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Abstract

In the problem of aggregating experts’ probabilistic predictions or
opinions over an ordered set of outcomes, we introduce the axiom of level-
strategyproofness (level-SP) and argue that it is natural in several real-
life applications and robust as a notion. It implies truthfulness in a rich
domain of single-peaked preferences over the space of cumulative distri-
butions. This contrasts with the existing literature, where we usually as-
sume single-peaked preferences over the space of probability distributions
instead. Our main results are (1) explicit characterizations of all level-SP
methods with and without the addition of other axioms (certainty preser-
vation, plausibility preservation, proportionality); (2) comparisons and
axiomatic characterizations of two new and practical level-SP methods:
the proportional-cumulative and the middlemost-cumulative; (3) an ap-
plication of the proportional-cumulative to construct a new voting method
that extends majority judgment and where voters can express their uncer-
tainties/doubts about the merits/qualities of the candidates/alternatives
to be ranked.

1 Introduction

This paper is interested in the aggregation of experts’ probabilistic opinions in
an incentive compatible way, without money transfers. It axiomatically char-
acterizes new voting methods where reporting its most preferred output is the
optimal strategy for every expert, for a large set of utility functions.

In many real life situations, even the most prominent experts are uncertain
—their opinions or predictions are probabilistic— and may disagree in their
judgments, even if they share a common interest with the regulator [Boy19].
Thus, a method is needed to pool their opinions.

For example, with no evidence-based information on the Covid-19 disease,
the European Academy of Neurology (EAN) developed an ad-hoc three-round
voting method1 to reach a consensus [Oer+21]. When a potentially dangerous

1“In round 1, statements were provided by EAN scientific panels (SPs). In round 2,
these statements were circulated to SP members not involved in writing them, asking for
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volcano becomes restless, civil authorities turn to scientists for help in antici-
pating risks. To do so, volcanologists developed elaborate mathematical models
to elicit and aggregate experts’ probabilistic opinions [Asp06; Chr+18]. The
Technical University of Delft has developed a software EXCALIBUR and a
successor ANDURYL [LM18]. This software is extensively used in forecast-
ing the weather, in calculating the risks to manned spaceflight due to collision
with space debris, or in estimating the future of the polar bear population (see
[ATA05; ONe+08] and chapter 15 in [Coo+91]).2

Aggregating experts’ probabilistic opinions is a well-studied mathemati-
cal/social choice problem [Arm01; Saa08; SM17; Coo+91], sometimes referred
to as belief aggregation or opinion pooling. The formal model is this: each ex-
pert i ∈ N is asked to provide to the regulator his prior probability distribution
pi ∈ P = ∆(Λ) over a set of outcomes Λ. The objective of the regulator is to
design a PAF = Probability Aggregation Function ψ : PN → P satisfying some
desirable properties.

Most of the literature described so far assumes honest reporting by the ex-
perts of their desired outcome. In practice, judges may have strategic incentives.

For example, the FDA uses advisory committees and follows their recom-
mendations 70% of the time, and there have been several controversies around
conflict of interest in the advisory committees [PP15]. Hence, we wish for the
PAF to be incentive compatible (IC), e.g. reporting its preferred output is an
optimal strategy for every expert.

When monetary transfers are possible (e.g. the experts can be paid after
some realizations of the random variable), the problem has been well studied
and several incentive compatible “scoring rules” have been designed [Goo52;
McC56; Win69; DF83]. Our paper deals with situations where monetary trans-
fers are impossible because the realization of the uncertainty is far in the future
and/or the consequences of a bad decision are potentially catastrophic (volcanic
eruption, irreversible global warming, etc).

To the best of our knowledge, incentive compatible belief aggregation with-
out monetary transfers has been studied only as a special case of single-peaked
domain restrictions and only when the set of outcomes Λ is finite. First of all,
for strategyproofness to be stated formally, one needs assumptions about the
individual preferences over the set P of probability distributions over Λ. If the
voters’ preferences are unrestricted, Gibbard [Gib73] and Satterthwaite’s [Sat75]
theorems apply and only a dictatorial method is strategyproof. Unfortunately,
the Gibbard-Satterthwaite negative conclusion still holds even if one restricts the
domain provided that it is “rich” enough (e.g. the class of all convex preferences
over P [Zho91] or the class of generalized single-peaked preferences, including
all additively separable convex preferences over P [NP07]). Fortunately, un-
der a more severe restriction, the possibility of an anonymous aggregation has

agreement/disagreement. Items with agreement > 70% were retained for round 3, in which
SP co-chairs rated importance on a five-point Likert scale. Results were graded by importance
and reported as consensus statements.”

2We refer the reader to Roger Cooke web page: http://rogermcooke.net which contains
useful references, real data, a wide range of applications and links to software.
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been proved recently [Goe+16; Fre+19] in the domain of the L1-metric single-
peaked preferences on P.3 As such, Goel et al. [Goe+16] proved the existence
of a Pareto optimal strategyproof PAF and Freeman et al. [Fre+19] identified
a large family of strategyproof PAF in the spirit of Moulin’s characterization
[Mou80] where phantom functions replace phantom voters. Nevertheless, as in
[Goe+16; Fre+19] the main motivating problem is not the probability but the
budget aggregation problem, their methods are neutral with respect to Λ, that
is, they are invariant to permutations of the elements of Λ. In many applications,
neutrality is not a desirable property.

This last point is best explained by an example. Suppose that the outcome
space Λ is a finitely ordered set {am ≻ · · · ≻ a2 ≻ a1} (such as the Richter or
the volcanic scale). To define the utility functions, we need to compute the cost
for expert i if the aggregate probability p is different from its forecast pi. The
usual way is by measuring the distances using some Lq-distance on P ⊂ Rm.
For example [Goe+16; Fre+19] uses the L1-distance on P. This is not a good
measure in our context. For example, imagine that pi (the peak of i) is the
Dirac mass δa1

at the smallest alternative a1 and that p (the output) is the
Dirac mass δam at the highest alternative am ∈ Λ. If our measure was good,
then we should obtain that any other probability is better from the perspective
of expert i than δam

, especially the Dirac mass at a2 as it is much closer to
a1 than am. However, no Lq-distance on P = ∆(Λ) ⊂ Rm will distinguish
∥δa1

− δam
∥Lq

from ∥δa1
− δa2

∥Lq
as both are equal (those metrics are neutral).

To capture that dist(δa1 , δam) must be bigger than dist(δa1 , δa2), the most
natural way is to measure the distances in the space of cumulative distribution
functions (CDFs) C = Σ(Λ). Characterizing strategyproof PAF when the prefer-
ences are single-peaked in the CDF space has, to our knowledge, never been done
before. This is what our article does by fully characterizing all strategyproof
methods under various combinations of axioms. Our main contributions
are:

• We define the new concept of level-strategyproofness (level-SP) and prove
it to imply incentive compatibility (IC) for a rich class of single-peaked
preferences in the space of CDFs.4

• We prove several characterizations of level-SP methods in combination or
not with other axioms and explore the boundaries of our characterizations
by establishing some impossibilities.

• We characterize and compare two new methods: the middlemost and pro-
portional cumulatives.

• We use the proportional-cumulative to construct a method to rank al-
ternatives where voters can express their uncertainties/doubts about the
qualities/merits of each alternative.

3Single-peaked preferences on ∆(Λ) with Λ finite under the L1-metric is a very small
domain because every peak corresponds exactly to one preference ordering.

4Being IC for a rich class of preferences is a desirable robustness property in social choice
theory. Unfortunately, it is very rarely satisfied. For example, the mechanisms in [Fre+19]
are IC for the L1 distance on P but they are not IC for the L2-distance on P, nor are level-SP
as shown in section 8.
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The intuition behind level-SP is simple. Suppose the regulator decision
depends on the likelihood of crossing a certain threshold, for example, the prob-
ability of having a major natural hazard. Then, experts incentives will also
depend on the probability of crossing that threshold. If the aggregation rule is
level-SP, then whatever the threshold is and even if it is not known in advance,
no expert, by misrepresenting his truly desired probability distribution, can ob-
tain that the probability of exceeding the given threshold is closer to what he
wanted.

In addition to level-SP, a natural axiom to satisfy is certainty preservation.
It says that if all experts agree that some event can (or cannot) happen then
the aggregation preserves that property.5 This axiom is classical in the liter-
ature and is also called the zero preservation property in [SM17] or consensus
preservation in [DL17]. In addition, the designer may want to satisfy the plau-
sibility preservation axiom: whenever all experts agree that some interval has
positive probability,6 so does society. We prove that the order-cumulatives (e.g.
the middlemost-cumulative) are the unique anonymous level-SP PAF that are
certainty and plausibility preserving. Their main drawback is their lack of di-
versity: they are such that whenever the experts’ inputs dominate one another,
the output is one of the inputs (and not a combination of their opinions).

Our second main method (we call the proportional-cumulative) solves this
drawback: it is more diversified as it is such that whenever the inputs dominate
one another, it agrees with each expert in proportion to their weight, and it
is characterized as the unique level-SP method satisfying a “proportionality
axiom”, namely, if all inputs are the Dirac distributions {δai}i=1,...,n, then the
output is their weighted average

∑n
i=1 wiδai (where wi is the given weight of

expert i).
The paper is organized as follows. Section 2 introduces the model, the new

notion of level-SP, and its implications together with a quick summary of the
fundamental results of Moulin [Mou80] in the one-dimensional framework. Sec-
tion 3 characterizes all level-SP methods. Section 4 isolates certainty preserving
level-SP methods. Section 5 focuses on plausibility preserving level-SP methods.
Section 6 combines all the axioms and characterizes the middlemost-cumulative.
Section 7 is dedicated to diversity, and it characterizes the proportional cumula-
tive. Section 8 compares our new two cumulative methods. Section 9 applies the
proportional cumulative to propose an extension of majority judgment [BL11]
to electing and ranking problems with uncertain voters. Section 10 concludes.

2 Models and Concepts

We first recall the classical characterizations of strategyproof aggregation rules
when voters have one-dimensional single-peaked preferences (Moulin [Mou80]).

5Formally, certainty preservation is defied as as follows: for every Borel measurable event
A, if pi(A) = 0 for every i ∈ N then p(A) = 0 or equivalently if pi(A) = 1 for every i ∈ N
then p(A) = 1.

6If one asks this property for Borel measurable events, we reach an impossibility.
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Then we describe our probability aggregation model, introduce the notion of
level-strategyproofness (level-SP) and prove it to imply classical strategyproofness
for a rich family of single-peaked utility functions over the CDF space.

In the sequel, N = {1, . . . , n} denotes the set of voters or experts, and n their
number. For any set Z, z = (z1, . . . , zn) denotes an element of ZN (interpreted
as a voting profile where each voter i submits the input zi). For a voting profile
z ∈ ZN , we let z−i(z

′
i) denote the profile which differs from z only in dimension

i which is replaced by z′i. This is a standard notation in social choice theory
and it corresponds to the notation (z′i, z−i) in game theory.

2.1 One-dimensional StrategyProofness (One-SP)

We recall Moulin’s results [Mou80] and characterizations. They are central to
understand our results.

Definition 1 (Single-peaked preference). A preference order T (represented
with ≼) over the set of alternatives [0, 1] is single-peaked if there exists x ∈
[0, 1] such that for all y, z ∈ [0, 1], z ≤ y ≤ x ⇒ z ≼ y and x ≤ y ≤ z ⇒ z ≼ y.
The value x is known as the peak.

In other words, an ordinal preference on the line [0, 1] is single-peaked iff the
cardinal utility function representing it is weakly increasing until the peak, then
it is weakly decreasing.

Definition 2 (One-SP). A voting rule g : [0, 1]N → [0, 1] is a one-dimensional
strategyproof (one-SP) iff whenever all experts have single-peaked preferences
and all submit their peaks to be aggregated by g, no expert can obtain a strictly
better alternative by reporting a fake peak.

It can be proved that one-SP is equivalent to the following property called
uncompromisingness in [BJ83]. A voting rule g is one-SP iff for all experts
i ∈ N and for all peak profiles r ∈ [0, 1]N :

ri < g(r) ⇒ g(r) ≤ g(r−i(r
′
i))

and
ri > g(r) ⇒ g(r) ≥ g(r−i(r

′
i)).

Our level-SP definition below is a natural extension of uncompromisingness
when the input space is the set of probability distributions, and it will be proved
to imply classical strategyproofness for a large class of single-peaked preferences
in the cumulative space.

One may be interested in voting rules such that whenever all experts agree
on a peak, society chooses that peak. This axiom is called unanimity. We
formulate it now for a general input space X as it will be used later for our own
characterizations.

Axiom 1 (Unanimity). h : XN → X is unanimous if for all x ∈ X we have
h(x, x, . . . , x) = x.
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Now we give two well-known characterizations of Moulin [Mou80], that we
need in the next section.

