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Abstract 
Over the past decades, chemistry has increasingly moved towards using theoretical 

prediction using mathematical methods saving resources and time. As a result of this, a 

range of tools for calculating 3D conformation of molecules and molecular descriptors has 

been developed. In combination with workflow platforms which allows flexible data 

manipulation and statistical analysis, tackling chemistry problems computationally has 

becoming increasingly accessible.  

Cheminformatics is a field within the discipline of computational chemistry which focuses 

on the application of chemistry theory with information science techniques to problems 

related to chemistry. A common application of such techniques is quantitative structure-

activity/property relationships (QSARs/QSPRs), where the relationship between 

experimentally observed activity or properties and the molecular structures investigated via 

computational modelling. Within this thesis, three applications of QSARs/QSPRs have 

been explored: the relationship between the molecular properties of small molecule and 

Ames mutagenicity; the relationship between molecular properties of surfactant-like 

polymers in detergent formulations and their cleaning ability; and the relationship between 

surfactant molecular properties and critical micelle concentration (CMC).  

In relation to QSARs/QSPRs, the field of cheminformatics also involves the development 

of molecular property calculation suited to describe certain properties of a given molecule. 

Amphiphilicity, the measure of the extent of hydrophobicity and hydrophilicity of a 

molecule, is a key description of the amphiphilic surfactant molecules. However, a 

quantitative measure of such property for a surfactant using calculated or measured 

molecular properties is not yet established. Therefore, an automated computational 

workflow was developed which found the boundary between hydrophobic and hydrophilic 

sections of a surfactant and calculated descriptors related to amphiphilicity. The ability of 

the resulting descriptors to relate structural properties with the CMC was then compared to 

predictors of existing QSPR models.  

Aside from the numerical outputs, cheminformatics also includes in the visualisation of 

chemical libraries and molecules. This area is particularly important when results are 

displayed, whether in form of publications or presentations, as 3D graphics often aids the 

understanding of concepts and comparisons of molecules. The concept of pharmacophores 

is an important area in drug discovery and, therefore, it is advantageous to analyse and 

compare pharmacophores of molecules within libraries to search for possible candidates 

which match certain criteria. Current tools lack the ability to visualise query 

pharmacophores of the whole, or a selected part of the, chemical library in 3D, which can 

be important when trying to identify areas chemical space the library can or cannot explore. 

Thereupon, workflows were developed to enable such visualisation.  
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1.1. Computational Chemistry and Cheminformatics 
Historically, chemistry had been an experimental subject. However, experimental chemistry 

requires resources which can be costly and can be time consuming. As experimental chemistry 

has elements of trial and error, there is the possibility an experiment is not successful and the 

resources and time spent go to waste. Therefore, in the past four decades, movement towards 

theoretical prediction using mathematical methods over experimental chemistry has increased 

exponentially [1]. A major reason for this movement is due to the potential reduction in time 

and money in a research program. As information technology advances, the power of the 

hardware and software for theoretical predictions has increased and the cost of computing 

decreased [1]. Using well developed software, one can often cut time required and cost needed 

compared to the resources required for experimental chemistry. This discipline of using 

mathematical methods for calculation of molecular properties or simulation of molecular 

behaviour is called computational chemistry [2].   

As experience accumulates over decades, there is a vast range of computational codes 

developed with increasing capability and accuracy in the predictions they are designed for. This 

includes software such as alvaDesc [3] for calculating molecular descriptors (properties) and 

DataWarrior [4] which can calculate 3-dimentional (3D) conformations of molecules and 

perform substructure searching and structure-based similarity analysis. In addition, nowadays 

there are many aids available on the internet for learning programming languages and there are 

various platforms which allow one to write computer scripts or construct protocols or 

workflows for manipulating data which fits one’s need, such as Pipeline Pilot [5], KNIME [6] 

and Jupyter Notebooks [7]. Utilising such tools and chemical knowledge, it becomes 

increasingly more convenient to tackle chemistry problems with the aid of computational 

methods.  

Within the discipline of computational chemistry, cheminformatics is the field which focuses 

on the application of chemistry theory with information science techniques to descriptive and 

prescriptive problems related to chemistry, such as drug discovery [8]. Such application 

includes chemical graph theory, quantitative structure-activity/property relationships and 3D 

pharmacophores [9], very briefly introduced below and relevant to future chapters.  

