(θ1)

...
. . .

...

λ1(θns)λk(θns) · · · λk(θns)λk(θns)

 ∈ Rns×k. (41)

In this way, all random variables
{
ξ j(θ)

}r

j=0
are embedded into the sample matrix ξ(θ). The

matrix ξ(θ)T (λ(θ) � λk(θ)) can thus be computed efficiently for hundreds or even more stochastic

dimensions. Similarly, we recall the Eq. (19) and (20) for solving g̃k(t, θ). All random vari-

ables are embedded into the random variables h̃k(t + ∆t, θ) and qk(θ) = α1mk + α2ck + kk(θ),

where mk = dT
k Mdk, ck = dT

k Cdk, kk(θ) =
∑r

j=0 ξ j (θ) dT
k K jdk ∈ S. Both h̃k

(
t + ∆t, {ξi(θ)}rj=1 , θ

)
and qk

({
ξ j(θ)

}r

j=1
, θ

)
are multivariable functions. It is usually not a simple matter to analyze

multivariate functions, although some methods, e.g. sparse PC approach and high-dimensional

model representations [24, 49], can be used for this purpose. From another view of point, both

h̃k

(
t + ∆t,

{
ξ j(θ)

}r

j=1
, θ

)
and qk

({
ξ j(θ)

}r

j=1
, θ

)
are random variables. The random sample vectors

h̃k

(
t + ∆t,

{
ξ j(θ)

}r

j=1
, θ

)
∈ Rns and qk

({
ξ j(θ)

}r

j=1
, θ

)
∈ Rns can be computed efficiently even for

very high dimensions and they are almost dimensionality-independent.
14



5. Algorithm implementation

The above iterative procedure for approximating the stochastic solution u(t, θ) of linear stochas-

tic structural dynamics equations is summarized in Algorithm 1, which consists of outer and inner

loop procedures. The inner loop, which is from step 3 to 11, is used to determine the triplet of

{λk(θ),dk, gk(t)}. Before executing the inner loop, we initialize the random samples λk,0(θ) ∈ Rns

in step 2. In our experience, the initialization has little influence on the computational accuracy

and efficiency of the proposed method. In practical implementation, any nonzero vector of size ns

can be used as the initial random samples. With the initial random samples, the time-dependent

solution d̃k, j(t) ∈ Rn×nt is determined in step 4 by solving linear deterministic structural dynamics

Algorithm 1 Algorithm for solving linear stochastic structural dynamics equations
1: while εg,k > εg do

2: Initialize the random samples λk,0(θ) ∈ Rns

3: while εl,k, j > εl,k do

4: Compute d̃k, j(t) ∈ Rn×nt by solving Eq. (13)

5: Compute dk, j ∈ Rn via the rank-one SVD Eq. (14)

6: Orthogonalize dk, j⊥ {di}
k−1
i=1 by Eq. (15) and normalize dk, j

7: Compute g̃k, j(t, θ) ∈ Rns×nt by solving Eq. (17)

8: Compute λk, j+1(θ) ∈ Rns and gk, j+1(t) ∈ R1×nt via the rank-one SVD Eq. (26)

9: Compute the local error εl,k, j

10: j← j + 1

11: end

12: Update uk(t, θ) =
k−1∑
i=1
λi(θ)digi(t) + λk(θ)dkgk(t)

13: Compute the global error εg,k

14: k ← k + 1

15: end

16: Solve G̃(t, θ) by Eq. (29) based on the known matrix D

17: Expand G̃(t, θ) =
∑m

i=1 λ
∗
i (θ)g∗i (t)

15



equations and step 5 provides the time-independent vector dk, j ∈ Rn via the rank-one SVD of

d̃k, j(t). It is noted that dk, j requires to be orthogonalized and normalized along the whole process.

We implement this computation using the Gram-Schmidt orthogonalization Eq. (15) in step 6.

With the obtained vector dk, j, one-dimensional linear stochastic dynamics equations (i.e. second-

order SODEs) are used to solve the time-dependent solution g̃k, j(t, θ) ∈ Rns×nt in step 7. The

random samples λk, j+1(θ) ∈ Rns and gk, j+1(t) ∈ R1×nt are then computed via SVD in step 8. The

outer loop, which is from step 1 to 15, corresponds to recursively build the set of triplets such

that the approximate solution in step 12 satisfies Eq. (2). Based on the determined matrix D, a

new solution G̃(t, θ) is solved by k-dimensional linear stochastic structural dynamics equations.

