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Abstract—Recently, the development of the Internet of Things 

(IoT) enables more comprehensive and intelligent analysis and 

defense for cascading failures in power grids. This paper 

summarizes power grids as Temporal Weighted Networks (TWN) 

which are different from conventional temporal networks. For 

TWN, the topological structure is fixed but weight distribution is 

time-varying. Then it is noted that for different operating states 

represented by different weight (power flow) distribution at 

different time sections, the risks of cascading failures would be 

completely different. Inspired by analysis of inter-subnetworks 

power shifts in cascading failures, Inverse-Community (IC) 

structure is proposed in TWN to intuitively identify the risk of 

cascading failures. IC describes a structure in weighted networks 

with several communities in which the weighted interaction 

between communities is significantly stronger than that within the 

same community. Furthermore, the conventional modularity is 

upgraded as Inverse Modularity (IM) to quantify the 

characteristic of IC structure in power networks. Subsequently, 

considers the risk of cascading failures represented by IM and the 

cost of power network operation, a security/economic dispatch 

(SED) method is designed to handle the optimal power dispatch 

issues. Simulation results prove a positive correlation between IM 

of power flow distribution and risk of cascading failures. 

Furthermore, the results on the IEEE 118-bus system demonstrate 

the effectiveness of the proposed SED method in mitigating 

cascading failure risks. 

Index Terms— Inverse-community structure, temporal 

weighted network, cascading failure, security/economic dispatch, 

Internet of Things (IoT), complex network. 

I. INTRODUCTION 

ith the rapid growth of demand and scale of topology in 

power networks, the power outages caused by cascading 

failures have catastrophic consequences to the stability 

and reliability of power grids, which will have severe impacts 

on public life and economic cost for society [1-3]. The process 

of cascading failure contains multifarious causes, such as the 

topological feature, loading level of transmission lines, power 

flow distribution, fault components and external factors. 

Modern power systems have been widely recognized as 

typical Internet of Things (IoT) systems with more cyber 

technologies and devices involved. IoT is a supplement to 
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power grids, has developed rapidly [4]. As typical Cyber-

Physical System, most studies about security of modern power 

systems from IoT perspective mainly focus on cyber security 

issues [5-7]. However, the vulnerability of physical components 

to cascading failures could be utilized or amplified by IoT 

measures and background. Cascading failures propose a major 

challenge to the reliability of IoT systems [8], [9]. Up to now, a 

great diversity of strategies has been proposed to analyze 

cascading failures in power systems; these approaches capture 

different mechanisms during the cascading failures. Due to 

uncertainties and unforeseeable factors that could cause 

cascading, the researchers propose stochastic simulation 

approaches to simulate more possible events. For example, a 

Markov chain is a stochastic process that is adopted to modeling 

the stochastic factors in cascading failures of a power network 

[10]. In [11], a stochastic Markov chain model based on power 

flow redistribution is presented to capture the cascading events, 

which considers the load setting, generation and line flow. 

In addition, high-level statistical models can describe the 

cascading process but ignore some specific mechanisms in the 

cascading failure process, such as the power grid structures, the 

interactions of power system components [12]. Such models are 

tractable and straightforward, which reduces the simulation 

time. For example, the CASCADE model in [13] is based on 

load of components, where some components may fail because 

load exceeds a certain threshold, which will redistribute the 

load of other components, thus forming a cascading. 

Meanwhile, several researchers analyze cascading failures from 

the perspective of complex network theory. For instance, the 

study in Ref. [14] considers a topological perspective in which 

the effective graph resistance is proposed to relate the topology 

of a power grid to its robustness against cascading failures. 

Some studies consider the propagation probability among each 

bus’s outage and generate a graph to describe the possible 

cascading failure propagation path [15], [16]. Ref. [17] 

analyzed the critical buses in a network from the aspect of 

network robustness. 

The aforementioned cascading failure analysis 

methodologies have their own advantages and disadvantages. 

The stochastic simulation approaches consider all possible 

uncertainties but fail to simulate the dynamics of the power 
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system [10]. High-level statistical models neglect some detailed 

mechanisms of cascading failure to simulate the propagation of 

cascading failure quickly. The complex network methods can 

investigate the robustness, critical components, and structure of 

a power network, but they are still based on the static structural 

characteristics of power grids. However, the temporal features 

of operation status also have a significant impact on cascading 

failure process, which are commonly neglected in current 

complex network approaches. 