Chemical graph theory is a branch of mathematical chemistry which forms the basis of many 

2-dimensional based molecular representation and description solution [9-13]. In this theory, a 

molecule can be represented by a graph, where the atoms are considered as vertices and 

molecular bonds as edges (Figure 1.1) [10]. It is noted that the hydrogen atoms are often 

omitted. The theory then proceeds to reduce this topological structure of the molecule to single 

numbers which characterises its structural properties such as molecular branching [10, 14].   

a) 

 

b) 

 

Figure 1.1. An example of chemical graph of a) phenol and b) isopentane.  
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Quantitative structure-activity/property relationships modelling is a branch of computational 

modelling which relates experimentally observed activities or properties to molecular structure 

[9, 15]. The attempts at constructing quantitative relationships to explain the relation between 

structure and biological activity date back to the beginning of the previous century [15], 

although it is generally accepted that the quantitative structure-activity relationships (QSARs) 

Hansch and Fujita constructed in the 1960s are the first QSARs explaining the biological 

activity of a series of structurally related molecules [9, 15]. In their studies, they made 

regression analysis on the relationship between the octanol/water partition coefficients (logP) 

and biological activities for structural series such as benzoic acids on mosquito larvae, phenyl 

ethyl phosphate insecticides on houseflies, and carcinogenic compounds on mice [16].  

A 3D pharmacophore is defined as the specific spatial arrangement required for the specific 

interactions between the chemical functionalities, such as hydrogen-bond donors and charged 

groups of a molecules, and the biological target for its activities [2, 9, 17, 18]. By studying the 

3D pharmacophores of structure with known activities and comparing them to the 

pharmacophores of different structures in chemical libraries, it is possible to identify structures 

with similar activities in unexplored chemical space [9, 19].  

Within this thesis, various areas of the computational chemistry and cheminformatics have 

been being explored. In Chapter 2, curation of an existing Ames mutagenicity library and 

construction of QSAR predictive models using the curated library and comparison of the model 

performance against existing commercial and open source models will be presented. In Chapter 

3, we move away from small molecules and look into modelling polymer containing surfactant 

formulation against their viscosity and cleaning ability, and identifying structural properties 

that affects these end points. In Chapter 4, the novel process of automating the search for the 

hydrophobic and hydrophilic section boundary of surfactant, calculation of related descriptors, 

and comparison of their ability in relating structural properties with the critical micelle 

concentration to predictors of existing models will be detailed. Finally, in Chapter 5, the novel 

approach taken to visualise query pharmacophores of the whole, or a selected part of a chemical 

library will be described. Within this chapter, an introduction of the key ideas for Chapter 2, 3 

and 4 will be presented in 1.2. Quantitative Structure-Activity Relationships (QSARs), 

Quantitative Structure-Property Relationships (QSPRs) and Predictive Models, and key ideas 

of Chapter 5 will be presented in 1.3 Visualisation of Chemical Libraries.  

1.2. Quantitative Structure-Activity Relationships (QSARs), Quantitative Structure-
Property Relationships (QSPRs) and Predictive Models 

1.2.1. Overview 
Quantitative structure-activity relationships (QSARs) or Quantitative structure-property 

relationships (QSPRs) are the computational modelling technique used for revealing 

relationships between molecular properties of chemical compounds and biological activities or 

physical properties [9, 15, 20]. In general, QSAR and QSPR models utilises data analysis, 

mathematical and statistical methods in order to find the empirical relationships (QSAR and 

QSPR models) between the property of interest P (biological activity or physical property) and 

structural properties D1, D2, …, Dn in form of  

𝑃 = 𝑘(𝐷1, 𝐷2, … , 𝐷𝑛) (Equation 1.1), 

where k is the mathematical transformations empirically established which when applied to the 

descriptors (D1, D2, …, Dn) should calculate the property value (P) for all molecules [21]. Using 

such a relationship, P of a chemical compound can be predicted using the compound’s 

structural properties. In order to find the empirical relationships, a curated database and a 
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selection of modelling algorithms are required. Scheme 1.1 shows the generic workflow of 

developing QSAR and QSPR [12, 21].  

 

Scheme 1.1. The generic workflow of developing QSAR and QSPR models for predictive 

modelling.  

1.2.2. Chemical library selection  
When developing QSAR or QSPR models, it is important to understand the purpose of the 

models. As the relationships developed are dependent on the structures, and the choice of the 

molecules in the chemical library  influence the quality and the type of information the models 

can capture [12]. For example, when constructing QSPR models for critical micelle 

concentration, the concentration where surfactant molecule aggregate to form micelles [22], it 

is desired to use a library containing molecules which demonstrate surfactant-like properties. 

Once the chemical library investigating is decided on, it is important to curate the library.  

