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LEARNING IN NONATOMIC GAMES, PART I:

FINITE ACTION SPACES AND POPULATION GAMES

SAEED HADIKHANLOO∗, RIDA LARAKI†,
PANAYOTIS MERTIKOPOULOS♯, AND SYLVAIN SORIN‡

Abstract. We examine the long-run behavior of a wide range of dynamics for learning
in nonatomic games, in both discrete and continuous time. The class of dynamics under
consideration includes fictitious play and its regularized variants, the best reply dynamics
(again, possibly regularized), as well as the dynamics of dual averaging / “follow the
regularized leader” (which themselves include as special cases the replicator dynamics
and Friedman’s projection dynamics). Our analysis concerns both the actual trajectory
of play and its time-average, and we cover potential and monotone games, as well as
games with an evolutionarily stable state (global or otherwise). We focus exclusively
on games with finite action spaces; nonatomic games with continuous action spaces are
treated in detail in Part II.

1. Introduction

The study of evolutionary dynamics in population games has been the mainstay of evolu-
tionary game theory ever since the inception of the field in the mid-1970’s. Such dynamics
are typically derived from biological models or economic microfoundations that express the
net growth rate of a type (or strategy) within a population as a function of the relative
frequency of all other types. Thus, owing to the flexibility of this general framework, these
considerations have generated an immense body of literature; for an introduction to the
topic, we refer the reader to the masterful treatments of Hofbauer & Sigmund [20], Weibull
[57], and the more recent, panoramic survey of Sandholm [45, 46].

Our paper takes a complementary approach and aims to examine the long-run behavior of
learning procedures in nonatomic games. While the topic of learning in games with a finite

number of players is fairly well-studied – see e.g., the classic works of Fudenberg & Levine
[13] and Cesa-Bianchi & Lugosi [9] – the same cannot be said for learning in population
games. On that account, our goal in this paper is to provide a synthetic treatment for a
wide range of dynamics for learning in nonatomic games, unifying along the way a number
of existing results in the literature.

We pursue this goal in two parts. In the current paper, we focus exclusively on games
with shared, finite action spaces; games with continuous (and possibly player-dependent)
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action spaces are significantly more complicated, so their study is deferred to the companion
paper [16].

Overview of the paper. To specify the general framework under consideration one has to:

a) Describe the family of games to be studied: These are anonymous nonatomic games
and two concrete classes thereof, potential and monotone games; the relevant details
are provided in Section 2.

b) Identify the solution concepts involved: We will mainly focus on Nash equilibria
and variants of evolutionarily stable states, expressed throughout as solutions of an
associated variational inequality; this is also described in Section 2.

c) Define the dynamics under study: This is the content of Section 3, where we begin
by recalling the standard fictitious play procedure of Brown [8] and Robinson [41], its
regularized variants [18], and its continuous-time analogue, the best reply dynamics
of Gilboa & Matsui [15]. Subsequently, we introduce a general class of dynamics
known as dual averaging – or “follow the regularized leader” – and which contains
as special cases the replicator dynamics of Taylor & Jonker [55] and the projection
dynamics of Friedman [12].

The dynamics we examine evolve in both discrete and continuous time: the continuous-
time analysis is presented in Section 4 and comprises the template for the discrete-time
analysis that follows in Section 5. In both cases, our analysis builds on previous work and
results by Monderer & Shapley [37], Sandholm [44], Hofbauer & Sigmund [21], Hofbauer
& Sandholm [18, 19], Hofbauer et al. [23] and Mertikopoulos & Sandholm [32, 33]. In this
context, some of the new results that we present in our paper can be summarized as follows:

a) We establish a precise link between (regularized) fictitious play and dual averaging:
informally, fictitious play best-responds to the average population state whereas dual
averaging best-responds to the average population payoff profile.

b) We determine the equilibrium convergence properties of vanishingly regularized ficti-
tious play in continuous time.

c) We provide a range of conditions for the convergence of dual averaging trajectories to
evolutionarily stable states, in both discrete and continuous time (and possibly with
a variable learning rate).

Finally, in Section 6, we discuss several extensions of these results beyond single-population
nonatomic games, and we provide a preview of the issues that arise in nonatomic games
with continuous action spaces – the topic of interest of the follow-up paper [16].

2. Preliminaries

2.1. Nonatomic games. A (single-population) nonatomic game is defined by the following
primitives:

• A population of players. This is modeled by the unit interval I = [0, 1] endowed with
the Lebesgue measure µ. The nonatomic aspect means that the behavior of a set of
players with zero measure has no impact on the game (see below).

• A set of pure strategies A = {1, . . . , A}. Following Schmeidler [47], the players’ strategic
behavior is defined as a measurable function χ : I → A, with χ(i) ∈ A denoting the pure
strategy of player i. Given a pure strategy α ∈ A, the inverse image χ−1(α) = {i ∈ I :
χ(i) = α} will be called the set of “α-strategists”, and the corresponding pushforward
measure x := χ♯µ ≡ µ ◦ χ−1 on A will be called the state of the population. This
measure will be the main variable of interest; for convenience, we will view x as an
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element of the simplex X := ∆(A) and we will write xα = µ(χ−1(α)) for the relative

frequency of α-strategists in the population.

• A family of continuous payoff functions uα : X → R, α ∈ A. Specifically, uα(x) denotes
the payoff to α-strategists when the state of the population is x ∈ X . Collectively, we
will also write F (x) = (uα(x))α∈A for the population’s payoff vector at state x.

The above definition specifies a population game G ≡ G(A, F ), cf. Sandholm [45] and
references therein. In this definition, players are anonymous in the sense that their payoffs
factor through the state of the population and do not depend on specific players choos-
ing specific strategies. For more intricate classes of nonatomic games (possibly involving
idiosyncratic components), see Schmeidler [47] and Mas-Colell [27].

2.2. Equilibria, stability, and variational inequalities. In population games, an equilibrium
is defined as a population state x∗ ∈ X in which almost all players are satisfied with their
choice of strategy. Formally, x∗ ∈ X is an equilibrium of G if

uα(x
∗) ≥ uβ(x∗) for all α ∈ supp(x∗), β ∈ A, (Eq)

where supp(x∗) denotes the support of x∗. Equivalently, this requirement for x∗ ∈ X can
be stated as a Stampacchia variational inequality (SVI) of the form

〈F (x∗), x− x∗〉 ≤ 0 for all x ∈ X . (SVI)

Equilibria can also be seen as fixed points of the continuous endomorphism x 7→ ΠX (x +
F (x)), where ΠX denotes the Euclidean projector on X . By standard fixed point arguments,
it follows that the game’s set of equilibria is nonempty; we will denote this set as Eq(G).
Remark. In operator theory and optimization, the direction of (SVI) is typically reversed
because optimization problems are usually formulated as minimization problems. The utility
maximization viewpoint is more common in the literature on population games, so we will
maintain this sign convention throughout.

An alternative characterization of equilibria is by means of the best-response correspon-

dence BR : X ⇒ X , defined here as

BR(x) := argmax
x′∈X

〈F (x), x′〉, (1)

We then have the following string of equivalences:

x∗ ∈ BR(x∗) ⇐⇒ supp(x∗) ⊆ BR(x∗) ⇐⇒ x∗ ∈ Eq(G) (2)

i.e., the equilibria of the game correspond to the fixed points of BR. One can easily show
that, under our assumptions, this correspondence has a closed graph and convex compact
non-empty values. By Kakutani’s fixed point theorem, Eq(G) – that is, the set of fixed
points of BR – is nonempty and compact.

We will also consider the associated Minty variational inequality (MVI) for x∗ ∈ X ,
namely

〈F (x), x − x∗〉 ≤ 0 for all x ∈ X . (MVI)

For concreteness, we will write SVI(G) and MVI(G) for the set of solutions of (SVI) and
(MVI) respectively. In terms of structural properties, MVI(G) is convex and, under our con-
tinuity assumption for F , it is straightforward to verify that MVI(G) ⊆ SVI(G) ≡ Eq(G). In
this regard, (MVI) represents an “equilibrium refinement” criterion for G (see also Section 2.3
below).

In more detail, (MVI) is intimately related to the seminal notion of evolutionary stability

that was introduced by Maynard Smith & Price [28] and formed the starting point of
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evolutionary game theory. To make this link precise, recall that a population state x∗ ∈ X
is an evolutionarily stable state of G [28, 20, 45], if

〈F (δx+ (1− δ)x∗), x− x∗〉 < 0 (ESS)

for all sufficiently small δ > 0 and all states x 6= x∗. Analogously, x∗ ∈ X is a neutrally

stable state (NSS) of G if (ESS) holds as a weak inequality, i.e.,

〈F (δx+ (1− δ)x∗), x− x∗〉 ≤ 0 (NSS)

for all sufficiently small δ > 0 and all x ∈ X . Finally, x∗ is said to be a globally evolutionarily

stable state (resp. globally neutrally stable state) of G if (ESS) [resp. (NSS)] holds for all
δ ∈ (0, 1]. In obvious notation, we will write ESS(G), NSS(G), GESS(G) and GNSS(G) for
the respective set of states of G (by definition GESS(G) consists of at most a single point).

