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1 Introduction

This study is motivated by a number of practical applications of dynamic mecha-
nism design, where the principal lacks information about the future type distri-
butions. In industrial regulation, pollution control or auctions such information
is necessary to evaluate the intertemporal trade-offs, but often unavailable to the
principal. Due to Mezzetti (2004), we know that full revelation of future-related
information is achieved by delaying incentive payments until the ultimate reso-
lution of uncertainty. However in practice payments may not possibly be delayed
until the last stage in mechanisms that run for a very long time. Gershkov and
Moldovanu (2009) are the first to study the problem of principal’s learning un-
der this timing constraint.1 They look at a setting where the present agents’
payoff types are informative of the future, therefore the principal can make in-
ferences from the current type reports. This paper takes a different approach
and assumes that the information about the future is independent of agents’ own
preferences. In this case, information cannot be revealed by a direct mechanism,
where only payoff types are reported. By constructing an indirect estimate based
mechanism I show that dynamic efficiency can be ε−implemented, if transfers
can be delayed only until the next cohort’s arrival.

Formally I consider a discrete time, finite horizon setting and agents who arrive
sequentially in cohorts and live for two periods.2 A member of cohort t derives
utility from allocation at t; in period t+ 1 he receives monetary transfers, and his
total utility is the sum of both components. As standard in this literature, the
agent has private information composing his type. Here, type has two indepen-

1Dynamic populations have also been extensively studied in the literature often referred to
as online mechanism design: see the seminal works by Lavi and Nisan (2004) and Parkes and
Singh (2003). Their approach is non-Bayesian, and therefore the problem of principal’s learning
does not emerge.

2The population is thus dynamic with static private information, similarly to Lavi and Nisan
(2004), Parkes and Singh (2003), and Said (2012). Another strand of literature studies persistent
population with dynamic types: Athey and Segal (2013), Bergemann and Välimäki (2010). Cav-
allo, Parkes and Singh (2009) study the general setting with arbitrary dynamic population and
dynamic types.

2

Electronic copy available at: https://ssrn.com/abstract=2487755Electronic copy available at: https://ssrn.com/abstract=2487755



dent components: (i) a one-dimensional preference parameter, referred to as the
payoff type, and (ii) a multidimensional signal drawn from the future payoff type
distribution, referred to as the hyperbelief type.3 The payoff type pins down the
agents’ own utility function, while the hyperbelief type pins down the player’s
information about the future payoff types.

The parametric class of payoff type distributions is fixed, however the exact dis-
tribution is unknown. Let pt be the probability distribution with an unknown
parameter αt and Φt be a class of (hyper-)distributions over the possible values
of αt. A hyperbelief type is then drawn from a future pt which leads to an update
φt ∈ Φt. I assume that the class Φt is conjugate to pt, meaning that all updated
hyperdistributions belong to the same class. Conjugate classes have been found
for most standard distributions, see Raiffa and Schlaifer (1961).

The estimate based mechanism introduced here features a two-part transfer
aiming to elicit both components of type. Firstly, to reveal the payoff type I use
a transfer of Vickrey-Clarke-Groves type (1961; 1971; 1973). The VCG transfer
equals the externality imposed by the agent’s payoff-type report on the current
and the future generations, where the future welfare is taken in expectation con-
ditional on the entire history of reported hyperbeliefs. To this end, I follow the ex-
isting literature on dynamic implementation, such as Bergemann and Välimäki
(2010); Pavan, Segal and Toikka (2010).4

The second part of the transfer, novel to dynamic implementation, is the scoring
reward used for the verification of signals. It is a function of agent’s report of
hyperbelief type (signal) and the next cohort’s type reports. More precisely, the
agent receives a (negative) transfer equal to the log-likelihood of the profile of
type reports in the following period, where the likelihood is evaluated according

3The term hyperbelief comes from hyperdistribution, a term borrowed from the theory of con-
jugate priors used in the present analysis (see Raiffa and Schlaifer (1961)). It should not be con-
fused with higher-order belief as it describes the probabilistic view of the future environment,
and not of other agents’ beliefs.

4In a setting with persistent population and dynamic types, Athey and Segal (2013) design
a dynamic extension of the expected externality mechanism d’Aspremont, Cremer and Gerard-
Varet (2004) satisfying the exact budget balance, unlike the VCG.
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to the distribution updated conditionally on his report. Reporting the hyperbe-
lief to the mechanism is thus similar to placing a bet on the next period type
reports. Given that signals and payoff-types are drawn independently, matching
the empirical distribution of payoff types is equivalent to matching the empirical
distribution of signals. The expected value of such scoring transfer is maximized
when the hyperbelief types are reported truthfully. In static implementation mu-
tual verification of reports has been used in the literature stemming from Crémer
and McLean, 1985 – notably, Johnson, Pratt and Zeckhauser (1990), and Miller
et al. (2007).5 Several recent papers expand the use of scoring rules to various
settings (Postlewaite and McLean (2015); Chambers and Lambert (2014)).

The estimate based mechanism features a linear combination of the VCG and
scoring transfers. This guarantees ε−implementation of the efficient outcome in
the following sense. For any given value ε > 0, the principal can scale up the
scoring transfer such that truthful revelation of payoff and hyperbelief types is
an ε−equilibrium: No agent can gain more than ε in deviation from truth-telling.
Moreover, since all possible deviations are in the neighborhood of truth-telling,
the present concept of ε−implementation is stronger than implementation in
ε−equilibrium. In this sense, ε−implementation is ε−close to exact implementa-
tion: best replies are in the neighborhood of truth-telling, therefore the allocation
is arbitrary close to welfare maximization. The exact implementation cannot be
achieved in a general setup with continuous types and allocations because the
belief report marginally affects the present cohort’s welfare; loosely speaking,
there are second-order gains and first-order losses to misreporting. When the
type space is discrete, the estimate based mechanism achieves exact implemen-
tation.

To complete the analysis, I show that the budget of bets can be exactly balanced
without change to incentives. Assume that each cohort includes at least two

5Crémer and McLean (1985, 1988) were the first to design a mechanism with mutual report
verification in a static setting. Their mechanism punishes for reports that appear contradictory
given the known correlation between types, and thus reveals the types perfectly. McAfee and
Reny (1992) provide an extension of the Crémer-McLean mechanism to continuous type spaces.
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participants, and define an arbitrary derangement of the set of players in the
cohort. The derangement defines cycles of payments between the agents in a
cohort, such that the agents pay their betting rewards to each other, and the
exact budget balance in bets is achieved in every period. The resulting transfer,
the balanced scoring transfer, satisfies the individual rationality constraint. The
intuition for this is that the ex ante distribution of signals is the same for all
agents; therefore, the expected difference in betting rewards is zero. It follows
that the entire balanced mechanism that comprises the VCG and the balanced
scoring transfers requires no external funding at any period of time (generates
no deficit after any history) and satisfies the participation constraint.

The rest of the paper is organized as follows. Section 2 considers the allocation
of pollution permits in a simple setting with two periods. In this example the
comparison of reports within one period (as in Crémer and McLean, 1985) fails
to produce truthtelling as a unique and undominated equilibrium; therefore de-
layed verification is introduced. Section 3 presents a more general setting with
an arbitrary, although finite number of periods. Section 4 presents the estimate
based mechanism. Two subsections study two components of the transfer: VCG
(4.1) and the scoring payment (4.2). In 4.1 I show that the VCG transfer induces
the revelation of payoff-type, if the current and the future hyperbelief-types are
truthfully reported (Lemma 1). In 4.2 I show that the scoring transfer alone
ensures that hyperbelief types are truthfully reported, if the future payoff-type
reports are truthful (Lemma 2). 4.3 uses the above results to show that truthful
revelation of the entire type can be achieved in ε−equilibrium (Proposition 1).
Finally, I construct a mechanism where the scoring transfer is exactly balanced.
The balanced mechanism satisfies individual participation constraints, condi-
tional on any available public history, and generates no deficit ex post (Proposi-
tion 2). A summary of notation is given in the Appendix.
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2 Illustration: Pollution control.

