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Abstract

The power spectral density function is a widely used tool to determine the

frequency components and amplitudes of environmental processes, such as

earthquakes or wind loads. It is an important technique especially in the

engineering field of vibration analysis and in determining the response of

structures. When using a large amount of data, a load model can be gener-

ated, which describes the characteristics of the underlying stochastic process.

This load model enables artificially generated excitations to be generated

within the framework of Monte Carlo simulations. If multiple data records

are utilised, a problem that can occur is that the individual records have a

high variance in the frequency domain and are therefore too dissimilar from

each other, even though they appear to be similar in the time domain. A load

model derived from this data does not represent the entire data set, because

not the whole spectral range is covered. Therefore, every attempt must be



made to group the data according to their characteristics and thus combine

similar data to derive two or more load models accordingly. In this work,

an approach is proposed to classify real earthquake ground motion records

using the k-means algorithm based on similarities within the data ensem-

ble as determined by the Bhattacharyya distance. The silhouette method

enables the identification of the optimal number of groups for the classifi-

cation. The classified data thus forms a subset of the entire data set from

which load models can be generated and can be applied separately to the

structure under investigation, leading to more accurate simulation results.

The advantages of this classification approach are illustrated by means of an

academic example and a seismic-isolated bridge pier model as a non-linear

dynamic system.

Keywords: Power spectral density function, Stochastic processes,

Stochastic dynamics, Reliability assessment, Uncertainty quantification,

Earthquake engineering

1. Introduction1

The simulation and subsequent reliability assessment of buildings and2

structures under specific loads has become increasingly important in engi-3

neering in the recent decades [1, 2, 3, 4]. In particular, structures that are4

subject to environmental processes such as wind and earthquake loads and5

thus exhibit dynamic system behaviour are of special interest [5, 6, 7]. A gen-6

eral understanding of the dynamic behaviour of structures, especially under7
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earthquake loads, is given in [8]. To describe the environmental processes,8

which can be characterised as stochastic processes, in terms of their frequency9

components and governing frequencies, the Power Spectral Density (PSD)10

function can be utilised [9, 10]. The PSD function describes the stochas-11

tic process in the frequency domain and thus provides information about12

the frequencies, which are particularly important in structural dynamics.13

Through the PSD function, suitable stochastic processes can be generated in14

the time domain [11], which may be used for numerical simulations within15

the framework of extensive Monte Carlo (MC) simulations in order to obtain16

the response of the structure under investigation [12, 13, 14]. Modal analysis17

and frequency decomposition methods by singular value decomposition of the18

PSD function is an alternative approach to MC simulations for characterising19

system responses, see for example [15, 16, 17, 18, 19].20

Especially in simulations involving dynamic system behaviour due to en-21

vironmental processes, accurate simulation results are important to evaluate22

existing structures in terms of their resistance and durability or for the de-23

sign of new buildings. An overview about risk assessment of earthquakes is24

provided in [20]. Simulations are necessary to provide an understanding of25

the real case and to obtain initial assessments of the response behaviour of26

a structure. A direct application of the safety specifications for structures27

at risk in civil engineering, such as defined in [21], is often not possible due28

to structural complexity or incomplete information about the system. Such29

a model can be investigated with regard to different excitations. The sim-30
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ulation and evaluation of the dynamic response of structures under specific31

loads, and in particular under seismic loads, has become increasingly impor-32

tant, with a particular emphasis on variability and uncertainties: variability33

of the model and variability of the input seismic motion. Accounting for un-34

certainties in both the structure and the input ground motions is important35

for a rigorous assessment of the seismic capacity of the structure. A suitable36

method for this purpose is Incremental Dynamic Analysis (IDA) [22, 23, 24],37

which applies earthquake loads with different scaled intensities to a structure.38

This yields functions that enables a comparison of different system responses39

to a range of intensity levels of the excitation. This method can be used40

to determine system responses for different potential earthquake excitations41

and to design the structure accordingly. Performance based engineering de-42

mand approaches, specifically fragility functions are utilised for defining the43

probability that a component exceeds a certain limit state depending on the44

excitation, e.g. the peak ground acceleration (PGA). An overview of different45

methods for determining fragility functions can be found in [25, 26, 27, 28, 29].46

In [30] a computationally efficient method for analysing the seismic fragility47

of structures is proposed, while in [31] fragility analyses are linked to arti-48

ficial neural networks. Seismic fragility analysis is combined with Bayesian49

linear regression demand models in [32], yielding more accurate results com-50

pared to traditional methods. Other works deal with fragility analysis for51

specific structures, such as highway bridges [33], concrete dams [34] or rail-52

way bridges [35]. Both, the fragility analysis and IDA are concerned with53
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the selection of seismic ground motions and with the efficient and sufficient54

intensity measures [36, 37] of ground motions [38].55

The definition of appropriate seismic intensities plays a key role in the56

earthquake engineering and engineering seismology to reduce the variability57

of the analysis results. The variability would strongly increase if the input58

ground motions have no similarity, which in general is always the case. Thus,59

it is valuable to classify the real earthquake records, which is the objective60

of this work, and define appropriate seismic loading models with smaller un-61

certainty to obtain more reliable results. To support this and to improve62

the simulation results, real data records can be used instead of artificially63

generated data. An overview of the data analysis of real data can be found,64

for instance, in [39, 40, 41]. Thanks to the ever increasing databases of envi-65

ronmental processes (e.g. [42, 43]), a large amount of data is available from66

which corresponding load models can be generated. Although a pre-selection67

of data can be made based on seismological criteria such as magnitude, epi-68

central distance, depth of the earthquake or site conditions, these data are69

never identical due to the nature of earthquakes. Furthermore, soil conditions70

the path and the source mechanisms, such as normal, inverse or strike-flip71

faults, influence the ground motions, see [44] for an overview. In all cases,72

even when using similar ground motion criteria and a similar building model,73

a large variability of the building response might be observed, which is dif-74

ficult even for data of the same region [45]. In addition, uncertainties due75

to, for example, measurement errors, incorrect calibration or damage to the76
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sensor or total failure can complicate the selection and subsequent analysis.77