Lemma 1. [Moulin’s max-min formula [Mou80]] A voting rule g : [0, 1]N →
[0, 1] is one-SP iff for each coalition of players S ∈ 2N , there exists a unique
value βS ∈ [0, 1] called a “phantom” s.t.

S ⊆ S′ implies βS ≤ βS′ and

∀r ∈ [0, 1]N , g(r) = max
S⊆N

min (βS ,min
i∈S

ri).

Moreover, the method is unanimous iff β∅ = 0 and βN = 1.

Moulin’s most popular “median” formula was established in the anonymous
case when the experts are treated equally by the rule. We formulate this axiom
for any input space X as we will use it later.

Axiom 2 (Anonymity). h : XN → X is anonymous if ∀x ∈ XN and all
permutation σ over N :

h(xσ(1), . . . , xσ(n)) = h(x).

Lemma 2. [Moulin’s median formula [Mou80]] A voting rule g : [0, 1]N → [0, 1]
is one-SP and anonymous iff there exist n+1 “phantom voters” α0 ≤ · · · ≤ αn

in [0,1] such that:

∀r ∈ [0, 1]N , g(r) = median(r1, . . . , rn, α0, . . . , αn).

Moreover, the method is unanimous if and only if α0 = 0 and αn = 1.

remark 1. When g is anonymous, the αk in the median characterization is
equal to βS in the max-min characterization whenever the cardinal of S is k.

2.2 Level StrategyProofness (Level-SP)

This subsection describes our probability model and our level-SP notion. The
next subsection links it to “classical” strategyproofness.

Society, a decision-maker, or the regulator wants to estimate the probability
of a random variable X that ranges over a linearly ordered set of outcomes Λ
that we identify with a Borel subset of the real lineR.7 In practical applications,
Λ is a finite set or an interval, two examples to keep in mind.

To construct society’s estimation, each expert i ∈ N = {1, . . . , n} is asked
to submit its subjective probability distribution8 estimation pi ∈ P, where P
denotes the set of Borel probability distributions over Λ. Our objective is to

7Borel sets are obtained from countable union, countable intersection, and relative com-
plement of the intervals.

8A probability distribution is a σ-additive positive measure over the Borel algebra with
total mass equals to 1.
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design a Probability Aggregation Function (PAF) ψ : PN → P satisfying some
desirable properties. As some experts may be strategically behaving, we wish
ψ to be Incentive Compatible (IC). Our IC notion is called Level-SP (level-
strategyproof). It implies honest reporting when society’s final decision is based
on a threshold, that is to say, events that are below (or above) a certain level.
In practical applications, situations that are represented with tipping points
(e.g. climate change, the degree of a volcanic eruption damaging impact) are
level-events.

Definition 3 (Level Events). We define for any outcome a ∈ Λ, the level
event E(a) as “the threshold a has not been crossed”, e.g.

E(a) = {x ∈ Λ : x ≤ a}

The next definition says that a PAF is IC with respect to level events if,
no matter the threshold a ∈ Λ is, no expert can by misreporting obtain that
society’s probability for the level event E(a) is closer to the one he/she wishes.

Axiom 3 (Level-SP). A PAF ψ : PN → P is level-strategyproof if for every
expert i ∈ N , every input profile p ∈ PN , any potential deviation p′i ∈ P of
expert i and any threshold a ∈ Λ:

pi(E(a)) < ψ(p)(E(a)) ⇒ ψ(p)(E(a)) ≤ ψ(p−i(p
′
i))(E(a))

and
pi(E(a)) > ψ(p)(E(a)) ⇒ ψ(p)(E(a)) ≥ ψ(p−i(p

′
i))(E(a)).

This axiom is exactly the uncompromisingness property seen above to be
satisfied for all level events. Formulated differently, let C be the set of cumu-
lative distribution functions (CDF) over Λ. Let π : P → C be the mapping
that transforms a probability distribution p over Λ into its CDF P :

∀p ∈ P,∀a ∈ Λ, P (a) = π(p)(a) = p(E(a)) =
∫
x≤a

dp(x).

A PAF ψ : PN → P is associated with a unique cumulative aggregation
function (CAF) Ψ : CN → C that takes the CDFs {Pi = π(pi)}i∈N of experts
as inputs and returns the CDF of ψ(p) as its output, that is, Ψ(π(p1), . . . , π(pn)) =
π(ψ(p1, . . . , pn)). With this notation, saying that the PAF ψ : PN → P is level-
SP is equivalent to saying that the associated CAF Ψ : CN → C satisfies: for
every a ∈ Λ, every P ∈ CN , P’ ∈ CN and all i ∈ N :

Pi(a) < Ψ(P)(a) ⇒ Ψ(P)(a) ≤ Ψ(P−i(P
′
i ))(a)

and
Pi(a) > Ψ(P)(a) ⇒ Ψ(P )(a) ≥ Ψ(P−i(P

′
i ))(a).

This implies that for every a ∈ Λ, P ∈ CN , P’ ∈ CN and i ∈ N :

|Ψ(P−i(P
′
i ))(a)− Pi(a)| ≥ |Ψ(P)(a)− Pi(a)| (1)
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remark 2. Level SP is better formulated in the CAF space, and one may wonder
why we don’t just use the CAF model. The reason is: all the remaining axioms
(namely certainty preservation, plausibility preservation, and proportionality)
are more naturally formulated in the PAF model.

2.3 The strong implications of level-SP

As the regulator does not usually know exactly the preferences of the experts, it
is desirable to have truthful reporting property for a large family of reasonable
utility functions. This section shows that level-SP is a robust IC concept as
it implies “classical” strategyproofness for a large and natural class of single-
peaked utility functions.

For each probability measure ν on Λ and each positive real r ∈ R+, we can
define an Lr-distance on C as follows. ∥P −Q∥Lr

= [
∫
Λ
|P (a)−Q(a)|rdν(a)]1/r,

then, if ψ verifies level-SP, it also satisfies, ∀i ∈ N , ∀P ∈ CN and any P ′
i ∈ C:

∥Ψ(P−i(P
′
i ))− Pi∥Lr

=

[∫
Λ

|Ψ(P−i(P
′
i ))(a)− Pi(a)|rdν(a)

]1/r
≥

[∫
Λ

|Ψ(P)(a)− Pi(a)|rdν(a)
]1/r

= ∥Ψ(P)− Pi∥Lr

Where the inequality follows from (1). Consequently, if the utility of expert
i is single-peaked and is measured by the use of some distance Lr on C to its
peak, e.g.:

ui(p) = −∥π(ψ(p))− π(pi)∥Lr
= −∥Ψ(P)− Pi∥Lr

.

Thus, if level-SP is satisfied, then it is an optimal strategy for an expert with
the utility function ui defined just above to vote honestly. In the last section,
we will prove that Level-SP is incompatible with strategyproofness w.r.t. the
L1 distance in the probability space (used in [Fre+19]).

3 All Level-SP methods

In this section, we will characterize all level-SP methods. They consist of ag-
gregating the cumulatives instead of the probabilities and then using Moulin’s
formulae by replacing the phantoms with weakly increasing functions satisfying
regularity conditions.

Recall that the cumulative distribution function (CDF) P = π(p) : Λ →
[0, 1] associated with a probability distribution p on R is given by the formulae
P (a) =

∫
x≤a

dp(x). The following lemma is well-known. It helps understand
the regularity conditions in the next theorem.

Lemma 3. A function P : Λ → [0, 1] is a cumulative distribution iff
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• P is weakly increasing and right continuous;
• if supΛ ̸∈ Λ then lima→supΛ P (a) = 1, otherwise P (supΛ) = 1.
• if inf Λ ̸∈ Λ then lima→inf Λ P (a) = 0;

For example, when Λ = R then inf Λ = −∞ ̸∈ Λ and supΛ = +∞ ̸∈ Λ.
This in hand and thanks to Moulin max-min formula, we can prove the following
characterization.

Theorem 1 (Level-SP: Max-min formula). A PAF ψ : PN → P is level-SP if
and only if there exists for every S ⊆ N a weakly increasing right continuous
function fS : Λ → [0, 1] that verifies the following properties:

• (1) for all S ⊆ S′ and a ∈ Λ we have fS(a) ≤ fS′(a);
• (2) if supΛ ̸∈ Λ, then lima→supΛ fN (a) = 1 otherwise fN (supΛ) = 1 ;
• (3) if inf Λ ̸∈ Λ then lima→inf Λ f∅(a) = 0;
• (4) Ψ : CN → C the CAF associated with ψ is given by the formula:

∀a ∈ Λ,Ψ(P)(a) = π ◦ ψ(p)(a) = max
S⊆N

min (fS(a),min
i∈S

Pi(a)).

Moreover, ψ is unanimous if and only if for every a ∈ Λ f∅(a) = 0 and
fN (a) = 1 (in which case, (2) and (3) are automatically satisfied).
We will call the {a→ fS(a)}S∈2N above the phantom functions associ-
ated with ψ.

The technical conditions (2) and (3) are necessary for Ψ to output a cu-
mulative distribution. Conditions (1) and (4) are derived from to the Moulin
max-min formula.

Proof. (Sketch of) In order to prove the theorem, we first need to prove that
level-SP implies that for any a ∈ Λ, there is a one-SP function ga : [0, 1]N →
[0, 1] such that (*) ∀P,Ψ(P)(a) = ga(P1(a), . . . , Pn(a)). The rest is a direct
consequence of Lemma 1 and the characterization in Lemma 3.

Let us prove the existence of such {ga}a∈Λ by reductio ad absurdum. Suppose
that Ψ verifies level-SP but that there exists a level a ∈ Λ such that no voting
rule ga (Level-SP or not) is such that (*) is satisfied. Then there must exist
two CDF profiles P and Q such that for all voters i ∈ N , Pi(a) = Qi(a) and
Ψ(P)(a) ̸= Ψ(Q)(a). We will show that switching experts inputs, one by one,
from Pi to Qi, one at a time, does not change the output. This will result
in a contradiction with the assumption Ψ(P)(a) ̸= Ψ(Q)(a). Wlog, suppose
Ψ(P)(a) < Ψ(Q)(a).

Here is the proof for switching expert 1’s opinion when P1(a) < Ψ(P)(a)
(the proof for P1(a) > Ψ(P)(a)) is symmetrical):

• By Level-SP, we have Ψ(P)(a) ≤ Ψ(P−1(Q1))(a).
• Since Q1(a) = P1(a) we therefore have Q1(a) < Ψ(P−1(Q1))(a).
• By Level-SP, we therefore have Ψ(P)(a) ≥ Ψ(P−1(Q1))(a). It follows that
Ψ(P)(a) = Ψ(P−1(Q1))(a).

If remains to consider the case Ψ(P)(a) = P1(a) = Q1(a) ̸= Ψ(P−1(Q1)(a)).
This would contradict level-SP since by switching expert 1’s input from Q1 to
P1 the output becomes the value Q1.
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Consequently, when we switch expert 1’s input from P1 to Q1 we do not
change the output. The same proof is then repeated for all other experts. It
follows that our assumption was wrong: the family of voting rules {ga}a∈Λ

where (*) is satisfied exists. Due to the definition of Level-SP, each ga must
be one-SP. As such, from Lemma 1, there exist phantoms (βS

a )S⊂N associated
with each ga. We define the fS in the theorem as follows fS : a → βS

a . The
properties that fS must verify are simply those needed so that the outcome of
Ψ is a cumulative distribution (see lemma 3).

A more detailed and direct proof (not by contradiction) can be found in
appendix A.1.

We now provide a similar characterization for the anonymous case.

Theorem 2 (Level-SP: the Median formula). A PAF ψ : PN → P is level-SP
and anonymous if and only if there exists n+1 weakly increasing right continuous
function fk : Λ → [0, 1] that verifies the following properties:

• for all 0 ≤ k ≤ n− 1 we have fk ≤ fk+1;
• if supΛ ̸∈ Λ, then lima→supΛ fn(a) = 1 otherwise fn(supΛ) = 1
• if inf Λ ̸∈ Λ then lima→inf Λ f0(a) = 0;
• Ψ : CN → C the CAF associated with ψ is given by the formula:

∀a ∈ Λ,Ψ(P)(a) = median (P1(a), . . . , Pn(a), f0(a), . . . , fn(a))

Moreover ψ is unanimous if and only if for all a ∈ Λ f0(a) = 0 and fn(a) = 1.
We will call the {fk}k∈{1,...,n+1} the phantom functions associated with
ψ.

Proof. Essentially the same as in Theorem 1 except we use Lemma 2 instead of
Lemma 1 (see appendix A.1).

remark 3. As in Moulin, it can be shown that, under anonymity, the phantom
function fS in the max-min formula is equal to fk in the median formula where
k = #S, the cardinal of S.

Figure 1 below provides an example with Λ = R+ and 3 voters. The next
sections refine the characterizations by adding desirable (and classical) axioms.
Some combination of the axioms will single out only one method, or lead to an
impossibility.