Characterizations and implications. A concise characterization of these notions of stability
was derived by Taylor [54] and Hofbauer et al. [22], who showed that x∗ ∈ ESS(G) if and
only if there exists a neighborhood U of x∗ in X such that

〈F (x), x − x∗〉 < 0 for all x ∈ U \ {x∗}, (3)

and, furthermore, if we can take U = X above, then GESS(G) = {x∗}. For the corresponding
neutral versions, we have x∗ ∈ NSS(G) if and only if (3) holds on U as a weak inequality,
and x∗ ∈ GNSS(G) if and only if we can take U = X in this case. This characterization
of GNSS(G) corresponds precisely to the solution set of (MVI); in particular, we have the
following string of inclusions:

GESS GNSS MVI

ESS NSS Eq SVI

⊆

⊆

≡

⊆ ⊆

⊆ ⊆ ≡

(4)

In general, the above inclusions are all one-way; in the next section, we discuss two important
cases where some of them become equivalences.

2.3. Classes of games. The following classes of games will play an important role in the
sequel:

(1) Potential games: these are games that admit a potential function, i.e., a function
P : X → R such that F = ∇P on X , or, more generally,

P ′(x;x′ − x) = 〈F (x), x′ − x〉 for all x, x′ ∈ X , (Pot)

where P ′(x; z) := limt→0+ [P (x + tz) − P (x)]/t denotes the one-sided directional
derivative of P at x along z. If G is a potential game, any local maximum of P
is an equilibrium of G, and any strict local maximum of P is an ESS of G. For
a detailed treatment of potential games in population games extending the initial
study of Monderer & Shapley [37], see Sandholm [44, 45].

(2) Monotone games: these are games that satisfy the monotonicity condition

〈F (x′)− F (x), x′ − x〉 ≤ 0 for all x, x′ ∈ X . (Mon)

This condition implies that every equilibrium of G is neutrally stable, so we get the
following equivalences:

MVI(G) ≡ GNSS(G) = NSS(G) = Eq(G) ≡ SVI(G) (5)

In this class, the existence of equilibria relies only on the minmax theorem [36].
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Going further, a game is called strictly monotone if (Mon) holds as a strict
inequality for all x′ 6= x. In this case, we have the stronger equivalence

GESS(G) = ESS(G) = Eq(G), (6)

i.e., all inclusions in (4) become two-way. Moreover, Eq(G) is a singleton which is
also the unique GESS of the game.

The intersection of potential and monotone (resp. strictly monotone) games occurs when
G admits a concave (resp. strictly concave) potential. The most important example of such
games is the class of nonatomic congestion games that arise in routing and transportation
theory, cf. Dafermos [11].

2.4. Regularization. In the sequel, we will often consider “regularized” best responses that
are single-valued. These are defined as follows:

Definition 2.1. A regularizer on X is a function h : RA → R ∪ {∞} such that:

(1) h is supported on X , i.e., domh = {x ∈ R
A : h(x) <∞} = X .

(2) h is strictly convex and continuous on X .

Given a regularizer on X , we further define:

a) The associated choice map Qh : R
A → X given by

Qh(v) := argmax
x′∈X

{〈v, x′〉 − h(x′)}. (7a)

b) The regularized best response to a population state x ∈ X :

BRh(x) := argmax
x′∈X

{〈F (x), x′〉 − h(x′)} = Qh(F (x)). (7b)

Remark 2.1. By our assumptions for h (continuity and strict convexity), Qh and BRh are
both well-defined and single-valued as correspondences. Moreover, by the strict convexity of
h, it follows that the convex conjugate h∗(y) = maxx∈X {〈y, x〉 − h(x)} of h is differentiable
and satisfies

Qh(v) = ∇h∗(v) for all v ∈ R
A. (8)

Remark 2.2. By construction, BRh (approximately) best-responds to strategies, while Qh

best-responds to payoff vectors. For this reason, we will sometimes refer to Qh as a “payoff-
based” regularized best response (as opposed to “strategy-based” regularized best response
for BRh ).

Moving forward, for part of our analysis, we will also require one (or both) of the regularity
conditions below:

(1) h is K-strongly convex on X , i.e.,

h(λx + (1− λ)x′) ≤ λh(x) + (1 − λ)h(x′)− K

2
λ(1 − λ)‖x′ − x‖2 (StrCvx)

for all x, x′ ∈ X and all λ ∈ [0, 1].

(2) The subdifferential ∂h of h admits a continuous selection; specifically, writing Xh :=
dom∂h = {x : ∂h(x) 6= ∅} for the “prox-domain” of h, we posit that there exists a

continuous map ∇̃h : Xh → R
A such that

∇̃h(x) ∈ ∂h(x) for all x ∈ Xh. (Diff)

By replacing best responses with regularized best responses in the definition of equilibria,
we also define the notion of a regularized equilibrium as follows:
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Definition 2.2. Given a regularizer h on X and a regularization weight ε > 0, we define
an ε-regularized equilibrium of G as a profile x∗ ∈ X such that x∗ ∈ BRεh(x

∗). The set of
ε-regularized equilibria of G will be denoted as Eqεh(G).

Under (Diff), x∗ ∈ X is an ε-regularized equilibrium if and only if

〈F (x∗)− ε∇̃h(x∗), x∗ − x〉 ≥ 0 for all x ∈ X . (9)

In this regard, ε-regularized equilibria can be seen as Nash equilibria of the “ε-regularized”

game Gε ≡ Gε(A, Fε) with payoff profile Fε(x) := F (x)− ε∇̃h(x); more concisely, Eqε(G) =
Eq(Gε).

Equilibria and regularized equilibria are related by the next hemicontinuity property,
itself a consequence of the maximum theorem of Berge [6].

Lemma 1. Let x∗ε ∈ Eqε(G), ε > 0, be a family of regularized equilibria of G. Then, in the

limit ε→ 0, any accumulation point of x∗ε is an equilibrium of G.
We close this section with a concrete illustration of the above concepts:

Example 2.1 (Logit choice). An important example of regularization corresponds to the
entropic regularizer h(x) =

∑
α∈A xα log xα which, by a standard calculation, leads to the

choice map

Λ(v) =
(ev1 , . . . , evA)

ev1 + · · ·+ evA
. (10)

This map is commonly referred to as the logit choice map [29], and the corresponding fixed
points x∗ = Λ(F (x∗)/ε) are known as logit equilibria; for a detailed discussion, see van
Damme [56], McKelvey & Palfrey [30], Sandholm [45], and references therein. It is also well
known that the entropic regularizer is 1-strongly convex relative to the L1-norm, so Λ is
1-Lipschitz continuous, cf. Shalev-Shwartz [48]. ♦

3. Dynamics

In this section, we introduce a wide range of dynamics for learning in nonatomic games,
in both continuous and discrete time. The unifying principle of the dynamics under study
is that agents play a best response – regularized or otherwise – to some version of the
history of play: the empirical population frequencies, or the players’ average gains. For
historical reasons, we begin with the discrete-time framework in Section 3.1, and we present
the corresponding continuous-time dynamics in Section 3.2.

3.1. Discrete-time processes. In the discrete-time case, we will consider the evolution of the
population state Xn ∈ X over a series of epochs n = 1, 2, . . . (corresponding for example to
generations in an evolutionary context). In turn, this population state is determined by a
recursive update rule – or algorithm – that defines the dynamics in question. Depending on
the manner of “best-responding” and the signal that the agents are best-responding to, we
have the following dynamics.

Fictitious play. Dating back to Brown [8] and Robinson [41], fictitious play (FP) posits that

agents best-respond to the empirical frequency (or “time average”) X̄n = (1/n)
∑n

k=1Xk of
their population state. Concretely, this means that the population state evolves according
to the process

Xn+1 ∈ BR(X̄n) = argmaxx∈X 〈F (X̄n), x〉. (FP)

In terms of empirical frequencies, we have the recursive dynamics

X̄n+1 − X̄n ∈
1

n+ 1
[BR(X̄n)− X̄n]. (11)
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In contrast to the sequence of actual population states Xn ∈ X , n = 1, 2, . . . , the sta-
tionary points of the time-averaged process (11) are straightforward to characterize. Indeed,
any fixed point x∗ of (11) satisfies

0 ∈ BR(x∗)− x∗, (12)

i.e., x∗ is stationary under (11) if and only if it is an equilibrium of G.

Regularized fictitious play. A variant of the original fictitious play algorithm is the “regu-
larized” version in which best responses are replaced by regularized best responses. In par-
ticular, given an underlying regularizer h on X and a corresponding regularization weight
ε > 0, the regularized fictitious play (RFP) process is defined as

Xn+1 = BRεh(X̄n) = argmaxx∈X Vεh(X̄n, x) (RFP)

with

Vεh(x
′, x) = 〈F (x′), x〉 − εh(x) (13)

Then, as before, in terms of empirical frequencies, we have

X̄n+1 − X̄n ∈
1

n+ 1
[BRεh(X̄n)− X̄n]. (14)

As in the case of (FP), the stationary points of the time-averaged dynamics (RFP) are
given by the fixed point equation

0 ∈ BRεh(x
∗)− x∗, (15)

i.e., they are precisely the ε-regularized equilibria of G (cf. Definition 2.2).

Remark. In the literature, this process is sometimes referred to as “smooth” or “perturbed”
fictitious play, cf. Fudenberg & Levine [14], Hofbauer & Sandholm [18] and references
therein. This difference in terminology is owed to a different set of assumptions for h, which
gives rise to interior-valued choice maps Q : RA → X .

Vanishingly regularized fictitious play. When the regularization weight in (RFP) decreases
over time, we obtain the vanishingly regularized fictitious play (VRFP) dynamics of Benaïm
& Faure [3], viz.