Despite the fact that the data can be pre-selected according to the criteria78

mentioned, they may still be too different to obtain reliable results, i.e. with79

reduced variability. In such a case, a fatal assessment of the situation can80

emerge. For those problems, the temporal similarity can be defined consid-81

ering time or frequency parameters [46]. In some cases, the data ensemble82

has a high spectral variance in the frequency domain, so that a single PSD83

function estimate is not sufficient to adequately represent the process statis-84

tics. It can reasonably be assumed that a more realistic representation of85

the spectral range of the process is captured by estimating two or more PSD86

functions to better represent the spectral range of the process. Therefore, it87

is necessary to define the spectral similarity that can be used to categorise88

individual data sets.89

A number of different methods for classifying earthquake ground motions90

can be found in the literature. Many of these methods rely on heuristic91

methods such as the k-means algorithm [47] that can be used for fast local92

solutions [48]. For example, in [49] a method is presented that takes the spec-93

tral shape into account. In [50], different frequency content based parameters94

are used to classify the earthquakes using k-means and self-organizing maps95

(SOM). The moment magnitude and the Joyner-Boore distance [51] are used96

in [52, 53] to classify earthquake ground motions with the k-means algorithm97

as well, while in [54] and [55] fuzzy-based approaches are employed. All these98

approaches require different parameters from the time and/or frequency do-99
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main for the classification of earthquake ground motions. This presupposes100

a prior knowledge of the data used. In addition, the choice of parameters can101

lead to different results of the classifications, which in turn influence the sim-102

ulation results. To simplify the classification and provide more robustness,103

this paper proposes a method where only the similarity in the frequency104

domain needs to be determined, and subsequently the earthquake ground105

motions can be grouped using the k-means algorithm. Furthermore, suit-106

able load models can be generated from the classified PSD functions of the107

earthquakes.108

The proposed approach is to first define the number of spectral groups109

and then optimise the arrangement of the data sets between the groups by110

minimising their respective spectral distance. The classification is carried111

out in the frequency domain only, as the frequency components of a time112

signal can thus be determined unambiguously. In addition, the signals in113

the time domain show hardly any or only small differences, whereas the114

transformation into the frequency domain often reveals larger differences.115

Furthermore, these signals are used in the field of stochastic processes and116

dynamic systems, which is why it is useful to classify ground motions based117

on their frequency characteristics. For the classification, the Bhattacharyya118

distance [56, 57, 58] is used to determine the similarity of the individual PSD119

functions. With the k-means algorithm, the PSD functions are classified into120

two or more groups. It is expected that in most cases, considering multiple121

spectral models will result in a more accurate overall response statistics than122
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a single model. However, the latter requires that several different simulations123

of the structural response are carried out, which can be time consuming for124

large model analyses. Therefore, an approach based on the silhouette method125

is proposed to determine the optimal number for classification, which results126

in avoiding to perform structural response simulations more than necessary.127

This type of data processing leads to a more accurate analysis of structures128

and buildings, especially in the area of reliability analysis and assessment,129

and can reveal system failure that would not be detected when utilising a sin-130

gle PSD function estimate of the data set. The proposed method also enables131

to estimate the system response considering the probability of occurrence of132

each load model. Therefore, this method is useful in particular when utilis-133

ing multiple real data records for the reliability assessment of real structures.134

The novelty is in the combination of the different basic tools and their fur-135

ther development and adjustment to solve the given classification problem.136

The proposed method improves the quality of the reliability assessment for137

large structures utilising site- and source-specific information. In addition,138

the classification does not require any parameters, except for a maximum139

number of groups to be determined, and is automatic, including the determi-140

nation of the number of optimal groups, whereas other approaches require a141

set of parameters and prior knowledge. The classification approach presented142

in this work is valuable from an engineering view point, especially in prob-143

abilistic seismic engineering as it contributes significantly to the selection of144

appropriate real data for other commonly used methods in earthquake engi-145
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neering. The selection of suitable real data is essential for reliable simulation146

results and especially for reducing the variability of the results. The classi-147

fication approach can thus be transferred to other methods in probabilistic148

earthquake engineering.149

In this work, real earthquake ground motion records are used, which are150

provided by the National Research Institute for Earth Science and Disaster151

Resilience in the K-NET and KiK-net databases [42]. This demonstrates that152

the proposed method is also feasible for practical application. The developed153

load models from the real data records are applied to a linear spring-mass-154

damper system with one degree of freedom and a seismic-isolated bridge pier155

model as an example of non-linear dynamic systems.156

This work is organised as follows: Section 2 summarises briefly the theo-157

retical background used in this work. In Section 3 the approach for classifying158

PSD functions is explained. Section 4 provides the classification approach for159

two examples of real earthquake ground motions. In Section 5 the classified160

ensembles are applied to two numerical examples to show the strength of the161

approach. The work concludes with Section 6.162

2. Stochastic processes and power spectrum estimation163

A stochastic (or random) process is influenced by random phenomena164

and fluctuations, so that it cannot be described completely deterministically.165

