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Abstract—Lithium-ion battery state of health (SOH) estimation
technology is an important part of the design of a battery moni-
toring system (BMS) for electric vehicles. People often use battery
capacity and internal resistance as SOH estimation indicators.
However, due to actual working conditions, it is difficult for
electric vehicles to achieve complete charge and discharge, so
the battery capacity and internal resistance cannot be monitored
online. In view of the above questions, this article proposes an in-
direct SOH estimation method for online EV lithium-ion batteries
based on arctangent function adaptive genetic algorithm com-
bination with back propagation neural network (ATAGA-BP).
Firstly, constant current drop time (CCDT), constant current
drop capacity (CCDC) and maximum constant current drop rate
(MCCDR) in constant voltage charging stage are used as health
indicator (HI) to evaluate battery SOH in order to indirectly
quantify the degradation process of lithium-ion batteries. Error
point optimization and correlation verification are also carried
out. Secondly, an ATAGA-BP algorithm is proposed to establish
the relationship between HI and available battery capacity, and
SOH estimate is made for lithium-ion batteries according to the
proposed algorithm. Finally, simulation results with NASA data
show the correlation between the proposed HI and lithium-ion
battery capacity is above 85%, the error of SOH estimation
method proposed is 3.7%, and the iteration efficiency is increased
by 17.8%.

Index Terms—Lithium-ion battery, Electric vehicles, State of
health estimation, Health indicator, Artan function adaptive
genetic algorithm

I. INTRODUCTION

L ITHIUM-ion batteries with high energy density, low self-
discharge rate, and no memory effect are often used

in power batteries for electric vehicles (EV) [1,2]. However,
improper operation such as excessive charging/discharging
and overheating of lithium-ion batteries can cause premature
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degradation of the battery, thereby affecting the life of instru-
ments and equipment. The state of health (SOH) estimation
can monitor the battery health in real time and replace the
problem battery so that the battery pack is always in optimal
working condition, increasing the service life of the entire
battery pack and reduces the use of electric vehicles Costs
[3-5].

Generally, there are three types of SOH estimation methods
for lithium-ion batteries: experimental estimation methods,
data-driven methods, and fusion methods. The experimental
estimation method is an estimation method that requires a
large number of experiments in the laboratory and analyzes the
aging behavior of the battery [6-8]. The data-driven method
refers to the establishment of some general approximate mod-
els based on the collected data to match the relationship be-
tween observation results and hidden indicators [9-11]. Fusion
methods involve the combination of two or more models to
enhance prediction and estimation performance [12-15]. At
present, the fusion estimation method has become the main
research direction of SOH estimation of lithium-ion batteries.

Many valuable SOH fusion estimation models and algo-
rithms have appeared [16-20]. Literature [21] proposed a
lithium-ion battery SOH estimation method with a Gauss-
Hermit particle filter (GHPF) to improve the precision of the
estimation, at the same time, a multi-scale extended Kalman
filter was utilized to reduce the computational complexity.
Literature [22] proposed a battery SOH estimation model
based on support vector regression, using battery capacity as
output, voltage and current as input, and combining particle
filters to suppress voltage and current noise. Literature [23]
requires a neural network as the observation equation based
on the particle filter algorithm, which has better accuracy
and robustness. Literature [24] proposed a fusion model of
autoregressive moving average and Elman neural network
to obtain an accurate prediction of the SOH of lithium-ion
batteries. Literature [25] proposed a model to predict the
remaining life of lithium-ion batteries, which is based on the
support of vector regression and differential evolution.

It is useful to noting that the lithium-ion batteries SOH
estimation method mentioned above cannot be directly ap-
plied to EV lithium-ion batteries online monitoring. Since the
measurement and monitor of the EV batteries are difficult and
expensive due to the incomplete charging and discharging state
[26]. Therefore, there is an urgent need for a method that
can indirectly quantify the degradation process of lithium-ion
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batteries, rather than directly monitoring the battery capacity
and internal resistance.

Some scholars extracted health indicator (HI) from charging
and discharging behavior and cycle times to establish the
mapping relationship between HI and SOH for lithium-ion
batteries real-time online SOH estimation [26-30]. Literature
[26,27] proposed an online SOH evaluation method based on
the Unscented Kalman Filter (UPF) algorithm, using a con-
stant current discharge time as HI, establishing the mapping
relationship between HI and SOH, and applying it to the
state space equation. Literature [28,29] proposed a method
for estimating the SOH of lithium batteries with a partial
constant current charging voltage-time curve as HI. Literature
[30] analyzed the battery open circuit voltage test to establish
HI, and the relationship between HI and battery capacity was
established by using the support vector machine algorithm, so
as to obtain SOH.