1.2.2. Chemical 
library selection 

1.2.3. Library 
curation 

1.2.4. Database 
construction 

1.2.5. Training 
and test set split 

Training 
set 

Test 
set 

1.2.6. QSAR/QSPR 
model construction 

1.2.7. Performance 
analysis 

Application 

• End point 
association 

• Descriptor 
calculation 
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1.2.3. Library Curation 
During the preparation of the database for QSAR/QSPR modelling, it is important to curate the 

chemical library of interest. Molecular descriptors are calculated based on molecular structure 

provided and, therefore, if there is any error in the molecular structure, this would directly 

translate into either inability to calculate descriptors for such records or erroneous descriptors 

[21]. As the models can only be as good as the data available, these errors would then in turn 

cause any of the models constructed to be inaccurate [21]. The process of curation ensures the 

structures are chemically correct, standardised and in a format which can be used for descriptor 

calculation without error. Fourches and Tropsha have described the major steps of data curation 

workflow that should be taken for the QSAR/QSPR [21, 23], which includes removal or 

mixtures and inorganic chemical compounds, removal of salts, normalisation of chemotypes 

and treatment of tautomeric forms using SMILES, a line notation for molecules (details see 

1.2.4.2. Digital storage of molecular structures). Of course, what steps of curation are taken 

need to be considered with the type of database used and the purpose of the QSAR/QSPR. The 

steps of curation taken for each project within this thesis are described in the relevant chapters.  

1.2.4. Inputting data 
With the chemical library of interest curated, it is essential to construct a database containing 

the property of interest and the structural properties of the molecules. For each entry of the 

database, it is necessary to have an associated measured property of interest – the defined 

endpoint. This is in line with the Organisation for Economic Co-operation and Development 

(OECD) QSAR guidelines [24]. In most cases, the endpoint is measured experimentally, and 

hence is common for the endpoint values to be referred to as the observed values. However, as 

experimental measurements are generally affected by the conditions when the measurement is 

taken, it is crucial to state the experimental system the QSAR/QSPR is being identified for. In 

some cases, endpoints are calculated from experimental measurements taken under different 

conditions using an already established relationship in order to have concurring conditions for 

the endpoints [25]. Depending on the structure of the endpoint, the type of QSAR/QSPR model 

that can be constructed differs. If the endpoint is binary or categorical, classification 

QSAR/QSPR models can be constructed. On the other hand, when the endpoint is continuous, 

the resulting QSAR/QSPR models are regression models [26, 27].  

Apart from the endpoint, the database must also contain molecular properties which describe 

the entry based on its molecular structure, such as molecular fingerprints, number of rotatable 

bonds, and moment of inertia for each of the entries.  

1.2.4.1. Digital storage of molecular structures 
Before going into the details of the different properties calculatable for a molecular structure, 

it is necessary to have a brief understanding how a molecular structure can be stored digitally.  

Different formats can store different amount of data and within this thesis, four types of 

molecular structure formats are involved: SMILES, SMARTS, InChI and SDF.  

SMILES stands for Simplified Molecular Input Line Entry Specification. It is a line notation 

for molecules based on the principles of molecular graph theory [13], where the atoms are 

represented as nodes and bonds are represented as edges (Figure 1.1). A SMILES string stores 

the heavy atoms of the molecule using their element symbols, with their connectivity implied 

by their position in the SMILES string (Table 1.1). It is a fast and compact way of representing 

molecular structure which is human and machine-readable [13]. It is noted that this method of 

storing molecular structure does not include the 2D or 3D coordinates of the molecules. The 

SMILES string of a molecule can be stored with its endpoint and/or properties using delimited 
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text file formats. Multiple molecules can be stored in the same delimited text file by inputting 

them on separate lines.   

Table 1.1. The difference between SMILES, SMARTS and InChI notation methods 

Notation method String Matching Structures 

SMILES CCO 
 

High specification SMARTS [CH3][CH2][O&-1] 
 

Low specification SMARTS CCO 

 

 

 
 

InChI 
InChI=1S/C2H6O/c1-

2-3/h3H,2H2,1H3  

 

SMARTS, standing for SMiles ARbitrary Target Specification, is a language extended from 

SMILES which describes molecular patterns and properties [28, 29]. It allows the specification 

of atomic properties, such as charge and number of valences, of SMILES strings at varying 

specificity. High specificity SMARTS allows specific structures to be described without match 

with other similar structures that may match using SMILES. On the other hand, low specificity 

SMARTS allows generic structures to be described which can match with more structures than 

the corresponding SMARTS string (Table 1.1).  

InChI is the International Chemical Identifier developed under the sponsorship of the 

International Unions of Pure and Applied Chemistry (IUPAC). It is a unique chemical identifier 

which describes a molecule with several layers of information where applicable: the atoms and 

their bond connectivities, tautomeric information, isotope information, stereochemistry, and 

electronic charge information (Table 1.1) [30]. The InChI of a molecule is a string of 

characters, converted from inputted structural information to give  a unique InChI identifier 

through normalisation of the structure, canonicalisation to generate unique number label for 

each atom and serialisation [30]. As InChI normalise and canonicalise the molecular structure, 

it can be used to identify duplication of molecules in chemical libraries.  

SDF stands for structure-data file, which is able to store multiple molecules along with 

associated data in one file. For each molecule within a SDF, the molecular structure is stored 

in a Connection table, where the atom information with their 2D or 3D coordinates are stored, 

followed by their bond connections and types (Figure 1.2) [31]. Stereochemistry regarding 

each atom and bond are also specified in the Connection table where available. As 

stereochemistry can affect the action of a molecule, which is crucial especially in biology 

related fields such as pharmacology, it is often the preferred method of storing molecular 

structures for descriptor calculation.  