The value of the stochastic process at any point in time is determined by166

random variables [59]. The frequency composition of a zero-mean stationary167
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stochastic process X(t) can be derived via the Fourier transform of its auto-168

correlation function RX(τ) = E[X(t)X(t+ τ)]169

SX(ω) =
1

2π

∫ ∞

−∞
RX(τ)e

−iωτdτ (1)

and the inverse Fourier transform170

RX(τ) =

∫ ∞

−∞
SX(ω)e

iωτdω, (2)

where SX(ω) describes the PSD function. Eq. 1 and Eq. 2 are called Wiener-171

Khintchine theorem (e.g. [6, 59, 60]).172

For generating simulated stochastic processes, the Spectral Representa-173

tion Method (SRM) can be utilised [11]174

X(t) =
N−1∑
n=0

√
4SX (ωn)∆ω cos (ωnt+ φn) , (3)

where175

ωn = n∆ω, n = 0, 1, 2, . . . , N − 1 (4)

with N → ∞ and φn as uniformly distributed random phase angles in the176

range [0, 2π] and t as time vector. This provides a suitable method for gen-177

erating compatible time signals derived from and carrying the characteristics178

of an underlying PSD function.179

The estimation of the PSD function of a stationary stochastic process180
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can be obtained by the periodogram [60, 6], which is formed by the squared181

absolute value of the discrete Fourier transform of the signal X(t). The182

periodogram reads as follows183

ŜX(ωk) = lim
T→∞

∆t2

T

∣∣∣∣∣
T−1∑
t=0

X(t)e−
i2π
T

kt

∣∣∣∣∣
2

, (5)

where ∆t is the time step size, T is the total length of the record, t describes184

the data point index in the record and k is the integer frequency for ωk =
2πk
T
.185

As the squared amplitude of the DFT is directly involved in equation 5, it is186

of particular interest in this work to propagate the uncertainty in the time187

signals.188

3. Classification of spectral groups within ensembles189

In this section, a brief overview of the problem is given and the method190

for classifying an ensemble of PSD functions is explained using an academic191

example. In addition, a method is presented which determines the optimal192

number of groups.193

3.1. Problem statement194

In most cases, no differences can be detected in the time domain, the time195

signals seem to be almost identical, see left side of Fig. 1. The time signals196

given here are derived from two different source PSD functions but the exact197

same random variables for generating the time signal (Eq. 3) are utilised.198

The PSD functions estimated from the time signals are given on the right199
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side of Fig. 1. Despite the small differences in the time domain, significant200

differences are evident in the frequency domain, where it is clear that the201

PSD functions differ in spectral density and peak frequency. Although this202

is an academic example it illustrates that only infinitesimal differences in the203

time domain can cause significant differences in the frequency domain. Such204

a problem can occur when working with a large amount of data. Therefore,205

a thorough investigation of the data must be carried out. In a case like this,206

it may be useful to define two or more load models.207
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Figure 1: Example of two signals that show hardly any differences, but reveal the differ-
ences in the frequency domain.

3.2. Methodology208

To identify different groups of PSD functions, the spectral similarity be-209

tween two PSD functions P1 and P2 must be determined. In this work, it is210

proposed to use the Bhattacharyya distance211

DB (P1, P2) = −log

(∑
ω∈Ω

√
P1 (ω)P2 (ω)

)
. (6)

Due to it’s definition, the Bhattacharyya distance is a suitable distance212

measure for determining the similarity of the individual PSD functions within213
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the ensemble. Indirectly it accounts, for instance, for the total power and214

shape (i.e. the distribution of frequency power) of the PSD functions. There-215

fore, two PSD functions with e.g., the same total power but different shape216

will have a larger distance than two PSD functions with the same total power217

and similar shape.218

To determine the similarity of the PSD functions in the ensemble, the en-219

semble mean is first used as a reference spectrum. Using the Bhattacharyya220

distance Eq. (6), the similarity of each individual spectrum to the ensemble221

mean is determined. Therefore, Eq. (6) is evaluated for each individual spec-222

trum and the ensemble mean. The resulting distance values are similar for223

PSD functions with similar shape and power. These distance values are used224

to determine similarity clusters using the k-means algorithm and to divide225

the entire data set into clusters, or so-called groups, i.e., similar distance226

values to the ensemble means result in the assignment to the same group. To227

perform this procedure, the number of desired groups must be defined be-228

forehand. In general, a higher number yields in load models covering wider229

spectral ranges, while it requires larger computational burden. Therefore, it230

is important to determine the optimal number of groups. A method for this231

purpose is proposed in Section 3.3.232

3.3. Optimal number of spectral groups233

There are several methods available for determining the optimal number234

of groups kopt, such as elbow method, for instance. However, these meth-235
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ods require often a visual assessment of the analyst to determine kopt with236

respect to certain statistics. Another problem is that kopt is subjective as it237

depends on the given data and the methods used to measure the distances.238

In this work, it is suggested to use the silhouette method [61, 62] for the de-239

termination of kopt. Other approaches can be found in [63] and the references240

therein.241

A maximum number of groups kmax has to be defined beforehand and242

the previously described procedure of classifying the PSD functions will be243

performed kmax − 1 times, i.e. for 2, 3, . . . , kmax groups. The maximum244

number of groups kmax is case-dependent. For instance, an ensemble of power245

spectra with a high spectral variance might need more groups than with246

lower spectral variance. In any case, it is practical to choose a low number of247

kmax, for instance 5 ≤ kmax ≤ 10. A very high kmax would not be reasonable248

because then it would also be possible to apply all given data sets individually249

to the structural model. This would no longer correspond to the intended250

classification. In order to obtain the most accurate classification possible, as251

many groups as necessary should be obtained, but as few as possible.252

The silhouette coefficient provides a measure of the quality of a clustering253

that is independent of the number of clusters. The silhouette coefficient is254

defined as the arithmetic mean of all silhouette values s(i)255

sC =
1

ni

ni∑
i=1

s(i) (7)
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where ni describes the total number of data points and the silhouette values256

s(i) are defined as257

s(i) =
b(i)− a(i)

max (a(i), b(i))
. (8)