For EV lithium-ion batteries, the above SOH online esti-
mation methods are not appropriate since the charging and
discharging behavior and cycle times are different in actual
operation. In fact, the discharge process of EV lithium-ion
batteries is random, but the charging process is regular. In
charging process, the constant voltage charging information is
completely retained. Its initial state and the termination state
are the same, and incomplete discharge will not affect its initial
state. Literature [31,32] uses constant voltage charging time
and constant voltage charging capacity as health indicators
to estimate the SOH of lithium-ion batteries. However, the
starting time of constant voltage charging is controversial, the
standard of constant voltage starting is difficult to determine,
and the end time of constant voltage charging may be wrong
due to measurement errors.

This paper proposes an indirect SOH online estimation
method for EV lithium-ion batteries based on arctangent (AT)
function adaptive genetic algorithm (AGA) combined with
back propagation (BP) neural network algorithm (ATAGA-
BP). The contributions of this paper are as follows

• Utilising the measurable parameters of the actual charging
process of an electric vehicle, the constant current drop time
(CCDT), constant current drop capacity (CCDC) and max-
imum constant current drop rate (MCCDR) in the constant
voltage charging stage as the lithium-ion battery capacity
health indicator (HI), Compared with the whole stage of
constant voltage charging, it is easy to extract, increases the
data dimension and reduces the data volume, and improves
the robustness and efficiency of the prediction model.

• The proposed HI is optimized and verified using PauTa
criterion [33,34] and Pearson Product-Moment Correlation
Coefficient (PPMCC) [35], which improves the accuracy of
HI and verifies the feasibility of HI for SOH estimation.

• An ATAGA-BP algorithm is proposed to establish the
relationship between HI and available battery capacity, and
an indirect SOH estimation for electric vehicle lithium-ion
batteries is performed based on the above method.

In addition, simulations are carried out with the public data
of NASA Ames Prognostics Center of Excellence (PCOE) to
demonstrate the effectiveness and robustness of the proposed
method.

The remaining sections of this paper are organized as
follows: Section 2 introduces the framework of this paper and
the ATAGA-BP algorithm. Section 3 describes the proposed HI
extraction, optimization and validation. Section 4 introduces
the novel HI and ATAGA-BP fusion methods for EV lithium-
ion batteries SOH estimation, and the effectiveness and robust-
ness of the proposed method are verified through comparison
and analysis of various methods. Finally, we discuss the results
and summarize this paper in Section 5.

II. ONLINE EV LITHIUM-ION BATTERIES SOH
ESTIMATION BASED ON ATAGA-BP ALGORITHM

The constant current drop time (CCDT), constant current
drop capacity (CCDC) and maximum constant current drop
rate (MCCDR) in constant voltage charging stage are used
as the health indicator (HI) to indirectly monitor the electric
vehicle under actual working conditions. Considering the non-
linear and complex characteristics of lithium-ion batteries, an
ATAGA-BP algorithm is proposed for the establishment of the
relationship between HI and lithium-ion battery capacity. The
framework of online EV lithium-ion batteries SOH estimation
with HI and ATAGA-BP algorithm is presented in Fig. 1.
The proposed Ataga-BP algorithm for lithium ion battery
estimation method is in section 2, and the proposed health
indicators and optimization method is in section 3.

Fig. 1. Online SOH estimation framework for EV Lithium-ion batteries.

A. BP neural network algorithm

BP neural network usually refers to a multi-layer forward
neural network based on error back propagation algorithm
[34,35]. The training steps are as following.

Step 1. Network initialization. The network input layer node
n is the system input X dimension, and the network output
node number m is the system output Y dimension. Determine
the amount of hidden layer nodes l. Randomly initialize the
weights between the input layer and the hidden layer ωij , the
weights between the hidden layer and the output layer ωjk,
the hidden layer threshold a, and the output layer threshold b,
Finally identify the learning rate η and activation function.

Step 2. Hidden layer output calculation. According to the
X, ωij , a and sigmoid activation functions, the hidden layer
output H is calculated as follows.

