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Community Logistics for dynamic vehicle dispatching: the effects of community departure “time” 

and “space” 
 

Abstract 

The rise of e-commerce has completely transformed the dynamicity and problem nature of last-

mile delivery, owing to significant B2C customer demand in compact urban areas. Given the 

unprecedented growths of urban last-mile deliveries, this paper proposes a novel postponement 

prioritized-route optional approach, namely Community Logistics (CL), as a new logistics tool to 

manage dynamic arrivals of delivery requests received in e-commerce hubs. Each vehicle is responsible 

for serving a “community”. At each decision epoch, fragmented e-commerce delivery requests arrived 

at the depot are either allocated to a community or postponed to later epochs for actual last-mile delivery. 

With an objective of consolidating newly arrived requests, we develop two dynamic policies – temporal 

and spatial, respectively for temporally delaying vehicle’s departure and spatially allocating more pre-

partitioned geographical cells into one community. The main contribution of this study lies in a 

spatiotemporal relativity analysis and a comparative analysis. The former demonstrates the essence of 

incorporating both dynamic community departure times and dynamic community regions into 

managing urban e-commerce deliveries, whereas the latter validates the merits of Community Logistics 

against dynamic vehicle routing solutions. In the end, we call for further developments of community 

logistics strategies to address the impacts of urban deliveries due to the rise of e-commerce and online 

shopping. 
 
Keywords  Community logistics (CL); e-commerce last-mile delivery; urban logistics; dynamic 
delivery dispatching; megacities deliveries; serving region generation problem (SRGP) 

 
1. Introduction 

The impact of digital business and online shopping is apparent. On the positive side, convenience 

is one of the major benefits for many consumers, whereas retailers could reach a wider customer base 

with e-commerce enabling them to cross geographical boundaries. However, an analysis performed by 

the World Economic Forum on “The future of the last-mile ecosystem” suggested that growing demand 

for e-commerce last-mile delivery will result in over 30% more delivery vehicles in urban cities by 

2030. Consequently, this leads to a rise in both emissions and traffic congestion if no effective 

intervention is applied (World Economic Forum, 2020). Therefore, the development of innovative 

strategies and solutions of vehicle dispatching and scheduling continue to play a significant role in order 
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to transform the way vehicles perform last-mile delivery tasks in urban areas.  

Given the unprecedented challenges in striking a balance between faster e-commerce delivery and 

reducing the associated undesired impacts, this paper proposes a novel operating strategy, namely 

Community Logistics (CL), which deals with a single-depot multi-vehicle dynamic delivery 

dispatching problem under e-commerce same-day/next-day delivery context. The proposed strategy is 

general, making it applicable to most common delivery contexts found in today’s e-commerce sector. 

In this section, we uncover the practical relevance of the proposed CL in Section 1.1 by revealing the 

current vehicle dispatching operational flow in real environment. Then, we review the relevant vehicle 

dispatching solutions in the literature in Section 1.2 to discuss our research relevance and thus introduce 

the research questions to be addressed in this paper.  

 

1.1 Practical relevance 

Online retailers, like Amazon, dynamically receive new online orders every single minute. 

Currently, the common practice of e-commerce same-day or next-day delivery performed by online 

retailers is to aggregate the received customer orders and allocate them to each available vehicle which 

has a pre-determined service region. Once the vehicle dispatching decision is finalized, orders will be 

loaded to respective vehicles for actual delivery. It is a common phenomenon that any orders arrived 

after the vehicle dispatching decision finalized will not be served at the current dispatch cycle. 

The current practice can be treated as a static delivery dispatching approach, where the dispatch 

cycle is fixed and all orders received during the cycle must be dispatched at the end of the cycle. 

Although giant online retailers like Amazon launched membership feature allowing customers to 

receive their orders quicker by paying an extra membership fee, late delivery still happens to customers 

who paid extra costs12. As a result of delayed delivery of the orders in the current dispatch cycle, one 

could imagine the consequences of orders received at future cycles – a continuous delivery backlog 

problem3.  

To manage the continuously arriving delivery orders flexibly, the CL strategy serves as a new 

 
1 https://www.vox.com/recode/2019/12/5/20997515/amazon-prime-delivery-late-delays-one-day-shipping 
2 https://www.theverge.com/2020/3/15/21180737/amazon-deliveries-delayed-coronavirus 
3 There are numerous root causes of delivery delay in recent years, including the impact of the pandemic on 

global trade, shortage of labour, etc. Given the uncontrollable external factors affecting delivery efficiency and 

the large amount of delivery resources (fleets) already in place, we must find better ways of managing the 

frequent arrivals of online orders. 
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logistics support tool for “dynamically” generating compact serving regions for a given fleet of vehicles. 

There are two major differences of the proposed CL strategy compared to any existing approaches: 

solution format and the logic of formulating a vehicle’s serving region. We treat a serving region of 

each vehicle, defined as “community”, rather than the visiting sequence of a vehicle, as the solution 

format. The logic of community formulation is not as simple as partitioning nodes into clusters based 

on geographical proximity. As vehicles are allowed to depart dynamically without a fixed departure 

interval, the fluctuating arrivals of delivery requests with known delivery destinations would influence 

whether a region containing some pending requests should become a community to be served by a 

vehicle. Therefore, the tradeoff between fast delivery (temporal perspective) and consolidation (spatial 

perspective) comes into play. Due to such temporal and spatial considerations, we define “Community 

Time” and “Community Space” as two inter-related attributes during the CL’s decision-making process. 

The former treats the varying vehicle dispatching times in each community, whereas the latter addresses 

the varying sizes and geographical locations of a community upon its formulation.  

The scope of this study is located within the cross intersections of vehicle districting and dynamic 

dispatching. The CL strategy applies districting as a means of solving dynamic dispatching problems in 

same-day and next-day e-commerce delivery context. To explicitly explain the differences between the 

CL strategy and the existing solution approaches in the dynamic delivery dispatching literature, we 

systematically review all relevant problem variants from spatial and temporal perspectives. The 

outcome of the review is a set of research questions set out in this paper that promote the development 

of dynamic vehicle dispatching in e-commerce last-mile delivery context.  

 

1.2 Research relevance 

(i)  Managing spatial uncertainties in dynamic delivery dispatching 

• Cluster VRPs 

Cluster VRPs (CluVRPs) are one of the variants with the strongest relation to our CL strategy 

formulation4. It requires all the customers to be visited exactly once, but a vehicle visiting one customer 

in a cluster must visit all the remaining customers therein before leaving it. In the literature, numerous 

CluVRPs studies have been performed, with the integration of additional considerations found in real 

 
4 This VRP variant is a generalization of the capacitated vehicle routing problem (CVRP), which deals with 

customer demand through clustering customers nodes based on their delivery or pick-up locations, followed by 

identifying the shortest route in each cluster (Sevaux and Sörensen, 2008). 
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delivery scenarios. Hintsch & Irnich (2018) regard CluVRP as a three-stage optimization problem, 

where the customer assignment in each cluster, the vehicle assignment in each cluster and the visiting 

sequence for each vehicle are optimized sequentially. They also propose a heuristic optimization 

containing a large multiple neighborhood search method with multiple clusters destroy and repair 

operators and a variable-neighborhood descent for post-optimization. In general, the CluVRP, which 

deals with vehicle dispatching problems through logically groups spatially nearby customer demand 

together for batch delivery, pre-assumes a set of orders being received for solution generation. Hence, 

this variant does not take the temporal arrival of customer demand into account.  

 

• Districting problems 

Districting problems aim to divide a large geographical area into several sub-areas or regions to 

ensure that customers in each sub-area are close to the corresponding service node (Kalcsics & Ríos-

Mercado, 2019). This problem domain can be classified into two streams: Static and dynamic districting. 

Static districting is the partitioning of customer nodes into districts with pre-defined sizes and locations. 

Dynamic districting allows a more flexible formulation of districts with varying sizes and locations at 

each departure cycle. Most of the districting models in the literature focused on static districting by 

determining the fixed size and location of each district given a particular scope, such as districting for 

routing with stochastic customers (Lei et al., 2012), formulating a two-stage districting problem by 

establishing districts in the first stage and adapting them to the daily demand realizations in the second 

stage (Bender et al., 2020), etc. As region districting can significantly reduce the complexity of route 

optimization and improve the route compactness, districting strategies are widely considered in some 

delivery contexts, such as parcel pickups and deliveries (González-Ramírez et al., 2011), waste 

collection (Mourão et al., 2009) and etc. Most research works in this field aim to design appropriate 

depot locations and serving regions in urban areas (Carlsson, 2012; Carlsson & Delage, 2013)5. Zhou 

et al. (2021) develop a hybrid multi-population genetic algorithm for solving a real-world territory 

 
5 For example, Winkenbach et al. (2016) present a districting model to simultaneously determine the optimal 

facilities’ number and locations, the optimal size and shape of each facility serving region, and the 

corresponding optimal fleet sizer and composition in each facility. Bender et al. (2020) study a districting 

problem in a real-word parcel delivery case in Germany, where heterogeneous delivery resources including 

different drivers and vehicles are allocated to ensure service consistency and adequate delivery resources for 

fluctuated customer demands. In this situation, the districting results are generally static as it is impossible to 

frequently relocate the terminal depot and modify its serving region. 
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design problem encountered by a dairy company. The problem is to partition customers into several 

districts so that the fixed costs of the districts and the corresponding routing costs are jointly minimized. 

Banerjee et al. (2022) study a tactical design problem for same-day delivery systems to determine the 

optimal fleet size and corresponding vehicle service region. Conputational studies demonstrate that 

such design can improve system efficiency in related vehicle routing settings. 