4 Certainty preservation Axiom

It is desirable, and somehow incontestable, to wish that when all experts agree
that an event is certain to happen (or not to happen) then the aggregation of
their input probabilities reflects that fact.

Axiom 4 (Certainty preservation). A PAF ψ preserves certainty iff for any
probability profile p and all events A ⊆ Λ Borel measurable:

(pi(A) = 1 ∀i ∈ N ⇒ ψ(p)(A) = 1),

or equivalently, (pi(A) = 0 ∀i ∈ N ⇒ ψ(p)(A) = 0).
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Figure 1: A unanimous and anonymous Level-SP rule for Λ = R+. In left hand is
drawn the cumulative functions P1, P2 and P3 of 3 voters. In black is drawn two the
phantom functions F2 and F3 (F1 = 0 and F4 = 1 are not drawn). On the right
hand, for each level x in the x-axe, the outcome in green is determined by the median
formula: e.g. median(P1(x), P2(x), P3(x), F2(x), F3(x)).

In other words, if an event is judged impossible (resp. certain) by all experts
then it is judged impossible (resp. certain) by the aggregation function. This is
a fairly standard axiom in the literature sometimes called the zero preservation
property in [SM17] or consensus preservation in [DL17].

Proposition 1 (Certainty preservation characterization). A level-SP PAF ψ
is certainty preserving iff it is unanimous and its associated phantom functions
fS are constants.

Proof. (Sketch of ⇒:) For any interval I = [a, b] ∩ Λ and S. Select a profile
P such that all experts in S agree that E(a) is certain almost surely and all
other experts agree that E(b) is impossible almost surely. It follows that I is
impossible almost surely so the outcome will be constant over I and that the
outcome is equal to fS over I. Therefore fS is constant over I. It follows that
all fS are constant over Λ. For the complete proof, see appendix A.2.

In other words a level-SP ψ is certainty preserving if and only if there exists
2n phantom constant values βS ∈ [0, 1] such that β∅ = 0, βN = 1 and Ψ : CN →
C the CAF associated with ψ verifies the following:

∀a ∈ Λ,Ψ(P)(a) = max
S⊆N

min (βS ,min
i∈S

Pi(a)).

In the anonymous case the characterization simplifies to:

∀a ∈ Λ,Ψ(P)(a) = median(P1(a), . . . , Pn(a), α1, . . . , αn−1).

Where αk = βS whenever #S = k. When ψ is Level-SP and certainty
preserving, the one-SP function g : Λn → Λ such that:

∀a ∈ Λ,Ψ(P)(a) = g(P(a))
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is called in the sequel the one-SP rule associated with Ψ. In the general
case, g(r1, ..., rn) = maxS⊆N min (βS ,mini∈S ri) and in the anonymous case,
g(r1, ..., rn) = median(r1, . . . , rn, α1, . . . , αn−1).

5 Plausibility Preservation Axiom

We now wish the PAF to satisfy that if all experts agree that an outcome may
happen with positive probability then the PAF preserves that property.

Axiom 5 (Plausibility preservation). A PAF ψ : PN → P verifies plausibility
preservation iff for any input profile p ∈ PN and any possible interval I =
[a, b] ∩ Λ:

pi(I) > 0 ∀i ∈ N =⇒ ψ(p)(I) > 0.

Plausibility preservation implies that some monotonicity property is satisfied
by the phantom functions in all intervals where their values are not 0 or 1.

Proposition 2 (Plausibility preservation characterization). A Level-SP PAF
ψ : PN → P is plausibility preserving iff each associated phantom function fS is
strictly increasing on the interval where its value is not in {0, 1} and f∅(a) < 1
for all a < supΛ and fN (a) > 0 for all a.

Proof. (Sketch of ⇒:) For any interval I = [a, b] ∩ Λ, any S ⊆ N and any
0 < ϵ < 0.5. Select a profile P such that all experts in i ∈ S agree that
pi(E(a)) = 1 − ϵ, pi(E(b)) = 1 and all other experts j agree that pj(E(a)) = 0
and pj(E(b)) = ϵ. It follows that all experts agree that pi(I) > 0 Therefore
Ψ(P)(b) − Ψ(P)(a) > 0. If fS(I) = x ∈]0, 1[, then by choosing ϵ such that
ϵ < x < 1 − ϵ we have Ψ(P)(b) − Ψ(P)(a) = 0. This is absurd since the
outcome should have determined that I is possible, therefore we contradicted
fS(I) = x ∈]0, 1[. The rest can be deduced from this.

A more detailed proof can be found in the appendix A.3.

Figure 2 represents a PAF that is certainty preserving because the phantom
functions F0 = 0, F1 = 0.25, F2 = 0.6, F3 = 0.6 are constant (as in Figure 1,
we didn’t draw F0 and F4, for simplicity and also because the median is the
same with or without them). However, it is not plausibility preserving because
F3 = 0.6 is not in {0, 1} in the interval [0, 1] but is not strictly increasing (is
constant). As such, the green function (the CDF of society) is constant on the
interval [1,2] implying that the probability of [1,2] of society is 0 although all
experts give a positive probability to [1, 2].

Figure 3 represents a plausibility preserving PAF because two phantom func-
tions (not drawn) F0 = 0 and F4 = 1 have values in {0, 1} and the two others
F2 and F3 are strictly increasing. Observe that F3 is discontinuous at its left
for x = 2 (which is allowed for phantom functions). Since F2 is not a constant
function, the PAF is not certainty preserving.

12
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Figure 2: A certainty preserving but
not plausibility preserving, unanimous
and anonymous method.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

x

P
i(
x
)

P1 = 1− exp(−2x)

P2 = 1− exp(−x)
P3 = 1− exp(−0.5x)
Phantoms F2 and F3

med(P1, P2, P3, F2, F3)

Figure 3: A plausibility preserving but
not certainty preserving, unanimous
and anonymous method.

It may seem asymmetrical that plausibility preservation is defined by putting
a condition on the intervals while certainty preservation is defined by putting
conditions on all Borel subsets. First, as the proof shows, if in the definition of
certainty preservation, one replaces Borel sets with intervals, we still the exact
same characterization. However, if we replace intervals with Borel subsets in
the definition of plausibility, we reach an impossibility.

Axiom 6 (Strong plausibility preservation). A probability aggregation function
ψ : PN → P verifies strong plausibility preservation iff for any input profiles
p ∈ PN and any Borel measurable event A ⊂ Λ:

pi(A) > 0 ∀i ∈ N → ψ(p)(A) > 0;

that is, if all expert agrees that some Borel event is plausible, so does society.

Unfortunately, extending the plausibility preservation to Borel subsets is a
too strong axiom.

Theorem 3 (Strong Plausibility Impossibility). When Λ is a real interval,
the unique probability aggregation functions that are level-SP, unanimous, and
strong plausibility preserving are the dictatorials.

Proof. (Sketch of ⇒) This is done by reducing to the absurd. We build two
disjoint intervals I1 and I2 in Λ and a profile P, such that we can divide the
experts into two groups S and T . Experts in S believe that I1 is impossible
almost surely and that I2 is possible, experts in T believe that I2 is impossible
almost surely and that I1 is possible. In the outcome, we select an expert of S
opinion over I1 and of T over I2. By strong plausibility, we should have that
the outcome claims I1 ∩ I2 is possible. Therefore we reach a contradiction. See
appendix C.2 for the complete proof.
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6 Combining Plausibility preservation and Cer-
tainty preservation

6.1 Combination of the axioms in the general case

Having defined the previous two axioms and how they are characterized in the
level-SP setting we may wish to understand the combination of the two with
level-SP.

Proposition 3 (Combination 1st Characterization). A level-SP Ψ is certainty
preserving and plausibility preserving if and only if the output of its associ-
ated one-SP voting rule g always output one of its inputs (e.g. g(r1, ..., rn) ⊂
{r1, ..., rn} for every (r1, ..., rn) ∈ [0, 1]N ).

Proof. (Sketch of) By certainty preservation all phantoms fS are constant (to
some βS). By plausibility preservation, all the βS must take their values in
{0, 1}. This easily implies the property we want to prove because this implies
that the output of Ψ only depends on the ordering of the input. The exact
details are found in appendix A.4.

remark 4. Hence, a dictatorship is level-SP, certainty preserving, and plausi-
bility preserving.

This characterization implies the following interesting action on dominated
profiles, defined now.

Definition 4 (Dominated profiles). A CDF P dominates Q iff P (a) ≥ Q(a)
for all a ∈ Λ. Profile P = (P1, .., Pn) is dominated if for any two experts i and
j, Pi dominates Pj or Pj dominates Pi.

Proposition 4 (Combination 2nd Characterization). A level-SP ψ is certainty
preserving and plausibility preserving iff for any dominated profile P = (P1, .., Pn),
ψ(p) ∈ {p1, ..., pn}.

Proof. (Sketch of) For a given one-SP voting rule g such that all the phantoms
βS are in {0, 1}, the outcome only depends on the ordering of the inputs. When
the inputs of a CAF are dominated, the ordering is the same for all levels. As
such for all a ∈ Λ, the same expert has his input selected (see appendix A.4 for
the complete proof).

Hence, the combination of certainty and plausibility preservation with level-
SP implies that the output probability is one of the inputs whenever the input
profile is dominated.

6.2 Combination of the axioms in the anonymous case

When anonymity is added to the combination, we obtain a nice class of PAF
that can be generated from a well-known family of one-SP rules, sometimes
called the order functions [BL11].

14



Definition 5 (Order-functions). An order-function gk : [0, 1]n → [0, 1],
(where k is in {1, . . . , n}) is the one-SP voting rule that for a set of n values in
[0, 1] return the kth smallest value.

We therefore have g1(r1, . . . , rn) = min(r1, . . . , rn), have that g
n(r1, . . . , rn) =

max(r1, . . . , rn) and when n is odd

g(n+1)/2(r1, . . . , rn) = median(r1, . . . , rn)

.

Definition 6 (Order-cumulatives). We denote as the kth order-cumulative
Ψk : CN → C the CAF which is defined by applying the kth order function at
each level a ∈ Λ in the CDF space:

∀a ∈ Λ,Ψk(P)(a) := gk(P1(a), . . . , Pn(a)).

ψk denotes the associated PAF that will also be called an order-cumulative.

Consider a safe-to-dangerous scale Λ such as the Richter magnitude scale for
earthquakes or the volcanic explosivity index. The min order-cumulative Ψ1 is
the most cautious response: since for each threshold, we consider the opinion of
the most worried expert. On the other hand, the max order-cumulative Ψn is
the less paranoid response.

Theorem 4 (Order Cumulatives Characterization). The order-cumulatives are
the unique level-SP PAF that are anonymous, certainty preserving, and plausi-
bility preserving.

Proof. (sketch) ψ is level-SP therefore their is an associated voting rule g. ψ is
level-SP and plausibility preserving therefore the phantoms are equal to 0 or 1.
As such there is a k such that:

∀a,Ψ(P)(a) = med(P1(a), . . . , Pn(a),

n−k︷ ︸︸ ︷
0, . . . , 0,

k︷ ︸︸ ︷
1 . . . , 1)

Therefore this is the k − th order function (the detailed proof is in appendix
A.4).

We are particularly interested in the middlemost-cumulative. That is
to say, the order-cumulative defined by the median order-function when n is
odd and when n is even, we have two middlemost-cumulatives: the lower Ψ

n
2

and the upper Ψ
n
2 +1. It is easy and standard to show that they are welfare

maximizers if experts’ utilities are measured using the L1 distance in C to the
peak.
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7 Diversity axioms

If there are three experts where two of them believe that a1 ∈ Λ will occur
almost surely and the last one believes that a2 ∈ Λ will occur almost surely, then
any order-cumulative (as well as any Level-SP method that satisfies certainty
and plausibility preservation) will output a probability function that selects a1
almost surely or a2 almost surely. This lack of diversity in the output may
sometimes be nonacceptable. For example, when all experts have equal weights
and are equally competent, one may feel that the output where alternative a1
has probability 2/3 to be chosen and alternative a2 has probability 1/3 of being
chosen is a better aggregation. More generally, one may wish that society’s
probability support contains all experts’ probability supports as it means that
all opinions are represented with some probability in the aggregation. We are
going to formulate a weak diversity axiom, defined for single minded voters
(next subsection), for which we can characterize a unique Level-SP rule. Then,
we will show an impossibility result if one desires a stronger form of diversity.

7.1 Weighted Proportional-cumulative

Let us start by defining formally what it means to be single-minded.

Definition 7 (Single-minded). A dirac mass δa is the probability law where
alternative a is selected almost surely. An expert is single-minded if his input is
a dirac mass.

In the next (weak diversity) axiom, experts will have some given weights
(wi)i∈N (which is the case in most practical applications).