CHAPTER 1: INTRODUCTION 

 

7 

 

 

Figure 1.2. The SDF of an ethanol molecule generated using Spartan’18 [32], with associated 

properties: chemical formula (Formula), hydrogen-bond acceptor count (HBA count), 

hydrogen-bond donor count  (HBD count), molecular weight (Molecular Wt. (amu)) and name 

of molecule (Name).  

1.2.4.2. Calculatable descriptors 
With the molecular structure files in hand, they can then be imported into computer programs 

such as Pipeline Pilot [5], KNIME [6], CDK Descriptor Calculator [33] and alvaDesc [3] for 

calculation of molecular descriptors. For some molecular descriptors, different calculation 

tools may use a different underlying algorithm for its calculation, and therefore may yield 

different values. Hence, it is important to ensure all descriptors for the same QSAR/QSPR 
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project are calculated using the same tool with its version noted. Molecular descriptors can be 

classified by the level of complexity they describe in 0, 1, 2, 3 or 4-dimesional (Figure 1.3) 

[11, 12].  

 

Figure 1.3. Graphical example of different molecular representations of the same structure 

(ibuprofen). Taken from [12]. The relationship between chosen dimensionality and information 

content/ease of calculation of the related descriptors is also illustrated.  

0-dimensional (0D) descriptors are the simplest molecular descriptors based on the chemical 

formula, the specification of the chemical elements and their occurrence in a molecule [12]. As 

0D descriptors do not consider any connectivity information, they are low in information 

content and highly degenerate, such that different molecules may have the same values (Table 

1.2) [11, 12]. Common 0D descriptors includes number of atoms, atom counts (e.g. number of 

carbon atoms, number of oxygen atoms) and molecular weight.  

Table 1.2. Example 0D descriptors for ethanol and methoxymethane 

Name ethanol methoxymethane 

Structure 
  

Chemical formula C2H6O C2H6O 

Number of atoms (hydrogen excluded) 3 3 

Number of carbon atoms 2 2 

Number of oxygen atoms 1 1 

Molecular weight 46.07 46.07 

 

1-dimensional (1D) descriptors derived from the substructure list representation of a molecule, 

which consist of a list of structural fragments of a molecule [11]. Structural fragments of a 
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molecule can be any atom-centred fragments, functional groups or substituent of interest 

present in the molecule [11, 12]. The substructure list representation does not require the 

complete knowledge of the molecular structure and therefore multiple molecules, such as 

isomers, can have the same values [11, 12]. 1D descriptors are usually presented as a binary 

code encoding the presence or absence of the given structural fragment or in terms of their 

occurrence frequency (Table 1.3) [12]. Examples of 1D descriptors includes number of 

hydrogen bond donors and acceptors, and they are typically used in substructure analysis, 

similarity/diversity analysis, and virtual screening and design of chemical libraries [11].  

Table 1.3. Example 1D descriptors for ethanol and methoxymethane 

Name ethanol methoxymethane 

Structure 
  

Number of hydrogen bond donors 1 0 

Number of hydrogen bond acceptors 1 1 

 

2-dimensional (2D) descriptors also include topological descriptors. These descriptors are 

derived from algorithms applied to the molecular graph of the molecule, which defines the 

connectivity of the atoms in a molecule in terms of the presence and nature of chemical bonds 

(Figure 1.1) [11, 12]. This type of descriptor is usually sensitive to structural features such as 

size, shape, symmetry, branching and cyclicity [11]. In addition to the structural features, 

specific chemical properties, such as mass and polarisability, and presence or absence of 

hydrogen bond donors and acceptors, can also be considered in combination [12]. Examples of 

2D descriptors includes Kier and Hall’s connectivity index and information content. Kier and 

Hall’s connectivity index includes information from atom and molecular size to branch point 

and environment [14]. Information content indices measure molecular symmetry, where 

diversity of the elements is accounted for (Figure 1.4) [34-36].  
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Chemical structures 

 
C5H12 

 
C5H12 

 
C4H12N

+ 
Molecular graphs 

 

  
Atom type counts 

C atoms: 1×1 + 1×2 + 1×2 

H atoms: 1×2 + 1×4 + 1×6 

C atoms: 1×1 + 1×4 

H atoms: 1×12 

N atoms: 1×1 

C atoms: 1×4 

H atoms: 1×12 

Information content of order 0 (0 bond length) 
0.87 0.87 1.09 

Information content of order 1 (1 bond length) 

1.16 1.09 1.09 

Figure 1.4. Illustration displaying the difference in information content of order 0 and 1 for 

two C5H12 isomers, pentane (left) and neopentane (middle), and tetramethylammonium (right).  