Following that, a stochastic-deterministic decomposition of G̃(t, θ) is executed by KL expansion

in step 17. It is noted that we can adopt different sample sizes in step 2 and step 16. In practice,

a small size is firstly used in step 2 and a large sample size is used after obtaining the matrix D,

which saves a lot of computational costs.

There are two iterative stopping criteria in Algorithm 1, εg,k in step 13 and εl,k, j in step 9. The

globally iterative stopping criterion εg,k is defined as

εg,k =
‖uk (t, θ) − uk−1 (t, θ)‖

‖uk (t, θ)‖
=

E
{
λ2

k (θ)
}

dT
k dk

∫ T

0
g2

k (t) dt
k∑

i, j=1
E

{
λi (θ) λ j (θ)

}
dT

i d j

∫ T

0
gi (t) g j (t) dt

=
E

{
λ2

k (θ)
}

k∑
i=1

E
{
λ2

i (θ)
} , (42)

where ‖�‖ = E{�T�}. Eq. (42) measures the contribution of the k-th component {λk(θ),dk, gk(t)}

to the stochastic solution uk(t, θ). The approximate solution uk(t, θ) in step 12 converges to the

final solution when εg,k achieves a specified accuracy εg. Similarly, the locally iterative stopping

criterion εl,k, j is defined as

εl,k, j =

∥∥∥dk, j − dk, j−1

∥∥∥∥∥∥dk, j

∥∥∥ = 2 − 2dT
k, jdk, j−1, (43)

which measures the difference between dk, j and dk, j−1 and the calculation is stopped when dk, j is

almost the same as dk, j−1. It is noted that λk, j (θ) converges as dk, j converges and dk, j also converges

16



as λk, j (θ) converges, thus the stopping criterion only involving one of dk, j and λk, j (θ) is reasonable.

We can also adopt the stopping criterion εl,k, j =
∥∥∥λk, j(θ) − λk, j−1(θ)

∥∥∥ / ∥∥∥λk, j(θ)
∥∥∥, which measures the

difference between λk, j(θ) and λk, j−1(θ).

In the sense of minimizing the mean squared error, the approximation in step 12 in Algorithm 1

is not the optimal stochastic-deterministic decomposition of the stochastic solution uk(t, θ). The

iterative error defined in Eq. (42) may fail to check the convergence of the stochastic solution.

The true error that is calculated by substituting the random variables
{
λ∗i (θ)

}k

i=1
in Eq. (34) into

Eq. (42) is a better error estimator, but we can only compute the true error after solving the final

stochastic solution. In order to check the convergence of the stochastic solution in a prior way, we

propose an improved iterative error estimation that can be calculated along the iterative process.

We name the iterative error calculated by Eq. (42) as the original error and the improved iterative

error estimation as the indicator error.

To compute the indicator error, we recall Eq. (6) and rewrite uk (t, θ) as

uk (t, θ) =

k∑
i=1

λi (θ) digi (t) = Du(t)Λ(θ), (44)

where Du(t) =
[
d1g1(t), · · · ,dkgk(t)

]
(with a slight abuse of notation, here {gi(t)}ki=1 are treated as

continuous functions instead of discrete vectors) and it meets∫ T

0
D
uT
i (t)Duj (t)dt = dT

i d j

∫ T

0
gi(t)g j(t)dt = δi j. (45)

The autocorrelation matrix of the random vector Λ(θ) in Eq. (44) is

CΛΛ = E{Λ(θ)Λ(θ)T }, (46)

which can be decomposed into

CΛΛ = QZQT (47)

by use of the spectral decomposition, where Q ∈ Rk×k is an orthonormal matrix and Z ∈ Rk×k is a

diagonal matrix. The stochastic solution uk(t, θ) is thus rewritten as

uk (t, θ) = Du(t)QQTΛ(θ) = Du(t)Λ(θ), (48)
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where

Du(t) = Du(t)Q, Λ(θ) = QTΛ(θ) =
[
λ1 (θ) , · · · , λk (θ)

]T
, (49)

which meet ∫ T

0
Du

T
(t)Du(t)dt = QT

(∫ T

0
D
uT (t)Du(t)dt

)
Q = Ik, (50)

and

E{Λ(θ)Λ(θ)T } = QTE{Λ(θ)Λ(θ)T }Q = Z. (51)

The indicator error is calculated by substituting the improved random vector Λ(θ) into Eq. (42)

ε(im)
g,k =

E
{
λ

2
k (θ)

}
k∑

i=1
E

{
λ

2
i (θ)

} =

E
{
λ

2
k (θ)

}
k∑

i=1
E

{
Λ(θ)TΛ (θ)

} =
Zk

Tr (Z)
, (52)

where Zk is the last element on the diagonal of the matrix Z, i.e. Zk = Z (k, k).