Moreover, as power networks thrive in recent decades, there 

emerges an essential issue to ensure economic operation under 

the premise of security of power systems. The conventional 

method is to set security constraints for economic dispatch, 

which is known as security constrained economic dispatch 

(SCED) [18-21]. SCED ensures the safe operation of power 

network by setting different constrains such as power balance, 

preventing overloading of transmission lines, the output limits 

of generators and renewable energy sources, and so on. Besides 

economic costs, other factors could be integrated in power 

dispatch as a multi-objective optimization problem, such as 

environmental/economic dispatch (EED) [22-24]. However, 

almost no existing power dispatch methods consider the risk of 

cascading failures as one of the objectives. The existing 

cascading failure analysis methodologies are mainly based on 

complicated simulations. Meanwhile, the large numbers of 

possible N-k combinations make large-scale power system 

outage assessment computationally prohibitive [25]. So, it is 

difficult for most existing studies on optimal power dispatch to 

involve the risk of cascading failures in objective functions.  

Corresponding to the abovementioned defects in cascading 

failure analysis and power dispatch, this paper makes 

contributions in following three points: 

• First, Inverse-Community (IC) is defined as the structure 

with several communities (subnetworks) in which the 

transmission of physical elements between communities 

is significantly stronger than interaction within the same 

community. This is to capture the key characteristics of 

operating states leading to cascading failures. Then, the 

conventional modularity [26] in detection of conventional 

communities is upgraded as Inverse-Modularity (IM) to 

quantify the extent of IC structures. 

• Second, by simulation and comparison, a positive 

correlation between IM of power flow distribution and 

risk of cascading failures is justified.  

• Third, an optimal power dispatch method called the 

security/economic dispatch (SED) that takes both the 

magnitude of IM, representing cascading failure risk, and 

the generation cost as objectives is proposed. The 

simulation results on the IEEE 118-bus system 

demonstrate that this approach can mitigate the threats of 

cascading failures while maintaining the cost economy. 

The rest of the paper is organized as follows. Section 0 

defines and discusses the concept of IC structure. Meanwhile, 

IM is defined, and the Newman fast algorithm is redesigned to 

detect IC structures. Section III provides the security/economic 

dispatch method. Case studies and simulation results are 

discussed in Section IV. 

II. FRAMEWORK OF INVERSE-COMMUNITY  

A. Inverse-community structure in power flow distribution 

Cascading failures are due to random initial contingencies 

such as transmission line outages, load variances, and system 

operators’ mistakes. The propagation of the cascading failure 

can lead to large blackouts in a power network [10]. There are 

several cascading failures for the large-scale blackouts in the 

world in recent years. The 2012 two India blackouts caused 

substantial economic losses and social impacts [27]. The India 

power grid is demarcated into 5 regional grids which are 

Northern regions (NR), Eastern regions (ER), Western regions 

(WR), North Eastern regions (NER), and Southern regions (SR), 

in which NR, ER, NER, and WR are synchronously 

interconnected. SR is asynchronously connected to ER and WR. 

The sketch of the power exchange in 5 regions before the power 

blackouts is shown in Fig. 1. A large number of lines were out 

of service caused by system maintenance, line failure, voltage 

control and other factors near WR-NR interface before the first 

outage, which severely weakened their interconnections. There 

were only two lines between NR and WR to maintain the power 

grids operation. Further, before the accident, WR exported large 

scale power to NR through the 400 KV Bina-Gwalior line, 

which was under heavy load operation. At the beginning of the 

outage, due to the heavy load, the Bina-Gwalior line was 

tripped by distance protection. Then, the NR and WR power 

grids were disconnected. The power flows from WR to NR 

were transferred through ER, which aggravated the power flow 

in the transmission section and caused a big power swing in 

NR-ER interface which eventually led to cascading failures. 

The characteristics of this cascading failure process could be 

summarized as: 

1. There are significant unbalance between power supply and 

load demand in local subnetworks. So large scale power shifts 

are performed between specific subnetworks. 