However, when districting is performed for generating vehicle dispatching solutions, the 

districting results can be more dynamic. For example, Lei et al. (2016) introduce a multi-objective 

dynamic stochastic districting and routing problem (MDSDRP) to jointly optimize the number of 

vehicles, district compactness, district dissimilarity and vehicle profit equity. In their study, vehicles 

serving regions can be slightly revised when new orders arrive. Huang et al. (2018) present a new 

concept, namely block, to describe a serving region of vehicle, which is comprised of several basic 

geographic cells. A block design problem is developed to determine the optimal combinations of cells 

based on different customer density in each cell. Although the modification of vehicle serving region is 

considered in some studies, vehicle departure time is generally neglected. Obviously, the vehicle 

departure time can significantly influence vehicle serving regions under e-commerce context. 

 

• Research gaps associated to managing spatial uncertainties in dynamic delivery dispatching 

Both static and dynamic districting models assume fixed vehicle departure intervals and disallow 

delayed departure of any specific districts. The major differences between our proposed communities 

and the existing static or dynamic districting models, as illustrated in Fig. 1, lie in the fact that (1) each 

community can have their own vehicle dispatch time depending on the real-time fluctuations of order 

arrivals, referred to as “dynamic community time”, and (2) the size and location of a community varies 

at each departure, leading to the formulation of “dynamic community space” at each vehicle’s departure. 

Through relaxing the departure times, community formulation decision becomes even more dynamic 

than dynamic vehicle districting. The consideration of delayed departure of a community would 

influence the future formulation of a new community mix at later decision epochs due to the pending 

order set carried forward to the next decision epoch. In this regard, this study examines the feasibility 

and appropriateness of integrating “Community Time” as a decision variable into solving districting 

problems, which leads to the first research question of this study: 

RQ1: Is “Community Time” a necessary parameter to be considered as decision variable in 

formulating dynamic vehicle dispatching solutions? 
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Fig. 1. Differences between static districting, dynamic districting, and community logistics 

 

(ii)  Managing temporal uncertainties in dynamic vehicle dispatching 

• Dynamic delivery dispatching problems 

To manage the arrivals of customer demand from the temporal perspective, this type of temporal-

oriented problem falls into dynamic delivery dispatching problems (DDPs) and dynamic vehicle routing 

problems (DVRPs) in the literature. For DDPs, as introduced by Minkoff (1993), the timing and the 

composition of order batches for dispatching are the two major decisions to make. To minimize 

operating costs through better consolidation opportunities and more efficient tours, decision-makers 

have incentive to wait for future orders to arrive. However, dispatching decisions are generally bound 

by time windows as well as vehicle availability and storage capacity (Mitrović-Minić & Laporte, 2004; 

van Heeswijk et al., 2019; Kim & Lee, 2011). The literature has a variety of approaches developed to 

address how stochastic arrivals of customer demand are managed. van Heeswijk et al. (2019) addressed 

the last-mile dispatching problem with dispatch windows by formulating it as a Markov decision mode. 
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An approximate dynamic programming (ADP) algorithm is developed to offer flexibility in dispatch 

times. In contrast to our study, dispatching is not made in real time. Ulmer and Streng (2019) introduced 

a policy function approximation approach to decide the dispatch time of a vehicle. Similar to our study, 

they conducted a sensitivity analysis to balance and reflect the tradeoff between fast delivery and 

consolidation. The difference compared to our study is that they consider order consolidations through 

restricting customer pickup locations. All orders are delivered to designated pickup stations to facilitate 

dynamic dispatching of consolidated orders. In contrast, orders considered in our study can be shipped 

to any location specified by the customers. Order consolidations are realized through grouping orders 

into communities based on their geographical proximity.  

 

• Dynamic Vehicle Routing Problems 

The transportation scheduling problems for fulfilling dynamic requests fall into the DVRP variant, 

which mainly deals with three decisions (Toth & Vigo, 2014; Braekers et al., 2016):  

(1) Spatial – the allocation of a set of customers to a vehicle; and/or 

(2) Temporal – the dispatching intervals or times of a vehicle or a fleet of vehicles; and/or 

(3) Routing – the visiting sequence of a vehicle.  

To systematically review the existing DVRP works, we identify the key DVRP literature from a 

recent DVRP survey study conducted by Rios et al. (2021). We then investigate how the above (1), (2) 

and (3) decisions are addressed by each of these key literatures. The outcome of this process is the 

identification of research gaps in DVRP which suggests the motivation of this study. In the DVRP 

domain, models can be classified in terms of the characteristics of the problem – delivery and pickup. 

The delivery problem is a classic VRP that considers the deliveries of goods from a depot to a set of 

customers (Wassan and Nagy, 2014). On the other hand, VRPs with pickup consider the goods to be 

collected from customers’ locations to the depot. In the literature, delivery and pickup problems are 

referred to as one-to-many and many-to-one problems respectively (Toth and Vigo, 2014).  

In the last decade, the development of e-commerce and the advances of information technologies 

that enable real-time retrieval and processing of information, have promoted a shift of studying dynamic 

delivery dispatching and vehicle routing problems from solely consolidating delivery requests in 

distribution centers to simultaneously managing both delivery and pick-up requests. Recently, 

Savelsbergh and Van Woensel (2016) conducted a survey of the challenges and opportunities in city 

logistics. They concluded that most of the existing dynamic vehicle routing literature has limited 
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applicability to the delivery context as they focus on the accommodating dynamic arrivals of pick-up 

requests into the real-time routing formulations, but not delivery requests. Examples are given in 

Appendix I.  

Solution approaches dedicated to managing dynamic delivery requests are relatively fewer 

(Savelsbergh and Van Woensel, 2016). Kim et al. (2016) considered a DVRP with non-stationary 

stochastic travel times. Vehicles deliver goods from a depot to customers. Customers are assumed 

determined before the delivery, and all of them need to be served. Their model concerns the stochastic 

travel times, not the dynamic dispatch time of vehicle fleets. Thus, the planning horizon is fixed and 

this paper deals with (3). Jia et al. (2018) developed a dynamic dispatching system. The underlying 

model of the dispatching system is the dynamic vehicle routing problem which allows new orders being 

received as the working day progress. Their system focuses on the managing the spatial distribution of 

dynamic orders by developing a region partitioning scheme. The planning horizon is fixed and therefore 

this paper deals with (1) and (3). Voccia et al. (2017) has the most similar scope than ours as they 

introduced a multi-vehicle dynamic pickup and delivery problem with time constraints that incorporates 

key features associated with same-day delivery logistics. The solution approach integrates information 

about future requests into routing decisions by identifying when it is beneficial for vehicles to wait at 

the depot. Therefore, this paper deals with (2).  

 

• Research gaps associated to managing temporal uncertainties in dynamic delivery 

dispatching 

 A summary of the DDP and DVRP literature, involving their specific scope and instance setup for 

experiments, is presented in Table 1. From the table we identify two existing gaps: 

 

(i) Lack of integrated considerations of both spatial and temporal decisions in dynamic districting 

and dispatching – As reflected in the Table, no studies consider both (1) and (2) as a joint 

optimization problem. That said, the spatial and temporal characteristics of both pickup and 

delivery requests are often independently studied. In our study, we attempt to conduct a spatio-

temporal relativity analysis to investigate the effect of different community sizes towards dispatch 

times. Such evaluations revealing the inter-relationships between the spatial and temporal 

decisions could enable decision makers to pre-determine a fixed region (community) or fixed 

dispatching intervals. 
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(ii) Small instances for model validation – Most DVRP models are specifically designed for a specific 

operating scenario. They are tested through a small instance as depicted in Table 1. Nevertheless, 

it is sensible considering the computation efforts, i.e. computation time in particular, being 

expensive in generating a new route whenever a new (set of) request arrives. In real-life e-

commerce city logistics delivery context, however, online retailer giants like Amazon are 

receiving no fewer than thousands of online orders on a daily basis. They are required to be 

shipped in a guaranteed same-day or next-day delivery.  

 

Table 1. Scopes and experiment settings of the selected DDP and DVRP studies 
   Scope 

 Relevant literature Instance size (1) Spatial (2) Temporal (3) Routing 

D
D

P van Heeswijk et al. (2019) 3 – 50  ü  

Ulmer and Streng (2019) Up to 1000  ü  

D
V

RP
 

Gendreau et al. (2006) 24 – 33 ü  ü 

Sarasola et al. (2015) 50 – 199 ü  ü 
Yu and Yang (2017) 25 – 100   ü 
Ulmer er al. (2018) 100  ü  
Kim et al. (2016) 10   ü 
Jia et al. (2018) 72 – 400 ü  ü 
Voccia et al. (2017) 40 – 200  ü  

* Instance size refers to the number of customer requests used for conducting experiments 

  

Savelsbergh and Van Woensel (2016) addressed the need to develop a less-tailored approach to 

keep up with the ever-challenging e-commerce city logistics environment. In addition to this, we 

consider a fact that the routing decision as the sole solution format in VRP family potentially attributes 

to having smaller instances for model validation which saves computation efforts. These motivate us to 

investigate the possibility of recognizing the “region” rather than the “route” as the solution format. By 

looking into the formulation of dynamic communities, we have a chance to also discover the inter-

relationships of both spatial and temporal decisions in dynamic districting and dispatching, serving as 

the justifications of treating dispatching times as a decision variable. More importantly, our community-

based solution approach makes dynamic districting and dispatching tractable at the largest practical 

scales. We introduce four demand scenarios into our spatio-temporal relativity experiments, feeding our 

models with approximately a total of 1450, 2600, 5200 and 10200 daily delivery requests under low, 
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medium, high and peak demand scenarios. To summarize, this paper examines the spatio-temporal 

relativity as a starting point of our community logistics studies. Another two research questions are 

formulated: 

RQ2: What is the spatio-temporal (space versus time) relativity that poses effects towards 

community formulation under various delivery demand patterns? 

RQ3: How does the CL strategy serve as a support tool to formulate communities prior to making 

routing decisions in each community?  

 

The spatio-temporal relativity analysis taking a variety of demand scenarios into considerations 

not only inform the inter-relationship between community time and space, but also the degree of 

emphasis on time and space when modeling vehicle dispatching under different delivery scenarios. To 

validate the proposed CL strategy, we benchmark it against a static delivery dispatching policy and a 

DVRP solution method. These rigorous benchmarking studies are conducted to answer our final 

research question:  

RQ4: What are the advantages of CL strategy over conventional route-based delivery strategy for 

handling the e-commerce last-mile same-day/next-day delivery? 