Hj = f

(
n∑
i=1

ωijxi − aj

)
j = 1, 2, . . . , l (1)
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Step 3.Output layer output calculation. According to H, ωjk,
and b. the network output O is calculated.

Ok =

i∑
j=1

Hjωjk − bk k = 1, 2, . . . ,m (2)

Step 4. Error calculation. According to the predicted output
O and the actual output Y, the prediction error e is calculated.

ek = Yk −Ok k = 1, 2, . . . ,m (3)

Step 5. Update weights and thresholds. According to the
prediction error e, the network weights ωij and ωjk are
updated, and the thresholds a and b are updated.

ωij = ωij + ηHj(1−Hj)x(i)
ωjk = ωjk + ηHjek

aj = aj + ηHj(1−Hj)x(i)
m∑
k=1

ωjkek

bk = bk + ek

(4)

Step 6. Determine whether the prediction error or the
number of iterations meets the conditions. If not, return to
step 2.

B. BP neural network Algorithm optimized by ATAGA

Since BP neural network algorithm uses gradient descent
algorithm to easily fall to the local optimum, people often
use swarm intelligence algorithm to optimize hyperparameters
in BP neural network algorithm to improve the ability to
find the global optimum. The genetic algorithm (GA) is a
major branch of the swarm intelligence algorithm. Traditional
standard GA uses fixed control parameters, resulting in poor
global search ability and immature convergence. To solve
the problem, an adaptive genetic algorithm (AGA) and an
improved adaptive genetic algorithm (IAGA) suggest in [36]
and [37], respectively. The idea is that both the probability
of crossing pc and the probability of mutation pm increase
when the fitness of the population is concentrated. On the
contrary, pc and pm decrease when the fitness of the popu-
lation is distributed. However, the above methods can have
local convergence problems. This article proposes an adaptive
genetic algorithm based on the arctangent function (ATAGA).
The adaptive selection formula for the values of the crossover
probability pc and the mutation probability pm is calculated
as follows.

pc =

{
k1−(k1 − k2) · arctan( f ′−favg

fmax−favg
× π

2 ) f ′ ≥ favg
k1 f ′ < favg

(5)

pm =

{
k3 − (k3 − k4) · arctan( f−favg

fmax−favg
× π

2 ) ) f ≥ favg
k3 f < favg

(6)

Where, k1 is the maximum value of crossover probability,
k2 is the minimum value of crossover probability, k3 is the

maximum value of change probability, and k4 is the minimum
value of change probability. f ’ is the fitness value of the larger
two individuals that need to be crossed, fmax is the maximum
fitness of the population, f avg is the average fitness of the
population, and f is the fitness of the mutant.

Fig. 2. Adaptive adjustment curve contrast graph of three algorithms..

The adaptive adjustment curve contrast of AGA, IAGA and
ATAGA is shown in Fig. 2. When the individual fitness value
of the AGA algorithm is close to fmax, its pc and pm are
approximately equal to 0, so this method is easy to converge,
and it is not easy to find the global optimum. Both AGA
and IAGA algorithms linearly modify pc and pm. If most
individuals are close to f avg , the probability of crossover and
mutation is very high. This situation is not easy to converge; if
most individuals are close to fmax, the probability of crossover
and mutation is very low. It is easy to converge, but it will
fall into a local optimum.

The ATAGA method proposed in this paper can ensure
stable changes in crossover probability and mutation proba-
bility. Since the range of the arctangent function is (-1, 1), the
crossover/mutation probability close to f avg and fmax will not
be too large or too small, which avoids the situation that it is
not easy to converge and fall into the local optimum. The
flow chart of the ATAGA-BP algorithm used in online SOH
estimation is presented in Fig. 3.

III. HI EXTRACTION, OPTIMIZATION, AND VALIDATION

In order to improve the robustness of the model, this sec-
tion selects the constant current drop time (CCDT), constant
current drop capacity (CCDC) and maximum constant current
drop rate (MCCDR) in the constant voltage charging stage
as the lithium-ion battery capacity health indicator (HI). The
proposed HI can indirectly quantify the degradation process of
lithium-ion batteries, replacing the complicated and expensive
online capacity and internal resistance measurement.