Xn+1 = BRεnh(X̄n) = argmaxx∈X Vεnh(X̄n, x) (VRFP)

with εn > 0 for all n and εn → 0 as n→∞. In terms of empirical frequencies, we then have

X̄n+1 − X̄n ∈
1

n+ 1
[BRεnh(X̄n)− X̄n]. (16)

Because this process is non-autonomous (εn depends explicitly on n), it is no longer mean-
ingful to discuss its rest points.

Dual averaging. Dually to the above, instead of best-responding to the aggregate history
of play (perfectly or approximately), we can also consider the case where agents play a
”regularized best response to their aggregate payoff ”. In our context, this gives rise to the
dual averaging dynamics

Xn+1 = Qh

(
ηn

n∑

k=1

F (Xk)

)
, (17)

with Qh defined in (7a). Then, in iterative form, we get the update rule

Sn = Sn−1 + F (Xn)

Xn+1 = Qh(ηnSn)
(DA)
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where ηn > 0 is a “learning rate” parameter in the spirit of Nesterov [40]. In the recursive
formulation (DA) of the dynamics, the initialization S0 = 0 is the most common one but,
otherwise, it can be arbitrary.

Remark. In the literature on online learning and online optimization, the process (DA) is
known as “follow the regularized leader” (FTRL) [48, 49]. The terminology “dual averaging” is
due to Nesterov [40] and is more common in the theory of variational inequalities and offline
convex optimization. We adopt the latter to highlight the link of our work to variational
inequalities.

Links between the dynamics: the case of random matching. To illustrate the relations
between the various learning processes discussed above, it will be instructive to consider
nonatomic games generated by random matching [57, 45]. In such games, players are ran-
domly matched to play a symmetric two-player game with payoff matrix A ∈ R

A×A, so the
population’s mean payoff profile is F (x) = Mx for all x ∈ X . As a result, the dynamics
(DA) may be rewritten as

Xn+1 = Qh

(
ηn

n∑

k=1

F (Xk)

)
= Qh

(
nηnF (X̄n)

)
= Qh/(nηn)(F (X̄n)), (18)

which immediately allows us to recover the variants of fictitious play as follows:

(1) For (VRFP): ηn = 1/(nεn) for a sequence of weights εn > 0, limn→∞ εn = 0.

(2) For (RFP): ηn = 1/(nε) for some fixed ε > 0.

(3) For (FP): this corresponds to the limiting cases “nηn =∞” or “h = 0”. [Of course,
these parameter choices are not formally allowed in (DA), so this limit is informal.]

Remark. The above is meaningful only when F (x) is linear in x; however, the relation
between ε and η will be seen to underlie a large part of the sequel.

3.2. Continuous-time dynamics. We now proceed to define the corresponding continuous-
time dynamics for each of the processes described above.

Best reply dynamics. The autonomous formulation (11) of fictitious play can be seen as
an Euler discretization of the best reply dynamics (BRD) of Gilboa & Matsui [15], namely

µ̇t ∈ BR(µt)− µt. (BRD)

In the above, µt ∈ X is the continuous-time analogue of the empirical mean process X̄n in
discrete time; we use the notation µ instead of x to highlight this link. Clearly, the rest
points of (BRD) are again described by the fixed point equation (12), i.e., µ∗ is stationary
under (BRD) if and only if it is an equilibrium of G.
Regularized best reply dynamics. Working as above, the regularized best reply dynamics

(RBRD) are defined as
µ̇t = BRεh(µt)− µt. (RBRD)

As in the case of (RFP), the rest points of (RBRD) are characterized by the fixed point
equation (15), i.e., µ∗ is stationary under (RBRD) if and only if it is an ε-regularized
equilibrium of G.
Example 3.1 (The logit dynamics). Building on the logit choice map discussed in Section 2
(cf. Example 2.1), the associated regularized best reply dynamics are known as logit dynam-

ics, and are given by
µ̇t = Λ(F (µt)/ε)− µt. (19)
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Vanishing regularized best reply dynamics. If we allow the regularization weight ε to
vary in (RBRD), we obtain the non-autonomous dynamics

µ̇t = BRεth(µt)− µt, (VBRD)

where the “V” indicates again that εt → 0 as t→∞.

The dual averaging dynamics. Finally, given a regularizer h on X as above, the dynamics
of dual averaging in continuous time can be written as

ẏt = F (xt)

xt = Qh(ηtyt)
(DAD)

where ηt ≥ 0 is a time-varying learning parameter, which we assume throughout to be
non-increasing. More compactly, the above can also be written as

ẏt = F (Qh(ηtyt)) (20a)

or

xt = Qh

(
ηt

∫ t

0

F (xs) ds

)
, (20b)

depending on whether we take a differential- or integral-based viewpoint. Specifically, we
note that (20a) is an autonomous ordinary differential equation evolving in the dual, payoff
space of the game; by contrast, (20b) is an integral equation stated directly in the primal,
strategy space of the game. We also note that, unlike (BRD), (RBRD) and (VBRD), the
dynamics (DAD) are stated in terms of the actual population state xt at time t, not its
empirical mean µt (which is the driving variable of the previous dynamics).

Example 3.2. If ηt ≡ 1 and h is the entropic regularizer on X (cf. Example 2.1), the
dynamics (DAD) yield the replicator dynamics of Taylor & Jonker [55], viz.

ẋα,t = xα,t[uα(xt)− 〈F (xt), xt〉]. (RD)

In words, (RD) indicates that the per capita growth rate of the population of α-strategists
is proportional to the difference between the payoff that they experience and the mean
population payoff. For a detailed presentation of this derivation in different contexts, see
Rustichini [43], Sorin [50, 51], Mertikopoulos & Moustakas [31] and references therein. ♦

Example 3.3. If ηt ≡ 1 and h(x) = (1/2)
∑

α∈A x
2
α, the integral form (20b) of (DAD)

becomes

xt = Π

(∫ t

0

F (xs) ds

)
(21)

where Π denotes the Euclidean projector on X . The differential form of (21) is more delicate
to describe because xt may enter and exit different faces of X in perpetuity. However, if we
focus on an open interval T ⊆ R over which the support of xt remains constant, it can be
shown that (21) follows the projection dynamics of Friedman [12], viz. for all t ∈ T we have

ẋα,t =

{
uα(x) − 1

|supp(xt)|

∑
β∈supp(xt)

uβ(x) if α ∈ supp(xt),

0 otherwise.
(PD)

For the details of this derivation, see Mertikopoulos & Sandholm [32]. ♦

Remark. For posterity, we note that both regularizers used in the above examples satisfy
(StrCvx), (Diff), and the technical condition (Rec) that we describe later in the paper.
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Random matching in continuous time. Following Hofbauer et al. [23], the various dynamics

presented so far can be linked as follows when F is linear and µt =
1
t

∫ t

0
xs ds for t > 0:

xt = argmax
x∈X

{
ηt

∫ t

0

〈F (xs), x〉 ds− h(x)
}

= argmax
x∈X

{ηt t 〈F (µt), x〉 − h(x)}

= BR[1/(tηt)]h(µt). (22)

It thus follows that the empirical distribution of play µt under (DAD) follows the dynamics

µ̇t =
BRεth(µt)− µt

t
(23)

with εt = 1/(tηt). Hence, after the change of time t← log t, we get (RBRD) with a variable
regularization parameter εt = 1/(tηt).

4. Analysis and results in continuous time

We now proceed to present our results for the class of dynamics under study. We begin
with the continuous-time analysis which provides a template for the discrete-time analysis in
the next section. We prove that under some assumptions depending on the dynamical system
and the class of games under consideration (potential, monotone or strictly monotone), the
dynamics converge to the set of equilibria or or – regularized equilibria – of the game.1

4.1. Best reply dynamics. Our first result concerns the best reply dynamics (BRD). Albeit
slightly more general, the results of this subsection and the next essentially follow Hofbauer
& Sandholm [18, 19].

Theorem 4.1. Suppose that one of the following holds:

(a) G is potential.

(b) G is monotone and F is C1-smooth.

Then every solution orbit µt of (BRD) converges to Eq(G).

Proof. Both cases rely on establishing a suitable Lyapunov function E(t) for (BRD):

(1) In the potential case, we simply take E(t) = P (µt).

(2) In the monotone case, E(t) = Gap(µt) where Gap denotes the function

Gap(x) := max
x′∈X
〈F (x), x′ − x〉 = 〈F (x),BR(x)− x〉 (24)

Observe that Gap(x) ≥ 0 with equality if and only if x ∈ Eq(G).
We now proceed on a case-by-case basis:

Potential case. From (Pot) we obtain that

d

dt
P (µt) = lim

δ→0+
[P (µt + δµ̇t)− P (µt)]/δ = 〈F (µt), µ̇t〉 (25)

Since µ̇t ∈ BR(µt)− µt, it follows that d
dtP (µt) = Gap(µt) ≥ 0 with equality if and only if

µ̇t = 0. Consequently, from Lyapunov’s first method [see e.g., 20, Theorem 2.6.1] we deduce
that µt converges to the set of rest points of (BRD), which is Eq(G).

1Recall that a family (xt)t≥0 (resp. a sequence (Xn), n = 1, 2, . . . ) converges to a set B if the set of
accumulation points A[xt] (resp. A[xn]), as t → ∞ (resp n → ∞), satisfies: A[xt] ⊂ B (resp. A[xn] ⊂ B).