According to [61], a(i) is the average distance of the sample i to the other258

samples within the same cluster A and b(i) is the average distance of sample259

i to the other samples in another cluster C which is closest to cluster A.260

The silhouette value can range from −1 ≤ s(i) ≤ 1, while a high silhouette261

value implies a high similarity to sample i’s cluster. In the proposed method,262

the number of groups corresponding to the highest silhouette coefficients is263

chosen as the optimal number of groups kopt.264

In order to illustrate the silhouette method, a short academic example is265

given in Fig. 2. In this example 3 different underlying analytical expressions266

of power spectra are utilised to generate 10 PSD functions each, with different267

values, to simulate a certain randomness. From the given example it can be268

clearly seen that the optimal number of groups is kopt = 3. The example269

therefore only aims to illustrate the proposed method. In this case, it can be270

seen that the mean value of the entire ensemble (dashed line) is unsuitable271

for deriving a load model for the ensemble. Especially at frequencies around272

2.5 rad/s, the three classified groups are completely disjointed, which clearly273

shows that a classification is useful. This can be confirmed by determining274

the optimal number of groups kopt. The silhouette values for this example are275
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calculated by Eq. (8) and are depicted in Fig. 3 for the classification into 2,276

3, 4 and 5 groups. It can be appreciated that, especially for the classification277

in group 3, very high individual silhouette values are achieved as all of them278

are close to 1. When classified in 4 or 5 groups, on the other hand, silhouette279

values with lower quality are more frequent, showing that the classification is280

not well-suited for certain PSD functions. To determine the optimal number281

of groups kopt, Eq. (7) is used to compute the silhouette coefficient for each282

individual classification, which is the mean value of all silhouette values for283

the according classification. This results in the silhouette coefficients shown284

in Fig. 4. The maximum of all silhouette coefficients reveals the optimal285

number of groups, accordingly kopt = 3 in this example.286
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Figure 2: Unclassified ensemble (left) and the corresponding mean values of the classified
groups and the entire ensemble (right).

3.4. Usage of the method287

When using real data, usually given in the time domain, there are two288

possibilities, for both of which it can be argued why they are useful. After289

transforming the data from time domain to frequency domain and carrying290

out the classification, the options are:291
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Figure 3: Silhouette values for the classification into 2, 3, 4 and 5 groups.
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Figure 4: Silhouette coefficients for different numbers of groups. The optimal number of
groups is kopt = 3 as the maximum value is obtained there.
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(i) Set up a load model based on the mean spectra of the classified groups.292

Then utilise Eq. 3, for instance, to generate time signals, which can be293

applied via MC simulation to structures.294

(ii) The data in time domain can be applied directly for the respective295

groups in order to carry out a reliability analysis.296

Whether to use option (i) or (ii) is dependent on the amount of given data.297

If the size is small, option (i) seems to be appropriate in order to set up a298

load model from which data with similar characteristics within the classified299

groups can be generated. If real data is available in a large amount option300

(ii) might be the better choice as it can be applied directly to the system.301

However, in the numerical examples in this work in the following sections,302

the focus is on case (i).303

4. Classification of real data records304

The real data records utilised in this work are provided by the K-NET305

and KiK-net database [42] and were chosen and downloaded by the authors.306

Thus, no pre-existing data selected by other authors were used. In general,307

there are mainly two ways to characterise ground motions, namely source-308

specific and site-specific characterisation. For source-specific characterisation309

only records of the same earthquake event but from different monitoring310

sites are utilised. Site-specific characterisation means that records of the311

same monitoring site but from different earthquake events are used. In the312

following, both ways of characterising ground motion are illustrated.313
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Figure 5: Source-specific (left) and site-specific ensemble (right).

4.1. Source-specific data ensemble314

For the classification of data and application to structures, real data of315

a specific earthquake event was utilised, see Fig. 5 (left). The earthquake316

occurred at 20:50 on 17/07/2021 at a depth of 80 km at latitude 33.6N and317

longitude 131.9E with a magnitude of 5.1. Data was collected from 313318

monitoring sites. All given ground motions have a total length T = 120 s319

and time step size ∆t = 0.01 s. For a reliable classification, however, the data320

was preselected according to their PGA, as it is meaningless to compare and321

classify data with completely different amplitudes. Therefore, only ground322

motions in the range 0.02 m/s2 ≤ PGA ≤ 0.06 m/s2 were utilised in the323

following. The resulting data ensemble consists of 168 earthquake ground324

motions. The data were transformed into the frequency domain according325

to Eq. (5) and then classified using the Bhattacharyya distance (Eq. 6) and326

k-means algorithm. This was done for k = 2 and k = 3 groups. Fig. 6 shows327

the mean PSD functions of the resulting groups. For the classification into328

k = 2 groups, group 1 and group 2 both consists of 84 PSD functions. The329

classification in k = 3 groups yields 58 PSD functions in group 1, 63 in group330
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2 and 47 in group 3.331
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Figure 6: Classified mean PSD functions estimated from source-specific seismic ground
motions with total length T = 120 s.