 

The significances of this study are twofold. In theoretical perspective, the comparative results lead 

to a better understanding of how the proactive delay of a vehicle’s departure could also play a role in 

generating a vehicle dispatching solution with a higher degree of route compactness. In practical 

perspective, the proposed CL strategy is a less problem-tailored, more general, and efficient approach 

to manage the fragmented, fluctuating arrivals of delivery requests in last-mile distribution hubs. It can 

be integrated into VRP models as a logistics support tool to formulate a community mix prior to 

optimizing the route of a community, or be extended to a variety of dispatching problems originally 

solved by VRP models.   

The rest of this paper is organized as follows. Section 2 defines the CL strategy that deals with the 

urban logistics problems. Section 3 provides the problem description, model formulation and two 

dynamic policies. Section 4 presents the procedures, results, and discussions of the spatiotemporal 

relativity analysis which benchmark our dynamic policies against a static policy. Section 5 presents a 

comparative analysis which benchmarks our policies against a DVRP solution method. Section 6 

provides the implications of the research to further inform the applicability of the CL strategy. Finally, 
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section 7 gives the conclusions of the study and directions for future research. 
 

2. Community Logistics Framework – What it is and how it works 
2.1 Community Logistics: the strategic objective, definition, and its solution format 

Community Logistics aims to identify practical, visually compact order dispatching solutions in 

real time at distribution centers. This goal is achieved by either dynamically introducing a waiting 

strategy in each delivery batch, and/or flexibly adjusting the size and location of a delivery community. 

Hence, the CL strategy is defined as a strategic approach of managing the uncertainty of delivery 

requests through striking a balance between two dimensions: (i) community time – varying dispatching 

times and (ii) community space – varying sizes and locations. As a logistics support tool complementing 

the existing VRP family, CL solutions determine a vehicle’s geographical serving region, that is, the 

community, that it needs to visit. In other words, only delivery orders with destinations located within 

the community would be served by the vehicle. Orders outside this community would be served by 

another vehicle (community). With this solution format, the CL framework is best suitable for e-

commerce distribution centres to manage a large number of small, fragmented delivery orders in 

megacities, which feature high rise buildings and high population density across a compact area. Given 

a bunch of small orders mostly located within a walkable distance, the CL solution intends not to 

minimize the traveling distance, but the number of locations to be visited. Ideally, there are enough 

discrete orders all within walkable distances so that the vehicle only needs to visit one delivery node to 

fulfil the order set. 
 

2.2 Community Logistics: how it works 

The formulation of a delivery community, as discussed above, is based on balancing the tradeoff 

between time and space dimensions. Theoretically, a large community in terms of geographical serving 

area would not require waiting time to be introduced because of a sufficiently large number of orders 

located within the community, and vice versa. However, a large community suffers from a low degree 

of satisfaction of both customers and delivery person due to an unreasonably long traveling distance 

and traveling time within the community. Introducing a waiting time for a smaller community is 

therefore a justifiable option. Thus, the question lies in how to flexibly introduce waiting time and 

dynamically adjust the size of a community simultaneously. 

The execution of the dynamic CL strategy for e-commerce delivery scheduling creates a pooling 

effect of e-commerce delivery orders such that delivery orders with similar geographical destinations 
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are aggregated for a certain period of time and assigned to a designated vehicle while taking account of 

the adjustable serving community of each vehicle in each epoch. Once dispatching solution, in a form 

of “community”, is generated for a vehicle, visiting sequences (route) can be generated to facilitate the 

delivery person in charge to visit the designated delivery destinations specified by individual customers 

with shortest traveling distances.  

To justify the feasibility and appropriateness of jointly considering community time and space in 

generating real-time vehicle dispatching solutions in e-commerce delivery context, the last-mile e-

commerce delivery dispatching problem is formulated and presented in the next section, followed by 

the introduction of two policies, i.e. temporal and spatial policy, to examine the spatiotemporal tradeoff. 
 

3. Problem definition under the Community Logistics Framework 
3.1 Generic operating scenario of e-commerce last-mile delivery considered in this study 

In this study, the research object is a terminal depot operated by a 3PL who is responsible for the 

last-mile delivery of e-commerce orders with specified delivery destinations located within a square 

region . These delivery destinations involve not only home addresses, but also the locations of 

dedicated smart lockers and convenience stores which serve as the customers’ parcel pick-up points. 

Therefore, the e-commerce orders are assumed to be delivered as soon as possible. The daily opening 

time of the depot is . At , an initial set of orders  is accumulated in the 

depot from the previous day. Hereafter, another set of orders  will 

continually arrive at the depot with a constant arrival rate  or time-related arrival rate . Each 

order  is associated with an arrival time , weight  and delivery location . 

Since these orders are placed by online end customers, the order weight and delivery location can be 

recognized as random variables whose probability density functions are  and . In 

terms of vehicle availability, there are  homogeneous vehicle with  capacity and  

traveling speed during outbound delivery. The dynamic delivery dispatching problem tackled using the 

CL framework is the real-time identification of possible vehicle’s delivery delay and the formulation 

and resizing of communities for the assignment of pending delivery orders to available vehicles. 
 

3.2 A new problem variant under the Community Logistics Framework 

 Conventionally, the delivery problem mentioned in Section 4.1 can be tackled by a dynamic 

vehicle routing problem through dynamically determining a set of shortest vehicle traveling routes. In 

this section, the proposed CL strategy is deployed to handle the e-commerce last-mile delivery problem 

S
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without the need to identify the routes in the first place. 

With the adoption of the CL strategy, the decision process is firstly simplified by discretizing the 

temporal and spatial elements. From the spatial perspective, the serving area  is partitioned into cells 

in advance, denoted as , according to the geographical boundaries such as roads, rivers 

or residential communities. The area covered by cell  is denoted as . From the temporal 

perspective, the depot opening hours is decomposed into  decision epochs. At the start of each 

decision epoch , i.e., , there is a set of pending orders at the depot, 

which is denoted as . Decision makers need to identify the number of communities  

required and then determine serving regions of these  delivery communities by appropriately 

assigning  cells into these  delivery communities. We denote the cell set contained in 

community  as , so that the serving area covered by community  can be 

represented by . Subsequently, decision makers need to estimate if the delivery community 

 should be served at the current decision epoch. If delivery community  is determined to 

be served at , a vehicle  will be assigned to serve the order set  within this 

community  by visiting the delivery community . Otherwise, 

these orders will be postponed to the next decision epoch . Consequently, the conventional 

delivery problem is transformed to a new research problem – identifying an optimal policy in 

partitioning delivery communities to jointly minimize vehicle’s serving area, number of vehicles and 

delivery delay. 
 
 

3.3 The temporal and spatial policy 

In this study, we present two alternatives to generate dynamic policies to tackle this new problem 

variant in e-commerce last-mile delivery. The practical rationale of formulating two decision policies 

instead of identifying a single optimal policy to solve the specified problem is that the decision process 

discussed in Section 3.2 includes a vast number of possibilities. If a Markov decision process model 

and (approximate) dynamic programming are applied to solve the corresponding Bellman equation, the 

solution iteration time and computational power would be huge to obtain a merely near-optimal solution, 

which is not justifiable considering the need to generate a feasible community-based delivery solution 

in a time-sensitive manner. By developing two alternatives, namely Temporal and Spatial policies, a 

spatiotemporal relativity study is performed for assessing the interdependencies of the temporal 

delivery delay and spatial community resizing. The applicability of these policies under varying e-
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commerce delivery conditions, including order arrival rate, number of communities partitioned, vehicle 

departure time, etc., is systematically evaluated. 
 
3.3.1 Generating the serving regions of a community 

Prior to presenting our Temporal and Spatial delivery policies, we firstly develop a method to 

generate serving regions of delivery communities based on the cells. Referring to a block design 

problem proposed by Huang et al. (2018), cells are assigned into several blocks to minimize the number 

of blocks while satisfying the capacity and cell connectivity constraints. For the  cells, a graph 

 is associated where node set  represents all cells in  and arc set  represents pairs 

of cells . The optimization model is formulated as follows: 

   (1) 

Subject to: 

   (2) 

   (3) 

   (4) 

   (5) 
   (6) 
   (7) 

 and  are 0 and 1 variables, in which  means that cell  represents block , 

, otherwise;  indicates that cell  belongs to block , , otherwise.  is 

the accumulated order demand in cell . Constraint (2) guarantees that the total demand in any block 

does not exceed the designed capacity. Constraint (3) ensures that each cell must belong to one exact 

block. Constraint (4) means that the cell selected to represent block  must be belonged to block . 

Constraints (5) is the model to ensure the cell connectivity in each block, which can be formulated as 

follows: 
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   (10) 

where  is the flow variable representing the flow in block . The formulation on the cell 

connectivity constraints is inspired by multi-commodity flow concepts originated from Huang et al. 

(2018). Constraint (8) ensures flow conservation and constraints (9) and (10) guarantee that a flow only 

travels cells in the same block. 

Motivated by the block design problem, we propose a serving region generation problem (SRGP). 

Given a specific number of communities ( ) and the demand in each cell  

( ), SRGP seeks to assign these  cells into  community serving regions to maximize 

the total cell compactness in all regions while satisfying the demand and cell connectivity constraints 

in each serving region. The mathematical model of SRGP is described as follows: 

   (11) 

Subject to: 

   (12) 

   (13) 

   (14) 

   (15) 

   (16) 

Compared to the block design problem, SRGP only has one type of variable, i.e., , which is 

binary variable.  indicates cell  belongs to the delivery community , , 

otherwise. Since the number of communities is predetermined, the objective of SRGP is to maximize 

the total compactness value, i.e., , in all communities, where  is the adjacent matrix 

of all cells. We will discuss this function in detail in the next paragraph. Constraint (12) ensures that 

each cell will be assigned to one exact community. Constraint (13) guarantees that the accumulated 

demand of each community are balanced, where  is the cell set of community ,  

( ) is the accumulated order demand in cell  and  is a balance 

coefficient. Constraints (14) is introduced to ensure the cell connectivity in each community. In the 

work of Huang et al. (2018), the connectivity constraints are formulated according to the concepts of 
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multi-commodity flow. In our SRGP model, since there is no additional variable to designate the 

representing cell in a community, the above connectivity constraints formulations cannot be directly 

applied here. Therefore, instead, we used a depth first search (DFS) algorithm to estimate if the cells in 

a community are connected based on their adjacent matrix . 