LEARNING IN NONATOMIC GAMES WITH FINITE ACTION SPACES 11

Monotone case. Let JF denote the Jacobian of F . By the envelope theorem we get:

d

dt
Gap(µt) = 〈F (µt),−µ̇t〉+ µ̇tJF (µt)(BR(µt)− µt) = −Gap(µt) + µ̇tJF (µt)µ̇t (26)

As G is monotone, (x′ − x)JF (x)(x′ − x) ≤ 0 for all x, x′ ∈ X , so µ̇tJF (µt)µ̇t ≤ 0. Conse-
quently:

d

dt
Gap(µt) ≤ −Gap(µt). (27)

Hence Gap(µt) decreases exponentially to 0, so µt converges to Eq(G). �

4.2. Regularized best reply dynamics. In this section we will assume that the regularizer h
satisfies (Diff). In a slight abuse of notation, we will skip the dependence on h and write Fε

for Fεh := F − ε∇̃h, see (9), with ∇̃h defined as in (Diff). We also write BRε(x) for BRεh(x)
and so on. The reason is that the regularizer h will be fixed throughout while the weight ε
will be allowed to vary in the next subsection.

Lemma 2. Under (Diff), we have 〈Fε(x),BRε(x) − x〉 ≥ 0 for all x ∈ X , and equality holds

if and only if x = BRε(x).

Proof. Let φ(z) = 〈F (x), z〉 − εh(z). Then φ is strictly concave and so ∂φ defines a strictly
monotone operator. Thus, x′ = argmaxz∈X φ(z) is a solution of the variational inequality
(MVI) associated to ∂φ: for all d ∈ ∂φ(x): 〈d, x′−x〉 ≥ 0 with equality if and only if x = x′.
As Fε(x) ∈ ∂φ(x) and x′ = BRε(x) the result follows. �

Lemma 3. Suppose that (Diff) holds. If G with payoff field F is potential (resp. monotone)
then the game Gε with payoff function Fε is potential (resp. strictly monotone).

Proof. If G has a potential P , a potential function of Gε is P − εh. If G is a monotone game,

the game Gε is strictly monotone because we have 〈∇̃h(x) − ∇̃h(x′), x − x′〉 ≥ 0 for every
x, x′ ∈ X , with equality if and only if x = x′. �

We now turn to the asymptotic properties of regularized best reply dynamics.

Theorem 4.2. Suppose that (Diff) is satisfied and assume one of the following holds:

(a) G is potential.

(b) G is monotone and F is C1-smooth.

Then every solution orbit µt of (RBRD) converges to Eqε(G).

Remark. Observe that when G is monotone, Gε is strictly monotone, so Eqε(G) is a singleton.

Proof. As above, both cases rely on establishing a suitable Lyapunov function E(t) for
(RBRD):

(1) In the potential case: E(t) = Pε(µt) := P (µt)− εh(µt).

(2) In the monotone case:

E(t) = Gapε(µt) = max
x′∈X
〈F (µt), x

′ − µt〉 − ε(h(x′)− h(µt))

= max
x′∈X

Vε(µt, x
′)− Vε(µt, µt) (28)
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Potential case. There is z(t) ∈ ∂h(µt) such that – similarly to (25) – we have:

d

dt
Pε(µt) = lim

dt→0+
[Pε(µt + µ̇tdt)− Pε(µt)]/dt = 〈F (µt), µ̇t〉 − ε〈z(t), µ̇t〉 (29)

As µ̇t = BRε(µt) − µt, by Lemma A.1 in the appendix, we have 〈z(t), µ̇t〉 ≤ 〈∇̃h(µt), µ̇t〉.
Consequently

d

dt
Pε(µt) ≥ 〈F (µt), µ̇t〉 − ε〈∇̃h(µt), µ̇t〉 = 〈Fε(µt), µ̇t〉 (30)

By Lemma 2 and the above, we deduce that d
dtPε(µt) ≥ 0 with equality if and only if µ̇t = 0.

Consequently, by a Lyapunov argument, µt converges to Eqε(G).

Monotone case. Using the envelope theorem as in (26) and, just as above, there is z(t) ∈
∂h(µt) such that:

d

dt
Gapε(µt) = −〈F (µt)− εz(t), µ̇t〉+ µ̇tJF (µt)µ̇t ≤ −〈Fε(µt), µ̇t〉+ µ̇tJF (µt)µ̇t (31)

The inequality being a consequence of Lemma A.1 as it implies that 〈z(t), µ̇t〉 ≤ 〈∇̃h(µt), µ̇t〉.
Since G is monotone, µ̇tJF (µt)µ̇t ≤ 0. Consequently, as µ̇t = BRε(µt) − µt, by Lemma 2,
d
dt Gapε(µt) ≤ 0 with equality if and only if µ̇t = 0. Hence µt converges to Eqε(G). �

4.3. Vanishing regularized best reply dynamics. A similar technique will be used to obtain
convergence to the set of Nash equilibria for vanishing regularized best reply dynamics.
The additional difficulty here comes from the fact that the vanishing regularized best reply
dynamics is not autonomous and so we should prove by hand the Lyapunov convergence
argument. To the best of our knowledge, this is a new result.

Theorem 4.3. Suppose that (Diff) holds and (VBRD) is run with a smoothly-varying and

strictly decreasing regularization weight εt → 0. Assume further that h takes values in [0, 1],
and one of the following holds:

(a) G is potential.

(b) G is monotone, F is C1-smooth, and ∇̃h is bounded.

Then every solution orbit µt of (VBRD) converges to Eqε(G).

Remark. The assumption that h takes value in [0, 1] is only made for notational convenience
and does not incur any loss of generality.

Proof. As before, we treat the potential and monotone cases separately.

Potential case. Let Pεt(µt) = P (µt) − εth(µt). Then, a calculation similar to the above
implies that there exists z(t) ∈ ∂h(µt) such that

d

dt
Pεt(µt) = 〈F (µt)− εtz(t),BRεt(µt)− µt〉 − ε̇th(µt) ≥ 〈Fεt(µt),BRεt(µt)− µt〉 − ε̇th(µt)

(32)
The inequality being a consequence of Lemma A.1 as it implies that 〈z(t),BRεt(µt)− µt〉 ≤
〈∇̃h(µt),BRεt(µt) − µt〉. By Lemma 2, 〈Fεt(x),BRεt(x) − x〉 ≥ 0. Since −ε̇th(µt) ≥ 0 we
deduce that d

dtPεt(µt) ≥ 0 and consequently Pεt(µt) converges. As εt goes to zero and h(·)
is bounded, P (µt) converges as well. We will deduce from this that µt converges to Eq(G).
By contradiction, if a limit point µ0 = limk µtk is not in Eq(G) then:

Gap(µ0) = max
x′∈X
〈F (µ0), x

′ − µ0〉 = 〈F (µ0),BR(µ0)− µ0〉 = α > 0. (33)
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Recall that, by definition, for all t and µ:

Gapεt(µ) = max
x′∈X
〈F (µ), x′ − µ〉 − εt(h(x′)− h(µ))

= 〈F (µ),BRεt(µ)− µ〉 − εt(h(BRεt(µ))− h(µ))
= max

x′∈X
Vεt(µ, x

′)− Vεt(µ, µ). (34)

Also, as h takes values in [0, 1], |Vε(x, x′)−Vε(x, x)− (Vε′ (x, x
′)−Vε′(x, x))| ≤ |ε−ε′|. Thus:

|Gapεt(µ)−Gap(µ)| ≤ εt. (35)

As in (25) one has for all k and s:

d

dt
P (µs+tk) = 〈F (µs+tk),BRεs+tk

(µs+tk)− µs+tk〉 (36)

Thus, using (34) then (35) we deduce that:

d

dt
P (µs+tk) ≥ Gapεs+tk

(µtk+s)− εs+tk ≥ Gap(µtk+s)− 2εs+tk . (37)

As the function µ → Gap(µ) is uniformly continuous and t → µt is Lipschitz, recalling
that Gap(µk)→ α > 0, we deduce that there is δ > 0 and K1 such that for k ≥ K1 and all
0 ≤ s ≤ δ one has:

Gap(µtk+s) ≥ Gap(µtk)− α/4 ≥ 3α/4 (38)

As εt decreases to 0 there is K2 such that for all k ≥ K2, εs+tk ≤ α/4. From this, (35) and
(38), we obtain that d

dtP (µs+tk) ≥ α/2 for all 0 ≤ s ≤ δ, for all k ≥ max(K1,K2). Thus

P (µδ+tk)− P (µtk) =
∫ δ

0
d
dtP (µs+tk)ds ≥ δα/2, which contradicts the convergence of P (µt).

Monotone case. Using the envelope theorem, and a calculation similar to the above implies
that there exists z(t) ∈ ∂h(µt) such that

d

dt
Gapεt(µt) = −〈F (µt)− εtz(t), µ̇t〉+ µ̇tJF (µt)µ̇t + ε̇t(h(µt)− h(BRεt(µt)) (39a)

≤ −〈Fεt(µt), µ̇t〉+ µ̇tJF (µt)µ̇t + ε̇t(h(µt)− h(BRεt(µt)) (39b)

≤ −〈Fεt(µt), µ̇t〉+ ε̇t(h(µt)− h(BRεt(µt)) (39c)

= −〈Fεt(µt), BRεt − µt〉+ ε̇t(h(µt)− h(BRεt(µt)). (39d)

The first inequality is a consequence of Lemma A.1, which implies that 〈z(t), µ̇t〉 ≤ 〈∇̃h(µt), µ̇t〉.
The second inequality is a consequence of µ̇tJF (µt)µ̇t ≤ 0 as G is monotone.