Suppose an area accommodates n firms that use a hazardous input Y for their
production in period 1. A firm’s cost of production decreases in its usage of Y:

C (yi; θi) =
1

θiyi
, (1)

where yi > 0 is the amount of Y used by firm i = 1, 2, ...n and θi is a technology
parameter privately known to the firm. The regulator’s task is to allocate usage
permits to firms (y1, y2, ..yn) such that the total cost of production and environ-
mental damage are minimized.

The environmental damage in period 2 is linear in the total use of Y and equals:

θd
∑
i

yi, (2)

where θd is the damage per unit of Y used (θd is the type of environment at t = 2).
I assume that θd is a Bernoulli random variable: it takes value D > 0 with prob-
ability α, or value 0 with probability 1 − α. θd is independent of the firm’s types
θi, i = 1, 2, ...n. Denote p (θd;α) the respective probability distribution function:

p (θd;α) =

α, θd = D

1− α, θd = 0
. (3)

Contrary to the common assumption in mechanism design, I consider the prob-
ability α of high damage to be unknown. Each firm i observes an informative
signal,

xi ∈ {0, D} , (4)

drawn independently from distribution p (θd;α). Note that any such draw is in-
formative of α. Let X = (x1, x2, ..xn) denote the vector of observed signals. X

represents all the information available at t = 1 about the damage at t = 2. The
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firms’ signals are correlated with each other as they are drawn from the same
distribution, however any firm’s signal xi is uncorrelated with its payoff type θi.6

The efficient allocation of permits in period 1 minimizes the expected total cost to
all agents (I assume no discounting between periods), provided the information
X:

min
(y1,y2,..yn)

ˆ
[0,1]

(∑
i

1

θiyi
+ αD

∑
i

yi

)
φ (α |X ) dα, (5)

where the probability measure φ (α |X ) is the Bayes-updated hyperprior φ0 (α)

given X:

φ (α|X) =
Pr [X|α]φ0 (α)´

[0,1]
Pr [X|α̃]φ0 (α̃) dα̃

, (6)

where Pr [X|α] =
∏

i p (xi|α).

Suppose that the prior φ0 (α) is uniform over the interval [0, 1] of the possible val-
ues of α. Since the uniform distribution belongs to the class of Beta distributions,
conjugate to the Bernoulli class, the update φ (α|X) is also a Beta distribution.7

If h denotes the number of firms with a high signal (i : xi = D), and l the number
of firms with a low signal (i : xi = 0), then the updated probability (6) becomes:

φ (α|X) =
αh (1− α)l β (α; 1, 1)´

[0,1]
α̃h (1− α̃)l β (α̃; 1, 1) dα̃

= β (α; 1 + h, 1 + l) (7)

Note that h and l are sufficient statistics for data X. Given the updated prior,
the efficient allocation of permits that solves the minimization problem (5) is the
following:

6Therefore, the beliefs determine preferences (BDP) property is not satisfied. BDP is a neces-
sary condition for full surplus extraction with Crémer-McLean mechanism (Neeman (2004)).

7The uniform distribution, or β(α; 1, 1), has the maximal entropy within the class of Beta
distributions, and thus is the least informed prior within that class.
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α

1
β(α; 1, 1)

0 1

X

l = 2, h = 1

α0 1

β(α; 2, 3)

Figure 1: The principal’s initial hyperbelief φ0(α) = β(α; 1, 1), the data X =(
θLd , θ

L
d , θ

H
d

)
, and the updated hyperbelief φ(α|X) = β(α;h + 1, l + 1) = αh(1−α)l

B(2,3)
=

α(1−α)2

B(2,3)
.

f ∗i (θ,X) =

√
2 + h+ l

θiD (1 + h)
, (8)

for all i = 1, 2, ...n.

The difficulty in implementing the efficient allocation f ∗ is that there is no guar-
antee that firms will reveal the signals about the future truthfully (i.e. the num-
bers h and l may not represent the actual number of high and low signals re-
ceived). This implies that the mechanism has to be incentive-compatible not
only with regard to the elicitation of costs, but also of the signals. As a possi-
ble solution to this problem I first discuss an application of the idea of Crémer
and McLean (1985) as the mutual verification of firms’ reports in the first period
(immediately). In the second step I show that welfare is improved by delaying
verification to the second period when the damage realizes. In Sections 3 and 4 I
extend the result to a repeated setting.

Immediate Verification First, note that the classic result of Crémer and McLean
(1985) does not apply to the present setup, because the BDP property is not sat-
isfied (see footnote 6). However we can use the idea of rewarding similarity and
punishing divergence in the agents’ reports in order to induce truthfulness. Con-
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sider a direct mechanism, where each firm reports its technology parameter θi
and the signal about future damage xi. The principal updates her prior φ0 on
the firms’ information X = (xi)i∈N and assigns the efficient allocation f ∗. With
logarithmic scoring, we have the following two-part transfer to firm i:

τi

(
θ̂i, X̂

)
= −E

[
θd

∣∣∣X̂ ]× f ∗i (θ̂i, X̂)︸ ︷︷ ︸
externality

+ λ× ln
∏
j 6=i

Pr [x̂j |x̂i ]︸ ︷︷ ︸
scoring

, (9)

where X̂ = (x̂i)i∈N denotes the reported values, and Pr [x̂j |x̂i ] is calculated as
follows. If x̂j = D, Pr [x̂j |x̂i ] =

´
[0,1]

αφ (α|x̂i) dα and if x̂j = 0, Pr [x̂j |x̂i ] =´
[0,1]

(1− α)φ (α|x̂i) dα.

The transfer consists of two parts that provide distinct incentives. The external-
ity transfer induces the truthful revelation of the technology parameter, whereas
the scoring transfer rewards similarity in reports. The mechanism thus con-
structed has the following undesirable property.

Claim 1. For any λ > 0 reporting no damage (D = 0) irrespective of the true
signal is an equilibrium in the immediate verification mechanism. This
equilibrium Pareto dominates the truthful revelation of signals.

(See proof in the Appendix) The claim could be re-stated as follows: regardless
of whether truthtelling is equilibrium, it is impossible to find λ > 0 such that
truthtelling is undominated. If immediate verification is used to assign rewards,
the firms will be prone to report low damage x̂i = 0 even if their true signal
suggests high damage x̂i = D. As a result of this manipulation, the regulator un-
derestimates the probability of high damage and assigns larger permits yi in the
first period, such that the firms save on production costs and create higher-than-
efficient pollution. Note that truthful revelation could also be an equilibrium,
however, since it is Pareto dominated the agents would be more likely to coordi-
nate on reporting low damage. In the following paragraph I show that delaying
verification rules out all equilibria but truthtelling.

9
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Delayed Verification8 The estimate based mechanism uses delayed verifica-
tion, since it provides incentives for truthful revelation of signals. The change is
made to the scoring transfer. Instead of rewarding similarity in firms’ reports,
the mechanism rewards similarity between a given report and the realized dam-
age in period 2. The mechanism assigns the following transfers after the envi-
ronmental uncertainty resolves. If the realized damage is high, θd = D, then firm
i will receive:

τi

(
θ̂i, X̂;D

)
= −D × f ∗i

(
θ̂i, X̂

)
︸ ︷︷ ︸

externality

+ λ× ln

ˆ
[0,1]

αφ (α|x̂i) dα︸ ︷︷ ︸
scoring

, (10)

If the realized damage is low, θd = 0, firm i’s transfer amounts to:

τi

(
θ̂i, X̂; 0

)
= 0× f ∗i

(
θ̂i, X̂

)
︸ ︷︷ ︸

externality

+ λ× ln

ˆ
[0,1]

(1− α)φ (α|x̂i) dα︸ ︷︷ ︸
scoring

. (11)

The scoring transfer is the “betting reward” that the firm gets for correctly pre-
dicting the realized damage. Observe that

´
[0,1]

αφ (α|x̂i) dα and´
[0,1]

(1− α)φ (α|x̂i) dα are the conditional likelihoods of, respectively, D and 0

given i’s reported signal xi. We make the following observation.9

Claim 2. Maximization of the scoring transfer yields truthful revelation of sig-
nal as a strict optimum.