As mentioned in Section 3, the serving region in a delivery community shall be generated with a 

high degree of compactness. This goal is achieved by maximizing the cell compactness in each 

community, an objective function in SRGP. In the literature, there are various mathematical definitions 

of compactness (Rossit et al., 2019). Most of them, however, are defined to express the compactness of 

a set of discrete points. In this study, we calculate the cell compactness of a serving region using the 

following equation: 

   (17) 

where  is the adjacent cell number of cell , which can be obtained on the basis of cell 

set  and cell adjacent matrix . Table 2 demonstrates examples of the cell compactness of four 

types of serving regions with 5 cells. Regions with cells more adjacent to each other give a higher 

compactness value computed by Eq. (17). 
 

Table 2. Examples of the cell compactness of four types of serving regions with 5 cells 

 Region 1 Region 2 Region 3 Region 4 

  
   

 1 1 4 2 

 2 3 1 3 
 2 2 1 1 
 2 1 1 2 
 1 1 1 2 

Compactness 14 16 20 22 

 
3.3.2 Temporal policy (the T-policy) 

The T-policy provides flexibility in terms of the delivery delay of a vehicle at the depot. The 

solution generation mechanism of this policy – depart once a vehicle is fully loaded, is fundamentally 

different from the general rule of thumb of dynamic vehicle dispatching in the sense that the serving 

region of a vehicle is determined in real time based on the actual geographical distribution of arrived 
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orders.  

In the T-policy, the serving area of each community is fixed, so that the numbers of communities 

at different decision epoch, i.e., , are identical, and we let .  is a turnable 

parameter in the T-policy which influences the vehicle dispatching frequency. Once  is 

determined, the serving region of reach community ( , ) can be obtained by solving the 

SRGP based on the expected daily cell demand . At the beginning of each decision epoch , the 

arrived delivery order set  is partitioned into  groups, i.e., , according to 

their delivery locations. Subsequently, the orders in each delivery community and the available vehicles 

set  are checked. To determine the served orders  and delayed orders  in delivery 

community  at , the following situations are considered:  

(i) If the accumulated weight in  is less than vehicle capacity threshold  ( ), all 

orders in  will be marked as  and intentially delayed to the next decision epoch; 

(ii) If the accumulated weight in  is within the range of  and , all orders in  will be 

denoted as  and served by a vehicle in .  is an empty set in this situation. 

(iii) If the accumulated weight in  exceeds vehicle capacity , orders in  will be divided into 

two parts, including  and . 

The order set confirmed for dispatching at decision epoch  is ; whereas 

the order set for intended postponement at decision epoch  is .  is 

determined according to the first-in-first-serve (FIFS) principle until the vehicle capacity is full. Any 

excess order is denoted as . It is noted that if no available vehicle exists in the depot,  will be 

identified as a passive postponement order set, which is also denoted as . The simulation 

pseudocode for the T-policy is presented in Fig. 2. 

 
Algorithm 1 (Simulation procedures using the T-policy) 
Input: Business time ; Vehicle set ; Vehicle capacity ; Length of decision cycle ; Community 
number ; Cell set ; Cell adjacent matrix ; Expected daily cell demand  in each cell. 
Output: Delivery order  for each vehicle and  at each decision epoch. 
1  Initialization: , ; 
2  Obtain  by solving SRGP given ,  and ; 
3  ; 
4  for  to  
5     Generate new arrival order set in th decision cycle ; 
6     ; 
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7     for  to  
8        Update  by checking the retunrning time of each vehicle; 
9        Obtain  by dividing  based on ; 
10       if  
11          Dividing  into  and  using FIFS principle; 
12          Select a vehicle  in  and asign  to ; 
13          Compute the retunrning time of vehicle  by solving the traveling salesman problem; 
14       else 
15          ; 
16       end if 
17       ; 
18    end for 
19 end for 

Fig. 2. Simulation procedures for the Temporal policy 
 
3.3.3 Spatial policy (the S-policy) 

In contrast to the T-policy, the S-policy does not allow any delivery delay. In other words, all 

accumulated orders must be dispatched at each decision epoch . However, flexible community 

formulation is possible through merging more nearby cells at . This solution generation using 

thiS-policy is different from that of CluVRP in the sense that a community is formulated by merging 

pre-partitioned cells acorss the entire serving region. 

In the S-policy, the departure time of each community is fixed at each decision epoch . 

Therefore, in this policy, the length of decision cycle  is a ternable parameter which impacts the 

community merging results. Due to the uncertainty of order arrivals, the number of communities 

 and the corresponding serving regions  are different at each . The number of 

delivery communities  can be calculated by: 

   (18) 

Note that a modified vehicle capacity , instead of the original capacity , is used to compute 

the required number of communities (also the vehicles). By so doing, when the constraint (11) is 

satisfied, none of the vehicles are overloaded. At each ,  is reorganized by solving the 

SRGP based on real-time accumulated demand  rather than  in each cell. Subsequently, the 

served order set  and delayed order set  in community  is determined based on the 

following rules:  
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(ii) Otherwise orders in  will be divided into two part, i.e.,  and . 

Similar to the T-policy,  is determined based on the first-in-first-serve (FIFS) principle until 

the vehicle capacity is full. Excess orders are classified as . Nevertheless, in S-policy, no order will 

be delayed intentionally unless the available vehicles are insufficient ( ). For each , 

an available vehicle from  will be assigned to fulfill it.  will be denoted as  if no vehicle 

is available. The order set unfulfilled at the current , i.e., , will be postponed to the 

next epoch . The simulation pseudocode by using SDP is presented in Fig. 3. 
 

Algorithm 2 (Simulation procedures using the S-policy)  
Input: Business time ; Number of vehicles ; Vehicle capacity ; Length of decision cycle ; Cell 
set ; Cell adjacent matrix . 
Output: Delivery order  for each vehicle and  at each decision epoch. 
1  Initialization: , ; 
2  ; 
3  for  to  
4     Calculate   based on real-time order accumulation; 
5     Obtain  by solve SRGP given ,  and ; 
6     Generate new arrival order set in the decision cycle ; 
7     ; 
8     for  to  
9        Update  by checking the retunrning time of each vehicle; 
10       Obtain  by dividing  based on ; 
11       if  
12          Dividing  into  and  based on FIFS principle; 
13          Select a vehicle  in  and assign  to ; 
14          Compute the retunrning time of vehicle  by solving the traveling salesman problem; 
15       else 
16          ; 
17       end if 
18       ; 
19     end for 
20 end for 

Fig. 3. Simulation procedures for the Spatial policy 
 
3.4 Generate routes after obtaining order set from Temporal and Spatial policies 

It should be highlighted that the T and S policies are developed with an aim to assess the suitability 

of a community-based solution format for solving dynamic vehicle dispatching problems in e-

commerce era, which eliminates the need to optimize the visiting sequence of delivery nodes. This 
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assessment is made with respect to four key performance indices to be introduced in Section 4.3, which 

include traveling distance of a route. Therefore, a route for each vehicle is identified only for the purpose 

of computing their traveling distance for performance evaluations, which is generated by solving the 

following traveling salesman problem (Lawler, 1985): 

   (19) 

subject to: 

   (20) 

   (21) 

   (22) 

   (23) 

   (24) 

where xp,q is a decision variable;  if the courier needs to travel from location p to location 

q, 0 otherwise. {0} is the indication of the depot. Constraints (20) and (21) ensure that each location in 

order set  be visited only once. Constraints (22) and (23) guarantee all locations in  

are visited by only one vehicle. 

 
4. Spatio-temporal Relativity Study 

A series of simulated experiments is performed to evaluate the performance of the proposed 

Temporal and Spatial policy in managing dynamic arrivals of e-commerce delivery orders in a 

distribution centre. The simulated delivery environment and identified parameters are based on real 

business settings of a third-party logistics service provider based in the mainland China. In the proposed 

two policies, the SRGP is solved by a classic genetic algorithm (GA) (Holland, 1992) and the TSP is 

solved by a classic Tabu search algorithm (Glover & Laguna, 1998). All numerical experiments are 

conducted in MATLAB R2020b on a personal server using an Intel(R) Xeon(R) E5-2670 v2 CPU. 

Following a discussion of the data sets and parameter setting, the performance of the Temporal and 

Spatial policy is compared in terms of four key performance indicators (KPIs) introduced in this section, 

namely the average route compactness, postponement time and traveling distance of an order, and the 

number of unused vehicles at the depot. 
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4.1 Settings for the test instances 

The instance I1 considers an e-commerce distribution hub serving 5 km by 5 km geographical 

area in Beijing from 8:00am to 18:00pm (600 mins). As mentioned in Section 3, the community serving 

region is partitioned by combining basic cells in a geographical area. Initially, as shown in Fig. 4 (a), 

the serving region is partitioned into 33 non-uniform cells according to its geographical characteristics, 

such as roads and rivers. Subsequently, we can calculate the probability of orders locating in each cell 

(see Fig. 4 (b)) according to the historical arrival figures of e-commerce orders within the serving region. 

In actual delivery environment, we assume 30 homogeneous delivery vehicles with 600 kg capacity are 

available for handling daily delivery operations. Taking traveling speed in urban areas, waiting and 

serving time at each delivery node into considerations, we determine a vehicle to have an average 

constant speed of 10 km per hour. The order arrival is regarded as a homogeneous Poisson process with 

a constant arrival rate . Considering that the average number of orders successfully delivered can 

reach to 330 per square kilometer per day in Beijing (Huang et al., 2018),  is set to be 1/0.48 (low 

demand). Based on instance I1, we further introduce three instances I2, I3 and I4 by altering the  to 

1/0.24 (normal demand), 1/0.12 (high demand) and 1/0.06 (peak demand). Table 3 summarizes the 

parameter settings of the spatio-temporal relativity experiments. 