We now proceed to prove that d
dt (Gapεt(µt) + εt) < 0.

Case 1: If Gapεt(µt) = 0 then µt = BRεt(µt) = Eqεt(G) thus µ̇t = 0. Then (39a) implies

that d
dt Gapεt(µt) = 0 and thus d

dt (Gapεt(µt) + εt) < 0.

Case 2: If Gapεt(µt) > 0 then since h(·) ∈ [0, 1] and ε̇t < 0 we have:

ε̇t(h(µt)− h(BRεt(µt)) ≤ −ε̇t (40)

and from Lemma 2 and (39d) we deduce that d
dt (Gapεt(µt) + εt) < 0.

Consequently, Gapεt(µt)+εt converges to δ ≥ 0 and since εt decreases to zero we conclude
that Gapεt(µt)→ δ. If δ > 0, define:

∆ := −〈Fεt(µt), BRεt(µt)− µt〉
= −〈F (µt), BRεt(µt)− µt〉+ εt〈∇̃h(µt), BRεt(µt)− µt〉. (41)
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From (34) we further get:

∆ = −Gapεt(µt) + εt(h(µt)− h(BRεt(µt)) + εt〈∇̃h(µt), BRεt(µt)− µt〉 (42)

As Gapεt(µt)→ δ, and by the assumptions, h(·) and ∇̃h are bounded and εt decreases to 0,
we deduce that for t large enough:

∆ = −〈Fεt(µt), BRεt(µt)− µt〉 ≤ −δ/2. (43)

Consequently, for t large enough we deduce from (39d), (40) and the last inequality that

d

dt
(Gapεt(µt) + εt) ≤ −〈Fεt(µt), BRεt(µt)− µt〉 < −δ/2, (44)

which is impossible because Gapεt(µt) + εt ≥ 0. Hence δ = 0 and so µt converges to
Eq(G). �

4.4. Dual averaging dynamics with a constant learning rate. Before stating our main result
we establish some useful lemmas. Define the regret associated to a trajectory xt and a
reference point x ∈ X as:

Regx(t) =

∫ t

0

〈F (xs), x− xs〉 ds (45)

Lemma 4. Let xt be a solution trajectory of (DAD). Then:

Regx(t) ≤ maxh−minh. (46)

This is a particular case of a more general bound due to Kwon & Mertikopoulos [26]
(see Lemma 7 below). The next more compact proof of this simpler bound follows Bravo &
Mertikopoulos [7] and Sorin [52].

Proof. Define for x ∈ X and y ∈ R
A the Fenchel coupling

Fh(x, y) = h(x) + h∗(y)− 〈x, y〉. (47)

By the Fenchel-Young inequality, Fh(x, y) ≥ 0. Recall that from (8) and (20b) xt =

∇h∗(yt) = Qh(yt) with yt =
∫ t

0
F (xs)ds. Then, following Mertikopoulos & Zhou [35,

Lemma A.2], a simple derivation gives that for all x ∈ X :

d

dt
Fh(x, yt) = 〈F (xt),∇h∗(yt)− x〉 = 〈F (xt), xt − x〉 = −

d

dt
Regx(t), (48)

Consequently, following the reasoning of Sorin [52], we get

Regx(t) ≤ Fh(x, 0) = h(x) + h∗(0) ≤ maxh+ h∗(0) = maxh−minh �

Lemma 5. If a solution trajectory xt = x∗ of (DAD) is stationary, then x∗ ∈ Eq(G).

Proof. From the previous lemma, for all t > 0 and x ∈ X one has

〈F (x∗), x− x∗〉 = Regx(t)

t
≤ maxh−minh

t
, (49)

Letting t→∞ implies x∗ ∈ Eq(G), as was to be shown. �

Lemma 6. If h satisfies (StrCvx), then for all x ∈ X and all sequences yn in R
A.

Fh(x, yn)→ 0 =⇒ Qh(yn)→ x (50)

Proof. See Lemma A.2 in the appendix. �
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We also need to assume the so called “reciprocity’ condition which requires that for all
x ∈ X and all sequences yn in R

A:

Qh(yn)→ x =⇒ Fh(x, yn)→ 0 (Rec)

Taken together, (StrCvx) and (Rec) imply that the sequence xn = Qh(yn) converges to
x ∈ X if and only if Fh(x, yn) → 0. The terminology “reciprocity” is justified by the fact
that, under (Rec), the topology induced by the level sets of the Fenchel coupling becomes
equivalent to the ordinary topology on X ; for a precise statement, see Lemma A.2 in Ap-
pendix A. This is a subtle – but important – requirement, which is fortunately satisfied by
all the standard regularization choices on X , cf. [34, 35].

We can now state our convergence results for (DAD) when the learning rate is constant.

Theorem 4.4. Let xt be a solution trajectory of (DAD) with constant learning rate ηt ≡ 1.
Assume further that one of the following holds:

(a) G is potential and h∗ is twice differentiable.

(b) G is strictly monotone, and h satisfies (StrCvx) and (Rec).

Then xt converges to Eq(G).

Proof. Again, we treat the potential and monotone cases separately.

Potential case. As yt =
∫ t

0
F (xs) ds and xt = Qh(yt) = ∇h∗(yt) we obtain that:

ẋt = 〈F (xt),∇2h∗(yt)〉. (51)

Since h∗ is convex, ∇2h∗ is semidefinite positive and so:

d

dt
P (xt) = 〈F (xt), ẋt〉 = F (xt)∇2h∗(yt)F (xt) ≥ 0, (52)

the inequality being strict whenever ẋt 6= 0. As such, xt converges to Eq(G).

Monotone case. As G is strictly monotone, Eq(G) is a singleton which coincides with x∗

the (necessarily unique) GESS of the game. The calculation in (48) gives:

d

dt
Fh(x

∗, yt) = 〈F (xt), xt − x∗〉 ≤ 0 (53)

As x∗ is a GESS d
dtFh(x

∗, yt) ≤ 0, with equality if and only if xt = Qh(yt) = x∗. Suppose
there is δ > 0 such that 〈F (xt), xt − x∗〉 < −δ < 0 for all t large enough. Then, Fh(x

∗, yt)
goes to −∞ which is impossible because Fh(·) ≥ 0. Thus there is tk → ∞ such that
〈F (xtk), xtk − x∗〉 → 0 and so xtk = Qh(ytk) → x∗. By the reciprocity condition (Rec),
we deduce that Fh(x

∗, ytk) → 0 since x∗ is a GESS. As d
dtFh(x

∗, yt) ≤ 0 and Fh(·) ≥ 0,
necessarily Fh(x

∗, yt) converges and by the last argument, its limit is zero. Using the strong
convexity of h, Lemma 6 implies that xt = Qh(yt) converges to x∗. �

There are several things to note here. First, the proof of convergence to the unique
equilibrium in strictly monotone games (part b of Theorem 4.4) extends to all games with
a GESS. Second, the same proof implies that in all games, ESS (if exist) are asymptotically
stable under (DAD) with constant learning rate (e.g., the dynamics converges to an ESS
if it starts sufficiently close to it). Third, Theorem 4.4 concerns the “day-to-day” evolution
of (DAD), not the corresponding empirical mean. Last, the theorem does not apply to
monotone games which are not strict.

To complete the picture, the next proposition shows the convergence of the empirical
mean to the set of Nash equilibria in all monotone games.
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Proposition 4.1. Let xt = Qh(yt) be a solution trajectory of (DAD) with constant learning

rate ηt ≡ 1. If the underlying game is monotone, then µt =
1
t

∫ t

0
xsds converges to Eq(G).

Proof. By Lemma 4 and monotonicity of the game, for all x ∈ X :

maxh−min h ≥ Regx(t) =

∫ t

0

〈F (xs), x − xs〉 ds ≥
∫ t

0

〈F (x), x − xs〉 ds (54)

and hence
maxh−minh

t
≥ 〈F (x), x − µt〉. (55)

Consequently, µt converges to MVI(G) which coincides with Eq(G) as the game is monotone.
�

4.5. Dual averaging dynamics with a variable learning rate. This subsection extends the
results of the previous section on monotone games in two directions: we consider GESSs
instead of (strictly) monotone games, and we treat dynamics with a variable learning rate.
Other extensions are also possible, but we do not treat them here.

We begin with a technical lemma on the regret incurred by (DAD):

Lemma 7. If xt is a solution trajectory of (DAD) then the regret is bounded as follows:

Regx(t) ≤
maxh−minh

ηt
. (56)

Consequently, if tηt →∞ and xt = x∗ for all t ≥ 0, then x∗ ∈ Eq(G).

Proof. The bound in the regret follows from Kwon & Mertikopoulos [26, Theorem 4.1], and
the implication follows as in Lemma 5 above. �

Lemma 7 allows to extend proposition 4.1 to variable learning rates.

Proposition 4.2. Let xt = Qh(yt) be a solution trajectory of (DAD). If the underlying game

is monotone and tηt →∞ then µt =
1
t

∫ t

0
xs ds converges to Eq(G).

The next result extends part b) of theorem 4.4 to variable learning rates. The proof is a
little more complicated.

Theorem 4.5. Let xt be a solution trajectory of (DAD) with a non-increasing learning rate.