When signals are reported truthfully, the externality (VCG) transfer represents
the actual change in the social welfare due to the firm’s use of hazardous in-
put Y. Since the firm compensates the environmental damage its production has
caused, its objective is aligned with the principal’s program of total welfare maxi-
mization, and therefore it is optimal to report the true cost parameter θi. Observe

8Parkes and Singh (2003) use a delayed mechanism to elicit true arrival times in problems
that commonly arise in wireless networking and web-surfing (see also Friedman and Parkes,
2003). Their setup is different, in particular, there is no parameter uncertainty and learning.

9The following claim is a particular case of Lemma 2 stated in Section 4.2.
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that its hyperbelief report x̂i also enters the VCG transfer through the update of
principal’s prior φ (α|X) used to estimate the future externality. In settings with
continuous types, this leads to small deviations from truth-telling. In an attempt
to marginally change the prior the agent slightly misreports. Significant devia-
tions can be precluded by scaling up the scoring transfer. The proof of Proposition
1 demonstrates that for any given level of precision one can find λ ∈ R to scale
up the scoring transfer and preclude deviations from truth-telling. This result
implies ε−implementation of the efficient rule f ∗.

Three Periods Now, suppose that there is a preliminary stage 0, when an ex-
pert makes a prediction of damage in period 2. If the expert is remunerated in
period 2, his scoring transfer can be constructed as one of the firms’ transfer,
given by Equations (10) and (11). However, if the expert’s remuneration cannot
be delayed until then, it is impossible to test his estimate against the realization
of damage. To solve this problem, the estimate based mechanism assigns the ex-
pert’s reward conditional on the firms’ reports in period 1. Denoting the expert’s
report x̂0 and his (scoring) transfer by τ0, we have the following:

τ0

(
x̂0; X̂

)
= ln Pr

(
X̂|x̂0

)
= ln

ˆ
[0,1]

Pr
(
X̂|α

)
φ (α|x̂0) dα, (12)

Observe that the scoring transfer rewards the expert for correctly predicting the
firms’ report of the future damage, and not its actual realization. Nevertheless,
it gives the expert strong incentives to report his signal truthfully, provided that
the firms will also be truthful in period 1. This truthfulness by induction, demon-
strated in the example with three periods, is the main idea behind the estimate
based mechanism.
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3 The General Model

Consider a dynamic system with finite sequence of opening periods {1, 2, .., T} ≡
T, where T ≥ 2. The set of participants entering at period t is called cohort t and
denoted by Nt, each cohort includes at least two members. Let N t = ∪

s≤t
Ns denote

the set of participants arriving at time t or earlier.10

The principal chooses an allocation from a time-invariant space Y of alternatives;
Y is a compact subset of a metric space. yt ∈ Y is the decision taken by the
principal at t ∈ T. The history of allocations up to t is denoted yt.

Utilities Agent i ∈ Nt derives utility ui from the allocation history yt at t and
receives monetary transfer at t + 1. The agent’s utility function is known up to
parameter θi ∈ Θt, where θi (also denoted xi0) is i’s private information referred
to as i’s payoff type.11

ui : Yt ×Θt → R+. (13)

The utility functions ui are strictly concave and Lipschitz-continuous in yt for all
t, i ∈ Nt. Additionally, I assume that non-participation yields zero utility to any
agent in N .

Note that the utility functions are "observationally measurable"12 in the sense
that the utility does not depend on any variables unobserved by the agent. In
particular, the utility is invariant in the future allocations and other agents’
types.

Types The payoff-type θi ≡ xi0 of agent i ∈ Nt is a random draw from a compact
set Θt ⊆ R, t ∈ T. The corresponding probability distribution function pt (·;αt)

10The generalization to setting where the agents live for more than two periods is straightfor-
ward, as long as the payoff type is persistent.

11Strictly speaking, there is no abuse of notation in writing ui and not ui,t since i is an element
of Nt and not of, say, {1, 2, .., nt}.

12As in Athey and Segal (2013)
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over Θt belongs to a given parametric class Pt; parameters αt are independent
across t. The class of priors conjugate to Pt is denoted Φt ⊂ ∆ (At), where At is
the set of possible values of parameter αt. Let φ0

t ∈ Φt denote the initial prior at
period 0. φ0 =

∏
t∈T
φ0
t is the joint prior over the space of possible values (α1, α2, ..αT )

before the start of the game:

φ0 : ×
t∈T
At → R+. (14)

To distinguish the elements of Φt from the elements of Pt I refer to φt ∈ Φt as
hyperbeliefs and to its parameters as hyperparameters. In the example of Section
2, Pt is the Bernoulli class, Φt is the conjugate Beta class and (1, 1) are the initial
hyperparameters (Beta(1, 1) is the uniform distribution over the interval [0, 1]).

Information Next to his own payoff type θi the agent holds private information
about the future payoff-type distributions φt. For every t and i ∈ Nt I define xik as
i’s signal about cohort Nt+k. xik is a random draw from distribution pt+k (·;αt+k).
Agent i’s entire private information, or type, is summarized in the vector xi:

xi =


xi0 ≡ θi

xi1
...

xiT−t




payoff-type

hyperbelief-type
(15)

where for all i ∈ Nt:

xi ∈
T−t
×
k=0

Θt+k. (16)

LetXt = (xi)i∈Nt
denote the (matrix of) signals of cohortNt andX t = (X1, X2, ...Xt)

the history of signals up to period t. In the following, I refer to X t as the infor-
mation available at t, even though X t cannot be observed entirely by any single
agent at t. X t comprises X t−1, the information that is public at t, as well as |Nt|

13
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pieces of private information. So far we only assume that the history of reports is
public. Lemma 3 shows that there is a sense in which it is optimal for the prin-
cipal to reveal the information about past reports: this increases the expected
betting reward.

Note that an agent’s hyperbelief and payoff types are independent. Therefore it is
impossible to extract surplus with the Crémer-McLean mechanism as it requires
the BDP property (see footnote 6).

Sequential Updating The hyperbeliefs are updated upon the arrival of new
information. In a given period t ∈ T, types xi0 of the members of Nt and their
signals xik about the future types are drawn. Given the hyperprior φs (αs|X t−1),
s > t, from the previous period13 and the new data Xt, the updated hyperprior is
derived by the Bayes rule as follows:14

φs
(
αs|X t

)
= φs

(
αs|Xt,s−t, X

t−1
)

=
Pr [Xt,s−t|αs, X t−1]φs (αs|X t−1)´

As
Pr [Xt,s−t|α̃s, X t−1]φs (α̃s|X t−1) dα̃s

, (17)

where

Xt,s−t =
(
x1,s−t, x2,s−t, ..x|Nt|,s−t

)
(18)

is the profile of the signals of received by cohort t about the payoff-types at s, and

Pr
[
Xt,s−t|αs, X t−1

]
= Pr [Xt,s−t|αs] =

∏
i∈Nt

ps (xi,s−t;αs) (19)

is the probability of such signal profile conditional on parameter value αs.
13If t = 0 we have φs (αs|Ø) = φ0 (αs) for all s > 0.
14The first equality in (17) holds due to the mutual independence of parameters.
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It is easy to check that the update defined by Equation (17) is a probability mea-
sure. Moreover, by the conjugate prior property the updated hyperdistribution
φs (αs|X t) given by Equation (17) belongs to the same class as φs (αs|X t−1), for
any t ∈ T.