Eq. (48) is the optimal stochastic-deterministic decomposition of the stochastic solution uk(t, θ)

in step 12 in Algorithm 1, thus it provides a better error estimation. In practice, one does not need

to implement the above computations fully. Only Eq. (46) and (47) are necessary to compute

the diagonal matrix Z. The computational effort is very low since the size of CΛΛ ∈ Rk×k is

usually small. In the numerical examples, we will show that compared to the original error, the

indicator error is a better measure of the true error. We can use it to estimate the convergence of

the stochastic solution.

6. Numerical examples

The numerical implementation of the proposed method is illustrated with the aid of three ex-

amples, including dynamics analysis of a n-dof stiffness-mass system with stochastic material

properties and a stochastic force, elasto-dynamic analysis of a two-dimensional plate and a three-

dimensional tuning fork with stochastic material properties. The convergence error εg and εl,k in

Algorithm 1 are set as 1 × 10−6 and 1 × 10−3. For all three examples, the sample size in step 2

in Algorithm 1 is set as ns = 1 × 103. After solving the matrix D, the sample size in step 16 is

reset as ns = 1 × 105 for solving G̃(t, θ). All the numerical implementations are tested on a laptop

(dual-core, Intel Core i7, 2.40 GHz).
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6.1. Dynamics analysis of a n-dof stiffness-mass system

𝒎𝟏 𝜽 𝒎𝟐 𝜽 … 𝒎𝒏 𝜽

𝒌𝟏 𝜽

𝒄𝟏 𝜽

𝒇 𝒕, 𝜽
𝒌𝟐 𝜽

𝒄𝟐 𝜽

𝒌𝟑 𝜽

𝒄𝟑 𝜽

𝒌𝒏 𝜽

𝒄𝒏 𝜽

Figure 1: A n-dof stiffness-mass system.

In this example, we consider a n-dof spring-mass system shown in Fig. 1. The stochastic

mass, stiffness and damping at each dof are mi(θ) = m0(1 + h0ξi(θ)), ci(θ) = c0(1 + h0ξn+i(θ)) and

ki(θ) = k0(1 + h0ξ2n+i(θ)), i = 1, · · · , n, where the parameters are set as n = 50, m0 = 1.0kg,

c0 = 1.0N · s/m, k0 = 20N/m, h0 = 0.2 and {ξi(θ)}3n
i=1 are uniformly distributed random variables

on [−1, 1]. The stochastic mass, damping and stiffness matrices of the system are given as

M(θ) =


m1(θ)

. . .

mn(θ)

 = M0 +

n∑
i=1

ξi(θ)Mi ∈ Rn×n,

C(θ) =



c1(θ) + c2(θ) −c2(θ)

−c2(θ) c2(θ) + c3(θ) −c3(θ)
. . .

. . .
. . .

−cn−1(θ) cn−1(θ) + cn(θ) −cn(θ)

−cn(θ) cn(θ)


= C0 +

n∑
i=1

ξn+i(θ)Ci ∈ Rn×n,

K(θ) =



k1(θ) + k2(θ) −k2(θ)

−k2(θ) k2(θ) + k3(θ) −k3(θ)
. . .

. . .
. . .

−kn−1(θ) kn−1(θ) + kn(θ) −kn(θ)

−kn(θ) kn(θ)
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= K0 +

n∑
i=1

ξ2n+i(θ)Ki ∈ Rn×n, (53)

where M0, C0, K0 are the deterministic components of the stochastic matrix M(θ), C(θ) and K(θ),

and Mi, Ci and Ki are the deterministic matrices corresponding to the random variables ξi(θ),

ξn+i(θ) and ξ2n+i(θ).

The stochastic force f (t, θ), t ∈ [0,T ] is considered as a Gaussian random process with the

mean function f0(t) = 0.2−exp(−at) sin(bt) and the covariance function C f f (t1, t2) = σ2
f exp−|t1−t2 |/lt ,

where a = 1, b = 10π, σ f = 1, lt = 0.1, T = 2s. We consider that f (t, θ) is expanded by use of KL

expansion

f (t, θ) = f0(t) +

r∑
i=1

ξ3n+i(θ)
√
κi fi(t), (54)

where {ξ3n+i(θ)}ri=1 are standard normal random variables, { fi(t)} and {κi} are eigenvectors and eigen-

values of the covariance function C f f (t1, t2), respectively. In this case, the stochastic force vector

F(t, θ) in the right side of the stochastic dynamics equation (2) is obtained by the time discretiza-

tion dt = 0.01 and setting r = 50 in Eq. (54).