Axiom 7 (Weighted proportionality). If experts are single-minded (pi = δai

for all i ∈ N), the aggregation must coincide with the weighted average:

∀(a1, . . . , an) ∈ ΛN ψ(δa1 , . . . , δan) =
∑
i∈N

wiδai ;

where wi ≥ 0 is the weight of expert i ∈ N with
∑

j∈N wj = 1.

In the anonymous case, all experts have the same weights (see next subsec-
tion).

The weighted average ψ(p1, . . . , pn) =
∑

i wipi satisfies weighted proportion-
ality but it is not level-SP. The next theorem shows that there is exactly one
PAF satisfying level-SP and weighted proportionality. This function happens to
be certainty preserving and can be uniquely described by a single one-SP voting
rule µw : [0, 1]n → [0, 1] defined as follows:

∀r = (r1, ..., rn), µw(r) := sup

y
∣∣∣∣∣∣

∑
i:ri≥y

wi ≥ y

 .

To our knowledge, this is a new voting rule. Before we state the main
theorem, let us give an equivalent formulation of µw when the weights are
rational numbers.
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Proposition 5 (Rational weights). If all the weights are rationals wi = si/d
then:

∀r = (r1, ..., rn), µw(r) := median(

s1︷ ︸︸ ︷
r1, . . . , r1, . . . ,

sn︷ ︸︸ ︷
rn, . . . , rn, 0, 1/d, . . . , 1−1/d, 1)

Proof. The proof can be found in the appendix B.2.

Theorem 5 (Weighted Proportional Cumulative). The unique PAF ψ : Pn →
P that verifies level-SP and weighted proportionality is the unique certainty pre-
serving one associated with the one-SP rule µw, that is:

∀a ∈ Λ, (P1, . . . , Pn) ∈ C; Ψ(P1, . . . , Pn)(a) := µw(P1(a), . . . , Pn(a))

Initially, this theorem was our main objective when we started this paper.
The theorem was first proved in the anonymous case (aka the equal weights case)
and was stated and proved using more axioms than necessary (such as certainty
preservation). We succeeded in eliminating all the unnecessary axioms and then
simplified the proof to the one below, where we essentially verified that the CAF
associated with µw must be the solution.

Proof. ⇒: The weighted proportionality axiom can be rewritten in terms of
CDF as follows:

∀(a1, . . . , an) ∈ ΛN ,Ψ(δa≥a1 , . . . , δa≥an)(a) =
∑

i:ai≤a

wi.

Let ψ be level-SP and weighted proportional. Let Ψ be the CAF associated
with ψ and fS be its phantom functions. Let us first show that (w.l.o.g):

∀S ⊆ N, ∀a ∈ Λ : fS(a) =
∑
i∈S

wi.

Let us take any S ⊆ N and alternatives a < b. Suppose that all experts i ∈ S
are single-minded in a (their input is the Dyrac mass at a) and that all the
other experts are single-minded b. By weighted proportional we therefore have
fS(a) = ga(P(a)) =

∑
i∈S wi. As such (wlog for a = supΛ) the phantoms asso-

ciated with ψ are the constant phantom functions fS =
∑

i∈S wi. Consequently,
ga is independent on a (the phantoms as constant). Let g denote the common
function (which is the one-SP rule associated with ψ).

It remains to show that g = µw.
• Suppose that there is j such that g(r) = rj , then there is S and S′ =
S − {k|rj = rk} such that for all k ∈ S, we have rj = min(fS ,mink∈S rk)
and rj ≤ fS′ (lemma 1).

– For any y > rj , we have
∑

i:ri≥y wi ≤
∑

i:ri>rj
wi = fS′ ≤ rj < y.

Therefore by definition of µw we have µw(r) ≤ rj .
– For any y ≤ rj , we have

∑
i:ri≥y wi ≥

∑
i:ri≥rj

= fS ≥ rj ≥ y.

Therefore by definition of µw, µw(r) ≥ rj .
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By combining the above we obtain that if there is j such that g(r) = rj ,
then µw(r) = rj .

• Suppose that there is no i such that g(r) = ri, then by lemma 1 there is an
S such that g(r) = fS = min(fS ,mini∈S ri). It follows that for any k ∈ S
we have rk > fS . Suppose there is an i such that if k ̸∈ S and rk > fS
then for S′ = S ∪ rk since f ′S ≥ fS we have min(fS′ ,mini∈S′ ri) ≥ fS .
It follows that fS = fS′ . We can thus choose S such that for all k ̸∈ S,
rk < fS .

– For any y > fS we have
∑

i:ri≥y wi ≤
∑

i:ri≥fS
wi = fS < y, therefore

µw(r) ≤ rj .
– For y ≤ rj , we have

∑
i:ri≥y wi ≥

∑
i:ri≥fS

wi = fS ≥ y therefore
µw(r) ≥ fS . Therefore µw(r) = fS .

As such g = µw. QED.
⇐: If Ψ is the level independent CAF associated with µw then for all

r ∈ {0, 1}N , we have µw(r) =
∑

i:ri=1 wi. As such, Ψ verifies weighted pro-
portionality.

One of the interesting aspects of the weighted proportional-cumulative is how
it beautifully aggregates dominated inputs. The next proposition shows that
the experts will contribute in the aggregation proportionally to their weights on
the segment that best describes their role in the group.

In the example of Figures 4 and 5, there are 3 experts, with weights 0.3,
0.5 and 0.2 respectively. The input is a dominated profile where P1 (in blue) is
dominating P2 which is dominating P3 (we can see it clearly on the left hand side,
with the CDFs but not so easily with the probability density functions (PDFs)).
In green is drawn the weighted cumulative that we can better understand on
the right hand side. We first follow the PDF of the first voter 0.3 of the total
mass, then the green follows the second voter PDF 0.5 of the total mass, then
follow the last expert 0.2 of the total mass. This rule of computation is very
general as the following proposition shows.

Proposition 6 (Proportional-cumulative for dominated profiles). Suppose that
Λ is an interval, and that all the Pi are continuous and verify for all i ∈ N ,
Pi ≥ Pi+1. Then the weighted-proportional level-SP mechanism ψ : PN → P of
weight w can be computed for this input profile as follows:

ψ(p)(a) =

{
pi(a) if

∑
k≤i−1 wk ≤ Pi(a) <

∑
k≤i wk

0 else

Proof. According to Theorem 5 we have:

∀a,∀P,Ψ(P)(a) = sup

y
∣∣∣∣∣∣

∑
i:Pi(a)≥y

wi ≥ y

 .

Suppose for all i ∈ N , Pi ≥ Pi+1. Wlog we will also suppose that all the weights
are strictly positive. Let us determine the value of Ψ(P)(a) for any given a.
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Figure 4: Weighted proportional cu-
mulative (in green) with weights w1 =
0.3, w2 = 0.5 and w3 = 0.2 (in cumu-
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• Suppose
∑

k≤i−1 wk ≤ Pi(a) <
∑

k≤i wk.
– For any y > Pi(a) we have {k : Pk(a) ≥ y} ⊆ {k < i}. Therefore∑

k:Pk(a)≥y wk ≤
∑

k≤i−1 wk ≤ Pi(a) < y. By definition of µw we

therefore have Ψ(P)(a) ≤ Pi(a).
– For any y ≤ Pi(a) we have {k ≤ j} ⊆ {k : Pk(a) ≥ y}. As such∑

k:Pk(a)≥y wk ≥
∑

k≤j wk ≥ Pi(a) ≥ y. By definition of µw we

therefore have Ψ(P)(a) ≥ Pi(a).
We have therefore shown that Ψ(P)(a) = Pi(a).
By Bolzano’s theorem there is a a1 ≤ a such that Pi(a1) =

∑
k≤j−1 wk

and a2 > a such that Pi(a2) =
∑

k≤j wk. Therefore on the interval [a1, a2],
Ψ(P) = Pi. It follows that ψ(p)(a) = pi(a) on the interval ]a1, a2[.

• Suppose that there is no i such that
∑

k≤i−1 wk ≤ Pi(a) <
∑

k≤i wk.
Then there is an i such that, Pi+1(a) <

∑
k≤i wk < Pi(a). We show that

Ψ(P)(a) =
∑

k≤i wk by comparing y to
∑

k≤i wk just as we compared y
to Pi(a) in the previous section
By Bolzano’s theorem there is a value a1 < a such that Pi(a1) =

∑
k≤j wk

and a2 > a1 such that Pi+1(a2) =
∑

k≤j wk. We have Ψ(P)(a1) =
Ψ(P)(a2) =

∑
k≤i wk.

Therefore Ψ(P)(a1) = Ψ(P)(a2). It follows that on the interval ]a1, a2[
ψ(p)(a) = 0.
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7.2 Proportional Cumulative

When all experts have the same weight (wi =
1
n for all i ∈ N), we obtain the

proportional cumulative

Definition 8 (proportional-cumulative). When all expert have the same weight,
the proportional cumulative Ψ : CN → C is the aggregation method defined as
follows:

∀P = (P1, ..., Pn),∀a ∈ Λ,Ψ(P)(a) = median

(
P1(a), . . . , Pn(a),

1

n
,
2

n
, . . . ,

n− 1

n

)
Hence the One-SP rule associated with the proportional cumulative is

g(r1, ..., rn) = median

(
r1, . . . , rn,

1

n
,
2

n
, . . . ,

n− 1

n

)
.

This function is called the uniform median [Bou+15].

Axiom 8 (proportionality). If experts are single-minded (e.g. pi = δai for all
i ∈ N), the aggregation must coincide with the average:

∀(a1, . . . , an) ∈ ΛN ψ(δa1
, . . . , δan

) =
∑
i∈N

1

n
δai

If Λ is finite, this corresponds to the proportionality axiom in [Fre+19] in
the budgeting problem (that one can interpret as a probability aggregation
problem). That’s why we also call it proportionality.

Theorem 6 (Proportionality). The proportional cumulative is the unique Level-
SP PAF satisfying proportionality.

This is an immediate consequence of Theorem 5 and Proposition 5 with
wi =

1
n for i = 1, ..., n.

7.3 A stronger diversity axiom

One may want to have diversity in the aggregation for all inputs and not only
dirac inputs.

Axiom 9 (Diversity). A PAF ψ is diverse if for every input probability profile
p = (p1, ..., pn), the support of ψ(p) contains the union of the supports of the
probabilities pi, i = 1, ..., n.

The mean ψ(p1, ..., pn) :=
1
n

∑n
i=1 pi satisfies diversity but is not level-SP.

The axiom above implies that whenever a (Borel) event has a positive proba-
bility for at least one voter, so does society. In particular, if all voters agree that
some event has positive probability, e.g. strong plausibility must be satisfied.
Hence, from Theorem 3 we deduce the following result.

Theorem 7 (Diversity Impossibility). If Λ is an interval, no level-SP unani-
mous PAF satisfies diversity.
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8 Comparing methods

8.1 Comparing the proportional and the middlemost cu-
mulatives

In our view, the main drawback of the middlemost-cumulative is its lack of
diversity. When the various supports Si of the experts’ subjective probabilities
pi are disjoint intervals Ii, or more generally, when the Pi’s dominate one another
(as in Fig 6), the outcome of middlemost-cumulative equals the view of the
median-expert (see the green curve in Figure 6 (CDFs) and Figure 8 (PDFs)).

The proportional-cumulative takes into account all the experts’ views in
a natural way. As Figure 7 shows, the leftmost expert CDF is followed by
the proportional-cumulative for one-third of the probability mass. This is a
good property since the fact he is the leftmost expert means that the left third
of his probability distribution is what best describes how he differs from the
other experts. Similarly, the rightmost expert is followed by the proportional-
cumulative for the rightmost third of his opinion, which also best represents how
his opinion differs from the group. The middle expert is followed for his middle
opinion which again is interesting for the same reason. As such, not only do
experts contribute for exactly one n-th of the final outcome but proportional-
cumulative ensures that the most sticking aspects of their opinion (compared to
the group) are represented.

Given that the order-cumulatives are the unique anonymous level-SP PAF
that satisfy certainty and plausibility preservations, the proportional-cumulative
must violate one of the axioms. As it is anonymous and certainty preserving
(because represented by a unique unanimous one-SP rule: the uniform median),
it must violate plausibility preservation. That can be seen in Figure 9: the
density of proportional-cumulative (in green) for the interval [1, 2] is zero while
the experts’ densities for this interval are all strictly positive. We believe that
the violation of this axiom is not problematic because it satisfies a “level” version
of plausibility, namely if a level event has a positive probability for all experts,
so does society. Hence, if we are interested in problems where the decision-
maker’s final decision is only based on a level-event, only the level plausibility
preservation axiom is needed to be satisfied, and it is.