Suppose further that the underlying game G admits a GESS x∗. If the regularizer satisfies

(StrCvx) and (Rec), and the dynamics’ learning rate satisfies limt→∞ tηt = ∞, then xt
converges to x∗.

Proof. Kwon & Mertikopoulos [26, Eq. 29] prove that

d

dt

Fh(x
∗, ηtyt)

ηt
≤ 〈F (xt), xt − x∗〉 −

η̇

η2t
(maxh−minh). (57)

Let Fε = {y ∈ R
A : Fh(x

∗, y) ≤ ε} denote the “Fenchel zone” of magnitude ε with respect
to x∗. Then it suffices to show that

For all ε > 0, there exists T (ε) > 0 such that ηtyt ∈ Fε for all t ≥ T (ε). (P)

Actually this means that Fh(x
∗, ηtyt) → 0. By (StrCvx), (50) holds and thus xt converges

to x∗. The proof of (P) follows from the following two claims:
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Claim 1. ηtyt ∈ Fε infinitely often.

Proof. If ηtyt /∈ Fε, then by (Rec), there exists a neighbourhood U(ε) of x∗ such that
xt /∈ U(ε). By definition of GESS, there is c(ε) > 0 such that 〈F (xt), xt − x∗〉 < −2c(ε).
As η̇t

η2
t

→ 0, there is T1(ε) such that for all t ≥ T1(ε) we have η̇t

η2
t

(maxh − minh) < c(ε).

Consequently by contradiction to the claim, d
dt

Fh(x
∗,ηtyt)
ηt

< −c(ε) for all t large enough and

so Fh(x
∗,ηtyt)
ηt

goes to −∞. Since Fh(x
∗, ηtyt) ≥ 0 this is impossible. §

Claim 2. There exists T2(ε) ≥ T1(ε/2) such that if t ≥ T2(ε) and ηtyt ∈ Fε then there
exists τ > 0 such that ηsys ∈ Fε for all s ∈ [t, t+ τ ].

Proof. We need to consider two cases separately:

Case a). If ηtyt ∈ Fε/2 then obviously, there is τ > 0 such that ηsys ∈ Fε for all s ∈ [t, t+τ ].

Case b). If ηtyt ∈ Fε but ηtyt /∈ Fε/2 then, from claim 1, d
dt

Fh(x
∗,ηtyt)
ηt

< −c(ε/2) < 0.

Thus there exists τ > 0 such that for all s ∈ [t, t + τ ]: Fh(x
∗,ηsys)
ηs

≤ Fh(x
∗,ηtyt)
ηt

.

As ηtyt ∈ Fε, Fh(x
∗, ηtyt) ≤ ε and since ηs ≤ ηt, we deduce that Fh(x

∗, ηsys) ≤ ε.
Thus ηsys ∈ Fε for all s ∈ [t, t+ τ ]. §

From Claims 1 and 2, there exists t ≥ max(T2(ε), T (ε)), such that ηtyt belongs to Fε and
remains in it forever. �

5. Analysis and results in discrete time

In this section, we continue with the analysis of the discrete-time dynamics presented in
Section 3.1, starting with fictitious play and its variants in Section 5.1 before moving on to
the dynamics of dual averaging in Section 5.2.

5.1. Fictitious play and regularized fictitious play. The convergence of (FP) and (RFP) can
be obtained from the continuous-time analysis of Section 4 using the theory of stochastic
approximation [2, 4, 5]. Informally, this theory links the asymptotic behavior of differential
inclusions of the form

ẋt ∈M(xt) (58)

to the limit sets of discrete-time processes satisfying the basic recursion

Xn+1 −Xn ∈ γn+1M(Xn), (59)

where M : X ⇒ R
A is an upper semicontinuous, compact-convex-valued correspondence on

X , and γn > 0 is a vanishing step-size sequence.
In our specific context, the role of M is to be played by the best-reply correspondence

BR for (FP), and its regularized variant BRεh for (RFP). Concretely, we have:

Proposition 5.1. Let X̄n = (1/n)
∑n

k=1Xk, n = 1, 2, . . . , be the empirical frequency of play

under a sequence of population states Xn ∈ X . Then:

(i) If Xn is generated by (FP), X̄n is an asymptotic pseudotrajectory of (BRD).

(ii) If Xn is generated by (RFP), X̄n is an asymptotic pseudotrajectory of (RBRD).

Informally, the notion of an asymptotic pseudotrajectory (APT) means that X̄n asymp-
totically tracks the pseudo-flow of (BRD)/(RBRD) with arbitrary accuracy over windows
of arbitrary length; for a precise definition, see Benaïm et al. [4, Definitions I and 4.1].The
proof of Proposition 5.1 follows immediately from the general theory of Benaïm et al. [4,
Propositions 1.3, 1.4, and Theorem 4.2], so we do not present it here.
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In view of this “asymptotic approximation” property, it is plausible to expect that X̄n

exhibits the same asymptotic behavior as the corresponding continuous-time dynamics. Our
next result makes this intuition precise in two classes of games:

(1) Monotone games, i.e., games that satisfy (Mon).

(2) Potential games for which the ε-regularized potential Pε = P − εh, ε ≥ 0, satisifies
the Sard-type condition:

Pε(Eqε(G)) has empty interior. (Sε)

Our main results for (FP) and (RFP) may then be stated as follows:

Theorem 5.1. Suppose that G satisfies (Mon) or (Sε) for ε = 0. Then the empirical frequency

of play X̄n under (FP) converges to Eq(G).
Theorem 5.2. Suppose (Diff) holds and G satisfies (Mon) or (Sε) for some ε > 0. Then the

empirical frequency of play X̄n under (RFP) converges to Eqε(G).
Sketch of proof. The proof of Theorems 5.1 and 5.2 follows a similar technical path starting
with the fact that X̄n is an APT of (BRD) / (RBRD) respectively (cf. Proposition 5.1 above).
In both cases, Theorem 4.3 of Benaïm et al. [4] shows that the accumulation points of an
APT lie in an internally chain transitive set of the underlying continuous-time dynamics.2

The claims of Theorem 5.1 may then be proved as follows:

(1) For games satisfying (Mon), invoke Theorem 4.1 from Section 4 and Theorem 3.23
and Proposition 3.25 of Benaïm et al. [4].

(2) For games satisfying (Sε) with ε = 0, invoke Theorem 4.1 from Section 4 and
Proposition 3.27 of Benaïm et al. [4].

Finally, for ε > 0, the proof of Theorem 5.2 is entirely analogous, and simply invokes
Theorem 4.2 in lieu of Theorem 4.1 in the above chain of implications. �

5.2. Dual averaging. We now proceed to state and prove our main convergence result for
the recursion (DA). To do so, we will require the “reciprocity” condition (Rec) that was
introduced for the study of the continuous-time dynamics (DAD), namely

Qh(yn)→ x =⇒ Fh(x, yn)→ 0 (Rec)

for all x ∈ X and all sequences yn in R
A. We then have:

Theorem 5.3. Suppose that (DA) is run with a regularizer satisfying (StrCvx) and (Rec),
and a vanishing non-increasing learning rate ηn ց 0 such that

lim
n→∞

(
1

ηn
− 1

ηn−1

)
= 0. (60)

Then:

• If x∗ is a GESS of G, the sequence of population states Xn converges to x∗.

• If x∗ is an ESS of G, the same conclusion holds provided that max{ηn, η−1
n − η−1

n−1}
is small enough and (DA) is initialized sufficiently close to x∗.

Corollary 5.1. Suppose that G is strictly monotone and (DA) is run with a regularizer

satisfying (StrCvx) and (Rec), and a learning rate of the form ηn ∝ 1/np for p ∈ (0, 1).
Then the sequence of population states induced by (DA) converges to the (necessarily unique)
equilibrium of G.

2An internally chain transitive set is a compact invariant set that contains no proper attractors [10].
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Our proof relies on the use of a suitable “energy inequality”, provided here by a deflated
variant of the Fenchel coupling:

Lemma 8. Fix a population state x ∈ X , and let

En :=
1

ηn
Fh(x, ηnSn) =

1

ηn
[h(x) − h(Xn+1) + ηn〈Sn, Xn+1 − x〉], (61)

with Sn as in (DA). Then, for all n = 1, 2, . . . , we have:

En ≤ En−1 + 〈F (Xn), Xn − x〉+ [h(x)−min h] δn +
Fh(Xn, ηn−1Sn)

ηn−1
, (62)

where δn = 1/ηn − 1/ηn−1. If, in addition, h satisfies (StrCvx), we have

En ≤ En−1 + 〈F (Xn), Xn − x〉+ [h(x)−minh] δn +
ηn−1

2K
‖F (Xn)‖2∗. (63)

Energy inequalities of the form (62) are standard in the analysis of dual averaging schemes,
and they go back at least as far as Nesterov [39, 40] (who introduced the method). The
specific formulation above follows Héliou et al. [17, Lemma. C.1], so we omit the proof; for
a range of similar computations, see Shalev-Shwartz [48, Lemma 2.20], Kwon [25, p. 42] and
Sorin [52].