3-dimensional (3D) descriptors are geometric descriptors derived from the 3D representation 

of a molecule. A 3D representation of a molecule defines the molecule in terms of atom types 

and x,y,z-coordinates, perceives the molecule as a rigid geometrical object in space, allowing 

the representation of the overall spatial configuration of the atoms in the molecule as well as 

the nature and connectivity of the atoms (Figure 1.5) [11, 12]. 3D descriptors are high in their 

information content [37] and can measure the steric and size properties of a molecule [11], 

however, there are precautions that need to be kept in mind in calculation and usage in relation 

to the geometric optimisation of the molecule [12]. First, the coordinates of the atoms in the 

3D molecular representation are influenced by the geometric optimisation method used [38], 

and the optimisation is often conducted in the gas phase. Second, for a highly flexible molecule, 

i.e. a molecule with a high number of rotatable bonds, there is more than one similar energy 

conformation available, and in reality, these conformers would exist in mixed abundance. 

Third, the optimised geometry may not be the geometry where the molecule is active for its 

action, the bioactive conformation. This is in particular observed for molecules expressing their 

pharmaceutical and biological action [39]. Examples of 3D descriptors includes charged partial 

surface area and moment of inertia. Charged partial surface area describes the charged surface 

area in relation to its total solvent accessible surface area [35]. The moment of inertia 

determines the torque required for the molecule to spin along a specified axis, e.g. x-axis 

(Figure 1.6), which gives an indication of the shape of the molecule [2, 35].  
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Figure 1.5. 3D representation of ethanol, generated using Spartan’18 [32].  

 

Figure 1.6. Illustration of moment of inertia along the X axis for ethanol.  

4-dimensional (4D) descriptors are descriptors with additional information to the molecular 

geometry. One type of 4D descriptor involves embedding the molecule in a 3D grid of 

thousands of evenly spaced grid points and mapping the interaction of a probe, such as steric 

and electron distribution, to the surface of the molecule [11, 12]. Examples of this type of 

descriptors includes Comparative Molecular Field Analysis [40] and Comparative Molecular 

Similarity Indices Analysis [41] descriptors. Another type of 4D descriptors are ensemble-

based descriptors, such that they describe the properties based on an ensemble of molecules, 

conformation, protonation states and/or orientations [42-45]. This type of descriptor 

incorporates conformational and alignment freedom to the descriptors, which 3D descriptors 

are not able to [12].  

In addition to molecular descriptors, molecular fingerprints can also be calculated from the 

molecular structure. Molecular fingerprints can be based on the 2D or 3D structure of the 

molecule. Three common types of 2D molecular fingerprints are structural keys, path-based 

fingerprints and circular fingerprints. Structural key fingerprints encode the structure of a 

molecule in a binary bit string where each bit corresponds to the presence or absence of a pre-

defined structural feature, and Molecular ACCess System (MACCS) key is a commonly used 

structural key [46, 47]. Path-based fingerprints, such as Daylight fingerprint [48], generate a 

binary bit string of a fixed length encoding the substructure of molecule, where the substructure 

is defined by following a path up to a defined number of bonds [47]. A circular fingerprint 

encodes the molecular structure by circular atom neighbourhoods, defined by the fingerprint 

diameter or radius [46, 49]. Example of circular fingerprints includes extended-connectivity 

X axis 
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fingerprints (ECFPs) and functional-class fingerprints (FCFPs), where the latter is a variation 

of the former which generalises the atoms of a molecule by their functional classes [49]. Using 

molecular fingerprints, the similarity of molecular structures can be compared using similarity 

coefficients such as the Tanimoto coefficient. The Tanimoto coefficient quantifies the 

similarity between two structures by normalising the number of fingerprint bits commonly 

present in both structures using the number of bits which is only present in one of the structures 

[50]. Tanimoto coefficients range from 0 to 1, where pairs of structures with a Tanimoto 

coefficient of 1 means the structures are identical by fingerprint.  

Depending on the type of molecules the investigating chemical library contains, the descriptors 

one might want to calculate for QSAR/QSPR modelling can differ as outlined below. 

1.2.4.3.1. Small molecules 
Small molecules are low molecular weight molecules (< 900 Da) such as monosaccharides and 

drug molecules [51, 52]. As they are small, the complete structure of this type of molecule can 

easily be stored using SMILES and SDF. Therefore, they can easily be imported into molecular 

descriptor calculators such as CDK Descriptor Calculator [33] and alvaDesc [3] to calculate 

their 0-3D descriptors.  