According to the silhouette method described in Section 3.3, the optimal332

number of groups is kopt = 2, as shown in Fig. 7 and 8. For illustration333

purposes, however, the classification and simulation is carried out for both334

k = 2 and for k = 3 groups.335

In order to verify the classification not only by sight, which can solely336

be an indicator, this is also substantiated by the total power and the peak337

frequency values of the classified group in frequency domain. For each group,338

the respective maximum and minimum are determined and given in Table339

1. In the time domain, minimum, maximum and mean value of the PGA of340

the classified groups were determined and are shown in Table 2. Overlapping341

intervals of the minimum and maximum values with regard to the different342

groups are permissible here, since a combination of these factors influence343

the classification. However, a clear trend in the values can be recognised.344
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Figure 7: Silhouette values for the ensemble of source-specific data for different numbers
of groups.
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Figure 8: Silhouette coefficients for the source-specific ensemble for different numbers of
groups. The optimal number of groups is kopt = 2.
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Table 1: Classification values for source-specific data in frequency domain

Classification Group Total power Peak frequency value

k = 2
1 [5.40 · 10−5, 5.29 · 10−4] [1.54 · 10−7, 2.32 · 10−5]
2 [7.9 · 10−6, 7.39 · 10−5] [3.39 · 10−8, 1.94 · 10−6]

k = 3
1 [9.00 · 10−5, 5.29 · 10−4] [4.27 · 10−7, 2.32 · 10−5]
2 [3.83 · 10−5, 1.24 · 10−4] [1.54 · 10−7, 5.05 · 10−6]
3 [7.9 · 10−6, 5.04 · 10−5] [3.39 · 10−8, 8.78 · 10−7]

Table 2: Classification values for source-specific data in time domain

Classification Group PGA mean(PGA)

k = 2
1 [0.0218, 0.0595] 0.0432
2 [0.0202, 0.0488] 0.0282

k = 3
1 [0.0271, 0.0595] 0.0446
2 [0.0218, 0.0595] 0.0347
3 [0.0202, 0.0475] 0.0262

4.2. Site-specific data ensemble345

For the site-specific classification of earthquake ground motions, data346

from the K-NET monitoring station in Tokyo, Japan (site code TKY007, site347

name Shinjuku) at latitude 35.7107N, longitude 139.6859E, and elevation 34348

m were used, see Fig. 5 (right). Data from July 2010 to July 2021 were used349

for the classification. The utilised earthquake ground motions have a total350

length of T = 60 s and a time step size ∆t = 0.01 s. As for the source-351

specific data before, the data was preselected according to the PGA. In this352

example, ground motions in the range 0.005 m/s2 ≤ PGA ≤ 0.015 m/s2353

are utilised. The resulting data ensemble consists of a total of 64 individual354

records. After transforming the data into the frequency domain according355

to Eq. (5) and classification using the Bhattacharyya distance (Eq. 6) and356

the k-means algorithm for k = 2 and k = 3 groups, the corresponding mean357
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PSD functions are obtained in Fig. 9. For the classification into k = 2358

groups, group 1 consists of 35 PSD functions and group 2 consists of 29 PSD359

functions. The classification in k = 3 groups yields 25 PSD functions in360

group 1, 22 in group 2 and 17 in group 3.361
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Figure 9: Classified mean PSD functions estimated from site-specific seismic ground mo-
tions with total length T = 60 s.

Determining the optimal number of groups using the silhouette methods362

yields kopt = 3, as shown in Fig. 10 and 11.363

The classification is verified by the total power and the peak frequency364

values. For each group, the respective maximum and minimum are deter-365

mined and given in Table 3. The minimum, maximum and mean values of366

the PGA in the time domain of the groups were also determined and are367

shown in Table 4. As with the source-specific classification, a clear trend can368

also be seen in these values.369

23



0 0.5 1

Silhouette Value

1

2

C
lu

st
er

0 0.5 1

Silhouette Value

1

2

3

C
lu

st
er

0 0.5 1

Silhouette Value

1

2

3

4

C
lu

st
er

0 0.5 1

Silhouette Value

1

2

3

4

5

C
lu

st
er

Figure 10: Silhouette coefficients for the ensemble of site-specific data for different numbers
of groups.
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Figure 11: Silhouette coefficients for the site-specific ensemble for different numbers of
groups. The optimal number of groups is kopt = 2.
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Table 3: Classification values for site-specific data in frequency domain

Classification Group Total power Peak frequency value

k = 2
1 [1.24 · 10−5, 3.56 · 10−5] [1.34 · 10−7, 1.08 · 10−6]
2 [4.35 · 10−6, 1.39 · 10−5] [3.77 · 10−8, 4.08 · 10−7]

k = 3
1 [1.73 · 10−5, 3.56 · 10−5] [2.57 · 10−7, 1.08 · 10−6]
2 [8.85 · 10−6, 1.73 · 10−5] [1.06 · 10−7, 8.96 · 10−7]
3 [4.35 · 10−6, 9.33 · 10−6] [3.77 · 10−8, 2.46 · 10−7]