2. Line connections between subnetwork boundaries are 

weak and sparse, but power transmission magnitudes on these 

lines are much stronger than internal lines. 

 
Fig. 1. The power exchange in 5 regions of India power grids before power 

blackouts. 
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3. Initial contingencies in boundary lines may cause power 

flow shifts to other relevant boundary lines which already have 

high loading level. Then cascading failures triggered by these 

lines become highly possible.  

 
In reference [28], the major cause of power grid cascading 

failure was identified as inter-subnetwork power shifts. A 

partitioning algorithm is developed to detect the subnetwork 

with excess or scarcity of generation, which are bridged by 

overloaded lines. The study in [28] just quantified the criticality 

of branches; it, nevertheless, did not propose a clear quantitative 

method for the overall evaluation of this inter-subnetwork 

power shifts. Furthermore, it did not verify the correlation 

between inter-subnetwork power shifts and cascading failure 

risks. 

It is clear that even the topological connections in power 

grids are unchanging, different power flow distribution in all 

lines may be time-varying and cause different risks of cascading 

failures. In some existing studies, researchers investigate some 

dynamic systems using temporal network models, where edges 

connections may vary in time [29, 30]. However, in the targeted 

study time frame, the edges connections in power grids are 

fixed. Therefore, in this work, to describe the correlation 

between topological structure and operation status, power grids 

are summarized as Temporal Weighted Networks (TWN) 

which have fixed topological structure but time-varying weight 

distribution. Fig. 2 is an example to illustrate the TWN. 

Inspired by the characteristics of cascading failures 

abovementioned, we propose the concept of Inverse-

Community (IC) in TWN that could be defined as a weighted 

network structure with communities in which the weights of 

boundary lines between communities are much larger than lines 

inside communities. From physical perspective, this represents 

that inter-community interactions (such as power transmission) 

are much stronger than internal interactions. In TWN, the 

weights of lines may vary with time, IC is to capture the weight 

distribution feature for a specific time section. IC in power flow 

distribution could embody the effect of inter-subnetwork power 

shifts abovementioned as cause of cascading failures.  

Fig. 3 is the sketch of networks with inverse-community and 

normal community structures. The most obvious difference 

between these two network structures is reflected in the weight 

distribution. The larger weight is distributed on boundary lines 

between the communities in IC structure, which is the opposite 

of normal communities. The feature of IC can be summarized 

as  

• Topological connection is consistent with conventional 

meaning of community: more density of internal 

connections and low density of external connections; 

• Weight of external connection is much higher than 

internal connection; 

• The stronger the characteristics of IC, the higher risks of 

cascading failures.  

 

B. Inverse modularity of power flow distribution 

In conventional community detection, modularity 𝑄 [26, 31, 

32] is an index to quantitatively evaluate partitioning results and 

is extensively handled to investigate the community structure in 

networks [33-37]. To be specific, the higher the value of 𝑄, the 

better the partitioning [38]. Modularity 𝑄 can be regarded as the 

difference between the proportion of edges connected to the 

internal nodes of a community and the expected value of that 

proportion in a random network, which is calculated as  

 (g , )
2 2 2

ij ji

i jij

kA k
Q g

m m m
, (1) 

where 𝐴𝑖𝑗  that can be expressed as (2), is the element in the 

adjacency matrix 𝑨. m is equal to½ ∑ 𝐴𝑖𝑗𝑖𝑗  which denotes the 

number of branches in the network. 𝑘𝑖 is the number of edges 

connected to a node 𝑖. 𝑔𝑖(𝑔𝑗) is the community that node 𝑖(𝑗) 

belongs to. The -function 𝛿(𝑔𝑖 , 𝑔𝑗) equals to 1 if nodes i and j 

are in the same community and 0 otherwise. 

 
1, if there is an branch joining nodes and ,

0, otherwise.
ij

i j
A  (2) 

As aforementioned, IC can indicate more transmission of 

physical elements (such as power flow) between community 

boundaries than within the communities. To quantify the IC 

extent in weight distribution of TWN, the conventional 

modularity is then upgraded. 

First, we propose a temporal weight 𝜔𝑣𝑤 that considers the 

structural characteristic and operating conditions of power grids 

to quantify the power flow distribution of a certain time section. 