1.2.4.3.2. Surfactants 
Surfactants are molecules which are able to sit at the interface between different phases to 

lower surface tension. A surfactant molecule is typically amphiphilic and comprises of 

hydrophobic (water repelling) and hydrophilic (water attracting) sections [2]. Similar to small 

molecules, surfactant molecules are of a size which can be stored using SMILES and SDF, and 

therefore their 0-3D descriptors can easily be calculated. However, in addition to the 

descriptors for the whole surfactant molecule, descriptors for the hydrophobic and hydrophilic 

sections of a surfactant have been shown to be important in describing the critical micelle 

concentration [25]. Although this can be calculated by importing the hydrophobic and 

hydrophilic fragments of the surfactant molecule into molecular descriptor calculators, it is 

necessary to bear in mind that the 2-3D descriptors calculated may not be an accurate 

description of the fragment in a picture of the whole molecule as the hydrophobic and 

hydrophilic fragments are disconnected from each other. Complications can also arise with the 

consideration of the relative position of the hydrophobic and hydrophilic sections, which is an 

important factor to the properties of surfactant exhibited (further details described in Chapter 

4: Novel Surfactant Descriptor – Potential Amphiphilicity) [53]. 

1.2.4.3.3. Polymer 
In comparison to small molecules and surfactants, polymers are more challenging in calculating 

their descriptors. Polymers vary in size as they are constructed of repeating units where the 

number of repeat units for a single polymer can vary [54, 55]. As a polymer exists as a mixture 

of different lengths, it is difficult to truly capture the molecular structure in a SMILES string 

or SDF. Due to the varying size, it is common to store the polymer structure as the average 

structure. Another common way for polymer data to be stored is in some format which denotes 

the repeat units the polymer contains and how the repeat units are joined together. In recent 

years, method such as Hierarchical Editing Language for Macromolecules  (HELM) [56, 57] 

and BigSMILES [58] had been developed as a line notation for storing polymer structure based 

on the repeat units and their attachment points, although their direct compatibility with 

molecular descriptor calculators is unknown. Nonetheless, using the average structure or the 

repeat units, it is possible to calculate 0-2D descriptors with molecular descriptor calculators. 

However, similar to the hydrophobic and hydrophilic fragments of surfactant molecules, it is 
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necessary to bear in mind that the 2D descriptors calculated using the repeat units of a polymer 

might not be an accurate description of the repeat units in a picture of the whole molecule due 

to the disconnection. Calculation of 3D descriptors for polymers can be difficult as the 3D 

conformation of a polymer molecule is dependent on environmental factors, such as solvent 

used and the concentration when in solution [59].  

In addition to the above, it is important that the structural properties for each QSAR/QSPR 

study are calculated using the same molecular descriptor calculator where possible. This is 

because for some properties, such as neighbourhood information content, different molecular 

descriptor calculators can have a slightly different algorithm for the calculation, which would 

lead to a different result for the same chemical compound.  

In order to avoid confusion, for the rest of this thesis, any structural properties calculated for 

an entry in the databases used in QSAR/ QSPR modelling are referred to as descriptors and 

any of these descriptors contributing to the relationships established (D1, D2, …, Dn in 

Equation 1.1) are referred to as predictors.  

1.2.5. Training and test set split 
When constructing QSAR/QSPR models for prediction, it is important to split the database into 

training and test sets. In QSAR/ QSPR, the training set data are used to establish the relationship 

between the property of interest and descriptors. Once a relationship is established, the 

accuracy of the relationship is clarified by applying the relationship to the test set and assessing 

the performance (detail see 1.2.6. Performance analysis). This is a measure to assess the 

predictivity of the constructed model on unknown data and reducing overfitting, where the 

model is only accurate in predicting the data it has seen during construction [26]. As the training 

set data define the domain of applicability of the constructed models, when carrying out the 

training and test set split, it is important to ensure the training and test set are balanced in their 

structure and/or endpoint to maximise the generality and the applicability of the models [60]. 

For example, for binary classification problems, it would be optimal for the test set to contain 

an equal number of samples for each class. For regression problem, the continuous endpoint 

would be partitioned into equal size bins for the endpoint and an equal number of samples from 

each bin would be selected for the test set.  

Once the training and test sets are split, the descriptors of the both the training and test set need 

to be examined. First, the descriptors in the training set need to be inspected for near zero 

variance and cross-correlations. Near zero variance, as the words suggest, mean there is close 

to no variance within the descriptor value range. Such descriptors lack distinctive information 

to differentiate between different entries and can be identified by the ratio of the most common 

value to the second most common value [26]. Cross-correlated descriptors mean there is a high 

correlation between the descriptors and therefore the information such descriptors can provide 

the model is very similar [26]. As inclusion of such descriptors often adds more complexity to 

the constructed models in comparison to the information they can provide, it is often a good 

measure to only retain one of the cross-correlated descriptors for model construction. In 

addition to the examination of descriptors within the training set, it is also necessary to ensure 

the value of the descriptors for the test set is within the same range of values in the training set, 

which is another method of defining the applicability domain of the model construction [60].  