For s ≤ t, the hyperprior is transferred from the previous period: φs (αs|X t) =

φs (αs|Xs).15 Finally, the joint hyperprior writes:

φ
(
α|X t

)
=
∏
s∈T

φs
(
αs|X t

)
(20)

Efficiency The social welfare is defined as the sum16 of all the agents’ utilities:

W
(
XT , yT

)
=
∑
t∈T

∑
i∈Nt

ui
(
yt, xi0

)
(21)

A dynamic choice rule f = (f1, f2, ..fT ) is a finite sequence of functions ft mapping
the information available up to t into the set of allocations Y. A dynamic choice
rule f is dynamically efficient if for all t ∈ T and X t:

ft
(
X t
)
∈ arg max

yt∈Y

{
E
[
W
(
XT , yT

) ∣∣X t
]}

(22)

Observe that efficiency requires that expectation be conditional on the entire
information available at t, including the information which is private.

We can reformulate the problem to derive a notion of efficiency that is more oper-
ational for our purpose of designing transfers. The choice rule f is dynamically
efficient if it solves the stochastic optimal control problem, where the allocation
yt is the control variable and X t, yt−1 is the state with a stochastic component.
The law of motion of the stochastic component xik of state is given by:

xik ∼ pt+k (·;αt+k)
15The implementation problem at t does not require the hyperbelief over αt to be updated.
16The discount factors δt can be subsumed in the utility functions ui, i ∈ Nt.
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(LM)

Provided the optimal control formalism, we can use the standard techniques to
solve the dynamic problem (Bellman, 1966). Write the Bellman function as fol-
lows:

Jt
(
X t, yt−1

)
= max

yt∈Y

{∑
i∈Nt

ui
(
yt, xi0

)
+ E

[
Jt+1

(
X t+1, yt

) ∣∣X t
]}

, (23)

subject to (LM) and the terminal condition JT+1

(
XT+1, yT

)
= 0, further (TC).

The Bellman function is interpreted as the maximal future value of the mech-
anism from time t on, given the past decisions and information. The value at
t includes the known utilities of cohort Nt, and the future cohorts’ utilities in
expectation over their types.

By the Bellman principle we maximize (23) with respect to the control variable
yt, conditional on the information available at t, X t. The only relevant uncer-
tainty at this stage is the uncertainty about Xt+1; all the subsequent payoff-type
uncertainty is contained in the Bellman value at t+ 1.

The expected value of the Bellman function:17

E
[
Jt+1

(
X t+1, yt

) ∣∣X t
]

=

ˆ
A

(ˆ
Xt+1

Jt+1

(
X t+1, yt

)
Pr
[
Xt+1|α̃, X t

]
dXt+1

)
φ
(
α̃|X t

)
dα̃

(24)

The following definition of efficiency is then equivalent to the one introduced
previously.

Definition The choice rule f is dynamically efficient, if for all t ∈ T it solves the
maximization problem in Equation (23).

17Where Pr [Xt+1|α̃, Xt] =
∏

s=t+1,..T

Pr
[
Xt+1,s−(t+1)|α̃s

]
=

∏
s=t+1,..T

∏
i∈Nt+1

ps
(
xi,s−(t+1);αs

)
is de-

fined in Equation (19).

16
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Mechanisms A direct mechanism (f , τ ) is an observationally-measurable map-
ping from types into allocation and transfers. I focus on mechanisms where
transfers can be delayed by one period. That is, cohort Nt receives transfers
at t+ 1 (Figure 2). A mechanism ε–implements social choice function f if for any
ε > 0 truth-telling is an ε−equilibrium, and any profitable deviation that yields
payoff less than ε is in the neighborhood of truth-telling.18

Mechanism (f , τ ) satisfies the participation constraint conditional on public his-
tory if for all t ∈ T, i ∈ Nt and X t−1 the following holds:

E
[
ui
(
f t
(
X t
)
, xj0

)
+ τi

(
X t+1

) ∣∣X t−1
]
≥ 0 (25)

The condition postulates that under “the veil of ignorance”, that is, before the
agent observes his private information xi, but after the observation of history
X t−1 − the participation in the mechanism yield a higher payoff in expectation
than abstention.19 I discuss the present participation constraint at the end of
section 4.3.

Mechanism (f , τ ) satisfies no deficit, if for all t ∈ T, and all report histories X t+1:∑
i∈Nt

τ i (X
t+1) ≤ 0.

Note that this condition is stronger than the requirement of no deficit after the
final round. It postulates that the payments made at every given point in time
generate no deficit in the principal’s budget.

4 The Estimate Based Mechanism

The timing is described by the following iterations (t = 1, 2, ..T − 1).

• In period t agent i ∈ Nt reports her information xi = (xi0, xi1, xi2, ..xiT−t).
18A strategy profile is an ε−equilibrium, if there is no player and deviation that increases the

player’s payoff by at least ε.
19If the participation condition 25 holds for agent i ∈ Nt, one can achieve that his payoff at t+1

is positive as follows. At arrival in t, the agent buys a 0-interest bond from the principal and gets
repayment at t+ 1.

17
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timet t+1 t+2 t+3

Reports Payments
Xt of Nt to Nt

Reports Payments
Xt+1 of Nt+1 to Nt+1

Reports
Xt+2 of Nt+2

Payments
to Nt+2

Figure 2: The timing of the mechanism.

• The principal merges new data Xt = (xi)i∈Nt
with history X t−1 to obtain X t,

and updates his belief and implements allocation f (X t) at t.

• In period t+ 1 agent i ∈ Nt receives the transfer and leaves the mechanism.
Etc.

The estimate based mechanism (f , τ ) is a pair of efficient dynamic choice rule f ,
defined by Equation (23), and transfer system τ , defined as follows:

τi
(
X t+1

)
= τV CGi

(
X t
)

+ λτSc.i

(
X t+1

)
, (26)

for all t ∈ T and i ∈ Nt, where the components are given by Equations (28) and
(31), respectively.

The two-part transfer τi serves to induce truthful revelation of the entire vector
of private information xi and implement the efficient allocation. Essentially it
formalizes the idea voting on preferences, but betting on beliefs (Hanson, 2013).

Next I discuss the construction of both parts of the transfer. Lemmas 1 and 2
state that the respective transfers yield truth-telling when applied separately
to reveal types and hyperbeliefs; Lemma 3 is an auxiliary result on information
disclosure by the principal. Proposition 1 states the ε-implementation result.
Finally, I describe a way to balance the scoring budget and satisfy the ex-ante
participation constraints, summarizing the result in Proposition 2. As before, all
proofs are given in the Appendix.

18
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4.1 VCG Transfer τV CGi

The Vickrey-Clarke-Groves payment equals the externality, expressed in money,
that the agent’s report imposes on the present and future agents. This trans-
fer aligns the incentives of every agent with the principal’s objective, since the
maximization of his own utility in sum with the VCG transfer is equivalent to
total welfare maximization. Therefore truthful report of payoff type θi = xi0 is
optimal.

To construct the VCG transfer in our environment, I first introduce a family of
choice rules f−i, i ∈ NT , that are efficient with respect to a restricted player set
NT/i. That is, for a given i, f−i maximizes the total welfare net of the utility of
agent i:

W−i
(
XT , yT

)
=
∑
t∈T

∑
j∈Nt/i

uj
(
yt, xj0

)
(27)

The VCG transfer writes:20

τV CGi

(
X t
)

=
∑
j 6=i

uj
(
f t
(
X t
)
, xj0

)
−
∑
j 6=i

uj
(
f t−i
(
X t
)
, xj0

)
+ (28)

+E
[
Jt+1

(
X t+1, f t

(
X t
)) ∣∣X t

]
− E

[
Jt+1

(
X t+1, f t−i

(
X t
)) ∣∣X t

]
∀t ∈ T, ∀i ∈ Nt.

Observe that because of independence the payoff-type component xi0 does not
affect the distribution of Xt+1, thus E [Jt+1 (X t+1, yt) |X t ] is invariant in xi0.

We have the following result:

Lemma 1 For arbitrary period t ∈ T, history X t−1, agent i ∈ Nt, and payoff-type
20Bergemann and Välimäki (2010) construct a similar VCG transfer in a setting with persis-

tent population and dynamic information. In their paper, similarly to the present one, the VCG
transfer generates no deficit and satisfies the participation constraint.