6.1.1. Results

To illustrate the applicability of the classical PGD method, we firstly adopt it to solve this

example. Eq. (9), (10) and (11) are used to compute {λi(θ),di, gi(t)} and the results of probability

density functions (PDFs) of the first two random variables λ1(θ) and λ2(θ) are shown in Fig. 2. The
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Figure 2: PDFs of the first two random variables λ1(θ) and λ2(θ) obtained by the classical PGD iteration.
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PDF of the random variable λ2(θ) is lack of numerical stabilities and it fails to converge (or results

a wrong solution) in this case, which indicates the classical PGD method is out of work for this

problem.

We can solve this problem efficiently and accurately by using the proposed method. Iterative

errors of different numbers of the retained item k are shown in Fig. 3, where the indicator error

is calculated by Eq. (52), and the original error and the true error are calculated by Eq. (42). We

compute the indicator error as the stopping criterion and then compute the original error and the

true error for comparisons. Thirteen retained items k = 13 are necessary to achieve the specified

precision, which indicates that the proposed Algorithm 1 has good convergence. The original error

is poor to check the convergence, while the indicator error has a good agreement with the true error

(the true error converges slightly better than the indicator error). Since the true error is a posterior

estimation, it cannot determine the number of retained items in a simple way. Thus we adopt the

indicator error instead of the true error to check the convergence in practical computations and

subsequent examples.

2 4 6 8 10 12

10-6

10-4

10-2

100

Figure 3: Iterative errors of different numbers of the retained item k.

In Fig. 4 we test the accuracy of the proposed method. PDFs of un(t = 1, θ) at the node n =

47, 48, 49, 50 are computed by the proposed method and 1×106 Monte Carlo simulations, where

un,Wu, un,PM and un,MC represent the solution without update (i.e. the stochastic solution obtained
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(a) PDFs of u47∼50(t = 1, θ) without update and the MCS reference

solutions.
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(b) PDFs of u47∼50(t = 1, θ) with update and the MCS reference

solutions.

Figure 4: PDFs of the stochastic solution un(t = 1, θ) of the node n = 47 ∼ 50: (a) the solutions without update un,Wu

and the reference solutions un,MC obtained by 1 × 106 MCS, (b) the solutions with update un,PM and the reference

solutions un,MC .

by the sequential iteration from step 1 to 15 in Algorithm 1), the solution with update (i.e. the

stochastic solution obtained by Eq. (34)) and the solution obtained by MCS, respectively. Fig. 4a

shows that PDFs of un,Wu have poor accuracy compared to MCS, while PDFs of un,PM in Fig. 4b
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are in very good accordance with MCS reference solutions, which indicates the proposed method

has comparable accuracy to MCS. The comparison of PDFs between un,Wu and un,PM demonstrates

the recomputation step 16 in Algorithm 1 is essential to improve the accuracy of the stochastic

solution.

10 20 30 40 50
-1

-0.5

0

0.5

1

Figure 5: Solutions of first nine terms
{
d j

}9

j=1
.

Table 1: Computational costs of different sample sizes ns.

Sample size 2 × 102 1 × 103 5 × 103 1 × 106 MCS

Solving costs 17.57 72.21 202.04

Updating costs 43.80 47.26 37.42

Total costs (seconds) 61.37 119.47 239.46 9.41 × 103

Fig. 5 shows the solutions of first nine terms
{
d j

}9

j=1
, which indicates that only a small part of

the solutions of nodes is nonzero. The proposed method can capture the dominative modes of the

solutions. The PDFs of the random variables {λi(θ)}9i=1 are seen from Fig. 6, where {λi(θ)}i (without

update, improved and update) represent the original random variables {λi(θ)}i obtained in step 12

in Algorithm 1, the improved random variables {λi(θ)}i obtained by Eq. (49) and the recalculated

random variables
{
λ∗i (θ)

}
i

obtained by Eq. (34), respectively. Fig. 6 indicates that most improved

random variables are very different from the original random variables. As the number of retained
23



items k increases, the mean square value E
{
λ2

k (θ)
}

of the original random variables does not keep

decreasing, thus the original error in Fig. 3 is not monotonically decreasing. While the decreasing

mean square values of improved and updated random variables make the indicator error and the

true error decrease monotonously.
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Figure 6: PDFs of first nine random variables {λi(θ)}9i=1 (without update), {λi(θ)}9i=1 (improved) and {λi(θ)}9i=1 (update).