1.2.6. Modelling algorithms 
Modelling algorithms can be separated into two categories based on the style of endpoint: 

classification and regression. When the endpoint is binary or categorical, classification model 

algorithms are used to construct a predictive model for the data set [12, 15, 26, 27]. On the 
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other hand, when the endpoint is continuous, regression model algorithms are used [15, 26, 

27]. Within both categories of classification and regression model algorithms, there are three 

sub-groups identifying the type of algorithm used: linear, non-linear and decision tree or rule-

based [26, 61]. 

Linear models refer to models which are linear in the parameters such that for regression 

problems, the model can be written directly or indirectly in forms of  

𝑃 = 𝑎0 + 𝑎1𝐷𝑖1 + 𝑎2𝐷𝑖2 + ⋯ + 𝑎𝑛𝐷𝑖𝑛 + 𝑒 (Equation 1.2), 

where a0 represents the estimated intercept, aj represents the estimated coefficients for the jth 

predictor, Din represents the value of the nth predictor for the ith sample, and e represents the 

random error that cannot be explained by the model [26, 27]. These models cannot capture the 

nonlinear relationships between predictors and the endpoint unless by adding non-linear terms 

manually [26]. For classification problems, the models seek to separate the samples into groups 

based on the characteristics of predictor variations. For binary classification problems, some 

models are based on treating the categories as 0s and 1s and use the linear regression model to 

predict whether the sample is closer to 0 or 1 [26].   

Different to linear models, non-linear models do not require one to know explicitly or specify 

the non-linearity of the relationship prior to model construction [26]. These inherently non-

linear models are more frequently seen in QSARs and QSPRs, covering a wide range of 

frequently used modelling techniques such as support vector machine (SVM, further details 

described in 1.2.6.4.2. Support vector machines (SVM)) and k-nearest neighbours (KNN, 

further details described in 1.2.6.4.3. K-nearest neighbours (KNN)).  

Decision tree or rule-based models are also non-linear in nature. Decision tree-based models 

use one or more nested if-then statements for the predictors to partition the samples [26, 27]. 

These models are called tree models as the if-then statements act as the branches and the 

endpoints are like the leaves at the end of the branches. Rule-based models refer to models 

which have their if-else statements collapsed into independent conditions, which can then be 

simplified or pruned for better coverage of the data with a smaller number of rules [26]. For 

both decision tree and rule-based models, they are highly interpretable when the model only 

consists of a single decision tree or a single set of rules. However, these single tree/rule models 

are known to be unstable and less-than-optimal in their predictive performance [26]. This is 

because slight change in the data can affect the tree/rule drastically and if a sample falls out of 

the predictor space defined by the predictors during the model construction phase, a large 

prediction error would arise. In order to overcome these weaknesses, the frequently used 

tree/rule-based models, such as random forest (RF), incorporates multiple ensembles of 

decision trees. The prediction is then made as by majority vote or averaging of the prediction 

of the ensembles.  

As QSAR and QSPR uses existing data to identify the underlying relationships, it is natural for 

the identified relationship to best fit the data that is used to construct the relationship. However, 

in the field of predictive modelling, if the model is highly constrained to the data used in 

construction, the model would be overfitted for the data and can have difficulty in predicting 

the endpoint for an unknown sample, especially if predictors of the unknown sample fall “out” 

of the predictor space of the data used in construction. In order to reduce overfitting, separation 

of the database into training and test set is a key step  allowing the predictive performance of 

the constructed model(s) to be tested on data which was unknown to the construction process 

[26]. During the model construction, the training set would be split into k roughly equal size 

sets, and each set would be held out one at a time and the rest of the training set would be put 
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through for model construction. Each of the held-out set would then be predicted by the model 

constructed using the rest of the training set to assess the predictive performance of the model 

(cross-validation). In addition, for most modelling algorithms, there are a set of kernel 

parameter which constrict overfitting [26]. These kernel parameters can be tuned by repeating 

the modelling process with a range of values for the kernel parameters to find the optimal which 

gives rise to the least overfitting. These above measures for reducing overfitting can easily be 

carried out within the programming language R.  

R is an openly available programming language and software environment for statistical 

computing and graphics [62, 63]. For the purpose of this thesis, aside from the “base” package, 

a user-created package “caret” (classification and regression training) was used extensively as 

it contains a number of very useful functions for: 

• Balanced training/test set splitting – training sets used to build the predictive model and 

test sets to test the model’s action are required for validation of the constructed model 

predictivity, 

• Descriptor pre-processing – processing of the descriptors into a format suitable for the 

modelling algorithm,  

• Model tuning using resampling – training set is resampled and cross-validated for each 

kernel parameter to find the optimal value(s) [26],  

• Variable importance estimation – estimation of the importance of the variables using 

different methods depending on the modelling algorithm,  

and much more [64]. It also allows various model training using unified syntax by calling on 

the relevant function from other packages and returns the result in a uniform fashion, allowing 

easy comparison of various models trained with the same data set. 