19
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xi0, the expected sum of i’s utility and the VCG transfer (28) conditional on
i’s information at t is maximized if i reveals xi0 truthfully.

The lemma states that the optimal choice of type report by agent i ∈ Nt is to
tell the truth about his payoff type, regardless of the reported history. The proof
demonstrates that given the VCG transfer the agent’s problem becomes equiva-
lent to the total expected welfare maximization. It follows that if the principal
uses the accurate prior, then efficient implementation is achieved.

4.2 Scoring Transfer τSc.i

The scoring transfer induces the truthful revelation of beliefs and is assigned
upon state verification in the following period. To verify the report of agent i
of cohort Nt we use the next cohort’s report Xt+1. To construct the transfer, first
calculate the probability of eventXt+1 implied by i’s information. His information
is composed of the history of reports X t−1 (the history of reports is public) plus
the privately known type xi. The conjugate update with respect to i’s information
is:

φ
(
α|xi, X t−1

)
(29)

thus the implied probability of the event Xt+1 is

Pr
[
Xt+1|xi, X t−1

]
=

ˆ
A

Pr
[
Xt+1|α, xi, X t−1

]
φ
(
α|xi, X t−1

)
dα (30)

The principal assigns the scoring transfer equal to the natural21 logarithm of this
probability:

τSc.i

(
X t+1

)
= ln Pr

[
Xt+1|xi, X t−1

]
(31)

21The choice of logarithm base is arbitrary.
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Note that the probability of a given state - report by the next generation, Xt+1,
accounts not only for the distribution of true types and beliefs of the next gener-
ation, as specified by the hyperbelief-types, but also for strategic communication
of Nt+1. The following lemma states that if the next generation is truth-telling,
then the player i who faces the scoring transfer in expectation will report his
belief truthfully.

Lemma 2 Fix t ∈ T, i ∈ Nt and suppose that the next-cohort’s report Xt+1 is
truthful. Then the maximization of E [τ sc.i (x̂i, X

t+1) |xi, X t−1 ], i ∈ Nt induces
a truthful belief-type report: x̂ik = xik, ∀k = 1, ..T − t.

The proof relies on the assumption of conditional independence of private sig-
nals between cohorts. If the future reports are truthful, an agent’s incentives to
”match" the reported and the true distributions coincide. The shape of the scor-
ing function provides these incentives. The agent will make his best bet given his
information, that is, he will report the true draw from the unknown distribution.

As an auxiliary result, observe that the transfer given by (31) is information-
optimal in the following sense. Suppose the designer can choose how much in-
formation about past reports to reveal to the arriving agents. It turns out that
disclosing all past information increases the ex ante expectation of the scoring

transfer. Consider the reduction of past information X t−1 ∈ Xt−1 =
t
×
s=1

T−s
×
k=0

Θs+k

as an orthogonal projection on space ×
s∈S

×
k∈K(s)

Θs of types for some S ⊆ {1, 2, ..t}

and K (s) ⊆ {1, 2, ..T − t}. The reduction subsumes cases such as no disclosure
about the past (S and K (S) are empty) or the disclosure of only the previous
generation’s report. Then we have the following lemma.

Lemma 3 For all S and K (S), the unconditional expectation of the reduced-
information transfer is lower than the unconditional expectation of the full-
information transfer:

Eτ sc.i
(
xi, projS,K(S)

(
X t−1

))
≤ Eτ sc.i

(
xi, X

t−1
)

(32)
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Furthermore, if the projection projS,K(S) is different from identity then the
inequality is strict.

To obtain the result note that both sides of Equation (32) coincide with the Shan-
non measure of entropy22 of probability distributions
Pr
[
Xt+1|xi, projS,K(S) (X t−1)

]
and Pr [Xt+1|xi, X t−1], respectively. The established

properties of Shannon entropy with regard to conditional distributions produce
the result. (See Appendix)

4.3 Main results

The main result of this paper is that by making transfers conditional on reports
of two sequential generations, the principal can reconcile dynamic efficiency with
the agents’ incentive to misrepresent their information. This is achieved by the
estimate based mechanism. The following proposition states the result.

Proposition 1 For any ε > 0 there exists λ ∈ R+ such that truth-telling is an
ε−equilibrium of the estimate based mechanism. Moreover, any profitable
deviation that yields payoff less than ε is in the neighborhood of truth-
telling.

In this sense, the estimate based mechanism ε--implements the efficient choice
rule. The appropriate transfer scaling yields truth-telling with arbitrary preci-
sion. The proof relies on Lemmas 1 and 2, and proceeds by induction starting at
truth-telling at stage T . Note that NT ’s hyperbeliefs are void, and the Vickrey-
Clarke-Groves transfer induce exact truthfulness of payoff types reports. The
compactness of choice set Y and Lipschitz-continuity of the utility functions are
the required assumptions.

It is possible to balance the budget of bets in the estimate based mechanism as
follows. Assign to each agent i a player j of the same cohort and let i pay j’s
scoring transfer. Put differently, fix an arbitrary permutation ρ on the set Nt,

22with the natural logarithm base.
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such that for all i ∈ Nt, ρ (i) 6= i (ρ is a derangement). The balanced scoring
transfer is defined as follows:

τSc.Bi

(
X t+1

)
= τSc.i

(
X t+1

)
− τSc.ρ(i)

(
X t+1

)
(33)

The balanced estimate based mechanism is a dynamic mechanism (f , τ ), where
the allocation choice rule f = (f1, f2, ..fT ) is efficient:

ft
(
X t
)
∈ arg max

yt∈Y

{∑
i∈Nt

ui
(
yt, xi0

)
+ E

[
Jt+1

(
X t+1, yt

) ∣∣X t
]}

, (34)

and the transfer system τ is given by:

τi
(
X t+1

)
= τV CGi

(
X t
)

+ λτSc.Bi

(
X t+1

)
, (35)

for all t ∈ T and i ∈ Nt.23 In line with the previous literature, the budget of
the VCG transfer does not generate a deficit. This property is inherited by the
balanced mechanism.

Proposition 2 The balanced estimate based mechanism satisfies the individual
participation constraint at t, conditional on any public history at t, for any
t = 1, ..T − 1, and generates no deficit ex post.

See proof in the Appendix. Note that contrary to the “classic” case where type
distributions are known to the principal the stronger interim constraint is not
satisfied in the present environment. This limitation is due to the necessity of
revealing hyperbeliefs: as we can see from the proof, if one looked at payoff types
in isolation the interim participation constraint would hold. However the ex-
pectation of the betting reward conditional on the hyperbelief type realization
(signal) may not be positive. As a way to fix this flaw and achieve interim indi-
vidual rationality one can use bond posting (see footnote 19).

23The scoring transfer to the last cohort NT is set to 0.
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5 Discussion

This paper shows how ε-efficiency can be achieved in a setting with sequentially
arriving agents that hold independent private values for the allocation as well
as private information about the future distributions of type. Both the princi-
pal and the agents know the parametric class of the payoff-type distributions,
however the distribution parameters are unknown. The difference in knowledge
between the principal and the agents is that the latter observe informed signals
about the underlying stochastic environment. Each agent receives a series of
signals, drawn independently from the future type distributions. The signals re-
duce uncertainty about the parameter value. The principal’s objective, achieved
by the present mechanism, is to elicit the signals and update the hyperbelief. The
classic result of Crémer and McLean (1985) does not apply to this setup because
the necessary condition that beliefs determine preferences is not met: payoff and
hyperbelief types are independent.

It is generally impossible to achieve exact implementation in a setup with con-
tinuous types and allocations by using continuously differentiable scoring rules.
The impossibility is due to the fact that belief reports marginally affect exter-
nality payments through the mechanism’s choice of allocation. Take truthful
revelation as benchmark. Consider an agent who slightly misreports his signal
about the future so as to shift the allocation in the direction of marginal in-
crease in his utility (second-order gains versus first-order losses). By doing so,
the agent loses an infinitesimal amount in the scoring transfer (continuous dif-
ferentiability), but gains in the direct utility of allocation. Moreover, if members
of the same cohort also benefit from the change in allocation, then there is further
gain in the externality transfer. When type and allocation spaces are discrete,
and further assumptions on the utility function are imposed, the estimate based
mechanism proposed in this paper achieves exact efficiency, since infinitesimal
deviations from truth-telling, such as the one described above, are not available
to the agents.