8.2 Comparing with the phantom moving mechanisms

In the context of Budget aggregation with finitely many alternatives in Λ =
{a1, ..., am}, [Fre+19] proposed a class of anonymous incentive compatible meth-
ods (the phantom moving mechanisms). Their notion of strategyproofness
corresponds in our context to the optimality of truthful reporting when the
experts have single-peaked preferences measured by the L1 distance to the
peak in the probability space P, that we will denote by ∥ ◦ ∥P1 . More pre-
cisely, if p = (pk)k=1,...,m and q = (qk)k=1,...,m are probability distributions
over Λ = {a1, ..., am}, then their distance in the P space is computed as
d(p, q) = ∥p− q∥P1 =

∑m
k=1 |pk − qk|.
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A voter is single-peaked with respect to ∥ ◦ ∥P1 if, whenever p is the voter’s
peak and q is society’s output then its utility is −∥p− q∥P1 . Let’s call a method
LP
1 -SP if honesty is the optimal strategy when a voter’s utility is single-peaked

in for ∥ ◦ ∥P1 .

Theorem 8 (Certainty preserving L1-SP Impossibility). When #Λ ≥ 4, the
only certainty preserving ψ that are both Level-SP and LP

1 -SP are the dictato-
rials.

Proof. The proof can be found in appendixes C.1 and D for additional results.

Hence our methods and the one in [Fre+19; Goe+16] are IC in two different
environments, but none is strategically robust in both environments, and no
method can be IC in both.

9 Application: Electing and Ranking with Un-
certain Voters

The objective of this section is to show that proportional-cumulative could be
combined with a recent evaluation-based voting method (Majority Judgment
[BL11; BL20], MJ) to construct a strategically robust voting method in situa-
tions where voters have uncertainties and doubts about the candidates. To elect
one candidate/alternative or rank several [Arr51], existing voting methods (plu-
rality, Borda, Condorcet, approval voting, etc) implicitly assume that individual
voters are certain about their opinions or views. In practice, voters are mostly
uncertain. In recruitment committees, members are often hesitating between
a good safe candidate vs a risky one. On the day of the Brexit vote, no voter
knew with certainty what the final deal between the UK and the EU would be,
nor did they know the long-term consequences of such a deal. Similarly, when
a reviewer is judging a paper for a conference, they are often uncertain about
the quality of some of the papers. To capture those uncertainties, one can use
an extension of majority judgment.

Let us first describe how majority judgment (MJ) works for a small number
of voters. Suppose we have a numerical scale {0, . . . , 9} and a set of grades
ordered from best to worse A = (9, 7, 6, 5, 2) corresponding to the grades given
by 5 voters to candidate A. Its majority value is obtained by iterating from
the middlemost grade (the median), then down, up, down, etc, which gives us
the 5 dimensional vector v(A) = (6, 5, 7, 2, 9). Two ordered set of grades A
and B are compared in lexicographic order by their majority values. For exam-
ple if B = (9, 8, 6, 4, 1) then v(B) = (6, 4, 8, 1, 9) and so v(A) > v(B) because
(6, 5, 7, 2, 9) ≽ (6, 4, 8, 1, 9). Majority judgment is an ordinal method as the
ranking remains unchanged if the numerical grades are replaced by some qual-
itative set of grades such as {Great, Good, Average, Poor, Terrible}. The MJ
ranking can be extended to a continuum of voters (e.g. a normalized distribution
over the set of grades, see [BL11] chapter 14).
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ImagineN voters who should rankM candidates or alternativesA = {A1, A2, A3, . . . , AM}.
Majority Judgment under Uncertainty MJU works as follows:

• Fixed by the designer: a scale of grades Λ (such as {Great, Good, Average,
Poor, Terrible} and a normalized positive vector w = (w1,. . . ,wN ) where
wi is the weight of voter i.

• Input from voters (the ballots): each voter i ∈ N is asked to submit for
each candidate A ∈ A a probability distribution pAi ∈ P = ∆(Λ). For
example, the voter may think that Ak will be Good for sure, and that Al

will be Great with probability 2
3 and Terrible with probability 1

3 .
• Output for voters: each candidate A is given an aggregate probability dis-
tribution pA computed using the weighted-proportional-cumulative
that is PA(a) = µw(PA

1 (a), . . . , PA
N (a)).

• Ranking of the alternatives: classical majority judgment is applied
to rank the distributions pA1 , pA2 ,. . . , pAM and consequently the candi-
dates/alternatives in A.

Main properties of MJU:
• IIA: adding or dropping a candidate does not change the ranking between
the others. This is because MJ is transitive and the ranking between two
candidates A and B by MJU depends only on their distributions pA and
pB , which are only a function of the inputs regarding them.

• Impartiality : candidates are treated equally by the method. This is be-
cause MJ is impartial and MJU applies the same PAF (the weighted-
proportional-cumulative) to compute each candidate’s A distribution pA.
If we want the method to be anonymous (voters are treated equally) just
set w1 = · · · = wN = 1

N .
• Extends MJ : if all voters are certain about their choices (i.e. their input are
Dirac measures) and have equal weights (anonymity), MJU outputs the
empirical distribution of inputs for each candidate, and so the ranking of
MJU coincides with the ranking of MJ. Note that proportional-cumulative
is the only level-SP method that induces an extension of MJ.

• Resistance to strategic manipulations: This is because the proportional-
cumulative is level-SP and MJ was designed to counter strategic manipu-
lations.

The philosophy behind MJ was to allow voters to better express themselves
(compared to plurality for example) by submitting a grade on a scale Λ for each
candidate. MJU goes further in this philosophy by allowing voters to express
their uncertainties about the candidates on the same scale.

10 Conclusion

This paper studies the probability aggregation problem when the set of out-
comes Λ is an ordered set. It defines level-strategyproofness and proves it to
imply classical strategyproofness for a rich set of single-peaked preferences over
the CDF space. Several characterizations are established when level-strategy-
proofness is combined with other axioms and two methods are singled out:

24



middlemost-cumulative and proportional-cumulative. Both are easy to com-
pute and can be extended to problems where experts are weighted. The paper
gives several arguments supporting the claim that the weighted proportional-
cumulative is perhaps the best of all level-SP methods. Its unique weakness is
the non-satisfaction of plausibility preservation. Fortunately, it does satisfy a
weaker version. Namely, if all experts agree that the probability of a level set
is positive, so does society. Hence, if we are interested in problems where the
final decision is level-based, then proportional-cumulative is –in our opinion–
the best IC method. In practice, the weighted proportional-cumulative can be
used to aggregate experts’ beliefs in various applications going from voting,
nuclear safety, investment banking, volcanology, public health, ecology, engi-
neering to climate change and aeronautics/aerospace. Specific examples include
calculating the risks to manned spaceflight due to collision with space debris and
quantifying the uncertainty of a groundwater transport model used to predict
future contamination with hazardous materials (see Cooke [Coo+91], Chapter
15, where those applications and others with real data are described and several
aggregation methods are analyzed).
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Introduction to the appendix

Our main problem is to determine a PAF (probability aggregation function)
ψ : PN → P satisfying some desirable properties where Λ is a Borel subset of
R and P is the set of probability distributions over Λ. Let M = supΛ. For
example, if Λ = R, then M = +∞.

To each probability p ∈ P is associated a unique cumulative distribution
function (or CDF) P = π(p) and vice-versa where P (a) =

∫
x≤a

p(x)dx. Let

C denote the set of cumulative distributions on Λ (e.g. increasing and right
continuous functions Q : Λ → [0, 1] s.t. lima→M Q(a) = 1 ).

Our probability aggregation problem becomes equivalent to an aggregation
of CDFs. More precisely, to each PAF ψ is associated a unique cumulative
aggregation function (CAF) Ψ := π ◦ ψ : CN → C where Ψ(P1, ..., P1) =
ψ(π−1(P1), ..., π

−1(Pn)) and vice-versa.
We could have defined our problem directly as a cumulative aggregation

problem, but it is more convenient to define and use both formulations because:
1) the existing literature is only concerned with the probability aggregation one,
2) all our axioms (except one) are more naturally formulated in the probability
space, 3) the level-SP axiom and all our characterizations are more naturally
formulated in the cumulative space.

This supplementary material is organized as follows. Section 1 explores the
main implications of Level-SP when combined or not with the certainty preser-
vation and/or the plausibility axioms. Section 1.1 provides a step-by-step proof
for the main characterizations of level-SP methods with and without anonymity.
Section 1.2 (resp. 1.3) establishes the characterizations when one supposes, in
addition to level-SP, certainty preservation (resp. plausibility preservation).
Section 1.4 derives some additional characterizations when both certainty and
plausibility preservations hold. Section 2 provides the rigorous proofs for the
characterizations of level-SP methods that are proportional. Section 3 proves
some impossibility theorems.

A Level-SP, certainty and plausibility charac-
terizations

A.1 Level-SP characterizations

If a PAF ψ is level-SP, then its associated CAF Ψ verifies the following property.

Lemma 4 (level-SP, rewritten in terms of cumulative). Suppose ψ is level-SP.
Then, for any expert i, for any level a ∈ Λ and any cumulative input votes
P1, . . . , Pn, P

′
i ∈ C we have:

Pi(a) < Ψ(P)(a) ⇒ Ψ(P)(a) ≤ Ψ(P−i(P
′
i ))(a)

and
Pi(a) > Ψ(P)(a) ⇒ Ψ(P)(a) ≥ Ψ(P−i(P

′
i ))(a)
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where Ψ := π ◦ ψ.

We will now establish some lemmas pertinent to level-SP that are useful in
proving the main characterizations of the paper.

Lemma 5 (Level-SP =⇒ Monotonicity). If Ψ is level-SP then for all experts
i, for all levels a ∈ Λ, and all cumulative votes P1, . . . , Pn, P

′
i :

Pi(a) ≤ P ′
i (a) ⇒ Ψ(P)(a) ≤ Ψ(P−i(P

′
i ))(a)

Proof. We will use a reductio ad absurdum to reach our result. Suppose that Ψ
verifies level-SP but is not monotonous in all a ∈ Λ. Then there is a Pi, P

′
i and

a such that Pi(a) ≤ P ′
i (a) and Ψ(P)(a) > Ψ(P−i(P

′
i ))(a).

If Ψ(P−i(P
′
i ))(a) ≥ Pi(a). Then:

Ψ(P)(a) > Ψ(P−i(P
′
i ))(a) ≥ Pi(a)

This contradicts level-SP.
If Ψ(P)(a) ≤ P ′

i (a). Then:

P ′
i (a) ≥ Ψ(P)(a) > Ψ(P−i(P

′
i ))(a)

Then replacing P ′
i (a) by Pi(a) improves the output, this contradicts level-SP.

Else:
Ψ(P−i(P

′
i ))(a) < Pi(a) ≤ P ′

i (a) < Ψ(P)(a)

This also contradicts level-SP. Therefore level-SP implies monotonicity.

Lemma 6 (Level-SP =⇒ Level-by-level Independence). If Ψ is level-SP then
for all a ∈ Λ the value of Ψ(P1, . . . , Pn)(a) only depends on P1(a), . . . , Pn(a).

Proof. For any a ∈ Λ, suppose we have P1, . . . , Pn and P ′
1, . . . , P

′
n such that

for all experts i, Pi(a) = P ′
i (a). Then according to the monotonicity lemma

(Lemma 5) Ψ(P1, . . . , Pn)(a) = Ψ(P ′
1, . . . , P

′
n)(a). Therefore Ψ(P1, . . . , Pn)(a)

only depends of P1(a), . . . , Pn(a).

Theorem 1 (Level-SP: Max-min formula). A PAF ψ : PN → P is level-SP if
and only if there exists for every S ⊆ N a weakly increasing right continuous
function fS : Λ → [0, 1] that verifies the following properties:

• (1) for all S ⊆ S′ and a ∈ Λ we have fS(a) ≤ fS′(a);
• (2) if supΛ ̸∈ Λ, then lima→supΛ fN (a) = 1 otherwise fN (supΛ) = 1 ;
• (3) if inf Λ ̸∈ Λ then lima→inf Λ f∅(a) = 0;
• (4) Ψ : CN → C the CAF associated to ψ is given by the formula:

∀a ∈ Λ,Ψ(P)(a) = π ◦ ψ(p)(a) = max
S⊆N

min (fS(a),min
i∈S

Pi(a)).

Moreover, ψ is unanimous if and only if for every a ∈ Λ f∅(a) = 0 and
fN (a) = 1 (in which case, (2) and (3) are automatically satisfied).
We will call the {a→ fS(a)}S∈2N above the phantom functions associ-
ated to ψ.
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Proof. ⇒:
• Let us show the existence of the phantom functions fS .
The level-by-level lemma (Lemma 6) gives us that if Ψ is level-SP then
for all a ∈ Λ we have that the value Ψ(P1, . . . , Pn)(a) only depends on
P1(a), . . . , Pn(a) as such level-SP implies the existence of a one-SP function
ga such that:

∀P,Ψ(P)(a) = ga(P1(a), . . . , Pn(a)).