A. HI extraction

Due to the random discharge characteristics of EV in
actual operation, the existing HI extraction method in constant
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Fig. 3. Flow chart of ATAGA-BP algorithm used in Online SOH estimation.

current discharge mode is not suitable for electric vehicle
lithium-ion batteries [26,27]. On the contrary, the charging
time of the constant voltage charging stage is longer, the
parameters are more obvious, and the start and end states are
the same. Therefore, the characteristics of the constant voltage
charging stage are used as HI.

In order to ensure that the degradation phenomenon of the
constant voltage charging stage more intuitive, this article
uses the external measurement data of the battery No.5 in
the NASA PCOE data set to visualize the dynamic charac-
teristics of the constant voltage charging stage. In Fig. 4,
this paper draws the constant voltage charging current curve
under different degradation conditions (the number of cycles
is 30, 60, 90, 120, and 150, respectively). It can be seen that
the constant voltage charging stage curve is very different
for different cycle time. As the number of cycles increases,
the constant voltage charging time will increase, the charging
capacity will also increase, and the maximum current drop rate
will decrease. Therefore, SOH of battery is related to CCDT,
CCDC and MCCDR, and these three indirect parameters are
selected as HI in the following paper.

The expression of HI is as follows:

HI =

 CCDT
CCDC
MCCDR

T =


t(end)− t(start)
end∑

k=start

i(k) · t(k)
i(start+1)−i(start)
t(start+1)−t(start)


T

(7)

Fig. 4. Current measurement diagram during constant voltage charging.

Where, t(start) is the start time of constant current drop,
t(end) is the end time of constant current drop, i(k) is the
current at time k, and t(k) is the kth sampling interval. As
shown in Fig. 4, t(start) and t(end) used in the experiment in
this paper are the moment when battery discharge current is
1.2A and 0.6A, respectively.

Compared with the constant voltage charging time (CVCT),
CCDT, CCDC and MCCDR require less data volume and
easier to extract. The CVCT has a wider range of starting time
(the voltage is close to the constant voltage setting value and
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rises slowly, and it may be lower than the given voltage value),
the very small current at the end time may cause measurement
errors.

All the constant voltage charging HI of lithium-ion batteries
are represented by matrix HI.

HI =


HI1
HI2

...
HIN

 (8)

Where, N represents the number of cycles of lithium-ion
battery charging.

B. HI optimization
In the actual extraction process, the HI will appear outliers

under the influence of measurement error and random noise.
In order to improve the accuracy of the prediction, the PauTa
criterion method is adopted to modify the data in this research
[33,34]. PauTa Criterion is a common method of dealing with
bad data, it is the standard deviation σ of three observed values
as the criterion for limiting selection. Standard deviation σ
is the parameter calculated after a large number of repeated
observations, and its formula is:

σ =

√√√√√ N∑
n=1

(HIn −HI)
2

N
(9)

Where, n is the number of lithium-ion battery cycles, which
should not be less than 20 times in general, and HI is the
arithmetic mean value of HIn.

The discrimination basis of PauTa criterion is as follows.

Rn =
∣∣∣HIn − ĤIn

∣∣∣ (10)

Where Rn is the residual and ĤI is the HIn estimate. If
the Rn is greater than 3σ, HIn is a gross error and should be
discarded or compensated. If the Rn is less than or equal to
3σ, HIn is normal data and retained.

C. HI validation
To verify the precision of the HI proposed in this article,

Pearson Product Moment Correlation Coefficient (PPMCC)
is used to analyze the correlation between HIi and capacity
sequence Ci of EV lithium-ion battery in constant voltage
charging process [37]. The correlation coefficient is repre-
sented by r. In general, the higher the absolute value of r,
the stronger the correlation. Coefficient r of Pearson product
moment correlation is as follows.

r =

N∑
n=1

(HIn −HI)(Cn − C)√
N∑
n=1

(HIn −HI)
2

√
N∑
n=1

(Cn − C)
2

(11)

Where, n is the cycles of lithium-ion battery, HI is the
arithmetic mean value of HIn, and C is the average capacity
of EV lithium-ion battery.

IV. SIMULATION ANALYSIS

A. Data source

This study analyzed the degradation experimental data of
lithium-ion batteries from the NASA Ames Prognostics Center
of Excellence (PCOE) [20,26]. One set of 18650 batteries (No.
5, No. 6, No. 7, No. 33, No.45, No. 46, No. 47, No. 48, No. 55,
No. 56) as the experimental data for the verification method.
All batteries are charged with a constant current of 1.5A. When
the voltage reaches 4.2V, it is converted to constant voltage
charging until the current drops to 20mA.