The present information model allows for various degrees of initial uncertainty.
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The shape of the hyperdistribution reflects the principal’s guesses about the pa-
rameter, as well as the quality of his information. A high entropy hyperdistri-
bution implies that the principal is uninformed, whereas a low entropy (in the
classic case of mechanism design, degenerate) hyperdistribution corresponds to
a substantial degree of certainty about the model. In this setting the agents hold
additional private knowledge about the hyperdistribution, i.e., their information
is strictly superior to the principal’s.

I have assumed that the quality of information is homogeneous across the par-
ticipants and the acquisition of information is costless. As a next step, one could
study statistically efficient handling of information, which may be of different
quality. In particular, one could allow for different betting budgets for different
players, so as to provide incentives to those participants who observe more sig-
nals (and thus hold more accurate beliefs) to distinguish themselves from those
with inferior information. Differentiating the betting budget across participants
can be used to incentivize information acquisition, if it is costly.

25
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A Appendix

A.1 Summary of notation

Agent i’s information is the following:

xi =


xi0 ≡ θi

xi1
...

xiT−t




payoff-type

hyperbelief-type

Bold face refers to multiple variables:
´
A =

´
A1

´
A2
· · ·
´
AT

; dα̃ = dα̃1dα̃2 · · · dα̃T ; Xt =
T−t
Π
k=0

Θt+k ; dXt =
∏
i∈Nt

T−t
Π
k=0

dxik

Xt,s =
(
x1ts−t x2ts−t · · · xi,s−t · · · x|Nt|ts−t

)
, the signals of cohort Nt about

period s, t < s ≤ T , where 1t denotes agent 1 in cohort Nt, 2t agent 2
in cohort Nt etc.

To single out agent i’s payoff-type report I use the following notation:

(
x̂i0, X

t
−i0
)
≡

X1, X2, ..Xt−1,


x1t0 x2t0 · · · x̂i0 · · · x|Nt|t0

x1t1 x2t1 · · · xi1 · · · x|Nt|t1

x1t2 x2t2 · · · xi2 · · · x|Nt|t2

· · · · · · · · · · · · · · · · · ·
x1t(T−t) x2t(T−t) · · · xi(T−t) · · · x|Nt|t(T−t)




A.2 Proof of Claim 1

Recall from Equation (8) that the efficient level of permit :

yi =

√
2 + h+ l

θiD (1 + h)
, (36)
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for all i. Then agent i’s payoff net of the scoring payment is the following:

Ui + τCGi = − 1

θiyi
− yi

1 + h

2 + h+ l
D (37)

= − 1

θi

√
θiD (1 + h)

2 + h+ l
−

√
2 + h+ l

θiD (1 + h)

1 + h

2 + h+ l
D (38)

= −2

√
D (1 + h)

θi (2 + h+ l)
, (39)

for each i, where h is the number of low, and l the number of high signals. Equa-
tion (39) implies that all agents benefit from lower h and higher l. In case of
immediate verification we have the following:

τSc.i (x̂i) = ln (Pr [D |x̂i1 ])h−i + ln (Pr [0|x̂i])l−i (40)

= h−i ln Pr [D |x̂i ] + l−i ln Pr [0|x̂i] (41)

where h−i (or l−i) is the number of agents, excluding i, who report high (respec-
tively, low) signal. Since Pr [D |D ] = Pr [0 |0] = 2

3
, and Pr [0 |D ] = Pr [D |0] = 1

3
we

obtain the scoring transfers as follows. If i reports a high signal (D),24 then:

τSc.i (D) = h−i ln
2

3
+ l ln

1

3
. (42)

If i reports a low signal (0).25

τSc.i (0) = h ln
1

3
+ l−i ln

2

3
. (43)

Thus the profile of reports (θi, 0)i∈N (truthful payoff-type report, but “no damage"
irrespective of the signal) is an equilibrium. In this equilibrium, player i’s payoff
equals:

24Observe that if i reports D, l = l−i.
25If i reports 0, h = h−i.
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Ui + τCGi + λτSc.i = −2

√
D (1 + h)

θi (2 + h+ l)
+ λ

(
h−i ln

2

3
+ l ln

1

3

)
(44)

= −2

√
D (1 + n)

θi (2 + n)
+ λ

(
(n− 1) ln

2

3

)
(45)

The equilibrium profile (θi, 0)i∈N Pareto dominates the truthful profile (θi, xi)i∈N .
Suppose the expected transfer if the signal is high, xi = D, and player i reports
truthfully:

E
[
τSc.i

(
X̂i

)
|xi = D

]
=
∑
h−i

C
h−i

n−1

(
2

3

)h−i
(

1

3

)n−1−h−i
(
h−i ln

2

3
+ (n− 1− h−i) ln

1

3

)
(46)

=
∑
h−i

C
h−i

n−1

(
2

3

)h−i
(

1

3

)n−1−h−i

(h−i ln 2− (n− 1) ln 3) (47)

= (n− 1)

(
2

3
ln 2− ln 3

)
(48)

Similarly, it can be shown that the expected transfer if the signal is low, xi = 0

also equals (n− 1)
(

2
3

ln 2− ln 3
)
. Since (n− 1) ln 2

3
> (n− 1)

(
2
3

ln 2− ln 3
)
, player

i’s utility when profile (θi, 0)i∈N is played is greater than his utility in the truth-
telling equilibrium; this holds for all i, thus the distortionary equilibrium Pareto
dominates (for all λ > 0). �

A.3 Proof of Claim 2

Consider the maximization of the expected scoring transfer by agent i. The trans-
fer writes:
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ˆ
[0,1]

(
Pr [D|α̃] τ sc.i

(
x̂i, θ

H
d

)
+ Pr [0|α̃] τ sc.i

(
x̂i, θ

L
d

))
φ (α̃|xi) dα̃ (49)

=

ˆ
[0,1]

(
α̃ln
ˆ

[0,1]

αφ (α|x̂i) dα + (1− α̃) ln
ˆ

[0,1]

(1− α)φ (α|x̂i) dα
)
φ (α̃|xi) dα̃ (50)

=

ˆ
[0,1]

α̃φ (α̃|xi) ln
ˆ

[0,1]

αφ (α|x̂i) dα+

ˆ
[0,1]

(1− α̃)φ (α̃|xi) dα̃ln
ˆ

[0,1]

(1− α)φ (α|x̂i) dα

(51)

Equation (51) boils down to:

plnp̂+ (1− p) ln (1− p̂) , (52)

where p is the probability agent i attaches to the high damage realization, p̂ is
the probability implied by his report x̂i, and (1− p) and (1− p̂) are the respective
complementary probabilities. The first-order condition writes p

p̂
= 1−p

1−p̂ and has
the solution p̂ = p. The second-order condition holds. This implies that the
reported signal is true at the optimum, x̂i = xi. �

A.4 Proof of Lemma 1

The problem of agent i ∈ Nt−1 writes:

max
x̂i0∈Θt

E

ui (f t (x̂i0, X t
−i0
)
, xi0

)
+ τCGi

(
x̂i0, X

t
−i0
)︸ ︷︷ ︸

=:Ui(x̂i0,Xt
−i0)

∣∣xi, X t−1

 , (53)

where
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τCGi
(
X t
)

=
∑
j 6=i

uj
(
f t
(
X t
)
, x̂j0

)
−
∑
j 6=i

uj
(
f t
(
X t
−i
)
, xj0

)
+ (54)