Tab. 1 shows the influence of sample size on computational efficiency. We adopt different

sample sizes ns = 2 × 102, 1 × 103 and 5 × 103 in step 2 of Algorithm 1 and reset the sample

size ns = 1 × 105 in step 16. All tested sample sizes achieve comparable accuracy, thus we only

test the computational efficiencies. Tab. 1 indicates that the total cost increases as the sample size

increases, and total costs of all tested sample sizes are much lower than MCS. The solving costs

(i.e. the cost of the iteration from step 1 to 15 in Algorithm 1) are mainly from the solution of

Eq. (13) and the SVD in Eq. (26). They can be accelerated by high-performance equipment and
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parallel computing. The updating costs (i.e. the cost of the recomputation step 16 in Algorithm 1)

of different sample sizes are close since they have close numbers of retained items. However, it

is still an open problem to choose a suitable sample size for different problems to achieve good

accuracy and high efficiencies simultaneously.

6.2. Elasto-dynamic analysis of a two-dimensional bracket

In this example, we consider the elasto-dynamic analysis of a two-dimensional steel bracket [50]

shown in Fig. 7. The bracket is fixed at the left boundary ΓD and is forced by F(t) at the up bound-

ary. The finite element mesh for this problem includes 390 nodes and 672 triangle elements. Ma-

terial, geometry and load parameters of the model are given by Poisson ratio ν = 0.3, mass density

ρ = 8×103kg/m3, H = 0.2m and the force F(t) = 10−10 exp(−5t) sin(4πt) kN/m, t ∈ [0,T ], T =

1s. The Young’s modulus E(x, y, θ) is a Gaussian random field with the mean function E0(x, y) =

2.1×108N/m2 and the covariance function CEE(x1, y1; x2, y2) = σ2
E exp(− |x1 − x2| /lx−|y1 − y2| /ly),

where the standard deviation σE = 0.1E0(x, y), the correlation lengths lx = ly = 1. It is noted that

the covariance function used in this example (also in example 6.1 and 6.3) is non-differentiable and

it may suffer from some obstacles in modeling uncertainties. Differentiable covariance functions

are suggested to be better choices in many practical applications [51, 52].

Figure 7: The steel bracket and its finite element mesh.
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We expand the Young’s modulus E(x, y, θ) by use of KL expansion with the r-term truncation

E(x, y, θ) = E0(x, y) +

r∑
i=1

ξi(θ)
√
κiEi(x, y), (55)

where {ξi(θ)}ri=1 are standard normal random variables, {Ei(x, y)} and {κi} are eigenvectors and

eigenvalues of the covariance function CEE(x1, y1; x2, y2), respectively. We set r = 10 in this

example and Fig. 8 shows the first nine terms {Ei(x, y)}9i=1. It is noted that the Gaussian random

field assumption for the Young’s modulus may violate physics since negative values may take. In

practice, the samples θ(i) such that min
x,y

E
(
x, y, θ(i)

)
< 1 × 10−3 will be dropped out, thus E(x, y, θ)

in Eq. (55) is considered a truncated Gaussian random field in the numerical implementation.
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Figure 8: The first nine eigenvectors {Ei(x, y)}9i=1 of the bracket.

6.2.1. Results

We adopt Algorithm 1 to solve this problem and a Rayleigh damping C(θ) = α1M(θ) +α2K(θ)

is used in this analysis, where the coefficients are α1 = 10 and α2 = 0. Fig. 9 shows the indicator

error and the true error of the proposed method. The indicator error still has a good agreement with

the true error. Only six items k = 6 are retained to achieve the specified precision, which verifies

the fast convergence of Algorithm 1 again. Corresponding six solution components {di(x, y)}6i=1

are seen from Fig. 10, where Fig. 10a and 10b are the solution components
{
di,x

}6
i=1 in the x (i.e.
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Figure 9: Iterative errors of different numbers of the retained item k.
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Figure 10: Solutions of {di(x, y)}6i=1: (a) displacement components
{
di,x