The temporal weight 𝜔𝑣𝑤 is defined as 

 
1

vw
vw l

fP
, (3) 
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Fig. 2. An example to represent TWN. 

(a)

(b)  
Fig. 3. The example of (a) inverse community and (b) normal community. 

The network is constituted of two communities which are connected by some 
critical branches. (The thickness of the branch indicates the magnitude of the 

weight). 
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where |𝑃𝑓
𝑙𝑣𝑤|is the absolute value of power flow of branch 𝑙𝑣𝑤 

from bus 𝑣 to bus 𝑤, which describes the operating conditions 

of power grids at a particular moment. The smaller value of 

𝝎𝒗𝒘  denotes that the branch sustains larger power 

transfers. 

Considering the structural characteristics of power networks, 

a temporal weight matrix 𝝎𝒗𝒘 is defined as 

 
, if bus and areconnected,

0, otherwise.

v

vw

w v w
ω   (4) 

Then, similar to conventional modularity, the concept of 

inverse-modularity 𝑄𝑖𝑛𝑣  is defined by temporal weight to 

quantify the extent of IC. The 𝑄𝑖𝑛𝑣  can be calculated by 

 ( , )
2 2 2

v w

inv v wv

vw

w
Q c c

W W W
, (5) 

where 𝜔𝑣𝑤 is the corresponding element in the temporal weight 

matrix 𝝎. 𝑊 is the total temporal weight of whole power grids, 

which can be computed as (6). 𝜔𝑣(𝜔𝑤) is the temporal weight 

degree of bus 𝑣(𝑤) that is calculated as (7). 

 
1

2
vwW vwω . (6) 

 ,v ww vvw vw
ω ω . (7) 

To make the physical meaning of modularity clear to readers, 

a virtual scenario could be considered to make following 

explanation. In a known power network (PN), fictitiously, if 

one unit of temporal weight is taken randomly, the probability 

of this unit of temporal weight connecting from node 𝑣 to node 

𝑤 should depend on two events: (1) Event 1: this unit of 

temporal weight is connected to node 𝑣; (2) Event 2: this unit 

of temporal weight is connected to node 𝑤.  

The probability of Event 1 is equal to 𝜔𝑣 2⁄ 𝑊. For PN, the 

value of temporal weight among node 𝑣 and node 𝑤 is already 

known. Event 1 and 2 are not independent. Therefore, the 

probability of Event 2 is 𝜔𝑣𝑤 𝜔𝑣⁄ , which means that the 

probability of this unit of temporal weight between node 𝑣 and 

node 𝑤 can be computed as 

 
2 2

vwv

v

vw

vw
W W

B . (8) 

Then, a benchmark network (RN) is designed with the same 

number of nodes and the total value of temporal weight as PN. 

The distribution of temporal weight is random in RN, but the 

temporal weight degree of any node is equal to that in PN. 

Consequently, events 1 and 2 are independent in RN, that is, the 

probability corresponding to Event 1 and Event 2 are 

respectively equivalent to 𝜔𝑣 2⁄ 𝑊 and 𝜔𝑤 2⁄ 𝑊 when one unit 

of temporal weight is randomly selected from RN. Hence, the 

probability of this unit of temporal weight connecting node 𝑣 

and node 𝑤 in RN is equal to  

 
2 2

vw

v w

W
P

W
. (9) 

Here, IM 𝑄𝑖𝑛𝑣  in (5) is the probability difference of one unit 

of temporal weight connecting node 𝑣 and 𝑤 between PN and 

the benchmark RN. 

 

C. Detection of inverse-community  

By defining temporal weight as reciprocal of power flow, 

the detection of IC has been simply converted to detection 

of normal communities.  For example, the IC of power flow 

distribution in (a) of Fig. 3 is equivalent to normal community 

of temporal weight in (b). Then the classical Newman fast 

algorithm [26] for weighted networks can be applied by 

replacing the modularity with IM. The IC detection algorithm 

is outlined in Algorithm 1. 
Algorithm 1: Inverse-community detection for power supply network 

partitioning  

 Input: network data, temporal weight matrix 

 Output: partitioned result 

1：      Initialize power network with N communities; 

2：      Calculate the inverse modularity 𝑄𝑖𝑛𝑣; 