Now, to move forward with the proof of Theorem 5.3, we will require two complementary
arguments. The first is a stability result: we show below that, if Xn is sufficiently close
to an evolutionarily stable state x∗ and the method’s learning rate is “small enough”, then
Xn+1 remains close to x∗. To state this precisely, let Fε = {y ∈ R

A : Fh(x
∗, y) ≤ ε} denote

the “Fenchel zone” of magnitude ε with respect to x∗, and let Dε = Qh(Fε) = {x = Qh(y) :
y ∈ Fε} denote the image of Fε under Qh. We then have:

Lemma 9. Let x∗ ∈ ESS(G) and assume that (StrCvx) and (Rec) hold. Then, for all

sufficiently small ε > 0, we have the following implication (valid for all n = 1, 2, . . . ): if

Xn ∈ Dε and max{ηn, δn} is small enough, we also have Xn+1 ∈ Dε.

The second component of the proof of Theorem 5.3 is a subsequence extraction argu-
ment: if the iterates of (DA) lie in a neighborhood of x∗ where (ESS) holds, there exists a
subsequence of Xn that converges to x∗.

Lemma 10. Let x∗ ∈ ESS(G), let U be the neighborhood of validity of (ESS), and as-

sume further that (StrCvx) and (60) hold. If Xn ∈ U for all sufficiently large n, we have

lim infn→∞‖Xn − x∗‖ = 0.

We prove these two ancillary results below.

Proof of Lemma 9. Let U be the neighborhood whose existence is guaranteed by (ESS), i.e.,
〈F (x), x− x∗〉 < 0 for all x ∈ U , x 6= x∗. By the relation between the Fenchel coupling and
the ordinary norm topology on X (cf. Lemma A.2 in Appendix A), it follows that Dε ⊆ U
if ε is taken small enough; we will assume this to be the case throughout the rest of this
proof. Moreover, by (Rec) and the continuity of u, there exists some c ≡ c(ε) such that
〈F (x), x − x∗〉 ≤ −c < 0 for all x ∈ Dε \ Dε/2.

With all this in hand, assume that Xn ∈ Dε; we will show that Xn+1 ∈ Dε provided
that max{ηn, δn} is small enough. To do so, let Fn = Fh(x

∗, ηnSn); then, by substituting
x← x∗ in the template inequality (63) of Lemma 8, we obtain:

Case 1. If Xn ∈ Dε \ Dε/2, then

Fn ≤ Fn−1 − ηn
[
c− δnH − ηn−1

G2

2K

]
, (64)
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where H = maxh−minh and G = maxx∈X‖F (x)‖∗. Hence, if δn ≤ c/(2H) and
ηn−1 ≤ cK/G2, we conclude that Fn ≤ Fn−1.

Case 2. If Xn ∈ Dε/2, then

Fn ≤
ε

2
+ δnH + ηn−1

G2

2K
, (65)

so Fn ≤ ε provided that δn < ε/(4H) and ηn−1 ≤ εK/(2G2).

In both cases, we conclude that Xn+1 = Qh(ηnSn) ∈ Dε, as claimed. �

Proof of Lemma 10. Assume to the contrary that lim infn→∞‖Xn − x∗‖ > 0. Then, by
assumption, there exist ε > 0 and n0 ≡ n0(ε) such that Xn ∈ U and ‖Xn − x∗‖ ≥ ε
for all n ≥ n0. Since x∗ ∈ ESS(G), there exists a positive constant c > 0 such that
〈F (Xn), Xn − x∗〉 ≤ −c < 0 for all n ≥ n0. With this in mind, substituting x ← x∗ in the
template inequality (63) and telescoping yields

En ≤ En0
− c(n− n0) +

(
1

ηn
− 1

ηn0

)
H +

G2

2K

n∑

k=n0

ηk

≤ En0
+ cn0 −H/n0 − n

[
c− 1

nηn
− 1

n

n∑

k=n0

ηk

]
. (66)

To proceed, note that the first part of (60) gives

lim
n→∞

(1/ηn − 1/ηn−1)

n− (n− 1)
= lim

n→∞

(
1

ηn
− 1

ηn−1

)
= lim

n→∞
δn = 0, (67)

so limn→∞ 1/(nηn) = 0 by the Stolz–Cesàro theorem. By the second part of (60), we also
have (1/n)

∑n
k=n0

ηk = 0. Hence, by letting n → ∞ in (66), we get limn→∞ En = −∞, a
contradiction which completes our proof. �

The proof of our main convergence results follows by a tandem application of the above.

Proof of Theorem 5.3. We consider the two cases separately.

Case 1: x∗ ∈ GESS(G). Let ε > 0 be arbitrary. By (60), it follows that limn→∞ ηn =
limn→∞ δn = 0, and, by Lemma 10, there exists a subsequence Xnk

of Xn converging to
x∗. This means that, in the long run, ηn and δn become arbitrarily small, and Xn comes
arbitrarily close to x∗. Hence, by applying Lemma 9 inductively, we conclude that Xn ∈ Dε

for all sufficiently large n. Since ε > 0 has been chosen arbitrarily, this implies that Xn

converges to x∗, as claimed.

Case 2: x∗ ∈ ESS(G). Let U be the neighborhood whose existence is guaranteed by
the evolutionary stability condition (3) for x∗. Then, by Lemma 9, if (DA) is initialized
sufficiently close to x∗ and max{ηn, δn} is sufficiently small, we will have Xn ∈ U for all n.
Hence, by Lemma 10, we conclude that lim infn→∞‖Xn − x∗‖ = 0. Our proof then follows
by the same inductive application of Lemma 9 as in the case of a GESS above. �
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Time averages under dual averaging. We close this section with a result on the empirical
frequency of play under (DA). Indeed, telescoping (62) trivially yields the bound:

n∑

k=1

〈F (Xk), x−Xk〉 ≤
maxh−minh

ηn
+

1

2K

n∑

k=1

ηk−1‖F (Xk)‖2∗. (68)

This regret-type bound echoes standard results in the literature – see e.g., Nesterov [40,
Theorem 1] – and leads to the following time-average convergence result:

Proposition 5.2. Suppose that (DA) is run with a regularizer satisfying (StrCvx) and a

learning rate of the form ηn ∝ 1/
√
n. If G is monotone, the empirical frequency of play X̄n

under (DA) converges to Eq(G).

The proof of Proposition 5.2 mimics that of Proposition 4.1 so we omit it. We only
note that, in contrast to Theorem 5.3, Proposition 5.2 does not require strict monotonicity
or reciprocity; however, it concerns the cruder, average frequency of play, so it provides a
considerably weaker guarantee in this regard.

6. Extensions and concluding remarks

In this concluding section, we provide a series of extensions and remarks that would have
otherwise disrupted the flow of the rest of our paper.

6.1. Positive correlation. Sandholm [44] introduced the so-called “positive correlation” con-
dition

ẋt 6= 0 =⇒ 〈F (xt), ẋt〉 > 0. (PC)

In the case of potential games, (PC) implies that

d

dt
P (xt) = 〈F (xt), ẋt〉 > 0 (69)

whenever ẋt 6= 0. This in turn implies the convergence of the trajectories to the set of rest
points of the dynamics [45, Theorem 7.1.2]. Some of our results in Section 4 for potential
games can also be obtained by establishing (PC) for the dynamics under study.

6.2. No-regret dynamics. Our second remark concerns continuous- or discrete-time pro-
cesses for which the average regret vanishes, i.e., for all x ∈ X we have:

lim sup
t→∞

1

t

∫ t

0

〈F (xs), x− xs〉 ds = 0 in continuous time (70a)

lim sup
n→∞

1

n

n∑

k=1

〈F (Xk), x −Xk〉 = 0 in discrete time (70b)

As we saw in Propositions 4.1 and 5.2, the dynamics of dual averaging have the no-regret
property (70) in both continuous and discrete time. Looking more closely at the proofs of
Propositions 4.1 and 5.2, we conclude that, in monotone games, the empirical frequency of
play under any dynamical process that satisfies (70) converges to the game’s set of equilibria.
This property forms the basis of many algorithms and dynamics designed to solve variational
inequalities and equilibrium problems [38, 40, 24]; the above provides a game-theoretic
interpretation of this property in the context of population games.
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6.3. Extensions. We also note that our results can be extended to the following settings:

(1) If X is a convex compact subset of RA and F : X → R
A is a vector field on X , we

maintain the same results for convergence to solutions of (SVI) and (MVI); however,
the population game interpretation disappears.

(2) This interpretation is recovered in multi-population games: if there are several
player populations indexed by i = 1, . . . , N , and if Ai denotes the set of pure

strategies of the i-th population and uiα :
∏N

i=1 ∆(Ai) → R is the payoff func-
tion of α-strategists in the i-th population, it suffices to set X =

∏
i∆(Ai) and

F (x) = (uiαi
(x))αi∈Ai,i∈I .

(3) Our theory can also be extended to normal form games with a finite number of
players and smooth concave payoff functions gi, i = 1, . . . , N . In this case, the
components of the corresponding vector field are Giα(x) = ∂gi

∂xiα
, and the notion

of evolutionary stability boils down to that of variational stability; for a detailed
treatment, see Sorin & Wan [53] and Mertikopoulos & Zhou [35].

6.4. Links with variational inequalities and further extensions. Taking a more general point
of view that focuses on the vector field F , we can also consider the following framework that
brings to the forefront the associated variational inequalities. Let Xi, i = 1, . . . , N be a
convex compact subset of a topological vector space Vi with dual V∗

i , write V =
∏

i Vi and
X =

∏
iXi, and let Fi : X → V∗

i be a collection of continuous maps, i = 1, . . . , N . Finally,
set F (x) = (F1(x), . . . , FN (x)) and, as usual, write

〈F (x), z〉 =
N∑

i=1

〈Fi(x), zi〉 (71)

for the dual pairing between F (x) ∈ V∗ =
∏

i V∗
i and z = (z1, . . . , zN) ∈ V :=

∏
i Vi.