}6
i=1 in x direction and (b) displacement com-

ponents
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i=1
in y direction.
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horizontal) direction and
{
di,y

}6

i=1
in the y (i.e. vertical) direction, respectively. In the x direction,

the displacements are much smaller than that in the y direction since the force F(t) works on the

y direction. Fig. 11 shows PDFs of six random variables {λi(θ)}6i=1 (without update, improved and

update) that are calculated by step 12 in Algorithm 1, Eq. (49) and Eq. (34), respectively. As the

number of retained items k increases, the mean square values of improved and updated random

variables still keep monotonically decreasing.
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Figure 11: PDFs of six random variables {λi(θ)}6i=1 (without update), {λi(θ)}6i=1 (improved) and {λi(θ)}6i=1 (update).

PDFs of the solution u(t = 0.5, θ) in the y direction of the point A (shown in Fig. 7) are seen

from Fig. 12. The PDF of the solution with update uA,PM(t = 0.5, θ) is in very good accordance

with the reference solution uA,MC(t = 0.5, θ) obtained by 1 × 106 MCS, while the solution without

update uA,Wu(t = 0.5, θ) achieves a wrong result. Also, we compare the proposed method and

the PC-based spectral stochastic finite element method. Two-order Hermite PC basis of r = 10

standard normal random variables are adopted and the total number of PC basis is 66. The size of

the PC-based derived finite element equation is about 5.15 × 104, which is much larger than the

original stochastic finite element equation. As shown in Fig. 12, the PC-based solution has a poor
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Figure 12: PDFs of the solution without update uA,Wu(t = 0.5, θ), the solution with update uA,PM(t = 0.5, θ), the PC

solution uA,PC(t = 0.5, θ) and the reference solution uA,MC(t = 0.5, θ) obtained by 1 × 106 MCS: regular scale (left)

and logarithmic scale (right).

accuracy compared to the proposed method and MCS, and it cannot capture the bimodal mode of

the PDF. Further, the proposed method is more convenient compared to PC-based methods since

it does not need to choose the type and the order of PC basis.

For the low-dimensional case r = 10, the computational times of the proposed method, the

PC-based method and 1 × 106 MCS are 44.19s, 219.47s and 1.06 × 105s, respectively, which
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Figure 13: Computational costs of different stochastic dimensions r = 10, 100 ∼ 400.
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demonstrates the high efficiency of the proposed method. We also test the computational ef-

ficiency of different stochastic dimensions. The computational times of stochastic dimensions

r = 10, 100, 200, 300, 400 are shown in Fig. 13. The proposed method avoids the curse of di-

mensionality with great success. The total computational cost of the proposed method increases

linearly as the stochastic dimension increases. The solving and updating times represent the time

cost of the iteration from step 1 to 15 in Algorithm 1 and the time cost of the recomputation step 16,

respectively. Fig. 13 indicates that the solving time increases linearly as the stochastic dimension

increases. The updating time hardly increases since the retained item k changes slightly. The solv-

ing time dominates the total computational cost, thus the methods that reduce the solving time can

accelerate the proposed method.

Further, we test the influence of different node sizes np on the computational cost. Tab. 2

demonstrates that the total computational cost will not increase dramatically as the node size in-

creases. The solving time strongly depends on the computational effort of the solution of Eq. (13)

and more efficient solvers for solving linear dynamics equations can save the solving times. The

updating time hardly increases as the node size increases since the retained item k hardly changes

for different node sizes. It is seen from Fig. 13 and Tab. 2, the computational cost weakly depends

on the coupling of the node size and the stochastic dimension, which makes the proposed method

very efficient for solving large-scale and high-dimensional stochastic dynamics problems.

Table 2: Computational costs of different node size np.

Node size 111 390 1452 5592

Element size 168 672 2688 10752

Solving costs 6.75 17.01 68.18 779.08

Updating costs 26.75 27.18 32.99 31.33

Total costs (seconds) 33.0 44.19 101.99 810.41

6.3. Elasto-dynamic analysis of a three-dimensional tuning fork

In this example, we consider the elasto-dynamic analysis of a three-dimensional tuning fork

shown in Fig. 14, which includes 1322 nodes and 3956 tetrahedron elements. The tuning fork
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Figure 14: Model of the tuning fork and its finite element mesh.