Table 4: Classification values for site-specific data in time domain

Classification Group PGA mean(PGA)

k = 2
1 [0.0088, 0.0148] 0.0124
2 [0.0051, 0.0142] 0.0095

k = 3
1 [0.0092, 0.0148] 0.0129
2 [0.0061, 0.0142] 0.0107
3 [0.0051, 0.0127] 0.0089

5. Numerical examples370

In this section, generated load models from the classified ensembles of real371

earthquake ground motions are applied to two numerical examples in order to372

show the strength of the novel approach. The first example aims to demon-373

strate the effectiveness of the proposed classification approach and verify the374

identified optimal classification number, using a linear mass-spring-damper375

system considering different scenarios in the relationship between the sys-376

tem’s natural frequency and dominant frequencies of input ground motions.377

The second example, on the other hand, aims to show the feasibility of the378

proposed method for reliability assessment of non-linear dynamic systems379

using a seismic-isolated bridge pier model.380

The ensembles classified into 2 and 3 groups (Fig. 6 and Fig. 9) are381

25



used in the following for the numerical examples. For these, SRM (Eq. 3)382

is utilised to generate adequate time signals as the system’s excitation. The383

derived mean PSD functions of the individual groups are used as the un-384

derlying PSD function required for SRM. For each classified group 10,000385

MC samples were generated and applied to the structure. For each sample,386

the maximum displacement of the system in the time domain is determined,387

from which a cumulative distribution function (CDF) is calculated that can388

be used to estimate the probability of failure for specific displacements.389

For the mass-spring-damper system discussed in Section 5.1, stationary390

stochastic processes are generated, whereas for the bridge pier model in 5.2,391

non-stationary stochastic processes emulated by an envelope function are392

generated, since the response property of non-linear dynamic systems are393

strongly affected by the non-stationarity of input ground motions. The en-394

velope function is given by395

g(t) = k
(
e−at − e−bt

)
, (9)

with k = 500, a = 0.05 and b = 0.8. This is to emulate a strong earthquake396

ground motion. Two examples of a generated stationary and a non-stationary397

process are given in Fig. 12.398

5.1. Linear mass-spring-damper system399

The first numerical example is performed using a Single-Degree-of-Freedom400

(SDOF) mass-spring-damper system. The system can be described by the401
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Figure 12: Stationary (left) and non-stationary ground motion acceleration (right), gen-
erated by SRM (Eq. 3) and the envelope function (Eq. 9).

following equation of motion402

mẍ+ cẋ+ kx = F (t), (10)

with m as mass, k as stiffness and c as damping coefficient. The natural403

frequency is ω0 =
√

k/m and the damping ratio is ξ = c/(2ω0m). x, ẋ and404

ẍ denote displacement, velocity and acceleration of the system, respectively.405

The excitation F (t) on the right-hand side is modelled by a stochastic pro-406

cesses based on the classified PSD functions derived in Section 4. An explicit407

Runge-Kutta scheme [64] is used to solve Eq. (10).408

To show not only the influence of the input ensemble, but also of the409

system and its parameters, 2 different scenarios are calculated for each input410

ensemble, which will be called A and B for the source-specific ensemble and411

C and D for the site-specific ensemble in the following. The scenarios A and412

C represent the cases where the natural frequencies of the system and the413

dominant frequencies of the input ground motions differ, while scenarios B414

and D represent the cases where they are close to each other. The respective415
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system parameters are given in Table 5.416

Table 5: Parameters of the SDOF system for different scenarios.

Data set Scenario m (kg) k (N/m) c (Ns/m) ω0 (rad/s) ξ (–)

source-specific
A 50 1922 15 6.2 0.024
B 10 2800 15 16.733 0.045

site-specific
C 19 1922 15 10.058 0.039
D 10 4835 15 21.989 0.034

5.1.1. Results of source-specific data417

The resulting CDFs of the maximum system displacements for the classi-418

fied source-specific data for scenario A are shown in Fig. 13. The CDFs for419

the classification into 2 groups are given on the left and for the classification420

into 3 groups on the right. For a better comparability, the results are shown421

for the mean value of the entire ensemble as well as for the mean values of422

the individual groups. In addition, a weighted mean CDF is given, taking423

into account the probability of occurrence of each load model (i.e., the ratio424

between the number of real ground motion records assigned to each group).425

It can be seen, that the simulation results are more accurately for the426

classified load models compared to the load model of the entire ensemble.427

The distribution of the maximum system displacements varies considerably428

depending on the used load models defined by the groups. The results clearly429

show that a significantly higher range is covered by defining different load430

models. The individual load models themselves only cover a smaller range,431

but the load models considered as a whole reach a larger range. This shows432

that the definition of a single load model is not sufficient to cover all possible433
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ranges of maximum displacement. Such a load model can lead to large system434

displacements not being identified in the simulation and a possible system435

failure remaining undetected. This is particularly evident when comparing436

the CDF of group 1 and group 2 for the classification into 2 groups. Where437

the CDF of group 2 reaches its maximum, the CDF of group 1 is almost438

identical to 0, which confirms that based on the two distinct simulations439

completely different values for the maximum displacements can be obtained.440

A similar result can be seen for the classification into 3 groups.441

Furthermore, it can be easily recognised that in the example with the442

classification into 3 groups, group 2 and 3 hardly differ from each other.443

This is because the PSD functions of the group 2 and 3 are close to each444

other at the system’s natural frequency. The weighted mean CDF, calculated445

from the individual CDFs of the groups taking into account their weights,446

reveals a slight shift compared to the CDF of the entire ensemble. This447

indicates that a more accurate system response was calculated by considering448

the weights of the individual groups because the weighted mean CDF can449

consider the probability of occurrence of each load model which will also450

affect the determination of the system reliability or decisions for planning451

buildings and structures in the future. The weighted mean CDFs are in a452

similar range to the CDF of the entire ensemble regardless of the number of453

classification, which supports that kopt = 2 is reasonable and correct.454

In Fig. 14 the results for the SDOF system for scenario B are depicted.455

Since the natural frequency of the system has changed due to the use of other456
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Figure 13: CDFs of the maximum response displacement of the linear mass-spring-damper
system for scenario A for the classification into 2 groups (left) and into 3 groups (right)
of the source-specific data ensemble.