3：  while the number of communities is not 1 do 

4：      Calculate the increments of inverse modularity ∆𝑄𝑖𝑛𝑣;  

5：      Select the partitioning with maximum ∆𝑄𝑖𝑛𝑣 

6：      Recalculate 𝑄𝑖𝑛𝑣 according to the result of partitioning; 

7：      Conserve the number of communities (The maximum number of 

mergers is N-1); 

8：  end while 

III. SECURITY/ECONOMIC DISPATCH  

Considering the catastrophic consequences to the stability 

and reliability of power grids caused by cascading failures, we 

propose the security/economic dispatch (SED) method to 

reduce the severity of cascading failure and minimize the 

generation cost. It should be noted that the proposed power 

dispatch approach is not always required on all time sections, 

that is, SED is only performed when IM corresponding to the 

power flow distribution is greater than a critical value, which 

indicates high risk of cascading failure. The specific process is 

as follows: 

Step 1:  Obtain the power dispatch based on conventional OPF; 

Step 2:  Calculate the corresponding inverse-modularity 𝑄𝑖𝑛𝑣; 

Step 3:  Determine whether 𝑄𝑖𝑛𝑣  is larger than 𝑄𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙; 

Step 4:  If 𝑄𝑖𝑛𝑣   is larger than 𝑄𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙  , perform the SED. 

Otherwise, retain the power dispatch results obtained by 

OPF. 

As discussed in Section 0, the stronger the IC feature, the 

greater the risk of cascading failures. IM is presented to 

quantify the extent of IC; namely, the big magnitude of IM 

represents the network state with a stronger IC feature, 

signifying that this network has a higher risk of cascading 

failure. In other words, we can apply IM to quality the impact 

of cascading failure or the network vulnerability, which means 

the lower the IM, the higher the security of system operation. 

Hence, in this work, the SED method minimizes simultaneously 

two objective functions, IM and the cost. The following 

paragraph formulated two objectives and several constraints. 

A. Objectives 

1) Minimization of IM: The security objective is to 

minimize the magnitude of the IM 𝑄𝐼𝑛𝑣  for current network 

state, and it can be expressed as 

 ( ) Min ( , )
2 2 2

v w

inv G v

v

wvw

wQ P c c
W W W

. (10) 

2) Minimization of Generation Cost: The objective of 

economics is to minimize cost. The minimization of total 
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generation cost is computed by quadratic cost curve [39], which 

can be represented as 

 2

1

Min( )
G

i i

N

G i i G i G
i

F P a b P c P , (11) 

where 𝑁𝐺 is the total number of generators; 𝑎𝑖, 𝑏𝑖 and 𝑐𝑖 are the 

cost coefficients of the 𝑖th  generator; 𝑃𝐺𝑖  is the real power 

output corresponding to the 𝑖th generator. 

The real power output of generators 𝑃𝐺  is the vector of 

decision variables, which presents as follows 

 
1 2

[ , , , ] .
N

T

G G G GP P P P  (12) 

B. Constraints 

1) Generation Capacity Constraint: The active power of 

each generation should be restricted by lower and upper limits 

as 

 
min max , i 1, 2, ,
i iG G G GP P P N , (13) 

where 𝑃𝐺𝑖
𝑚𝑖𝑛 and 𝑃𝐺𝑖

𝑚𝑎𝑥 are the minimum and maximum output 

power on generation bus 𝑖; 𝑁𝐺 is the total number of generators. 

2) Power balance constraint: The total power outputs of 

generators must satisfy the demand of loads 𝑃𝐷. Therefore 

 
1

0.
G

i

N

G D
i

P P  (14) 

3) Power flow constraint: For the secure operation of the 

network, the transmission line loading 𝑆𝑙𝑘 should be within its 

upper limit as  

 
max , 1, 2, ,

k kl l LS S k N , (15) 

where 𝑆𝑙𝑘
𝑚𝑎𝑥  is the maximum power flow limitation on 

transmission line 𝑘; 𝑁𝐿  is the total number of transmission 

lines. 

C. Formulation 

The SED problem can be mathematically formulated as a 

nonlinear multi-objective optimization problem through 

combining the objectives and constraints, which is described as 

follows. 