+ E
[
Jt+1

(
X t+1, f t

(
X t
)) ∣∣X t

]
− E

[
Jt+1

(
X t+1, f t

(
X t
−i
)) ∣∣X t

]
(55)

eliminate the components of transfer invariant in θ̂i, the problem becomes equiv-
alent to:

max
x̂i0∈Θi

{
E

[∑
j

uj
(
f t
(
x̂i0, X

t
−i0
)
, xj0

)
+ Jt+1

(
X t+1, f t

(
x̂i0, X

t
−i0
)) ∣∣X t

]}
(56)

Recall that for all X t:

f t
(
X t
)
∈ arg max

yt∈Y

{∑
j

uj (yt;xj0) + E
[
Jt+1

(
X t+1, yt

) ∣∣X t
]}

(57)

Thus

xi0 ∈ arg max
x̂i0∈Θi

{∑
j

uj
(
f t
(
x̂i0, X

t
−i0
)
, xj0

)
+ E

[
Jt+1

(
X t+1, f t

(
x̂i0, X

t
−i0
)) ∣∣X t

]}
(58)

= arg max
x̂i0∈Θi

E
[
Ui
(
x̂i0, X

t
−i0
) ∣∣X t

]
(59)

for all X t and by the law of iterated expectations (X t contains strictly more in-
formation than xi, X

t−1), hence

= arg max
x̂i0∈Θi

E
[
Ui
(
x̂i0, X

t
−i0
) ∣∣xi, X t−1

]
(60)

implying that truthful report x̂i0 = xi0 is the solution to the initial maximization
problem. The strict convexity of the utility functions yields uniqueness of the
solution. �
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A.5 Proof of Lemma 2

We need to show that:

(xi1, xi2, ..xiT−t) ∈ arg max
(x̂i1,x̂i2,..x̂iT−t)

E
[
τSc.i

(
x̂i, X

t+1
)
|xi, X t

]
(61)

where x̂i = (xi0, x̂i1, x̂i2, ..x̂iT−t). Given that the report Xt+1 is truthful, the ex-
pectation of the scoring transfer conditional on the agent’s information is given
by:

E
[
τSc.i

(
x̂i, X

t+1
)
|xi, X t

]
=

ˆ
Xt+1

Pr
[
Xt+1|xi, X t−1

]
ln Pr

[
Xt+1|x̂i, X t−1

]
dXt+1 (62)

The proof relies on the independence of value/signal draws within and between
cohorts,

Pr
[
Xt+1|xi, X t−1

]
=

∏
j∈Nt+1

∏
k=0,1,..T−(t+1)

Pr
[
xjk|x̂i, X t−1

]
, (63)

Pr
[
xjk|x̂i, X t−1

]
= Pr

[
xjk|x̂i,k+1, X

t−1
]
. (64)

Use Equations (63) and (64) to simplify the expected scoring transfer as follows:

EτSc.i

(
xi, X

t+1
)

=

ˆ
Xt+1

Pr
[
Xt+1|xi, X t−1

]
ln Pr

[
Xt+1|x̂i, X t−1

]
dXt+1 (65)

=
∑
k

ˆ
Xt+1

Pr
[
Xt+1|xi, X t−1

]
ln Pr

[
xk|x̂i,k+1, X

t−1
]
dXt+1 (66)

where xk = (xjk)j∈Nt+1
. The first-order condition with respect to Pr [xk|x̂i,k+1, X

t−1]

writes as follows:

∂EτSc.i

∂ Pr [xk|x̂i,k+1, X t−1]
=

ˆ
Xt+1

Pr [Xt+1|xi, X t−1]

Pr [xk|x̂i,k+1, X t−1]
dXt+1 (67)
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=

ˆ
Pr [xk|xi,k+1, X

t−1]

Pr [xk|x̂i,k+1, X t−1]
dxk = 0 (68)

The first order condition (68) implies that x̂i,k+1 ≡ xi,k+1, for k = 0, 1, ..T − (t+ 1).
The second-order condition holds globally:

∂2EτSc.i

∂ (Pr [xk|x̂i,k+1, X t−1])2 =

ˆ
Xt+1

− Pr [xk|xi,k+1, X
t−1]

Pr [xk|x̂i,k+1, X t−1]2
dxk < 0 (69)

�

A.6 Proof of Lemma 3

Denote the reduction in past information: projS,K(S) (X t−1) = X t−1. That is, con-
sider the case when only part of past information is disclosed to the agent. Com-
pare the transfer with reduced information:

EτSc.i

(
xi, X t−1

)
= E

[
E [ln Pr [Xt+1|xi]]

∣∣∣xi, X t−1
]

(70)

with the unconditional expectation of the scoring transfer with past and present
information content:

EτSc.i

(
xi, X

t−1
)

= E
[
E
[
ln Pr

[
Xt+1|xi, X t−1

]] ∣∣xi, X t−1
]

(71)

The right-hand side of 71 is the negative of the Shannon entropy26 of random
variable Xt+1 conditional on random variables xi and X t−1 that I denote
H (Xt+1|xi, X t−1). Similarly, the right-hand side of Equation 70 is the negative
of the Shannon entropy Xt+1 conditional on xi only, denoted H (Xt+1|xi). This
implies that:

26Here the entropy is defined with the natural number e as the logarithm base. Choosing a
different base does not change our analysis: the constant would cancel out in Equation 72.
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EτSc.i

(
xi, X

t−1
)
− EτSc.i (xi) = H

(
Xt+1|xi, X t−1

)
−H

(
Xt+1|xi, X t−1

)
> 0 (72)

Observe that X t−1 contains information about Xt+1 that is not contained in X t−1

(see Equation 17), therefore the entropy of Xt+1 conditional on X t−1 and xi is
lower than the entropy of Xt+1 conditional on xi and X t−1. This can also be
observed from re-writing 72 in terms of unconditional entropies:

H
(
Xt+1|xi, X t−1

)
−H

(
Xt+1|xi, X t−1

)
=

=
(
H
(
Xt+1, xi, X t−1

)
−H

(
xi, X t−1

))
−
(
H
(
Xt+1, xi, X

t−1
)
−H

(
xi, X

t−1
))
> 0

(73)

The marginal increase in entropy due to the addition of Xt+1 is greater when Xt+1

is added to xi and X t−1 than when Xt+1 is added to xi and X t−1, since the latter
pair has greater informational content. Thus we obtain that:

EτSc.i

(
xi, X

t−1
)
> EτSc.i

(
xi, X t−1

)
(74)

The analysis is equivalent for arbitrary projections projS,K(S) (X t−1) different from
the identity. Using the most information available increases the expected payoff.

�

A.7 Proof of Proposition 1

The proof is by induction. The inductive hypothesis for t = 1, 2, ..T − 1 is the fol-
lowing: If Nt report their types and beliefs truthfully, then Nt−1 report truthfully,
too.

At the last stage t = T the belief-type reports are void, and the payoff-type re-
ports are truthful due to the ex-post VCG transfer. Thus at t = T there is truthful
revelation (trivially for the belief-type), and therefore it suffices to prove the in-
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ductive hypothesis.

Fix t. By Lemma 2 no player i ∈ Nt can increase his scoring transfer by reporting
anything different from the true type xi. Thus the profit can be generated only
in the remaining “welfare” part:

ui
(
f t
(
X t
)
, xi0

)
+ τCGi

(
X t
)

=: wi
(
X t
)

(75)

wi (X
t) is the total welfare change due to i’s report. Lemma 1 states that wi (X t)

is maximized at θi, for any belief report x̂i1, x̂i2, ..x̂iT−t. Thus we can restrict at-
tention to deviations in the belief report only.