 

     
                           (a)                       (b) 

Fig. 4. Cell districting: (a) Cells partitioning and (b) their probability of order arrival in a cell 

 
Table 3. A summary of the parameters for simulation experiments 

Parameters  Configuration 
Vehicle availability 
Number of delivery vehicles 
Maximum capacity of a vehicle 
Average speed of a vehicle  
(including vehicle waiting at delivery nodes) 
 

 
30 

600 kg 
10 km per hour 

Delivery demand 
Demand scenarios 
 
 
 

 
Low demand (I1) –  

Normal demand (I2) –  
High demand (I3) –  
Peak demand (I4) –  

l

l

l

1/ 0.48l =
1/ 0.24l =
1/ 0.12l =
1/ 0.06l =
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Number of initial orders in each day 
Weight of a delivery order 
 

200 
Gamma distribution (20,1) 

Dynamic policies 
Fixed no. of communities for Temporal Policy 
Decision epoch for Temporal Policy 
Decision epoch for Spatial Policy 
Balance coefficient 
 

 
2, 4, 8, 12, 16, 20 24 

Every 2 minutes 
Every 15/30/50/60/100/120/150 minutes 

0.2 

Simulation experiments 
Service time length and number of simulations 

 
600 minutes for 20 times 

 
� Parameter setting for the Temporal Policy 

The 33 non-uniform cells partitioned is used to generate the probabilistic arrivals of orders within 

the serving region. To evaluate the performance of the Temporal policy, the serving region of delivery 

community is determined in advance by solving the SRGP, as depicted in Fig. 5. To evaluate the effect 

of community partitioning towards the solution quality, the number of communities for the Temporal 

policy across the simulation period, i.e. 20 days, each day 10 hours in operations, is fixed at 2, 4, 8, 12, 

16, 20 and 24. Under the Temporal Policy, further community size adjustment is not allowed in the 

Temporal policy. Only dynamic departure times are permitted. This setting is used to evaluate the 

performance of dynamic departure policy with different community sizes under changing demand 

scenarios.  

 Due to the difference between the proposed policies in terms of their mechanism in solution 

iterations, decision epochs should have different implications for the Temporal and Spatial policies. In 

the Temporal policy, the area of communities is predetermined. Decision makers need to check if the 

vehicle departure condition is satisfied for each community. Nevertheless, frequently checking the 

orders accumulated in each community is unnecessary because the number of orders cannot vary 

violently within a short time period. Therefore, the decision epoch for the temporal policy is set to be 2 

minutes. This suggests that the algorithm of the temporal policy will determine if the pending delivery 

orders consolidated in each community fulfill the dispatching criteria in every 2 minutes. Any 

community that has consolidated enough orders will be dispatched immediately at that decision epoch 

regardless of the status of other communities. 

 
� Parameter setting for the Spatial Policy 

In contrast to the Temporal policy, the Spatial policy, while having a fixed departure time, allows 

flexible size adjustment of community serving regions at each decision epoch by periodically solving 

the SRGP. Therefore, this setting examines solution quality when the number and size of communities 
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are continuously changing, with the depot serving area being initially partitioned into 33 non-uniform 

cells as depicted in Fig. 4. For decision epoch configuration, the Spatial policy has a range of decision 

epochs for performance evaluation – 15, 30, 50, 60, 100, 120 and 150 minutes. Decision epochs in 

Spatial policy does not only govern the time in which the algorithm of the Spatial policy is run, but also 

the departure time of each community. Under this policy, the departure times are fixed at the start of 

each decision epoch. Therefore, if a community did not consolidate enough orders, the policy allows a 

community to merge with its neighbour. In the contrary, community splitting would take place should 

a community has received an excessive number of orders that a vehicle could fulfill. 

 
Fig. 5. Pre-determined community partitioning of the serving region for the Temporal policy 
 

4.2 Static policy for benchmarking – static service region and departure time 

In this section, a static vehicle dispatching policy (Static policy) based on the conventional 

delivery strategy is introduced. Subsequently, the static policy is benchmarked with our T and S-policy 

to validate the performance of our proposed CL delivery strategy. Under the static policy, both vehicle 

service region and departure cycle are predetermined. Given the static departure cycle , the static 

service region number  is computed by: 

   (25) 

where  is the expected demand of e-commerce orders. The static policy does not vary the number 

of service region and vehicle departure cycle. Therefore, we identify the number of service regions 

based on the expected total demand during one vehicle departure cycle. After determining  and 

, the service region of each vehicle, i.e.,  ( ), can be obtained by solving the 

SRGP. With  and  ( ), vehicles are dispatched according to the rules 

described in Fig. 6. Different values of  and  are identified to reflect the order arrival 

volume under different demand levels, as depicted in Table 4. It shall be noted that some values of 

 cannot be achieved in high and peak demand levels, such as 100 minutes, because no feasible 
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service region exists in these scenarios. 
 

Algorithm 3 (Simulation procedures using the static policy) 
Input: Business time ; Number of vehicles ; Vehicle capacity ; Vehicle departure cycle ; 
Vehicle service regions  ( ). 
Output: Delivery order  for each vehicle and  at each decision epoch. 
1  Initialization: , ; 
2  ; 
3  for  to  
6     Generate new arrival order set in the decision cycle ; 
7     ; 
8     for  to  
9        Update  by checking the retunrning time of each vehicle; 
10       Obtain  by dividing  based on ; 
11       if  
12          Dividing  into  and  based on FIFS principle; 
13          Select a vehicle  in  and assign  to ; 
14          Compute the retunrning time of vehicle  by solving the traveling salesman problem; 
15       else 
16          ; 
17       end if 
18       ; 
19     end for 
20 end for 

Fig. 6. Simulation procedures for the static policy 
 

Table 4. Parameter settings for the static policy 

 Low demand Mid demand High demand Peak demand 

 
15, 30, 50, 60,  

100, 120 

15, 30, 50, 60,  

100, 120 
15, 30, 50, 60 15, 30 

 2, 3, 5, 5, 6, 10 5, 9, 10, 17, 20, 25 5, 10, 17, 20 10, 20 

 
4.3 Policy performance measurement 

To evaluate the effectiveness of the proposed policies and identify appropriate parameter 

combinations, we propose four key performance indicators (KPIs) to evaluate the quality of solutions, 

namely average route compactness (ARC), postponement time (APT) and traveling distance of an order 

(ATD), and the number of unused vehicles at the depot (UVN).  

The first KPI is the order average route compactness (ARC). The route compactness is an intuitive 

concept and can be defined unequivocally (Rossit et al. 2019). Generally, the higher proximity amongst 
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the destinations of the community, the more compact this route is. In this study, we use the definition 

proposed in Poot et al. (2002) to measure route compactness, which is formulated as: 

   (26) 

where dist(a,b) is a function to calculate the Euclidean distance between point a and point b.  is 

the geometric centre of the location in the order . The smaller this value, the more compact the 
solution is. 

The second KPI is the average postponement time of an order (APT), which is a measure of the 
duration of time an order is pending at the depot for actual delivery. It can be formulated by: 

   (27) 

The third KPI is the number of unused vehicles (UVN) at the , which is introduced to 
describe the usage of available vehicles in the depot. It can be calculated by: 

   (28) 

The fourth KPI is the average traveling distance of an order (ATD), which is used to describe 
vehicles travel efficiency, and is computed by: 

   (29) 

where  is the minimum distance for the vehicle j to deliver all orders in . This figure can 

be obtained by solving traveling salesman problem. Given a specific instance, the S, T are evaluated for 

20 times to obtain a mean value of above four KPIs. 
 
4.4 Performance evaluation for the Temporal policy under various demand scenarios 

The simulation experiment for the T-policy has decision epochs fixed at a 2-minute interval. An 

illustrative example of solutions generated by using the Temporal Policy is depicted in Fig. 7. During 

the decision epochs from 8:02am to 8:20am, only one community has consolidated enough orders for 

dispatching from the distribution hub. Applying the Temporal policy for checking each community at a 

two-minute interval, the hub continues the consolidation of orders until 8:12am, 8:14am and 8:16am to 

dispatch orders from three different communities. This example demonstrates that a community 

dispatching solution is updated at each decision epoch but is not necessarily be finalized for real 

dispatching. Real dispatching occurs only when the community has consolidated an adequate number 
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of orders. 

 

Fig. 7. Examples of community logistics solution generation using Temporal Policy at a 2-minute 
decision epoch with 12 fixed communities under normal demand period 

 

• APT performance – For the T-policy, having a fixed number of communities partitioned and 

dynamic departure times of each community, simulation experiments of 2, 4, 8, 12, 16, 20 and 24 

fixed communities were conducted for assessing the T-policy performance under four demand 

scenarios. As summarized in Fig. 8, the lowest average postponement (waiting) time of each order 

is achieved by partitioning the region into the least number of communities, i.e. 2 communities. 

With a smaller number of communities partitioned across the region, each community shares a 

larger portion of the geographical area. Therefore, it makes sense that a smaller number of 

communities would enable each community to consolidate newly arrived delivery requests at a 

higher rate. This in turn reduces the waiting time of the orders already pending in the order 

consolidation pool for actual delivery. Generally, the plot in Fig. 8 revealing the relationship 

between APT and the number of communities demonstrates that partitioning the region into more 

communities results in a delay of vehicle’s departure. The effect of community partitioning towards 

delivery postponement is more apparent in low demand scenario. This can be explained by the fact 

that a low order arrival rate leads to the difficulty in receiving an adequate number of order requests 

within a spatially compact region. Over-partitioning of communities in lower demand scenarios 

would further worsen this situation, as the plot indicates that the rate of increase in APT as the 

number of communities increases is much higher than that during higher demand periods. 