 Minimize ( ), ( )G GinvQF P P  (16) 

Subjected to  

 

1

min max

max

0

, i 1, 2, ,

, 1, 2, , .

G

i

i i

k k

N

G D
i

G G G G

l l L

P P

P P P N

S S k N

 (17) 

D. Security/economic dispatch method 

In this paper, the conventional genetic algorithm (GA) is 

applied to find the Pareto-optimal set (or Pareto-optimal front) 

in SED problem. The fitness function computes the multi-

objective function in (16). To ensure the feasibility of Pareto-

optimal solutions, the population and generation in GA should 

be constrained by (17) in the feasible region. The GA is utilized 

to generate a new population until the maximum value of 

generation is reached.  

IV. CASE STUDY 

A. The correlation between inverse-community structure 

and risk of cascading failures. 

To find power dispatch solutions with different levels of IM, 

a genetic algorithm is designed to search for a state in which the 

generators outputs make the largest inverse-modularity for 

given load conditions. The objective function is set as the 

maximum inverse modularity 𝑄𝑖𝑛𝑣: 

 
( ) Max ( )

Max ( , ) .

G inv G

vw vw v wvw

f P Q P

B P c c
 (18) 

To verify the severity of the cascading failures, MATCASC 

[40] that is a tool based on MATPOWER is used to simulate 

cascading failure process. Some studies [41-43] in recent years 

have applied this tool to successfully simulate cascading 

failures. MATCASC can capture the line overloads and 

islanding effect by deploying a DC load flow analysis. The 

power network may disintegrate into some islands due to the 

removal overloaded lines. The MATCASC will check the 

islands at each cascading stage and redistribute the electrical 

power. This tool estimates power flows across the power grid 

and models line protections. A line will be deenergized by the 

protection mechanism when the line exceeds the load threshold. 

Meanwhile, this software package provides different line threat 

determination modules, including three removal strategies, 

such as random removal, edge betweenness centrality and 

electrical node significance, to trigger the cascading failure in 

power grids [40]. MATCASC assumes that the maximum 

capacity of a branch is calculated by the product of tolerance 

parameter 𝛼𝑖 and initial load. Considering the real engineering 

features of power networks, we set the maximum capacity of 

branch to a fixed value according to the actual data of network. 

Besides, this paper proposes another removal strategy based on 

the power flow rank of boundaries of IC to initiate cascading 

failures. 

Fig. 4 shows that the value of the most fitness objective 

continues decreasing and finally it converges at 0.912 in the 

IEEE 118-bus system. From this converging process, we chose 

some other power dispatching scenarios with different level of 

IM in power flow distribution. Then with simulations by 

MATCASC, cascading failures in each scenario are triggered 

 
Fig. 4. The fitness objective value of different iterations in IEEE 118-bus 

system in searching maximum IM. 
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by removing most loaded boundary lines, and their value of 

remaining loads after cascading failures are calculated. Fig. 5 

presents the IM corresponding to different power dispatching 

scenarios and remaining loads after cascading failures in IEEE-

118 and IEEE-300 bus systems. It can be obviously found that 

as the value of IM 𝑄𝑖𝑛𝑣  increases, the value of remaining loads 

in network decrease. Therefore, the stronger the IC 

characteristics of the network, the more serious the loss caused 

by cascading failures in the network. This can prove that the 

inverse-modularity has a positive correlation with risk of 

cascading failures.  

 

 

 

B. SED on the IEEE 118-bus system 

In this paper, the IEEE 118-bus system is applied as a test 

case to analyze and assess the performance of the proposed SED   

method. All the computations were performed in MATLAB. In 

the process of simulation, the population size was fixed at 200. 

The size of Pareto-optimal set was set as 10. Meanwhile, the 

crossover and mutation rations were respectively chosen as 0.8 

and 0.01.  

At first, different load conditions in 24 hours are randomly 

 
(a) 

 
(b) 

Fig. 5. The IM and remaining load corresponding to different power 

dispatching schemes in (a) IEEE 118-bus system, (b) IEEE-300 bus system. 

 

 
Fig. 6. The IM per hour for different loads condition. 

 
Fig. 7 Loads condition of buses in IEEE 118-bus system. 