If X t is the truthful report profile, let Di (X
t) denote a transformation of X t

that replaces the hyperbelief of agent i by some x̂i1, x̂i2, ..x̂iT−t different from
xi1, xi2, ..xiT−t. Denote the class of such transformations Di and let Dεi consist
of all Di (X

t) that induce a welfare change greater or equal to ε > 0:

Dεi =
{
Di ∈ Di : wi

(
Di

(
X t
))
− wi

(
X t
)
≥ ε
}

(76)

Consider a deviation of player i, where he distorts his hyperbelief. Under the
equilibrium assumption, the profile of reports becomes Di (X

t) =: X̂ t. Since the
choice set Y is compact, the change in the allocation f t (·) is bounded, implying
that ∃c ∈ R: ∥∥∥f t (X t

)
− f t

(
X̂ t
)∥∥∥ < c (77)

By the assumption that the utility functions ui are Lipschitz-continuous in yt, for
all i there exists Ki such that∣∣∣ui (f t (X t

)
;xi0

)
− ui

(
f t
(
X̂ t
)

;xi0

)∣∣∣ < Ki

∥∥∥f t (X t
)
− f t

(
X̂ t
)∥∥∥ (78)

and thus
∣∣∣ui (f t (X t) ;xi0)− ui

(
f t
(
X̂ t
)

;xi0

)∣∣∣ < cKi. Let K := max {Ki}i∈NT /Nt−1 .

The welfare writes:
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wi

(
X̂ t
)

=
∑
j

uj

(
f t
(
X̂ t
)
, xj0

)
−
∑
j 6=i

uj

(
f t−i

(
X̂ t
)
, xj0

)
+

+ E
[
Jt+1

(
X t+1, f t

(
X̂ t
)) ∣∣∣X̂ t

]
− E

[
Jt+1

(
X t+1, f t−i

(
X̂ t
)) ∣∣∣X̂ t

]
. (79)

Recall that the Jt is a weighted sum of the future utilities. By a version of the
Cauchy-Bunyakovsky inequality:

∣∣∣E [Jt+1

(
X t+1, f t

(
X̂ t
)) ∣∣∣X̂ t

]
− E

[
Jt+1

(
X t+1, f t

(
X t
)) ∣∣X t

]∣∣∣ ≤ (80)

≤
ˆ ∣∣∣Pr

[
XT

∣∣∣X̂ t
]
− Pr

[
XT

∣∣X t
]∣∣∣×

×
∑

j∈NT /Nt

∣∣∣ūj (fT (XT
)

;xi0
)
− ūj

(
fT
(
X̂T
)

;xi0

)∣∣∣dXT < (81)

< 2
(∣∣NT

∣∣− ∣∣N t
∣∣) cK, (82)

where ūj
(
yT ;xi0

)
= uj (ys;xi0) for j ∈ Ns. Similarly, for E

[
Jt+1

(
X t+1, f t−i

(
X̂ t
)) ∣∣∣X̂ t

]
we obtain∣∣∣E [Jt+1

(
X t+1, f t−i

(
X̂ t
)) ∣∣∣X̂ t

]
− E

[
Jt+1

(
X t+1, f t−i

(
X t
)) ∣∣X t

]∣∣∣ <
< 2

(∣∣NT
∣∣− ∣∣N t

∣∣) cK. (83)

Summing up differences in the four components we derive that

∣∣∣wi (X̂ t
)
− wi

(
X t
)∣∣∣ < 4 |Nt| cK + 4

(∣∣NT
∣∣− ∣∣N t

∣∣) cK
= 4cK

(∣∣NT
∣∣− ∣∣N t−1

∣∣) . (84)
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We have shown that the gain that i can achieve by misreporting the hyperbelief is
bounded. Thus

∣∣∣wi (X̂ t
)
− wi (X t)

∣∣∣ is bounded for all X̂ t = Di (X
t) , Di ∈ Dεi . Note

that, on the other hand, for any X̂ t = Di (X
t) , Di ∈ Dεi the (negative) change in

the scoring transfer, EτSc.i

(
X̂ t, Xt+1

)
− EτSc.i (X t+1) is also bounded from above

due to the strict concavity of the scoring rule. Thus we can choose λ such that
the (negative) change in the scoring transfer, EτSc.i

(
X̂ t, Xt+1

)
− EτSc.i (X t+1) is

less than −4cK
(∣∣NT

∣∣− |N t−1|
)
/λ for any X̂ t = Di (X

t) , Di ∈ Dεi , implying that
X̂ t is not a profitable deviation. Going through all xi, i and t choose the maximal
λ. The maximum exists, since |NT | is finite. The inductive hypothesis is proven,
hence the proposition. �

A.8 Proof of Proposition 2

Participation constraint

The proof that the balanced mechanism satisfies the individual participation con-
straint, conditional on public history, proceeds in two steps. The first step is to
show that the sum of the agent’s utility and the VCG transfer is greater or equal
to zero. The second step is to show that the expectation of the balanced scoring
transfer equals zero, such that the entire participation constraint holds.

Step 1. Since choice rules f and f−i are efficient by construction (see Equation
(23)), the following holds for all t, X t and i ∈ Nt:

∑
j

uj
(
f t
(
X t
)
, xj0

)
+ E

[
Jt+1

(
X t+1, f t

(
X t
)) ∣∣X t

]
≥
∑
j 6=i

uj
(
f t−i
(
X t
)
, xj0

)
+ E

[
Jt+1

(
X t+1, f t−i

(
X t
)) ∣∣X t

]
(85)

Recall the definition of Vickrey-Clarke-Groves transfer (Equation (28) in text):
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τV CGi

(
X t
)

=
∑
j 6=i

uj
(
f t
(
X t
)
, xj0

)
−
∑
j 6=i

uj
(
f t−i
(
X t
)
, xj0

)
+ (86)

+E
[
Jt+1

(
X t+1, f t

(
X t
)) ∣∣X t

]
− E

[
Jt+1

(
X t+1, f t−i

(
X t
)) ∣∣X t

]
(87)

Thus, inequality (85) is equivalent to:

ui
(
f t
(
X t
)
, xi0

)
+ τV CGi

(
X t
)
≥ 0. (88)

By the law of iterated expectations:

E
[
uj
(
f t
(
X t
)
, xj0

)
+ τCGi

(
X t
) ∣∣X t−1

]
≥ 0. (89)

Step 2. First, observe that:

Pr
[
Xt+1, xj|X t−1

]
=

ˆ
A

Pr
[
Xt+1, xj|α,X t−1

]
φ
(
α|X t−1

)
dα

=

ˆ
A

Pr
[
Xt+1|α,X t−1

]
Pr
[
xj|α,X t−1

]
φ
(
α|X t−1

)
dα. (90)

Pr
[
xj|X t−1

]
=

ˆ
A

Pr
[
xj|α,X t−1

]
φ
(
α|X t−1

)
dα. (91)

Since signals and types are drawn independently (from the true α - distribu-
tions), Pr (xj|α,X t−1) in both (90) and (91) is invariant in j. Therefore

ln Pr
[
Xt+1, xj|X t−1

]
− ln Pr

[
xj|X t−1

]
= ln Pr

[
Xt+1|xj, X t−1

]
= τSc.j

(
X t+1

)
(92)

is also invariant in j. This implies that the expectations of one’s own and another
agent’s scoring transfer are equal, conditional on the past history X t−1:
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E
[
τSc.i

(
X t+1

) ∣∣X t−1
]

= E
[
τSc.ρ(i)

(
X t+1

) ∣∣X t−1
]
. (93)

Thus the expectation of the balanced scoring transfer is zero:

E
[
τSc.Bi

(
X t+1

) ∣∣X t−1
]

= E
[
τSc.i

(
X t+1

)
− τSc.ρ(i)

(
X t+1

) ∣∣X t−1
]

= 0. (94)

We conclude that

E
[
ui
(
f t
(
X t
)
, xj0

)
+ τCGi

(
X t
)

+ τSc.Bi

(
X t+1

) ∣∣X t−1
]
≥ 0, (95)

thus the participation constraint holds. �(PC)

No deficit

From Equation (85) it immediately follows that the Vickrey-Clarke-Groves trans-
fer to each agent is non-positive:

τCGi (X t) ≤ 0

The balanced scoring transfer satisfies
∑

i∈Nt
τSc.Bi (X t+1) = 0 by construction (See

Equation (33)). Therefore, the aggregate no-deficit constraint holds:∑
i∈Nt

τCGi (X t) + τSc.Bi (X t+1) ≤ 0. �(ND)
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