Since ga is one-SP, by Moulin [Mou80] classical result, we have that there
are phantom values baS : S ⊆ N that are increasing with S such that:

∀r, ga(r) = max
S⊆N

min (baS ,min
i∈S

{ri})

It follows that there are 2n phantom functions fS : Λ → [0, 1] that are
increasing over the subsets of S such that:

∀a ∈ Λ,∀P,Ψ(P)(a) = max
S⊆N

min (fS(a),min
i∈S

{Pi(a)})

.
• Let us now show that phantom functions fS are right continuous and
increasing.
Let us consider any phantom function fS and any two alternatives a < b.
Let us suppose that all experts i ∈ S are single-minded in a (every vote pi
with i ∈ S is equal to a Dirac mass at a ∈ Λ, e.g. pi = δa,∀i ∈ S) and that
all other experts are single-minded in b. Then the outcome of the interval
[a, b[ is given by fS . Since the outcome is a cumulative distribution it
must be right continuous and increasing. As such fS is right continuous
and increasing on the interval [a, b[. Since this is true for all intervals [a, b[
we have that fS is right continuous and increasing on Λ, and this is true
for every S.

• Let us now show that lima→supΛ fN (a) = 1.
Since when inputs are cumulative distributions the outcome is a cumula-
tive distribution we have:

lim
a→supΛ

Ψ(P)(a) = 1,

therefore since for all i, lima→supΛ Pi(a) =1, it follows that lima→supΛ Ψa(1) =
lima→supΛ fN (a) = 1. Therefore:

lim
a→supΛ

fN (a) = 1.

• The proof for if inf Λ ̸∈ Λ then lima→inf Λ fN (a) = 0 is symetrical to the
one for lima→supΛ fN (a) = 1.

⇐: Let us fix a, let ga be the one-SP voting rule defined as:

∀r, ga(r) = max
S⊆N

min (fS(a),min
i∈S

{ri}).
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Then by definition we have ∀P, ga(P1(a), . . . , Pn(a)) = Ψ(P)(a). Since ga is
a one-SP rule, we have for all alternatives a ∈ Λ and all profiles P:

Pi(a) < Ψ(P)(a) ⇒ Ψ(P)(a) ≤ Ψ(P−i(P
′
i ))(a)

and
Pi(a) > Ψ(P)(a) ⇒ Ψ(P )(a) ≥ Ψ(P−i(P

′
i ))(a).

In other words, Ψ is level-SP.
The increasing right continuity of the fS functions imply that the outcome

is right continuous and increasing. Since lima→supΛ fN (a) = 1, we know that
lima→supΛ,Ψ(P)(a) = 1 by using the formula for the value S. As such, if the
inputs are cumulative distributions the outcome is also a cumulative distribu-
tion.

◦ : Unanimity is immediate by the condition for a unanimous one-SP function
in the Moulin’s max-min characterization.

Theorem 2 (Level-SP: the Median formula). A PAF ψ : PN → P is level-SP
and anonymous if and only if there exists n+1 weakly increasing right continuous
function fk : Λ → [0, 1] that verifies the following properties:

• for all 0 ≤ k ≤ n− 1 we have fk ≤ fk+1;
• if supΛ ̸∈ Λ, then lima→supΛ fn(a) = 1 otherwise fn(supΛ) = 1
• if inf Λ ̸∈ Λ then lima→inf Λ f0(a) = 0;
• Ψ : CN → C the CAF associated to ψ is given by the formula:

∀a ∈ Λ,Ψ(P)(a) = median (P1(a), . . . , Pn(a), f0(a), . . . , fn(a))

Moreover ψ is unanimous if and only if for all a ∈ Λ f0(a) = 0 and fn(a) = 1.
We will call the {fk}k∈{1,...,n+1} the phantom functions associated to
ψ.

Proof. The proof is essentially the same as the general case except one uses the
anonymous characterization. The following only gives the details not given in
the general proof.

⇒: Once we have shown the existence of ga we must show that if ψ is
anonymous then for all a < Λ we have that ga is anonymous. Let us do this
by reductio ad absurdum. Suppose that ga is not anonymous then there is a
permutation σ and inputs r such that ga(r) ̸= ga(rσ(1), . . . , rσ(n)). It follows
that for any P such that ∀i, ri = Pi(a), we have:

Ψ(P)(a) ̸= Ψ(Pσ(1), . . . , Pσ(n))(a).

As such Ψ is not anonymous. It follows (by the bijection between the CDFs
and the PDFs) that ψ is not anonymous. QED.

⇐: It remains to show that ψ is anonymous. It is immediate by the charac-
terization that all ga are anonymous. As such:

∀a,∀P,Ψ(P)(a) = Ψ(Pσ(1), . . . , Pσ(n))(a).
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Therefore:
∀P,Ψ(P) = Ψ(Pσ(1), . . . , Pσ(n)).

Hence Ψ is anonymous, consequently, by the bijection between the CDFs and
the PDFs, so is ψ.

Lemma 7. If ψ is anonymous then the two characterizations and definitions of
phantom function (via max-min and median formula) are consistent and linked
as follows:

∀S ⊂ N : fS = f#S .

where #S denote the cardinal of S, the “f” on the left side denotes a phantom
function in the max-min formula (general case) and the “f” in the right side it
denotes a phantom function in the median formula (anonymous case).

Thus the terminology “phantom functions” is not ambiguous since, in both
characterizations, they represent the “same functions.”

Proof. Let ψ be a level-SP PAF and let {fS : S ∈ N} be the associated phantom
functions. Let us suppose that ∀k, ∃hk ∈ Λ → [0, 1],∀S ∈ N : k = #S ⇒
fS = hk. We wish to show that ψ is anonymous and that, in the anonymous
characterizations, the phantom functions are h1, . . . , hn.

Let us first show that ψ is anonymous. Let σ be a permutation of n elements.

∀a,Ψ(Pσ(1), . . . , Pσ(n))(a) = max
S⊆N

min (fS(a),min
i∈S

{rσ(i)})

= max
k≤n

min (hk(a), min
i∈S:#S=k

{rσ(i)})

= max
k≤n

min (hk(a), min
i∈S:#S=k

{ri})

= Ψ(P)(a)

Now let us show that when we consider the anonymous characterization for
ψ we find that hk = fk.

Suppose that for any given a < b ≤ supΛ, the set S of experts are single-
minded in a and the rest are single-minded in b. It follows that according to
the characterization in theorem 1, we have Ψ(P)(a) = hk(a) and according to
the characterisation in lemma 2 we have Ψ(P)(a) = fk(a). As such hk = fk.

A.2 Certainty preservation

Proposition 1 (Certainty preservation characterization). A level-SP PAF ψ
is certainty preserving iff it is unanimous and its associated phantom functions
fS are constants.
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Proof. ⇒: Let us show that for a fixed S ⊂ N we have that fS is a constant.
Consider any two alternatives a < b < supΛ, and suppose that all experts
in S are single-minded in a and the rest are single-minded in b. By certainty
preservation we have that:

fS(a) = Ψ(P)(a) = Ψ(P)(b) = fS(b).

Since a and b can be arbitrarily chosen, the phantom functions are constants.
⇐: Suppose the fS are all constants then if for all i, and for any a, b Pi(a) =

Pi(b) we have Ψ(P)(a) = Ψ(P)(b). Therefore ψ satisfies certainty preservation.

A.3 Plausibility Preservation

Proposition 2 (Plausibility preservation characterization). A Level-SP PAF
ψ : PN → P is plausibility preserving iff each associated phantom function fS is
strictly increasing on the interval where its value is not in {0, 1} and f∅(a) < 1
for all a < supΛ and fN (a) > 0 for all a.

Proof. ⇒: Let us consider the phantom function fS and two alternatives a <
b < supΛ such that fS never takes the values 0 or 1 on the interval [a, b[.
Suppose all experts that are part of S submit:

Pi(c) = fS(c) + (1− fS(c))
c− a

b− a
.

All other experts submit:

Pi(c) = fS(c)
c− a

b− a
.

Since phantom functions are non-decreasing, the inputs are strictly increasing.
Since ψ is plausibility preserving we therefore have that Ψ(P) must be strictly
increasing on the interval [a, b[. Due to theorem 1 we know that on the interval
[a, b[ we have Ψ(P) = fS . Therefore we have shown that fS is strictly increasing
on the interval [a, b[. Since this proof holds for any interval [a, b[ chosen where
fS is never worth 0 or 1 we have shown that fS is strictly increasing when not
worth 0 or 1.

Suppose that there is a < supΛ such that f∅(a) = 1. Then if all experts
agree that Pi(a) < 1 we have by plausibility preservation:

1 = Ψ(a) < Ψ(supΛ) = 1

This is a contradiction. Therefore we conclude that for all a < supΛ f∅(a) < 1.
Similarly, if fN (a) = 0 for any a then assuming all experts are single-minded

in a. We have pi([a, a]) = 1 and ψ(p) = 0. This contradicts plausibility preser-
vation. It follows that fN > 0.

⇐: Suppose that all the phantom functions (fS)S⊂N are strictly increasing
when not in {0, 1}, and that f∅ < 1 (except maybe in supΛ) and fN > 0. For
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any interval [a, b], suppose that for all i, pi([a, b]) > 0. As such for all experts
i, we have Pi(a) < Pi(b) and for all S ⊆ N , fS(a) ≤ fS(b) with equality iff
fS(a) = 1 or fS(b) = 0.

We will now show by reducto ad absurdm we have plausibility preservation.
Hence, suppose that:

Ψ(P)(a) = max
S⊆N

min (fS(a),min
i∈S

{Pi(a)}) = max
S⊆N

min (fS(b),min
i∈S

{Pi(b)}) = Ψ(P)(b).

Hence, there is a set T such that:

max
S⊆N

min (fS(a),min
i∈S

{Pi(a)}) = min (fT (a),min
i∈T

{Pi(a)})

Let us now consider min (fT (b),mini∈T {Pi(b)}). We have the following in-
equalities:

Ψ(P)(a) = min (fT (a),min
i∈T

{Pi(a)}) ≤ min (fT (b),min
i∈T

{Pi(b)}) ≤ max
S⊆N

min (fS(b),min
i∈S

{Pi(b)}) = Ψ(P)(b).

As such we have:

min (fT (a),min
i∈T

{Pi(a)}) = min (fT (b),min
i∈T

{Pi(b)}). (2)

If there is an expert j such that min (fT (b),mini∈T {Pi(b)}) = Pj(b). Then
since Pj(a) < Pj(b), we cannot have the equality in equation (2). As such we
have Ψ(P)(b) = fT (b) < mini∈T {Pi(b)}. It follows that fT (b) = Ψ(P)(a) ≤
fT (a). Therefore fT (a) = fT (b). Therefore since fT is strictly increasing when
not equal to 0 or 1 we have fT (a) = 1 or fT (b) = 0.

If fT (a) = 1 we contradict that fT (b) < mini∈T {Pi(b)}. If fT (b) = 0, then
fT (b) < min(fN (b),mini∈N{Pi(b)}) which contradicts that T is the set such
that Ψ(P)(a) = min(fT (b),mini∈T {Pi(b)}).

As such we have reached a contradiction. It was absurd to assume that
Ψ(P)(a) = Ψ(P)(b).

A.4 Combining level-SP, certainty and plausibility preser-
vations

Proposition 3 (Combination 1st Characterization). A Level-SP Ψ is certainty
preserving and plausibility preserving if and only if the output of its associ-
ated one-SP voting rule g always output one of its inputs (e.g. g(r1, ..., rn) ⊂
{r1, ..., rn} for every (r1, ..., rn) ∈ [0, 1]N ).

Proof. ⇒: Since ψ is level-SP and certainty preserving the phantom functions
fS are constants. Since ψ is level-SP and plausibility preserving the phantom
functions fS are strictly increasing when not worth 0 or 1. As such the phantoms
functions fS are constants in {0, 1} with f∅ = 0 and fN = 1.

Let g denote the one-SP associated voting rule and consider any input r.
We will use reducto ad absurdum. Suppose that g(r) ̸∈ {ri : i ∈ N}. Then
according to theorem 1 we have that g(r) ∈ {0, 1}.
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• If g(r) = 1, then according to theorem 1 there is an S such that fS = 1 and
if S ̸= ∅ then for all i ∈ S, ri = 1. Since by hypothesis, 1 = g(r) ̸∈ {ri : i ∈
N}, none of the ri are equal to 1. As such S = ∅. However since f∅ = 0
(certainty preservation) this is absurd, and so we cannot have g(r) = 1.

• If g(r) = 0, then according to theorem 1 min(fN ,mini∈N{ri}) = 0. Since
fN = 1 (certainty preservation) we therefore have that one of the ri is
equal to 0. However by hypothesis 0 = g(r) ̸∈ {ri : i ∈ N}. We have
reached a contradiction.

As such our hypothesis was wrong and so:

∀r, g(r) ∈ {ri : i ∈ N}.