Interestingly, the APT does not increases with a larger number of communities in peak period. A 

minimum APT is obtained when there are 16 communities partitioned. The APT in peak demand 

scenario remains steadily at below 20 minutes. Therefore, the performance of the T-policy in terms 

of APT suggests that practitioners ought to partition their distribution hub’s serving region into 

more communities when their order arrival rate is high.  

 

At 8:02 am At 8:12 am At 8:14 am At 8:16 am At 8:20 am
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• ARC and ATD performance – In terms of the average route compactness and traveling distance 

of an order, both curves representing their relationships with the number of communities 

partitioned are similar. It is worth noting that the rate of change of ARC and ATD as more 

communities are partitioned is almost identical in low, normal and high demand scenarios. This 

suggests that pre-determining the number of communities within a region would largely limit the 

route compactness and traveling distance, no matter how the order arrival rate fluctuates. It is until 

the distribution hub is facing a specific circumstance or events, such as annual shopping festivals, 

should the ARC and ATD become much lower when a smaller number of communities are 

partitioned. In short, both ARC and ATD decreases with more communities being partitioned. 

However, the effect of community partitioning become less significant when communities are 

partitioned from 16 to 24. Therefore, undertaking experimental studies towards ARC and APT 

enable practitioners to identify the degree of community partitioning that yield greater benefits. 

 

• UVN performance – Under the T-policy, the number of unused vehicles remains high during low 

and normal demand scenarios. There is no clear sign of how community partitioning is affecting 

the number of unused vehicles as it remains steady when different number of communities are 

partitioned in each demand period. This figure suggests that, at the level of resource specified in 

this experiment, e.g. number of available vehicles and capacity of each vehicles, the T-policy would 

allow practitioners to save more than 20 and 15 vehicles respectively during low and normal 

demand scenarios. As for high demand scenarios, partitioning the region into more communities 

would improve the utilization of available vehicles. In other words, a lower degree of community 

partitioning requires less vehicles. 

 

In summary, performance evaluations towards the T-policy in terms of the four KPIs provide a sharp 

indication that the degree of community partitioning shall govern a range of service attributes, from the 

duration of order delay, route compactness and traveling distance of a trip, to utilization of available 

resources. After all, practitioners can prioritize the relative importance of these attributes so as to 

identify an optimal number of communities, if the T-policy is to be deployed. 
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Fig. 8. Solution quality using the T-policy 

 
4.5 Performance evaluation for the Spatial policy under various demand scenarios 

The simulation experiment for the S-policy has decision epochs fixed at 15, 30, 50, 60, 100, 120, 

150 minutes. At each epoch, the initial 33 non-uniform cells are are allowed to merge in order to utilize 

available capacity of delivery vehicle at each epoch for departure. An illustrative example is given in 

Fig. 9 to demonstrate how solution is generated using the S-policy at a 30-minute decision epoch under 

normal demand. With 200 initial orders in each working day, the first decision epoch, i.e. at 8:30am, 

requires a total of 11 communities to fulfill the orders. As most of the orders have been dispatching at 

8:30 am, only 5 communities are formulated at the next decision epoch. Therefore, the introduction of 

a range of decision epochs from 15 to 120 minutes shall provide essential indications towards the 

selection of decision epoch under varying demand scenarios. For ease of further discussion, these fixed 

decision epochs can be identified as the “maximum allowable duration for communities to consolidate 

delivery requests”. This definition is used to discuss the performance of the S-policy below. Fig. 10 

reveals the performance of the S-policy with respect to APT, ARC, ATD and UVN. 

 
Fig. 9. Examples of community logistics solution generation using Spatial Policy at a 30-minute 

decision epoch and normal demand period 
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Fig. 10. Solution quality using the S-policy 

• APT performance – There is an increase in the average duration of delay (APT) by allowing 

communities to consolidate delivery orders for a longer period. Nevertheless, the relationship tends 

to be linear only during low and normal demand scenarios. In high demand period, the APT starts 

to increase at a high rate if the decision epoch is set to be 60 minutes or above. This figure suggests 

that, when receiving a large number of orders, allowing communities to consolidate more than 60 

minutes is unjustifiable. Communities does not require more than 60 minutes to consolidate the 

incoming orders. Although this figure might only apply to the current resource level and demand 

scenarios determined in this simulation, results of this experiment indicate the need for 

practitioners to identify their order arrival pattern and resource level, prior to deciding the timing 

of a decision epoch, i.e. the fixed departure times of each vehicle serving their respective 

community, should the S-policy be deployed in real practice.  

 

• ARC and ATD performance – The S-policy has a decreasing ARC and ATD as the maximum 

allowable order consolidation duration increases. This makes sense because giving communities 

more time for order consolidation in turn suggests that communities need not to merge. However, 

the effect of relaxing the duration of order consolidation from 15 to 60 minutes is more significant 

than from 60 minutes onwards. Taking the APT performance into joint consideration, in which the 

APT starts to increase at a high rate if the decision epoch is set to be 60 minutes or above, 

simulation results indicate that a decision epoch of 60 minutes or less is more justifiable. Such 
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setting would yield greater benefits in terms of both route compactness, traveling distance and 

order delivery delay as a short duration of intended postponement of order delivery would have 

saved a significant traveling distance and route compactness. Moreover, it is noticeable that this 

policy is more suitable for deployment during higher demand scenarios due to better solution 

performance in terms of ATD and ARC. 

 

• UVN performance – Similar to the T-policy, the S-policy saved a considerable number of vehicles 

in low, normal and high demand scenarios. From Fig. 10, it is observed that the highest number of 

unused vehicles is obtained when the decision epoch is fixed at 60, 50 and 30 minutes respectively 

during low, normal and high demand period. There is noticeably a shift of the optimal decision 

epoch to achieve the maximum number of unused vehicles, i.e. the minimum number of vehicles 

used for delivery. This trend indicates that extending the duration of order delay to consolidate 

more orders at lower order arrival rates is a justifiable option to yield economies of scale. In 

particular, if a practitioner aims to reduce the number of vehicles to fulfil delivery requests, order 

consolidation should be made at every 60 minutes during low demand scenario. However, the order 

consolidation cycle becomes 30 minutes under high demand scenario.  

 

Overall, it depends on the primary objective of a practitioner when deciding the optimal decision 

epoch. There is no definite answer to the optimal decision epoch in different order arrival rates. However, 

the simulation study reveals the value of Community Logistics Strategy and how one could examine 

their community size and departure cycle under current resource levels and order arrival patterns in 

order to deploy the strategy in real operating environment. 
 
4.6 Comparisons between the Temporal, Spatial and static policies 

In section 4.4 and 4.5, it is observed that there is a positive correlation between ARC and ATD, 

which makes sense due to the fact that improving the degree of route compactness of a trip allows the 

vehicle to travel for a shorter distance. In this section, therefore, we pick ARC for making further 

comparisons and evaluations between the T, S and static policy. Such comparisons could inform us of 

the merits of the T and S-policy. Then, this would justify the appropriateness of the inclusion of 

“Community Time” as a decision variable into solving districting problems. 
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• Identifying the spatial-temporal relativity based on the evaluation of ARC performance at a 

given APT 

To evaluate the performance of the T and S-policy towards ARC at a given APT, we generated 

fitting curves of ARC against APT for both policies under each demand scenarios, as shown in Fig. 11. 

It is worth noting that no obvious correlation between APT and ARC is observed when the demand 

level is peak. Hence, no fitting curve can be plotted for the peak demand scenario. The fitting curves, 

which reveal the relationship between ARC and APT, represent the spatial-temporal relativity of how 

community logistics solution is being more compact as the intended duration of postponement of an 

order increases. 

In general, there is an inverse correlation between ARC and APT. It is mathematically determined 

as displayed in Fig. 11 and Table 5. In other words, an improvement in (reduction of) ARC is resulted 

from an increased APT, which is sensible because the intention of allowing orders to be pending in the 

distribution hub at a longer period of time is to expect the arrivals of more new delivery orders with a 

high degree of proximity. However, the effect of increasing APT in hopes of improving the ARC varies 

depending on the demand scenarios and the policy. Comparing the T and S-policy, results shown in 

Fig. 11 reveal that the S-policy outperforms the T-policy in high demand scenario. At any given APT, 

the T-policy (the fitting curve in blue) generates a more compact community logistics solution than the 

S-policy (the fitting curve in orange) during high demand scenario. The S-policy still performs better 

during normal demand. However, solution quality using the T and S-policy in terms of route 

compactness becomes very close. Interestingly, there is an intersection point of route compactness of 

the T and S-policy during low demand scenario. At an average order postponement time of 30 minutes, 

the T-policy starts to generate a more compact solution, as illustrated in Fig. 11. This suggests that, 

when practitioners impose a waiting strategy by postponing the delivery of orders at the depot for more 

than 30 minutes, the T-policy, i.e. flexible merging of communities during a pre-defined APT in order 

to consolidate orders for delivery in bulk, appears to be a slightly better tactic. However, other than 

such a specific circumstance in low demand scenario, the S-policy is proved to be a better one.  

Comparing the T and S-policy against the static policy, from Fig. 11 it is observed that the fitting 

curves of both T and S policies are always positioned below the static policy. Theoretically, this implies 

that at any APT, the ARC from the T ad S policies is always better than that of the static policy. In other 

words, when orders are intentionally delayed for dispatching, the T and S-policy can always generate 

a more compact community logistics solution. It is worth reminding that the T-policy has a fixed 
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“community space” but a varying “community departure time”, vice versa for the S-policy. This ARC 

comparison demonstrates that introducing the “community departure time” as one of the decision 

variables in addition to “community space” is able to yield better dispatching solutions in terms of 

route compactness. 