B. Error evaluation standard

Maximum absolute error (AEMAX ), mean absolute error
(MAE) and root mean square error (RMSE) are used to evaluate
the prediction effect of the proposed method.

Maximum Absolute Error

AEMAX = max
∣∣SOHk

estimation − SOHk
true

∣∣L
k=1

(12)

Mean Absolute Error

MAE =

L∑
k=1

∣∣SOHk
estimation − SOHk

true

∣∣
L

(13)

Root Mean Square Error

RMSE =

√√√√√ L∑
k=1

(SOHk
estimation − SOHk

true)
2

L
(14)

C. Simulation verification of health indicator

Fig. 5 shows the relationship between the HI and battery
capacity proposed in this paper before and after optimization.
It can be seen that singular values will inevitably appear in
the process of extracting health indicators. Singular value cor-
rection can improve the accuracy of health indicators and the
accuracy of SOH estimation. With the increase of the discharge
cycle, the CCDT and CCDC in the constant voltage charging
stage are inversely proportional to the capacity, and MCCDR
is directly proportional to the capacity. Errors occurred in the
three health indicators at the same time during the 30th cycle
extraction process, especially the MCCDR calculation uses
division. When the denominator is close to 0, the singular
value will be particularly large, so it is very necessary to
optimize the health indicators.

Table I shows the correlation analysis results of lithium-
ion battery capacity before and after HI optimization. The
correlation between CCDT and capacity increased by 0.165,
the correlation between CCDC and capacity increased by
0.159, and the correlation between MCCDR and capacity
increased by 0.329. The absolute values of the optimized
correlations are all above 0.8, so the health indicators used
in this article can be used to estimate the SOH of lithium-ion
batteries.
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TABLE I
CORRELATION COEFFICIENT BETWEEN HI AND BATTERY CAPACITY

CCDT CCDC MCCDR
before optimization optimized before optimization optimized before optimization optimized

No.5 -0.760 -0.968 -0.720 -0.961 0.105 0.965
No.6 -0.885 -0.931 -0.890 -0.930 0.129 0.947
No.7 -0.587 -0.891 -0.549 -0.863 0.107 0.889

No.33 -0.574 -0.848 -0.563 -0.793 0.721 0.859
No.45 -0.842 -0.879 -0.880 -0.880 0.818 0.873
No.46 -0.678 -0.855 -0.696 -0.854 0.695 0.860
No.47 -0.899 -0.925 -0.894 -0.937 0.913 0.922
No.48 -0.618 -0.823 -0.653 -0.898 0.693 0.901
No.55 -0.766 -0.883 -0.756 -0.824 0.871 0.881
No.56 -0.472 -0.732 -0.561 -0.811 0.591 0.835

Average -0.708 -0.873 -0.716 -0.875 0.564 0.893

Fig. 5. Relation between HI and lithium-ion battery capacity before and after
optimization (No.5 battery) (a) CCDT (b) CCDC (c) MCCDR.

D. lithium-ion battery SOH estimation simulation results with
ATAGA-BP Algorithm

The internal chemical reactions of lithium-ion batteries
are different. In order to improve the universality and gen-
eralization of the model, the training data randomly uses
70% of each battery’s data, and the remaining 30% is used
for testing. The number of nodes with hidden layers in the
BP neural network influences the predictive accuracy of the
training model. Having too many hidden layer nodes leads
to excessive learning, poor network adaptability, and large
prediction errors. In this research, after much experimentation,
it is finally determined that the number of nodes N of the
hidden layer is 40, which is the most suitable. As shown in
Fig. 6, when the hidden layer node is 40, MAE is the smallest
and the minimum value is 4.099%.

After determining the number of nodes in the hidden layer
of the BP neural network, the ATAGA-BP algorithm proposed
in this article is used to optimize the parameters to prevent
the BP neural network from falling into the local optimum.

Fig. 6. The MAE results with different number of hidden layer nodes.

In this research, the experimental population size is 50 and
the number of iterations is 200, among which the fitness is
the reciprocal of the BP network model MAE. The results are
shown in Fig. 7.