⇐: Suppose that ψ has an associated one-SP voting rule g such that for all r,
g(r1, ..., rn) ⊂ {r1, ..., rn}. Then ψ is certainty preserving and level-SP. We also
have ∀r ∈ {0, 1}N , g(r) ∈ {0, 1}. As such all phantoms functions are in {0, 1}.
Therefore ψ is plausibility preserving.

Proposition 4 (Combination 2nd Characterization). A Level-SP ψ is cer-
tainty preserving and plausibility preserving iff for any dominated profile P =
(P1, .., Pn), ψ(p) ∈ {p1, ..., pn}.

Proof. Let ri be selected. Then according to lemma 1 fj:rj≥ri = 1 and fj:rj>ri =
0.

Suppose that there is k such that ri ̸= rk and fj:rj≥rk = 1 and fj:rj>rk = 0.
Then we reach a contradiction since fS is increasing with S and that either
{j : rj ≥ rk} ⊆ {i : rj > ri} or {j : rj ≥ ri} ⊆ {i : rj > rk}.

It follows that fj:rj≥ri = 1 and fj:rj>ri = 0, iff ri is the outcome.
Since the profile is dominating we have a permutation σ such that Pσ(1) ≤

· · · ≤ Pσ(n).
Therefore since fS is increasing with S and that f∅ = 0 and fN = 1 we have

the existance of i such that fj:Pj≥Pi = 1 and fj:Pj>Pi = 0.
A such no matter the alternative a we have g(P(a)) = Pi(a), therefore

ψ(p) = pi.

Theorem 3 (Order Cumulatives). The order-cumulatives are the unique level-
SP PAF that are anonymous, certainty preserving, and plausibility preserving.

Proof. ⇒: As shown above, all fS are in {0, 1} and since g(r) = median(r1, . . . , rn, f0, . . . , fn)
for some real values f0 ≤ ... ≤ fn, there is k such that 0 = f1 = f2 = ... = fk <
fk+1 = ... = 1. Thus, we deduce that g(r) is always the k-th greatest element
of r and so g is an order function.

⇐: Since an order function can be written as median(r1, . . . , rn, f0, . . . , fn)
where all the phantoms are worth 0 or 1, the corresponding ψ is anonymous,
certainty preserving, plausibility preserving and level-SP.
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B Characterization of the weighted proportional
cumulative

B.1 Main weighted theorem

Recall that the weighted proportionality axiom says the following: if all experts
are single-minded (every i’vote pi equals the dirac mass at ai ∈ Λ, e.g. pi =
δai ,∀i ∈ N), the aggregation must coincide with the weighted average:

∀(a1, ..., an) ∈ ΛN ψ(δa1
, . . . , δan

) =
∑
i

wiδai
;

where wi ≥ 0 is given and is the normalized weight attributed to expert i ∈ N
(that is,

∑
j∈N wj = 1).

That axiom can be rewritten in terms of CAF as follows:

∀(a1, . . . , an) ∈ ΛN ,Ψ(δa≥a1
, . . . , δa≥an

)(a) =
∑

i:ai≤a

wi.

This CAF formulation is useful in the proofs but the PAF formulation is
more elegant and intuitive.

Theorem 4 (Weighted Proportional Cumulative). The unique PAF ψ : Pn →
P that verifies level-SP and weighted proportionality is the unique certainty pre-
serving one associated to the one-SP rule µw, that is:

∀a ∈ Λ, (P1, . . . , Pn) ∈ C; Ψ(P1, . . . , Pn)(a) := µw(P1(a), . . . , Pn(a))

Proof. ⇒: Let ψ be level-SP and weighted proportional. Let Ψ be the cumulative
aggregation function associated to ψ and fS be its phantom functions. Let us
first show that:

∀S ⊆ N, ∀a ∈ Λ : fS(a) =
∑
i∈S

wi.

Let us take any S ⊆ N and a < supΛ. Suppose that all experts i ∈ S are
single-minded in a and all other experts are single-minded in any b > a. By
weighted proportional we therefore have ga(P1(a), . . . , PN (a)) =

∑
i∈S wi. By

level-SP we have ga(P1(a), . . . , PN (a)) = fS(a). We conclude that for all alter-
natives a < supΛ we have fS(a) =

∑
i∈S wi and we can assume without loss

of generality that this also holds for a = supΛ. Hence we conclude that the
phantoms associated to ψ are the constant phantom functions fS =

∑
i∈S wi.

Consequently, ψ is certainty preserving, and we denote by g the associated vot-
ing rule. We want to show that g = µw.

• Suppose that there is j such that g(r) = rj , then there is S such that
rj = min{rk : k ∈ S} and rj ≤ fS (theorem 1). Let S′ = {k : rj < rk}.
By the same theorem we have that fS′ ≤ rj .

– For any y > rj , we have
∑

i:ri≥y wi ≤
∑

i:ri>rj
wi = fS′ ≤ rj < y.

Therefore by definition of µw we have µw(r) ≤ rj .
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– For any y ≤ rj , we have
∑

i:ri≥y wi ≥
∑

i:ri≥rj
≥

∑
i:ri∈S = fS ≥

rj ≥ y. Therefore by definition of µw, µw(r) ≥ rj .
By combining the above we obtain that if there is j such that g(r) = rj ,
then µw(r) = rj .

• Suppose that there is no i such that g(r) = ri, then by theorem 1 there
is an S such that g(r) = fS and fS ≤ mini∈S ri therefore if k ∈ S then
rk > fS . Suppose there is an i such that if k ̸∈ S and rk > fS then for
S′ = S ∪ rk since f ′S ≥ fS we have min(fS′ ,mini∈S′ ri) ≥ fS . Therefore
according to the theorem, fS = fS′ . It follows that we can choose S such
that for all k ̸∈ S, rk < fS .

– For any y > fS we have
∑

i:ri≥y wi ≤
∑

i:ri≥fS
wi = fS < y, therefore

µw(r) ≤ rj .
– For y ≤ rj , we have

∑
i:ri≥y wi ≥

∑
i:ri≥fS

wi = fS ≥ y therefore
µw(r) ≥ fS . Therefore µw(r) = fS .

It follows that g = µw.
⇐: If Ψ is the certainty preserving, level-SP CAF associated with µw then

for r ∈ {0, 1}N , we have µw(r) =
∑

i:ri=1 wi. As such ψ verifies weighted
proportionality.

B.2 Rational weights

Proposition 5 (Rational weights). If all the weights are rationals wi = si/d
then:

∀r = (r1, ..., rn), µw(r) := median(

s1︷ ︸︸ ︷
r1, . . . , r1, . . . ,

sn︷ ︸︸ ︷
rn, . . . , rn, 0, 1/d, . . . , 1−1/d, 1)

Proof. First let us consider the anonymous case (all weights are equal) and
suppose that we have d experts. According to the weighted proportionality
property f#S = fS = #S

d . As such:

∀t = (t1, ..., td), µd(t) := µw=( 1
d ,...,

1
d )
(t) := median(t1, . . . , td, 0, 1/d, . . . , 1−1/d, 1).

Now that we have established the characterization of µd, we wish to establish
that if we have n experts such that each expert has weight si/d where si ∈ N,
then:

∀r, µw(r) = µd(

s1︷ ︸︸ ︷
r1, . . . , r1, . . . ,

sn︷ ︸︸ ︷
rn, . . . , rn) = median(

s1︷ ︸︸ ︷
r1, . . . , r1, . . . ,

sn︷ ︸︸ ︷
rn, . . . , rn, 1/d, . . . , 1−1/d).

(3)
Intuitively, we simply consider that for each expert i, if expert i has weight

wi = si/d then he is duplicated so as to appear si times in the anonymous case
with d players.

Let us now provide a formal proof. We will show that

∀r, λw(r) = median(

s1︷ ︸︸ ︷
r1, . . . , r1, . . . ,

sn︷ ︸︸ ︷
rn, . . . , rn, 1/d, . . . , 1− 1/d).
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verifies the weighted property. The uniticity of a level-SP function that verifies
the weighted property will then allow us to conclude that λw = µw.

Let us consider r where all the values are 0 or 1. Let S be the set of experts
i such that ri = 1. Since we have si iterations of ri, the number of iterations of
1 in the equation defining λw is

∑
i∈S si. Conversely the number of iterations

of 0 is
∑

i̸∈S si = d −
∑

i∈S si. It follows that the outcome of λw is the kth

phantom value. This element is k
n =

∑
i∈S wi. This shows that λw verifies the

weighted property. QED.

Theorem 5 (Proportionality). The proportional cumulative is the unique Level-
SP PAF satisfying proportionality.

Proof. Immediate using the previous proposition and theorem 5.

B.3 Dominated opinions

Proposition 6 (Proportional-cumulative for dominated profiles). Suppose that
Λ is an interval, and that all the Pi are continuous and verify for all i ∈ N ,
Pi ≥ Pi+1. Then the weighted-proportional level-SP mechanism ψ : PN → P of
weight w can be computed for this input profile as follows:

ψ(p)(a) =

{
pi(a) if

∑
k≤i−1 wk ≤ Pi(a) <

∑
k≤i wk

0 else

Proof. According to proposition 5 we have:

∀a,∀P,Ψ(P)(a) = sup

y
∣∣∣∣∣∣

∑
i:Pi(a)≥y

wi ≥ y

 .

Suppose for all i ∈ N , Pi ≥ Pi+1. Wlog we will also suppose that all the weights
are strictly positive. Let us determine the value of Ψ(P)(a) for any given a.

• Suppose
∑

k≤i−1 wk ≤ Pi(a) <
∑

k≤i wk.
– For any y > Pi(a) we have {k : Pk(a) ≥ y} ⊆ {k < i}. Therefore∑

k:Pk(a)≥y wk ≤
∑

k≤i−1 wk ≤ Pi(a) < y. By definition of µw we

therefore have Ψ(P)(a) ≤ Pi(a).
– For any y ≤ Pi(a) we have {k ≤ j} ⊆ {k : Pk(a) ≥ y}. As such∑

k:Pk(a)≥y wk ≥
∑

k≤j wk ≥ Pi(a) ≥ y. By definition of µw we

therefore have Ψ(P)(a) ≥ Pi(a).
We have therefore shown that Ψ(P)(a) = Pi(a).
By Bolzano’s theorem there is a a1 ≤ a such that Pi(a1) =

∑
k≤j−1 wk

and a2 > a such that Pi(a2) =
∑

k≤j wk. Therefore on the interval [a1, a2],
Ψ(P) = Pi. It follows that ψ(p)(a) = pi(a) on the interval ]a1, a2[.

• Suppose that there is no i such that
∑

k≤i−1 wk ≤ Pi(a) <
∑

k≤i wk.
Then there is an i such that, Pi+1(a) <

∑
k≤i wk < Pi(a). We show that

Ψ(P)(a) =
∑

k≤i wk by comparing y to
∑

k≤i wk just as we compared y
to Pi(a) in the previous section
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By Bolzano’s theorem there is a value a1 < a such that Pi(a1) =
∑

k≤j wk

and a2 > a1 such that Pi+1(a2) =
∑

k≤j wk. We have Ψ(P)(a1) =
Ψ(P)(a2) =

∑
k≤i wk.

Therefore Ψ(P)(a1) = Ψ(P)(a2). It follows that on the interval ]a1, a2[
ψ(p)(a) = 0.

C Impossibility results

C.1 Strategyproofness in the probability space

Theorem 6 (Certainty preserving L1-SP Impossibility). When #Λ ≥ 4, the
only certainty preserving ψ that are both Level-SP and LP

1 -SP are the dictato-
rials.

Proof. We will first prove our theorem for 2 experts.
Suppose that f{1} ≤ f{2} < 1. We will reach a contradiction.
Let A > 0 and B be such that f{2} + A < B and A + B < 1. Let p1 :=

(0, f{2} +A, 0, 1− (f{2} +A)) and p2 := (f{2} +A, 0, B − f{2}, 1−A−B).

g(r1, r2) = median(r1, r2, f{2}) if r2 ≥ r1

g(r1, r2) = median(r1, r2, f{1}) if r2 ≤ r1

p1 =(0, f{2} +A,B − f{2} −A, 1−B)

P1 =(0, f{2} +A,B, 1))

p2 =(f{2} +A, 0, B − f{2}, 1−A−B)

P2 =(f{2} +A, f{2} +A,B +A, 1)

Ψ(P) =(f{2}, f{2} +A,B, 1)

ψ(p) =(f{2}, A,B − f{2} −A, 1−B)

∥ψ(p)− p2∥P1 =|f{2} − (f{2} +A)|+ |A− 0|+ |(B − f{2} −A)− (B − f{2})|
+ |(1−B)− (1−B −A)|

∥ψ(p)− p2∥P1 =4A.