 
Fig. 8. Pareto front obtained by SED method for IEEE 118-bus system. 
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Fig. 9. The partitioning results of inverse community for solution 𝑆5. 
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modeled and power dispatch per hour is performed by 

conventional OPF which only minimizes generation cost. 

Fig.  illustrates the IM corresponding to each hour. The critical 

value of IM is set as 𝑄𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙  =0.6. The IM of the bar with 

orange color is larger than 𝑄𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 . Then, this case of power 

dispatch by conventional OPF is considered as Case 1. The 

generation cost of Case 1 is 125948 $/hr. The load condition of 

case 1 is presented in Fig. . Then the proposed SED method is 

applied on Case 1, and the Pareto front of SED method is shown 

in Fig. . Furthermore, Table I presents the magnitude of IM and 

cost, corresponding to each solution at Pareto front. Then, 

MATCASC is used to simulate the cascading failures in 

different cases. To further explain the proposed removal 

strategy, the solution 𝑆5  is chosen as an example. 

 

 
Fig. 9 presents the partitioning results of IC for solution 𝑆5, 

in which the different colours are utilized to represent diverse 

ICs. Meanwhile, the bold lines represent the boundaries 

between each IC. Table II shows the rank of boundaries power 

flow of solution 𝑆5. Fig.  is the simulation results on the severity 

of the cascading failure of 𝑆5 when two boundary lines (30-28 

and 70-71) are attacked according to the power flow rank of IC 

boundary lines, which suggests that the remaining   load is 

almost 77%. In Addition, the initial failure propagates into the 

network very slowly, that is, this SED method provides a larger 

tolerance capability that can supply more time to the network 

operator to take preventive actions to better handle the 

cascading failure. As discussed in Section III, it is not necessary 

to use SED for all operation status. For example, the critical 

value for IM is set as 0.6. The proposed power dispatch 

approach should be performed only when the IM is larger than 

𝑄𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙  (0.6) to reduce the cost and time. 

Furthermore, in Fig. 10, power supply could be maintained 

in case of one line disconnected. However, after more lines 

broken, cascading failure could be triggered. Even a power 

dispatch solution follows N-1 principle, it could be still 

vulnerable from N-k perspective. However, as indicated in 

other previous studies, simulation-based evaluation of N-k 

contingencies would be very time-consuming. But in this paper, 

this vulnerability is expected to be captured and quantitatively 

assessed directly by IC and IM without exhausting screening 

for all possible N-k contingencies. 

C. Comparison against conventional OPF 

This section compares the SED method with the 

conventional OPF based on MATPOWER to in-depth 

investigate the proposed method. The conventional OPF 

regards only the generation cost as the objective function, 

which does not consider the cascading failure's risk. As 

abovementioned, the IM 𝑄𝑖𝑛𝑣  of Case 1 dispatched by 

conventional OPF is 0.843 that is significantly higher than the 

SED solutions in Table II, which means that Case 1 has strong 

IC characteristic, that is, the impact of cascading failure is more 

serious. To verify this standpoint, we chose the power flow rank 

of IC boundary lines to initiate the cascading failures and 

compare Case 1 with the power dispatch solution obtained by 

the SED method. Fig. 5 depicts the severity of the cascading 

Table I The inverse modularity and cost of each solution at Pareto front. 

SED solutions Inverse modularity 𝑄𝑖𝑛𝑣 Cost ($/hr) 

𝑆1 0.426 164323 

𝑆2 0.414 164326 

𝑆3 0.382 164430 

𝑆4 0.343 164561 

𝑺𝟓 0.302 164733 

𝑺𝟔 0.213 166091 

𝑺𝟕 0.174 166110 

𝑺𝟖 0.135 166564 

𝑆9 0.081 167834 

𝑆10 0.046 167903 

 Table II. The power flow of inverse community boundaries in solution 𝑆5. 

From 

bus 

To 

bus 

Power 

flow(MW) 

From 

bus 

To 

bus 

Power 

flow(MW) 

30 38 176.7 15 33 43.9 
70 71 124.2 82 83 41.1 

65 68 88.7 19 34 37.0 

94 95 62.3 47 69 31.4 
98 100 50.1 18 19 29.3 

80 99 45.6 49 69 27.8 

24 70 44.8 15 19 19.0 

 

 
Fig. 10. The percent of remaining load at per stage of cascade for solution 𝑆5. 