To determine improvement rate of choosing the S-policy over T-policy, Fig. 12 graphically 

presents the improvement rate under different scenarios. Results uncover the fact that, except for low 

demand scenario, the S-policy outperforms the T-policy in terms of route compactness. The 

performance improvement is more significant: (i) under high demand scenario, and (ii) when orders 

are having a longer waiting time at distribution centres (higher APT). Furthermore, apart from route 

compactness, looking into the ATD (average traveling distance) performance of the T and S-policy 

respectively shown in Fig. 8 and 10, it is observed that the S-policy is able to generate solutions with 

small traveling distances among each trip. Same as route compactness, a more significant improvement 

in terms of traveling distance can be obtained during higher demand scenarios. 

Informed by these figures, the S-policy, having a stricter control over delivery dispatching time 

but allowing flexible community sizing adjustment, would improve the quality of vehicle dispatching 

solutions in terms of both route compactness and traveling distance. This scientifically explains why 

most of the existing dynamic vehicle districting literatures attempt to generate dispatching solutions 

by adjusting the serving areas at each decision epoch, but not relaxing the “time” parameter as a 

decision variable. Nevertheless, benchmarking results between the T and static policy prove that 

varying departure times for improved order consolidation prior to bulk dispatching could also yield a 

more compact dispatching solution. This justifies the feasibility and appropriateness of introducing 

dynamic departure times as another decision variable. Hence, future studies should incorporate both 

“community departure time” and “space” as the decision variables to generate optimal policy based on 

real-time demand arrivals. 

 
Fig. 11. Fitting curves of ARC against APT using T, S and Benchmark policies under different 

demand scenarios 

Low demand Normal demand High demand
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Fig. 12. Route compactness improvement by adopting T and S-policy 

 
Table 5. Relationship between ARC and APT using the T, S and static policy 

 Demand scenario 

Policy Low Normal High 

T-policy    

S-policy    

Static    

 

• Resource management through the evaluation of UVN 

The number of unused vehicles in each demand scenario using the T and S-policy is summarized 

in Fig. 13. Apart from the peak demand scenario where both policies utilize all available vehicles to 

fulfill the orders, community logistics solutions generated under the T-policy require less vehicles to 

perform last-mile delivery operations in low, normal and high demand period. For example, the T-

policy would save a minimum of 20 vehicles during low demand scenario, whereas the S-policy could 

only save no more than 20 vehicles. The results of UVN are more significant in normal and high 

demand scenarios. This suggests that the S-policy requires a larger delivery fleet to improve route 

compactness and reduce traveling distance of each vehicle trip. In fact, this KPI informs two tactical 

implications – resource re-allocation and identification of the optimal number of communities under 

T-policy or the optimal decision epoch (order postponement duration) under the S-policy. If the S-

policy is picked, this comparison suggests that a maximum of 19, 16 and 10 vehicles respectively can 

be re-allocated during low, normal and high demand scenarios for other delivery tasks. Should a 

practitioner intend to save the largest number of vehicles for last-mile delivery, this simulation result 

is able to justify the optimal number of communities under each demand scenario. For example, the 

Low demand Normal demand High demand
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largest UVN is obtained when the decision epoch, or the vehicle departure cycle is fixed at every 60, 

50 and 30 minutes respectively during low, normal and high demand scenarios. 

All in all, evaluations and benchmarking of the proposed and static policies demonstrate the 

potentials of the S and T-policy under the community logistics framework. Continuous serving region 

adjustment based on real-time arrivals of delivery demand, to our best knowledge, is rarely applied in 

real business setting, due to the difficulty of solution generation. However, the comparative and spatio-

temporal relativity analyses presented in this section inform us of the essence of flexible size 

adjustment of communities as a means of consolidating new orders to be arrived at distribution hubs.  

 
Fig. 13. Comparison of vehicle usage under T and S-policy 

 

5. Strategy comparison study 
In this section, we tackle the problem introduced in Section 3.1 with a conventional route-based 

delivery strategy, which solves the delivery problem by dynamically determining vehicle traveling 

routes. The delivery solutions obtained using this strategy and the CL delivery strategy are evaluated to 

exhibit the superiority of our proposed one against route-based strategies. 

 

5.1  Dynamic vehicle routing problem 

Using route-based delivery strategies, the original e-commerce last-mile delivery problem is 

transformed into a dynamic vehicle routing problem. The DVRP optimizes over a finite decision 

moment set . Given a pending order set  and available vehicle set 

 at the th decision moment , decision makers need to determined  traveling routes 

 ( ) to serve the pending orders while satisfying vehicle capacity constraints. A 

route  is expressed by a sequence of order index, for example,  means the arrival 

sequence of vehicle  is order 2, order 1 and order 3. If , vehicle  has no delivery task 
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it will be delayed until  and we denote the delay order set as . The objective of DVRP is 

described from two aspects: decision makers hope to wait more orders to save the traveling distance; 

on the other hand, they want to deliver orders as soon as possible to achieve a higher customer 

satisfaction and save inventory costs. Consequently, the objective of the DVRP is to seek an optimal 

routing policy to minimize the overall cost comprised of the vehicle traveling cost and order delay cost. 

In this study, we formulate the DVRP with a Markov decision process model (MDP) which is 

solved by a scenario-based planning approach. The sampling horizon and number of sampling scenarios 

are set to be 60 minutes and 20, respectively. The decision interval time  is set to be 30 min. 

Interested readers can refer to the work of Voccia, Campbell, & Thomas (2019) for the modeling and 

solution details. Here, we emphasize the cost and objective function which are formulated as: 

   (30) 

   (31) 

where  is a parameter controlling the preference between vehicle traveling distance and order delay 

time. It should be noted that orders not delivered at  will be delayed to tomorrow, so that the 

order delay time at  is 1440-T. 

 

5.2  Strategy comparison results 

To compare the proposed CL strategy with the conventional routing-based delivery strategy, we 

also evaluate the T-policy and S-policy with Eq. (31) and report the minimum  of these two policies. 

The preference parameter  is set to be four values, including 100, 200, 300, 400. By considering the 

four values of  in instance I1 and I2, we obtain eight new instances denoted as I5-I13 for strategy 

comparisons. It should be noted that we do not evaluate the routing-based delivery strategy in high and 

peak demand instances because it is extremely time-consuming to obtain optimal or even near-optimal 

route solutions in these instances. In this case, the solution time at a decision epoch will exceed the 

decision interval time, which is impractical for real applications. An illustrative example of the route 

solutions obtained by using route-based delivery strategy in instance I12 is presented in Fig. 14. As 

observed in this figure, a distinguished difference between the solutions generated by route-based 

delivery strategy and CL strategy can be discovered. Delivery solutions using the route-based delivery 
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strategy are a set of vehicle traveling routes across several subareas. On the contrary, delivery solutions 

using the CL strategy are a set of delivery communities in which the served customers locate compactly. 

The numerical results of using different delivery strategy in instances I5-I13 are shown in Tables 6 and 

7. 

 
Fig. 14. Solution examples of DVRP using scenario-based sampling approach in instance I12 

 

From Tables 6 and 7, the S-policy always performs better than T-policy in terms of  and ARC. 

The reason is that a community is served with the T-policy only if the accumulated demand reaches the 

vehicle capacity threshold. Such a vehicle dispatching rule inevitably causes some orders being 

postponed overnight at the final decision epoch , resulting in an additional order delay cost. When 

comparing the S-policy to the SPA of the route-based delivery strategy, we find that SPA yields lower 

cost ( ) than the S-policy in the instances I5-I7 and I9-I11. Nevertheless, the cost gap gradually 

narrows with the increase of  and finally reverses when  raises to 400 (see instances I8 and I12). 

As increasing  means practitioners prefer delaying order fulfillment to save more delivery cost, this 

indicates that the CL strategy gains more benefits from postponing order delivery than the route-based 

delivery strategy. It is reasonable that the route-based delivery strategy performs better than the CL 

strategy when we evaluate them with a DVRP objective, because the former one minimizes the vehicle 

traveling distance directly and the latter one focuses on optimizing cell compactness.  

Nevertheless, the ARC values of the S-policy are much lower than those of SPA especially in 

Instance I8, where S-policy achieves a 43.8% lower ARC than SPA’s. Low ARC can bring several 

practical benefits, such as improving the route robustness and saving delivery time. Another merit of 

the CL strategy is the short solution time, the simulation time using the T-policy is around 100 seconds 

under the low demand instances (I5 – I8) while SPA requires over 9,000 seconds for one simulation for 

the same instances, as reflected in Table 6. The difference between our policies and SPA in terms of 

computation time under normal demand (I9 – I12) is more significant as SPA requires over 20,000 

seconds to obtain a solution, while our policies take no more than 320 seconds as shown in Table 7. The 

solution iteration process of e-commerce last-mile delivery problems with route-based delivery strategy 
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involves tackling a set of static vehicle routing problems, which is time-consuming especially in large-

scale instances. Therefore, the simulation time of SPA dramatically increases if the demand level 

doubles from low demand to normal demand. 

 
Table 6. Strategy comparison results in the instances with low demand 

Strategy Policy Criteria I5( ) I6( ) I7( ) I8( ) 

CL strategy 

T-policy 

Optimal |M| 2 4 4 4 
 122437 196702 258448 320193 

ARC (km) 1.34 0.95 0.94 0.94 
CPU time (s) 127 83 84 81 

S-policy 

Optimal  30 50 60 100 
 101148 176347 230977 286349 

ARC (km) 1.05 0.88 0.80 0.63 
CPU time (s) 172 128 113 98 

Route-based 
delivery 
strategy 

Scenario-based 
planning 
approach 

 92889 166900 228885 306522 
ARC (km) 1.31 1.29 1.24 1.12 

CPU time (s) 9145 9672 10048 10387 
 

Table 7. Strategy comparison results in the instances with normal demand 
Strategy Policy Criteria I9( ) I10( ) I11( ) I12( ) 

CL strategy 

T-policy 

Optimal |M| 4 4 4 4 
 181253 301187 421121 541055 

ARC (km) 0.96 0.93 0.93 0.95 
CPU time (s) 225 220 218 224 

S-policy 

Optimal  30 30 50 50 
 154798 268699 368103 466602 

ARC (km) 0.83 0.82 0.64 0.65 
CPU time (s) 310 314 230 233 

Route-based 
delivery 
strategy 

Scenario-based 
planning 
approach 

 140256 249961 352736 469036 
ARC (km) 1.10 1.08 1.06 1.05 

CPU time (s) 21739 23622 25925 27047 
 

6. Discussions and implications 
Based on the results of the simulation experiments conducted in this study, we extract and generalize 

several key characteristics found in the real delivery environment, which are deemed to best fit the 

deployment of the proposed community logistic strategy. 
  