It can be seen from Fig. 7 that the proposed ATAGA-BP al-
gorithm is superior to the existing method in terms of accuracy.
Compared with IAGA-BP, the fitness of ATAGA-BP finally
converges to the optimal value 8 times in advance, as a result,
its iteration efficiency is increased by 17.8%. As can be seen
from Table II, compares various SOH estimation methods of
lithium ion batteries. The ATAGA-BP algorithm proposed in
this paper is superior to the support Vector Regression (SVR)
[17], Prior knowledge-based Neural Network (PKNN) [31]
and convolutional neural network (CNN) [13].The MAE of
SOH estimation using ATAGA-BP algorithm is 3.7%, which
is 2% lower than that of IAGA-BP algorithm and 16.1% lower
than the error of traditional CNN algorithm.

Table III shows the detailed results of SOH estimation
based on ATAGA-BP lithium-ion batteries. The maximum
error of all battery estimates is within 0.1, and the MAE is
within 4%. Among them, the estimated result of No. 5 is the
best, and the estimated result of No. 33 is the worst, so the
SOH estimation diagram of these two batteries is drawn.
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Fig. 7. Results Comparison of various optimized BP algorithms.

TABLE II
ERROR COMPARISON OF MULTIPLE METHODS

AEMAX MAE(%) RMSE(%)
SVR[17] 0.135 / 3.850

PKNN[31] / 5.890 7.681
CNN[13] / 4.430 5.840

BP 0.109 4.099 3.171
GA-BP 0.102 3.955 2.857

AGA-BP 0.099 3.990 2.733
IAGA-BP 0.097 3.798 2.682

ATAGA-BP 0.095 3.715 2.663

Fig. 8 is the SOH estimation diagram of the No. 5 battery,
and Fig. 9 is the SOH estimation diagram of the No.33 battery.
In the figure, the training data randomly uses 70% of each
battery’s data, and the remaining 30% is used for testing.
There is a difference between the training and testing data.
Therefore, it is proved that the existing data can be used for
the establishment of the model. The trend of No.5 is better than
that of No.33, so the SOH estimation value of the battery is
more accurate.

Fig. 8 and Fig. 9 is the Multi-cycle SOH estimation and
actual comparison of EV lithium-ion batteries, The SOH
estimation results are close to the actual results, which can
well reflect the SOH trend of electric vehicles and verify the

TABLE III
SOH ESTIMATION OF LITHIUM ION BATTERY BASED ON ATAGA-BP

ALGORITHM

AEMAX MAE(%) RMSE(%)
No.5 0.067 3.629 2.573
No.6 0.085 3.680 2.535
No.7 0.082 3.749 2.748

No.33 0.095 3.841 2.908
No.45 0.077 3.633 2.561
No.46 0.053 3.764 2.726
No.47 0.083 3.629 2.546
No.48 0.054 3.830 2.846
No.55 0.072 3.802 2.887
No.56 0.060 3.823 2.848

Fig. 8. Multi-cycle SOH estimation and actual comparison of EV lithium-ion
batteries(No.5).

Fig. 9. Multi-cycle SOH estimation and actual comparison of EV lithium-ion
batteries(No.33).

effectiveness of the method presented.

V. CONCLUSION

This article proposes a SOH estimation method based on
ATAGA-BP for lithium-ion batteries for electric vehicles. On
the one hand, CCDT, CCDC and MCCDR are proposed
as the health indicator, which is easy to indirectly quantify
the degradation process of lithium-ion battery and realize
online lithium-ion SOH estimation of EV. The simulation
results show that the correlation between the optimized health
indicator and the capacity of the EV lithium-ion battery is
greater than 85%. On the other hand, an arctangent function
adaptive genetic algorithm combination with back propagation
neural network is proposed to optimize the parameters and
improve the ability of model precision. The simulation results
show that the proposed method improves both the precision
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and the speed of calculation. The SOH estimation error of
lithium-ion battery is only 3.7%, and the iteration efficiency
is increased by 17.8%.

It should be noted that the health indicator proposed is
extracted under the condition of constant voltage charging
of EV, which can be optimized by introducing the constant
current charging part of EV. In addition, all the batteries in
the experiment are lithium cobalt oxide batteries. In future
research, lithium iron phosphate, nickel manganese cobalt,
lithium titanate and other batteries will be introduced to opti-
mize the model and establish a model with higher universality.
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