is fixed at the end of the handle (blue region) and is forced by F(t) at a part of the surface (red

region), where F(t) = 5× 104N/m2 for t ∈ [0, t0] and 0 for t ∈ (t0,T ], t0 = 0.05s, T = 1s. Material

parameters are given by Poisson ratio ν = 0.3 and mass density ρ = 8 × 103kg/m3. The Young’s

modulus E(x, y, θ) is a random field with the mean function E0(x, y) = 2.1 × 1011N/m2 and the

covariance function CEE(x1, y1, z1; x2, y2, z2) = σ2
E exp(− |x1 − x2| /lx − |y1 − y2| /ly − |z1 − z2| /lz),

where the standard deviation σE = 0.2E0(x, y), the correlation lengths lx = ly = lz = 0.1. The

Young’s modulus E(x, y, θ) is approximated by the r-term KL expansion in Eq. (55). In this exam-

ple, {ξi(θ)}ri=1 in the expansion Eq. (55) are uniformly distributed random variables on [−1, 1].
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Figure 15: Iterative errors of different numbers of the retained item k.
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Figure 16: Solutions of four terms {di(x, y, z)}4i=1: displacement components
{
di,x

}4
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{
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{
di,z

}4
i=1 in z direction

(the third row).

-0.04 -0.035 -0.03

100

200

300

-0.02 0 0.02

100

200

300

400

-5 0 5

10-3

200

400

600

800

1000

-2 0 2

10-3

2

4

6

104

Figure 17: PDFs of four random variables {λi(θ)}4i=1 (without update), {λi(θ)}4i=1 (improved) and {λi(θ)}4i=1 (update).

6.3.1. Results

The Rayleigh damping C = 10M in Example 6.2 is also used in this example and the stochas-

tic dimension is set as r = 10. Four retained items k = 4 meet the convergence criterion. As the

number of retained terms increases, both the indicator error and the true error tend to converge.
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Fig. 15 demonstrates that the indicator error still has a good agreement with the true error. The

variability of the stochastic solution is not too large due to the small variability of the random

field E(x, y, θ), thus both Example 6.2 and this example only require small numbers of retained

terms to achieve the specified precision. It usually requires more retained terms for the problems

with large variabilities, as illustrated in Example 6.1. Four solution components, including the

solutions
{
di,x

}4
i=1 in the x direction,

{
di,y

}4

i=1
in the y direction and

{
di,z

}4
i=1 in the z direction, are

seen from Fig. 16, and Fig. 17 shows PDFs of corresponding random variables {λi(θ)}4i=1 (without

update, improved and update) calculated by step 12 in Algorithm 1, Eq. (49) and Eq. (34), respec-

tively. It is noted that Eq. (48) does not improve the accuracy of the stochastic solution uk (t, θ)

but only provides an optimal decoupled representation. The accuracy of the stochastic solution

approximated by the improved random variables in Eq. (48) is still lower than the final stochastic

solution approximated by Eq. (34). It is seen from Fig. 17 that the improved random variables

are very different from the update random variables since the improved random variables are not

obtained from the final stochastic solution while the update random variables are computed by the

final stochastic solution.

Table 3: Computational costs of the stochastic dimensions r = 10 and 100.

Dimension r 10 (σE = 0.2E0) 100 (σE = 0.1E0)

Method SFEM MCS SFEM MCS

Solving costs 126.50 135.78

Updating costs 33.75 36.21

Total costs (second) 160.25 4.69 × 106 171.99 6.48 × 106

Further, we test the computational efficiency and accuracy of different stochastic dimensions.

Computational costs of r = 10, σE = 0.2E0(x, y) and r = 100, σE = 0.1E0(x, y) (a larger σE will

cause the matrix K(θ) to be non-positive definite) are shown in Tab. 3 and they have similar time

costs. The solving cost is the main component of the total cost, especially for large-scale stochastic

problems since solving Eq. (13) of large-scale problems is more time-consuming. The updating

cost weakly depends on degrees of freedom of the finite element discretization and is only related
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(a) PDFs of the solutions when r = 10: regular scale (left) and logarithmic scale (right).
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(b) PDFs of the solutions when r = 100: regular scale (left) and logarithmic scale (right).