system parameters, different simulation results arise. Compared to scenario457

A, where the spectral densities of the different groups were very close to each458

other at the natural frequency, now the natural frequency is around the area459

of the largest differences in the spectral densities of the ensemble. This can460

be seen in particular on the right-hand side of Fig. 14, as the CDFs of group461

2 and 3 are significantly further apart than they were in scenario A. This462

also causes the weighted mean CDFs in both cases to shift to the left into463

the range of smaller system displacements. Accordingly, with the system464

parameters of scenario B, there is no overlap of the weighted mean CDF and465

the CDF of the entire ensemble. Nevertheless, the weighted mean CDFs are466

still in a similar range, which supports that the classification into 2 groups467

is sufficient.468

Although the silhouette coefficients are often very close, see for example469

Fig. 8, the application of the classified models, however, shows that it is470

indeed effective. This is particularly evident in the results in Fig. 13. The471

classification results in the optimal number of groups kopt = 2, which yields472
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Figure 14: CDFs of the maximum response displacement of the linear mass-spring-damper
system for scenario B for the classification into 2 groups (left) and into 3 groups (right) of
the source-specific data ensemble.

reasonable results. When classified into 3 groups, the results of group 1473

and group 2 are fairly close, indicating that they can form one group. This474

supports the argument that the classification into 2 groups is optimal.475

5.1.2. Results of site-specific data476

The results of the site-specific data and their classification show a similar477

behaviour as the results of the source-specific classification. In Fig. 15 the478

CDFs for the classification into 2 groups (left) and into 3 groups (right) for479

scenario C are shown. Again, the individual groups show a more accurate480

distribution of the maximum system displacements. Without a prior clas-481

sification into groups, smaller and larger system displacements can hardly482

be recognised; this is only made possible by the classification. The overall483

model, which takes into account the weighted individual groups, also shows a484

more accurate representation of the maximum system displacements. Com-485

pared to the source-specific data, the optimal number of groups has been486

determined to be kopt = 3. The weighted mean CDF for the classification487
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into 3 groups is further shifted to the left side from the ensemble mean CDF488

compared to that for the classification into 2 groups. It supports that the489

classification into 2 groups is not enough for accurate estimation of system490

responses, and thus the classification into 3 groups is reasonable.491
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Figure 15: CDFs of the maximum response displacement of the linear mass-spring-damper
system for scenario C for the classification into 2 groups (left) and into 3 groups (right) of
the site-specific ensemble.

The results of scenario D, using the site-specific data and its classification,492

are shown in Fig. 16. As the natural frequency has changed due to the use493

of other system parameters, correspondingly different simulation results can494

be obtained. Since the spectral densities are now somewhat higher compared495

to scenario C, the system displacements are also in part significantly higher.496

On the left side of Fig. 16 the results for the classification into 2 groups497

are shown, while on the right side the results for the classification into 3498

groups are given. In particular, the classification into 3 groups reveals high499

distances between the CDFs of the individual groups and also the weighted500

mean CDF is slightly further shifted to left side from the ensemble mean CDF501

for the case classified into 3 groups than the case classified into 2 groups,502

which indicates that a classification into 3 groups is optimal. In both cases,503
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reasonable weighted mean CDFs are calculated based on a refined subdivision504

of the ensemble.505
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Figure 16: CDFs of the maximum response displacement of the linear mass-spring-damper
system for scenario D for the classification into 2 groups (left) and into 3 groups (right)
of the site-specific ensemble.

5.2. Non-linear bridge pier model506

For the numerical investigation of a non-linear system a seismic-isolated507

bridge pier model with rubber bearings is utilised. The model is based on the508

design specifications for highway bridges of the Japan Road Association [65]509

and the manual on bearings for highway bridges [66]. The bridge pier is510

modelled as a 2-DOF lumped mass system and consists of a superstructure511

and the RC pier, which is modelled as a non-linear horizontal spring, see512

Fig. 17. The rubber bearings are idealised as a bilinear model, while for513

the RC pier a bilinear model with elastoplastic characteristics and stiffness514

degradation model is used, the so-called Takeda model [67]. A fixed boundary515

condition is assumed for the connection to the surface. Rayleigh damping516

is adopted, with the damping ratios of 0% for the bearing and 2 % for the517

pier, respectively. For the numerical solution, a dynamic response analysis is518
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performed using the Newmark-beta method with γ = 1/2, β = 1/4 and the519

time step size ∆t = 0.01 s. The utilised structural parameters are given in520

Table 6.521

mass of superstructure

mass of pier

stiffness of bearing

stiffness of pier

5 x 40 000 mm

1
0
0
0
0
m
m

1
2
2
0
0
m
m

Figure 17: 2-DOF lumped mass model for the target bridge pier.

Table 6: Model parameters of the bridge pier.