6.1 Common features of delivery contexts where community logistics is applicable 

Results from the simulation experiments reveal the feasibility of the proposed community logistics 

framework in various demand scenarios. To ease future research and applications on Community 

Logistics, we generalize three key features of the delivery environment that are best suitable for 

applying the Community Logistics: (i) Dynamic and frequent delivery arrivals, (ii) tight schedule for 

decision-making, and (iii) high consumer density. These features are explained in detail in Appendix II. 
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In addition, there are two existing delivery sectors that exhibit the above features, they are: (i) same-

day or next-day delivery sector, and (ii) Instant grocery delivery. Therefore, they are particularly 

suitable for community logistics strategy deployment. A detailed discussion of the practical relevance 

of Community Logistics towards these sectors are provided in Appendix III. 
 

6.2 Dynamic policy selection 

Fluctuating order arrival rates in e-commerce delivery environment is a common phenomenon. 

Therefore, this suggests the complexity of determining an optimal policy under such dynamic 

environment. However, based on the experimental results, different demand scenarios clearly pose an 

effect towards the duration of order delivery delay, route compactness and traveling distance. To justify 

an optimal number of communities and decision epochs, practitioners are required to understand their 

order arrival patterns (the demand side) and the availability of their vehicle fleets (the supply side) to 

perform last-mile deliveries. After all, at what order arrival rate is deemed to be “high” or “low” depends 

on the capacity and resources available for the practitioners. Therefore, the sensitivity of community 

partitioning towards various demand periods performed in this study offers a general, practical 

implication of the need to make trade-offs between postponing the delivery of orders and the route 

compactness, thus determining the optimal community sizes and departure times at each decision cycle. 

As a remark, optimal policy is one of the future studies to strike a balance between delaying order 

delivery and partitioning communities under changing demand scenarios. 

 

 

6.3 CL strategy advantages over route-based delivery strategy 

Unlike traditional delivery strategies tackling e-commerce last mile delivery problems by 

dynamically optimizing vehicle traveling routes, the CL strategy solves it through dynamically 

generating compact delivery communities. Such an alteration of objective brings following three 

significant benefits, as validated in the benchmarking analysis against a static dispatch policy in Section 

4.6 and a DVRP in Section 5. Firstly, the route compactness is substantially improved which potentially 

reduces the delivery cost during practical delivery fulfillment. Secondly, there is no obvious conflict 

between route compactness and vehicle traveling distance. With the CL strategy, a short vehicle 

traveling distance can also be guaranteed even we merely optimize the cell compactness. Thirdly, the 

solution time is remarkably reduced because solving the SRGP and TSP is very timesaving than directly 
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solving the VRP, especially in large-scale delivery instances. Combining these benefits, the general CL 

strategy provides simplicity for practitioners’ deployment in real business environment. 
 
7.  Conclusion and future work 

A Community Logistics Strategy is proposed as a new logistic support tool that integrates 

“dynamic community departure time” as one of the decision variables in generating dynamic delivery 

dispatching solutions, in addition to “dynamic community space” which allows formulations of 

“communities” with flexible sizes and locations. The Temporal and Spatial policies are proposed to 

examine the spatiotemporal relativity under various demand patterns. Experiments reveal the potentials 

of both the Spatial and Temporal Policies under the Community Logistics strategic framework against 

a static policy and a DVRP solution method in managing the dynamic arrivals of e-commerce orders in 

distribution centre. This implies that dynamic departure time and space as proposed in the Community 

Logistics framework is not only a feasible, but a better scheme. While this study demonstrates the 

feasibility of relaxing the departure times of vehicle fleets, future studies could be performed to develop 

optimal policies under the spectrum of community logistics. Furthermore, a systematic and effective 

method of partitioning a serving region into communities remains to be a research gap.  
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Appendices  
Appendix I – DVRP variants in the pick-up context 

Most of the existing dynamic vehicle routing literature has limited applicability to the delivery context 

as they focus on the accommodating dynamic arrivals of pick-up requests into the real-time routing 

formulations, but not delivery requests. For example, Gendreau et al. (2006) applied neighborhood 

search heuristics to optimize the planned routes of vehicles in a context where new requests, with a 

pick-up and a delivery location, occur in real-time. Similarly, Sarasola et al. (2015) developed a variable 

neighborhood search algorithm for the stochastic and dynamic vehicle routing problem, a problem that 

considers the dynamic arrivals of customer requests with stochastic demands only revealed when the 
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vehicle arrives at the customer location. This is a context where couriers depart from a depot to pick up 

customer’s parcels from virous locations. As planning horizon is fixed, both Gendreau et al. (2006) and 

Sarasola et al. (2015) deal with (1) and (3). Yu and Yang (2017) consider a VRP with real-time traffic 

information, where stochastic intermediate times, i.e. travel times and service times, are assumed to be 

realized with probability distributions at the end of each customer’s service and before determining the 

next customer to visit. They proposed a DVRP model addressing the varying intermediate times to 

determine the next visit. This model can be applied to both pickup and delivery context. Yet, the set of 

customers and planning horizon are known and fixed, so the model is not to decide (1) and (2), but to 

optimize results of (3). Ulmer er al. (2018) studied pickup requests occur dynamically during the day 

and are unknown before their actual request. They presented an anticipatory time budgeting heuristic 

which allows dispatchers to budget their time effectively by anticipating future requests. This work has 

a relevance to managing (2). 
 
Appendix II – Key features of the delivery environment suitable for Community Logistics 
deployment 

Based on the results from the simulation experiments, we generalize three key features of the delivery 

environment that are best suitable for applying the Community Logistics, they are: (i) Dynamic and 

frequent delivery arrivals, (ii) tight schedule for decision-making, and (iii) high consumer density:  

(i) Dynamic and frequent delivery arrivals – The fluctuating and discrete arrivals of delivery 

orders in distribution centres increases the complexity for practitioners to perform delivery 

scheduling. To wait for more potential delivery requests to arrive at the distribution centres, the 

design of the mechanism for solution iterations must present the ability of updating the solution. 

In the family of dynamic VRP, solutions are updated by assessing whether or not new requests 

are able to be fitted into the current route. However, this approach is suitable only for managing 

pick-up requests because routing decisions could no longer be reverted as vehicles have 

departed from the facility for actual delivery. It is not possible for the departed vehicles to re-

visit the facility and load new delivery parcels to fulfil the corresponding delivery requests 

added to the existing route. The framework proposed in this study provides a new approach of 

how dispatching solutions can be updated with the introduction of intended delivery 

postponement delaying the actual delivery of pending delivery requests at distribution centres. 

 

(ii) Tight schedule for decision-making – Unlike conventional scheduled non-e-commerce delivery, 
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in which practitioners have plenty of time ahead of actual delivery to make delivery dispatching 

decisions, last-mile delivery environment in e-commerce has a tight schedule for such decision-

making, which requires an agile, light-weight and rapid approach to determine the right batch 

of delivery requests to be served by a delivery vehicle on a minute-to-minute basis. The 

proposed postponement-first, route-optional framework, which eliminate the need to perform 

routing decisions during solution iterations, hugely reduce the required computational power 

to generate solution in a short computational time. The reduced computational requirement 

implies that a large number of arriving delivery requests can be managed in bulk for delivery 

dispatching solution generation. Therefore, the framework is able to deal with dynamic arrivals 

of delivery requests by generating feasible, quality solutions with a high degree of route 

compactness on an hourly or even half-hourly basis. 

 

(iii) High consumer density – Given a high level of digital maturity in retailing in urban areas, 

densely populated cities and megacities with skyscrapers and apartment buildings, infer that a 

large number of spatially compact delivery requests would arrive along the day. Distribution 

hub’s serving region that is situated at high consumer density areas is best suitable for 

deployment of the framework, which enables practitioners to enjoy the economies of scale in 

consolidating delivery requests into a community for batch delivery.    
 
Appendix III – Existing delivery sectors suitable for Community Logistics deployment 

(i) Same-day or next-day guaranteed delivery – the same-day and next-day delivery has become a 

new normal in last-mile e-commerce delivery. E-commerce customers are provided with a 

variety of delivery options, such as three-hour instant delivery, same-day delivery, and same-

day or next-day delivery guarantee, at additional costs. With a considerable number of same-

day or next-day customer orders, logistics service providers have their flexibility of introducing 

waiting times to consolidate spatially compact customer orders to be delivered within the same-

day or next-day delivery time window, while ensuring meeting the delivery promise to avoid 

customer dissatisfaction. As e-commerce orders are arriving dynamically and continuously, 

community logistics strategy could play a role in generating real-time delivery dispatching 

solutions, taking “dynamic community departure times” into account for the sake of optimizing 

delivery efficiencies. 
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(ii) Instant grocery delivery – the instant grocery delivery sector is getting popular in many 

countries and cities. It enables end customers to receive their grocery orders just a few hours 

upon their online purchases. Grocery retailers with their own delivery fleets are required not 

only to consolidate the items of an order, but also dispatch the dynamically arriving orders at a 

right timing. In the face of high customer demand, it is noticeable that some grocery retailers 

begin to offer a wider delivery time window like up to six hours upon an order is placed. Given 

such wider time windows, the proposed CL strategy, which can generate a community-based 

delivery solution at an interval less than 30 minutes in higher demand scenarios, is applicable 

for consolidating more newly arrived grocery orders for bulk community deliveries. Potentially, 

more last-minute arrived grocery orders could be added into the community if a tolerable 

waiting time is introduced to regions destined to have high demands. 
 