 
Fig. 5. The severity of the cascading failures triggered by attacking different 

numbers of boundary lines: (a) 2 lines (b) 4 lines (c) 6 lines (d) 8 lines. 

Table III. Comparison between Case 1 and different SED solutions. 

 𝑄
𝑖𝑛𝑣

 The percent of remaining load 

 Attacked 2 
boundaries 

Attacked 4 
boundaries 

Attacked 6 
boundaries 

Attacked 8 
boundaries 

Case1 0.843 31.5% 28.7% 42.9% 31.5% 

𝑆5 0.302 77.4% 76.1% 75.7% 75.6% 

𝑆6 0.213 78.9% 78.9% 79.8% 78.0% 

𝑆7 0.174 71.8% 77.4% 77.4% 74.7% 

𝑆8 0.135 77.4% 76.1% 75.6% 75.6% 
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failures triggered by attacking different numbers of boundary 

lines, which compares the results by Case 1 and the SED 

solutions 𝑆5 . The results indicate that the remaining load of 

solutions 𝑆5  is significantly higher than Case 1, which prove 

that the risk of the cascading failure in Case 1 is much higher 

than that of SED. Additionally, Table III compares the severity 

of the cascading failures in Case1 and different SED solutions. 

The number of remaining loads of SED solutions are obviously 

higher than Case 1, which indicates that SED can effectively 

reduce the risk of cascading failures when settling multi-

objective optimal power dispatch problem. 

 
Furthermore, according to the three removal strategies in 

[40], the corresponding cascading failures for Case1 and SED 

solutions are also simulated. The results are shown in Table IV. 

The simulation results of these three attacking strategies are 

consistent with the results according to the IC boundary 

removal strategy, that is, the severity of cascading failures of 

SED solutions is significantly lower than the power dispatch 

based on conventional OPF.  

V. CONCLUSIONS 

In this paper, the temporal weighted network that combines 

topological characteristics and temporal feature of operation 

status of power networks is proposed. In a TWN, the 

topological structure is static and weight distribution varies 

over time. Then, to intuitively quantify the risk of cascading 

failures, a new concept of inverse-community structure is 

introduced. Subsequently in the new structure, the modularity 

is upgraded as inverse-modularity by temporal weight to 

quantify the extent of IC structure. By simulation and 

comparison, the positive correlation between IM of power flow 

distribution and risk of cascading failures has been justified. 

Furthermore, considering the risk of cascading failures and the 

generation cost, the security/economic dispatch method which 

minimizes simultaneously two objective functions has been 

verified. An optimization algorithm is developed based on a 

genetic algorithm that treats the magnitude of two objective 

functions to find the Pareto-optimal solutions for the SED 

problem. Taking the IEEE-118 bus systems as a test case, we 

have proved that the proposed SED method can make proper 

trade-off between cascading failure risks and generation cost. 

To mitigate economic losses and reduce computation time, SED 

is only performed when IM corresponding to power flow 

distribution is greater than a critical value. These results 

demonstrate that the IC structure can provide an innovative 

perspective for intuitively quantifying the risk of cascading 

failures. IC and IM make it possible to quickly assess cascading 

failure risks without large-scale time-consuming post-

contingency simulations. In future research, IC and IM could 

be promising in identifying critical components in cascading 

failures and in evaluating system vulnerability in various 

system structures and operating states.  

In this paper, we propose a removal strategy based on the 

power flow rank of boundaries of IC to trigger cascading 

failures. These boundaries may be considered as the vulnerable 

lines which could be targeted by intentional attacks. In the 

future, the relation between IC characteristic cascading failure 

risk could be utilized by malicious attackers. Furthermore, the 

IC structure would be promising to help detecting key 

transmission sections in power networks. Moreover, cascading 

failure of power system is a complex process with interaction 

among active power, reactive power, voltage variation and 

protective relaying systems. Therefore, the researches about IC 

will be extended to integrate with other factors for more 

comprehensive models in our following studies. On the other 

hand, cascading failures may also exist in many other 

engineering networks, such as transportation networks or gas 

pipeline networks. It would be interesting and promising to 

investigate if inverse-community structures also exist and are 

positively correlated to cascading failure risks in these networks.  
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