Let us now consider what happens when the second expert lies and submits
the probability function p′2 = (f1, 0, f2 − f1, 1− f2).
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p1 =(0, f{2} +A,B − f{2} −A, 1−B)

P1 =(0, f{2} +A,B, 1))

p′2 =(f{2}, 0, B − f{2}, 1−B)

P ′
2 =(f{2}, f{2}, B, 1)

Ψ(P’) =(f{2}, f{2}, B, 1)

ψ(p’) =(f{2}, 0, B − f{2}, 1−B)

∥ψ(p’)− p2∥P1 =|f{2} − (f{2} +A)|+ |0− 0|
+ |(B − f{2})− (B − f{2})|+ |(1−B)− (1−B −A)|

∥ψ(p’)− p2∥P1 =2A.

Therefore our hypothesis is false. We therefore have that f{2} = 1. A similar
proof gives us that f{1} = 0. As such:

∀r, r1 ≤ r2 ⇒ median(r1, r2, 1) = r2

and
∀r, r1 ≤ r2 ⇒ median(r1, r2, 0) = r2.

Therefore if f{1} ≤ f{2} we have that the second expert is a dictator. Else
the first expert is a dictator.

It remains to show that we can add new experts.
Let us suppose that we have shown that if we have n experts then one is a

dictator. Let us now consider n+ 1 experts.
Let us consider a level-SP and certainty preserving ψ with n+1 experts, let

g be its associated voting rule. For any expert i there is a level-SP and certainty
preserving φi (with associated voting rule gi) such that:

∀P ∈ Cn, φi(P) = ψ((P), Pi).

Since φi is certainty preserving and level-SP it is a dictatorship, let vi be the
dictator. As such so are all the gi.

Suppose that there exists i such that vi ̸= i. Then for any ri ̸= rvi we have
g(r, ri) = rvi therefore by level-SP for any value rn+1 we have g(r, rn+1) = rvi .
Therefore ψ is a dictatorship with dictator vi.

Else for all i ≤ n we have that g(r, ri) = ri. As such for S such that
n+ 1 ∈ S by considering r such that for all i ∈ S we have ri = rn+1 and all
experts i ̸∈ S verify ri = 0 we wind that fS ≥ rn+1. As such fS = 1. Similarly if
S does not have the expert n+1 then fS = 0. This positioning of the phantoms
corresponds to the dictatorship with dictator n+ 1.

We have shown that no matter what ψ is a dictatorship.
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C.2 Strong plausibility

Certainty preservation was defined with respect to Borel sets, while plausibility
was defined only with respect to intervals. One may wonder why we did such a
choice?

Axiom 10 (Strong plausibility preservation). A probability aggregation function
ψ : PN → P verifies strong plausibility preservation iff for any input profiles
p ∈ PN and any Borel measurable event A ⊂ Λ:

pi(A) > 0 ∀i ∈ N → ψ(p)(A) > 0;

that is, if all expert agrees that some Borel event is plausible, so does society.

Unfortunately, extending the plausibility preservation to Borels is a too
strong axiom.

Theorem 7 (Strong Plausibility Impossibility). When Λ is a real interval,
the unique probability aggregation functions that are level-SP, unanimous, and
strong plausibility preserving are the dictatorials.

Proof. Let ψ be a probability aggregation function that is level-SP, unanimous,
and strong plausibility preserving. Suppose we can choose p and experts i ̸= j
such that there is a < b that verify Ψ(P)(a) = Pi(a) = Pi(b) = Ψ(P)(b) and for
all experts k ̸= i we have Pk(a) ̸= Ψ(P)(a) and pi([a, b]) > 0. Suppose we can
also have [c, d[ disjoint from [a, b] such that Ψ(P)(c) = Pj(c) = Pj(d) = Ψ(P)(d)
and Pi(c) ̸= Ψ(P)(c) and pi([c, d[) > 0.

For such an example, we contradict strong preservation for A = [a, b]∪ [c, d[.
As such no such example exists.

Let us show that their exists an expert i such and an interval [a, b] such that
we can find p that verifies Ψ(P)(a) = Pi(a) = Pi(b)Ψ(P)(b). By unanimity for
all a we have f∅(a) = 0 and fN (a) = 1. The previous proves that there is an
expert i such that for all S without i there is a positive and finite number of
alternatives aS such that there exists S where fS(aS) = 0 and fS∪{i}(aS) > 0
and for all a > aS fS(a) > 0. As such since Λ is rich we can find an interval
[a, b] and an S without i such that for all a′ ∈ [a, b] we have fS(a

′) = 0 and
fS∪{i}(a

′) > 0. Let us choose P such that 0 < Pi(a) = Pi(b) < fS∪{i}(a) and
Pi(b) < Pk(a) < Pk(b) if k ∈ S and Pk(a) < Pk(b) < Pi(a) if k ̸∈ S and k ̸= i.
This profile verifies Ψ(P)(a) = Pi(a) = Pi(b)Ψ(P)(b).

As such we can find an expert i and a < b such that Ψ(P)(a) = Pi(a) =
Pi(b)Ψ(P)(b) and all experts k ̸= i verify Pi(a) ̸= Ψ(P)(a). Therefore either
(1) we cannot find an expert j ̸= i and an interval [c, d[ disjoint from [a, b] such
that Ψ(P)(c) = Pj(c) = Pj(d) = Ψ(P)(d) or (2) Pi(c) = Ψ(P)(c).

Suppose that (1) is false. There is an interval [c, d[ disjoint of [a, b] such
that all experts k ̸= i are constant and equal on [c, d]. If Ψ(c) = Pk(c) =
Pk(d) = Ψ(P)(d) then for all sub-intervals [c′, d′[ of [c, d[ this is true as such
Pi(c

′) = Ψ(P)(c′). Therefore Ψ = Pi for [c, d[.
Else Ψ(P(c) ̸= Pk(c) or Ψ(P)(d) ̸= Pk(d).
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Suppose that Ψ(P(c) ̸= Pk(c). Then by Moulin’s characterization Ψ(P(c) ∈
{fN−i(c), fi(c), Pi(c)} If Ψ(P(c) < Pi(c) then we select fN−i(c). By changing
to P ′

k(c) = P ′
k(d) > fN−i(c) we can find a sub-interval [c, d′] of [c, d] were

Ψ(P)(c) = Pj(c) = Pj(d
′) = Ψ(P)(d′). This is absurd. A similar proof show

that Ψ(P(c) = fi(c) results in a contradiction. It follows that Pi(c) = Ψ(p)(c).
Suppose that Ψ(P(c) = Pk(c). Then by considering considering subsets

[c, d′[ or [c, d[ we find that for all d′ we have Ψ(P(d′) ̸= Pk(d). Therefore
Ψ(P)(d′) > Pk(d). As such by unanimity Pi(d

′) > Ψ(P)(d′).
By considering [c′, d[ and using the above we find that for all c′ we have

Pi(c
′) = Ψ(P)(c′). By right continuity we therefore have Pi(c) = Ψ(P)(c).
We have shown that no matter what c ̸∈ [a, b] Pi(c) = Ψ(P)(c). By replacing

[a, b] by a subset we can show that for all c ∈ Λ we have Pi(c) = Ψ(P)(c).
Therefore i is a dictator.

C.3 Diversity

Theorem 8 (Diversity Impossibility). If Λ is an interval, no Level-SP unani-
mous PAF satisfies diversity.

Proof. Diversity implies strong plausibility. As such we can simply use the
strong plausibility impossibility theorem (theorem 3.

C.4 Weak Diversity

Axiom 11 (Weak Diversity). For every diracs inputs (p1, ..., pn) = (δa1 , ..., δan),
there exists positive weights w1 > 0, ..., wn > 0 such that ψ(δa1

, ..., δan
) =∑n

i=1 wiδai
.

Why do we call it weak diversity? because the axiom requires that, all
experts possible opinions (when they are degenerate) have a positive probability
in the output.

Weighted proportional methods are weak diverse. But this axiom is much
weaker than the weighted proportionality axiom because the expert’s weights
may depend on the input in the weak diversity axiom while in the case of
proportionality, the expert’s weights are the same for all inputs. This opens the
door to a much larger class of methods, that can be characterized as follows.

Proposition 7. The association of weak diversity with Level-SP is equivalent
to certainty preservation + that fS is strictly increasing with respect to S.

Proof. ⇒: Suppose ψ verifies weak diversity and level-SP. Let a < M , and
suppose that all experts are single minded, that is the input is (δa1 , ..., δan).

If no expert wanted elements in the interval ]a, b] (ai ̸∈]a, b] for all i) then
by weak diversity Ψ(a) = Ψ(b). As such for any S we have that if the experts
i in S have ai ≤ a and the rest have b < ai then fS(a) = Ψ(a) = Ψ(b) = fS(b).
Since we can consider any interval we can conclude that the fS are constants.
Therefore we are certainty preserving. Since whenever all experts are single
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minded, no matter what alternative they choose the weight of each of those
alternative must be felt (wi > 0) then for all S ̸= ∅ for all i ∈ S, fS > fS−i.

⇐: Suppose certainty preservation and that fS is strictly increasing. Then,
for any input of single-minded experts (δa1

, ..., δan
) and all a ∈ Λ

Ψ(P)(a) = f{i:ai≤a}(a)

Therefore, ψ(δa1 , ..., δan)(a) = f{i:ai≤a} − f{i:ai<a} and so:

ψ(δa1
, ..., δan

) =

n∑
i=1

(f{i:aj≤ai} − f{i:aj<ai})δai

By construction, the weighted proportional cumulative methods satisfy weak
diversity. However, we have seen that they do not preserve plausibility. On the
other hand, the order-cumulative PAFs are not weak diversified but they do pre-
serve plausibility. Are there methods that are weak diversified and plausibility
preserving? Unfortunately, no!

Theorem 9 (Weak diversity Impossibility). For 3 or more experts, there are no
level-SP probability aggregation functions that satisfy weak diversity and preserve
plausibility.

Proof. Suppose that ψ : PN → P is a level-SP probability aggregation function
that satisfies weak diversity and preserves plausibility. Then, since weak diver-
sity implies certainty preservation and that ψ preserves plausibility, we must
have fS ∈ {0, 1}N . On the other hand, weak diversity implies that fS is strictly
increasing with S. By pigeon-hole principle, we reach a contradiction.

Unfortunately, weighted proportional cumulative methods do satisfy a weaker
version of plausibility, namely, if all voters agree that a level event has positive
probability, so does society. This is good enough for the applications where the
regulator’s final decision only depends on the probability of some level events.

D Combining the two notions of SP

Here we prove the existence of methods that are at the same time strategyproof
in the cumulative (level-SP) and in the probability spaces (LP

1 − SP as in
[Fre+19]).

Proposition 8. For #Λ = 3, any Level-SP PAF is also LP
1 − SP .

Proof. Suppose that Λ has three alternatives {a1, a2, a3}.

∥ψ(P)−pi∥1 = |Ψ(P)(a1)−Pi(a1)|+|Ψ(P)(a2)−Ψ(P)(a1)−Pi(a2)+Pi(a1)|+|Ψ(P)(a2)−Pi(a2)|
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Let Q only differ from P in dimension i.
Suppose that ∥ψ(P)− pi∥1 > ∥ψ(Q)− pi∥1.
By level-SP it is impossible to decrease |Ψ(P)(a1)− Pi(a1)| or |Ψ(P)(a2)−

Pi(a2)|. Therefore we decreased |Ψ(P)(a2) − Ψ(P)(a1) − Pi(a2) + Pi(a1)|. If
you did this by causing a change to the value of Ψ(P)(a2) then you increased
|Ψ(P)(a2) − Pi(a2)| by the same amount (resp for Ψ(P)(a1)). Therefore we
cannot decrease the value for the L1 norm. We have reached our contradiction.

Proposition 9. There is an infinite number of ψ functions that are Level-SP
and L1-SP for 4 alternatives.

But such methods cannot be certainty preserving, unless dictatorial, as
shown above.

Proof. Let us choose a Level-SP function Ψ such that, Ψ1 = min and Ψ3 = max.
• Let us suppose that by changing P1 player i can improve his output for
|ψj(a2)−pj(a2)|. Then he decreases Ψ1 which is detrimental for |ψj(a1)−
pj(a1)|. Therefore changes to P1 cannot improve the ∥ ◦ ∥1 distance.

• Let us suppose that by changing P3 player i can improve his output for:

|ψj(a3)− pj(a3)|

. Then he increases Ψ3 which is detrimental for |ψj(a3)−pj(a3)|. Therefore
changes to P3 cannot improve the ∥ ◦ ∥1 distance.

• Suppose that p2 > ψ2 then since p1 ≥ ψ1 we have P2 > Ψ2. Therefore by
level SP it is impossible to improve |p2 − ψ2|.

• Similarly if p3 > ψ3 then by level SP it is impossible to improve |p2 −ψ2|.
• Suppose that p2 ≤ ψ2 and p3 ≤ ψ3. Therefore any changes to Ψ2 is
detrimental to one and beneficial to the other.

Therefore we are both level-SP and L1-SP.
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