Figure 18: PDFs of the solution without update uA,Wu(t = 0.5, θ), the solution with update uA,PM(t = 0.5, θ) and the

reference solution uA,MC(t = 0.5, θ) obtained by 1 × 106 MCS: (a) the stochastic dimension r = 10, (b) the stochastic

dimension r = 100.

to the number of retained terms, thus it has cheap computational costs even for very complex

stochastic problems. PDFs of the solutions u(t = 0.5, θ) in the y direction of the point A (shown

in Fig. 14) are seen from Fig. 18. As shown in Fig. 18a (left) and 18b (left), for both the low- and

high-dimensional cases, PDFs of the solution without update uA,Wu(t = 0.5, θ) deviate significantly

from the reference solutions uA,MC(t = 0.5, θ) obtained by 1×106 MCS, while PDFs of the solution
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with update uA,PM(t = 0.5, θ) keep in very good accordance with the MCS reference solutions even

for the high-dimensional case, which demonstrates the high accuracy of the proposed method.

Also, as shown in Fig. 18a (right) and 18b (right), we compare the solutions with update uA,PM(t =

0.5, θ) and the MCS reference solutions on the logarithmic scale, which demonstrates that the

distribution ranges of the stochastic solutions for both low- and high-dimensional cases are well

captured by the proposed method.

6.4. A n-dof system subjected to a seismic ground motion
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Figure 19: A n-dof system subjected to a seismic ground acceleration (rotated in 90◦ to save the space).

In this example, we consider a similar physical model in Fig. 1. As shown in Fig. 19, the system

is subjected to a seismic ground acceleration üg (t, θ). All parameters are the same as Example 6.1

except that mi(θ) = 1.0kg are deterministic and {ξn+i(θ))}ni=1 in ci(θ) = c0(1 + h0ξn+i(θ)) (should be

shear damping in this case) are modeled as n independent Weibull random variables, the scale and

shape parameters of which are 0.25 and 1.5. The seismic ground acceleration üg (t, θ) is a zero-

mean Gaussian stochastic process described by use of the Clough-Penzien spectrum [53, 54, 55],

S ugug (ω) =

ω4
[
ω4

g +
(
2ζgωgω

)2
]

S 0[(
ω2

g − ω
2
)2

+
(
2ζgωgω

)2
] [(
ω2

f − ω
2
)2

+
(
2ζ fω fω

)2
] , (56)

where the parameters are given as ωg = 4π rad/s, ω f = 0.4π rad/s, ζg = ζ f = 0.7, S 0 =

3× 10−4 m2/s3. The autocorrelation function Cugug is then calculated based on the Clough-Penzien

spectrum in Eq. (56). Thus we can approximate the time history of üg (t, θ) using the autocorrela-

tion function and the KL expansion. In this example, the time duration is 20s and 2×103 time steps

are adopted. 1066 truncated items are retained to achieve κ1066/
∞∑

i=1
κi ≥ 95% (κi is the eigenvalues
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of the autocorrelation function Cugug referring Eq. (55)). A total of 1166 random variables are thus

involved, including 50 uniform random variables for the stiffness parameters, 50 Weibull random

variables for the damping parameters and 1066 Gaussian random variables for the excitation.
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Figure 20: Iterative errors of different numbers of the retained item k.
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Figure 21: PDFs of the stochastic solution u50(t = 10, θ) obtained by the proposed method and 1 × 106 MCS: regular

scale (left) and logarithmic scale (right).

The iterative errors are depicted in Fig. 20 and 16 items are retained to achieve the specified

accuracy. Compared to Example 6.1, more items are needed to capture a high-accuracy stochastic

solution. As shown in Fig. 21, the PDF of the stochastic solution of the 50th node at time t = 10s
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obtained by the proposed method is compared with the corresponding PDF obtained by 1 × 106

MCS, which indicates that the proposed method still has comparable accuracy to MCS in this

case. The total computational costs of the proposed method are 260.98s, including 177.04s for the

solving costs and 83.94s for the updating costs. Compared to 6.36 × 104s for the MCS costs, the

proposed method saves a lot of computational costs.

7. Conclusions

This paper develops an efficient stochastic finite element method for linear stochastic struc-

tural dynamics analysis and illustrates its accuracy and efficiency by three numerical examples.

By constructing a universal form of stochastic solutions and developing a dedicated iterative algo-

rithm, stochastic dynamics problems are decoupled into stochastic and deterministic analyses that

are executed in their individual spaces. For the deterministic analyses, existing FEM solvers can

be readily incorporated into the computational procedure without any modification. All stochastic

analyses are embedded into one-dimensional stochastic ordinary differential equations that can be

solved efficiently by the proposed sampling method. In this way, the curse of dimensionality in

high-dimensional stochastic spaces is avoided with great success, which has been illustrated by the

numerical example of up to 1166 dimensions. In these senses, the proposed method is particularly

appropriate for the stochastic structural dynamics analysis of practical interests.
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