Model parameter Nominal value
Superstructure Mass MS (ton) 604

Rubber bearing
Yield strength (kN) 1118
Yield stiffness KB1 40,000
Post-yield stiffness KB2 6000

RC pier

Mass Mp (ton) 346.2
Yield strength (kN) 3374
Yield displacement (m) 0.0306
Ultimate displacement (m) 0.251
Yield stiffness Kp (kN/m) 110100

An example of the non-linear force-displacement behaviour of the rubber522
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bearing of the bridge pier model is depicted in Fig. 18.523
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Figure 18: Force-displacement behaviour of the rubber bearings.

As in the example of the linear mass-spring-damper model in the pre-524

ceding section, a total of 10,000 MC samples were generated and applied to525

the bridge pier model. For each sample, the maximum displacement of the526

system, i.e. the maximum displacements at the RC pier and at the rubber527

bearings, is determined in the time domain, from which the CDF is calcu-528

lated again. In this case, only non-stationary earthquake ground motions529

were utilised as samples to provide a more realistic example. It is important530

to note that unlike the previous case of the linear system, it is difficult to531

discuss about the validity of the identified optimal number for classification,532

since response properties of the non-linear dynamic systems are significantly533

affected by the structural non-linearity and non-stationarity of the input534

ground motions. This example rather aims to demonstrate the feasibility of535

the proposed classification approach in reliability assessment of non-linear536

dynamic systems and thus, for the sake of brevity, only the results with the537
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optimal number of classifications are presented.538

5.2.1. Results of the non-linear bridge pier model539

The results of the source-specific data are given in Fig. 19. The CDFs540

of the maximum displacements at the RC pier of the bridge for the optimal541

number of groups kopt = 2 and of those at the rubber bearings are shown.542

The results demonstrate for the non-linear model that the classification of the543

ensemble yields more accurate results. With the classification into 2 groups,544

it can be seen that higher overall system displacements can be calculated545

with the load model generated from group 1 than with the load model of the546

entire ensemble. In this example it is again confirmed that the classification547

of an ensemble leads to more accurate results. It can also be seen that the548

weighted mean CDF deviates slightly from the CDF of the entire ensemble549

for the RC pier case, while they overlap each other for the rubber bearings.550
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Figure 19: CDFs of the maximum response displacement of the seismic-isolated bridge pier
model for the source-specific ensemble for the classification into kopt = 2 groups. Results
for the RC pier are shown on the left, results for the rubber bearings are shown on the
right.

In Fig. 20 the results of the site-specific data are shown. The CDFs551

for the optimal number of kopt = 3 groups are shown for the RC pier (left)552
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and for the rubber bearings (right). It can be seen that the classification553

leads to more accurate results instead of considering the entire ensemble and554

determine a load model from it. The classification into 3 groups shows a high555

diversity of the CDFs, which is as a consequence of the optimal number of556

groups having been determined to be kopt = 3. This also leads to the fact557

that the weighted mean CDF here partly deviates strongly from that of the558

entire ensemble for each of the cases. Overlaps can only be seen in the range559

of small system displacements.560
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Figure 20: CDFs of the maximum response displacement of the seismic-isolated bridge
pier model for the site-specific ensemble for the classification into kopt = 3 groups. Results
for the RC pier are shown on the left, results for the rubber bearings are shown on the
right.

The results demonstrate that the classification of the ensemble can cover561

wider ranges of the system responses. Moreover, except for the results at562

the rubber bearings for the source-specific case, the weighted mean CDFs563

provide more accurate results than the ensemble CDF. These results thus564

demonstrate the feasibility of the proposed method for reliability assessment565

of non-linear dynamic systems.566
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6. Conclusion567

A new technique has been proposed for developing load models from568

ensembles that exhibit high spectral variance. Using the Bhattacharyya dis-569

tance, groups of similar PSD functions in the frequency domain can be de-570

termined applying the k-means algorithm. Classification in the frequency571

domain is necessary because differences in the time domain often cannot572

be detected; similar signals in the time domain can lead to highly differing573

PSD functions in the frequency domain. The dissimilarities can often only574

be revealed there. The classification of the ensemble leads to more accu-575

rate simulation results, which can be important especially for the reliability576

assessment of the structure under investigation. In many cases, the higher577

number of load models yields in higher system displacements that would578

otherwise remain undetected and a possible system failure would thus not579

be detected. However, it requires that multiple, distinct simulations of the580

structural behaviour must be carried out, which could equate to a significant581

time investment for large model analysis. Therefore, a method for identifying582

the optimal number for classification based on the silhouette method was also583

proposed to avoid performing more simulations than necessary. The results584

of the individual groups can be weighted considering the probability of occur-585

rence of each load model to obtain a more accurate overall system response,586

which can then be evaluated for design purposes. This may allow the use587

of modified system parameters in the design of the structure or lead to cost588

savings in the computations of the simulations. The validity of the identified589
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optimal number for classification and the strength of the proposed method590

were first investigated using a linear mass-spring-damper system, and then591

the proposed method was applied to a seismic-isolated bridge pier model592

to demonstrate its feasibility in reliability assessment of non-linear dynamic593

systems. While the application in this work is based on seismic ground mo-594

tions, the developed approach is also suitable for other stochastic processes,595

such as wind or wave loads subject to structures. The prerequisite for the596

application of this approach to other stochastic processes is that they exhibit597

similar characteristics among themselves after the transformation into the598

frequency domain, otherwise a classification would not be useful as it would599

be obvious that the data are dissimilar. If they show similar characteristics600

but high variance, classification is indispensable.601
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