We may then define SVI(X , F ) as the set of x∗ ∈ X such that

〈F (x∗), x− x∗〉 ≤ 0, for all x ∈ X (72)

and MVI(X , F ) as the set of x∗ ∈ X such that

〈F (x), x − x∗〉 ≤ 0 for all x ∈ X . (73)

The counterparts for ESS and GESS may also be defined similarly (though the link with
population games is no longer present).

Example 6.1. Consider a strategic game with N players, compact metric strategy spaces
Ai ⊆ R

d and continuous payoff functions ui : A → R, i = 1, . . . , N , with A :=
∏

j Aj .

Introduce the mixed extension of the game as usual: for a probability distribution (mixed
strategy profile) χ = (χ1, . . . , χN ) ∈ X with χi ∈ Xi := ∆(Ai), let ui be extended as

ui(χ) =

∫

A

ui(α1, . . . , αN ) dχ1(α1) · · · dχN (αN ). (74)

Then, introduce Fi(χ) = ui(·, χ−i) so that

〈Fi(χ), χ
′
i〉 = Fi(χ

′
i;χ−i) (75)

for all χ′
i ∈ Xi = ∆(Ai). In this way, the equilibrium condition for χ∗ ∈ X becomes

〈F (χ∗), χ− χ∗〉 =
N∑

i=1

〈Fi(χ
∗), χi − χ∗

i 〉 ≤ 0 for all χ ∈ X , (76)

which is again an instance of SVI(X , F ). ♦
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In this setting, F is monotone (dissipative) if

〈F (x) − F (x′), x− x′〉 ≤ 0 for all x, x′ ∈ X (77)

As in the case of Section 2, we have SVI(X , F ) = MVI(X , F ) if F is monotone; furthermore,
mutatis mutandis, all the properties presented in Section 2.3 extend to this general setup.

The best-response map associated to F is defined again as

BR(x) = argmax
x′∈X

〈F (x), x′〉. (78)

In addition to monotonicity, we will also now make the “unique best response” assumption

BR(x) is a singleton for all x ∈ X . (U)

Proposition 6.1. If F is monotone and (U) holds, the set E := MVI(X , F ) = SVI(X , F ) is

a singleton.

Proof. If x, x′ ∈ E, we have 〈F (x), x′ − x〉 ≤ 0 and 〈F (x′), x− x′〉 ≤ 0, so

〈F (x′)− F (x), x′ − x〉 ≥ 0 (79)

implying first 〈F (x′)−F (x), x′−x〉 = 0 by monotonicity and then 〈F (x′), x′−x〉 = 0. Thus,
x = x′ by (U). �

The regularized best response map is likewise defined as

BRεh(x) = argmax
x′∈X

{〈F (x), x′〉 − εh(x′)} (80)

where h : X → R satisfies the same axioms as Definition 2.1. Note that BRεh satisfies (U)
by construction.

Now, using these best-response maps, we may extend the definition of the dynamics (FP),
(RFP) and (DA) to the more general setup considered here in the obvious way. We then
have:

Proposition 6.2. Suppose that (U) holds and let Xn, n = 1, 2, . . . , be a sequence of states

generated by (FP). If the accumulation points of X̄n lie in SVI(X , F ), the same holds for

the accumulation points of Xn.

Proof. Let x∗ be an accumulation point of Xn+1 = BR(X̄n), and let Xnk+1 be a subsequence
converging to x∗. By descending to a further subsequence if necessary, we may assume
without loss of generality that X̄nk

converges to some limit point x̄. Furthermore, by the
definition of (FP), we have:

〈F (X̄nk
), Xnk+1 − x〉 = 〈F (X̄nk

),BR(X̄nk
)− x〉 ≥ 0 for all x ∈ X . (81)

Hence, taking the limit k →∞, we get

〈F (x̄), x∗ − x〉 ≥ 0 for all x ∈ X , (82)

so x∗ ∈ BR(x̄). Since x̄ ∈ SVI(X , F ) by assumption, we deduce further that x̄ ∈ BR(x̄).
Hence, by (U), we conclude that x̄ = x∗, and our assertion follows. �

Obviously, under (U), a similar property holds for regularized fictitious play.
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6.5. Preview for Part II. Part II of our paper [16] deals with games with continuous action
spaces, in the spirit of Example 6.1 (but with a continuous population of nonatomic players).
The first step is to define the Stampacchia variational inequality when A is a compact metric
space, Θ is an appropriate compact convex subset of ∆(A), F is a continuous map θ 7→ Fθ(·)
from Θ to the space of continuous functions on A, and the duality mapping is given by

〈Fθ, ν〉 =
∫

A

Fθ(α) dν(α) for all θ, ν ∈ Θ. (83)

In this framework, we introduce potential and monotone maps, and we prove the convergence
of the discrete-time dynamics of fictitious play.

We show that this study covers the case of nonatomic games with (player-dependent)
compact action spaces. Finally, we introduce a class of first-order mean-field games and
prove that solutions of the Stampacchia variational inequality correspond to the equilibria
of the game in normal form where A is the set of paths generated by the players.

A. Properties of choice maps and the Fenchel coupling

Our aim in this appendix is to provide some useful background and properties for the
regularized choice map h and the Fenchel coupling.

To recall the basic setup, we assume below that h is a regularizer on X in the sense of
Definition 2.1. The convex conjugate h∗ : RA → R of h is then defined as

h∗(y) = max
x∈X
{〈y, x〉 − h(x)}. (A.1)

Since X is compact and h is strictly convex and continuous on X , the maximum in (A.1) is
attained at a unique point in X , so h∗(y) is finite for all y ∈ R

A [1]. Moreover, by standard
results in convex analysis [42, Chap. 26], h∗ is differentiable on R

A and its gradient satisfies
the identity

∇h∗(y) = argmax
x∈X

{〈y, x〉 − h(x)} = Q(y) (A.2)

where Q : RA → X is the choice map induced by h (cf. Definition 2.1).
The lemma below establishes the inverse differentiability property for h, namely that

∂h = Q−1:

Lemma A.1. Let h be a regularizer on X . Then, for all x ∈ X and all y ∈ R
A, we have:

x = Q(y) ⇐⇒ y ∈ ∂h(x). (A.3)

If, in addition, h satisfies (Diff), we also have

〈∇h(x), x − p〉 ≤ 〈y, x− p〉 (A.4)

for all p ∈ X and all y ∈ ∂h(x), x ∈ dom ∂h.

Proof of Lemma A.1. To prove (A.3), note that x solves (A.2) if and only if y − ∂h(x) ∋ 0,
i.e., if and only if y ∈ ∂h(x).

For the inequality (A.4), it suffices to show it holds for all p ∈ dom ∂h (by continuity).
To do so, let

φ(t) = h(x+ t(p− x))− [h(x) + 〈y, x+ t(p− x)〉]. (A.5)

Since h is strictly convex and y ∈ ∂h(x) by (A.3), it follows that φ(t) ≥ 0 with equality if
and only if t = 0. Moreover, note that ψ(t) = 〈∇h(x+ t(p− x)) − y, p− x〉 is a continuous
subgradient selection of φ. Given that φ and ψ are both continuous on [0, 1], it follows a
fortiori that φ is continuously differentiable and φ′ = ψ on [0, 1]. Thus, with φ convex and
φ(t) ≥ 0 = φ(0) for all t ∈ [0, 1], we conclude that φ′(0) = 〈∇h(x) − y, p − x〉 ≥ 0, from
which our claim follows. �
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Lemma A.2. Let h be a regularizer on X . Then, for all p ∈ X and all y ∈ R
A, we have

Fh(p, y) ≥ 0 with equality if and only if p = Q(y). (A.6)

If, in addition, if h satisfies (StrCvx), we also have:

Fh(p, y) ≥ K
2 ‖Q(y)− p‖2. (A.7)

Proof. Our first claim is a trivial consequence of the Fenchel-Young inequality and the strict
convexity of h. For our second claim, let x = Q(y). Then, by the definition (A.1) of the
convex conjugate of h, we have:

Fh(p, y) = h(p) + h∗(y)− 〈y, p〉
= h(p) + 〈y,Q(y)〉 − h(Q(y))− 〈y, p〉
= h(p)− h(x)− 〈y, p− x〉 (A.8)

Now, since h is K-strongly convex, we also have:

h((1− λ)x + λp) + λ(1− λ)(K/2)‖x− p‖2 ≤ (1 − λ)h(x) + λh(p) (A.9)

and, with x = Q(y), we get:

〈y, x〉 − h(x) ≥ 〈y, (1− λ)x + λp〉 − h((1− λ)x + λp). (A.10)

Thus, after rearranging, dividing by λ, and letting λ→ 0, we obtain

h(p)− h(x)− 〈y, p− x〉 ≥ (K/2)‖x− p‖2 (A.11)

and our assertion follows from (A.8). �

By virtue of this lemma, we obtain the following convergence criterion in terms of the
Fenchel coupling:

Corollary A.1. Let h be a regularizer on X satisfying (StrCvx), fix a base point p ∈ X , and

let yn be a sequence in R
A. Then, if Fh(p, yn)→ 0, we also have Q(yn)→ p.

Proof. By Lemma A.2, we have ‖Q(yn)− p‖ ≤
√
(2/K)Fh(p, yn), so our claim follows. �
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