Within this thesis, three linear, six non-linear and five decision tree algorithms were explored 

across the different projects, each with their own pros and cons as explained later, in search for 

models with optimal performance, which are interpretable as is, or can be made interpretable 

with aid of simpler models that have comparable performance.  

1.2.6.1. Linear models 

1.2.6.1.1. Least square linear regression (LM) 
Least square linear regression (LM) is the simplest regression model algorithm available which 

computes a vector that contains the coefficient for each predictor to find the plane that 

minimises the sum-of-squared errors between the observed and the predicted response [20, 26, 

65, 66]. With this simplicity, it is easier to analyse and interpret compared with other regression 

model algorithms [65, 67, 68]. However, it is prone to flaws which can hinder the use of the 

model or cause it to not be interpretable, and measures are required to avoid these. Such flaws 

include that the direct interpretability of the coefficients produced by LM is limited to the 

following conditions: none of the predictors can be determined from a combination of one or 

more of the other predictors and the number of predictors are less than the number of 

observations [20, 26, 65, 66]. Only under this circumstance can the coefficients produced be 

used directly for the analysis of the predictor – observation relationships. In order to fulfil the 

conditions, the descriptors need to be pre-processed to reduce collinearity and the 

dimensionality of the predictor space. Another drawback of this algorithm related to the 

descriptors is that any nonlinear structure within the data cannot be identified [20, 26, 65]. In 

order to accommodate any nonlinear structure present within the data, addition of modified 

descriptors is necessary. However, this adds to the number of the descriptors present and 
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therefore can cause the resulting coefficients to be not easily interpretable [15]. In addition, 

LM have several assumptions regarding the residual of the predictions. It assumes the residuals 

are normally distributed and the variance is constant [27, 66, 69]. These assumptions can be 

checked using diagnostic plots: quantile-quantile (QQ) plot and scale-location plot. QQ plots 

allow the examination of the distribution of the residuals (Figure 1.7a), whereas scale-location 

plots allow the examination of the variance of the residuals (Figure 1.7b) [27].  

a) 

 

b) 

 

Figure 1.7. Example a) QQ plot and b) scale-location plot for linear regression assumption 

diagnostics. Taken from [27]. When the residuals are normally distributed, the data points 

follow the diagonal dashed lined in the QQ plot. Constant variance in residuals can be 

demonstrated by a horizontal line with equally spread points in a scale-location plot, which is 

not the case in the example.  

1.2.6.1.2. Partial least square (PLS) 
Partial least square (PLS) is another linear regression model algorithm which can accommodate 

correlated predictors. It finds linear combinations of predictors as components that maximally 

summarise the variation of the predictors while needing those components to have maximum 

correlation with the response at the same time (Figure 1.8) [9, 15, 26, 27, 61].  This algorithm 

makes a balance between the predictor space dimension reduction, which usually hinders the 

use of LM, and a predictive relationship with the response, and the number of components 

retained at the end of the model can be tuned to find the optimum [26]. On the other hand, as 

the predictors are combined prior to relation establishment, the resulting model can be more 

difficult to interpret than LM [61].  
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Figure 1.8. A diagram representing the structure of a PLS model, taken from [26]. PLS finds 

components that simultaneously summarise variation of the predictors while being optimally 

correlated with the outcome [26].  

Within drug discovery, PLS had been successfully applied to a database of 751 known human 

A2A adenosine receptor antagonists (Figure 1.9) in validating the general pharmacophore 

hypothesis for the receptor by Bacilieri et al. [70]. Within the research, conformations of the 

antagonist at the binding site of the receptor had been calculated and two conformations had 

been selected for each antagonist: one conformation with the best scoring function for its 

interaction with the binding site, another conformation which best reproduces the binding 

interaction observed in the crystallographic pose of the receptor. 3D descriptors of the both sets 

of conformations were then calculated and PLS models have been constructed on each set of 

conformations. The performance of the models was then compared to verify the similarity of 

the conformation in their interaction with the binding site.   
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Figure 1.9. Molecular scaffolds of the 751 selected human A2A adenosine receptor antagonist 

in the validation of the general pharmacophore hypothesis for the receptor by Bacilieri et al., 

taken from [70].  

1.2.6.1.3. Partial least squares discriminant analysis (PLSDA) 
Partial least squares discriminant analysis (PLSDA) is an application of the linear regression 

model partial least squares (PLS) to a classification problem, where it aims to find a straight 

line which divides the predictor space into two [26, 71, 72]. The algorithm involves the search 

of latent variables, composed of a defined number of predictor components, which reduce the 

predictor space dimension and optimises correlation with the categorical response represented 

as dummy variables (0s and 1s) [26]. New samples are predicted as a number for dummy 

variables of each class and the class with the largest predicted value is the predicted class [26].  

1.2.6.2. Non-linear models 

1.2.6.2.1. Mixture discriminant analysis (MDA) 
Mixture discriminant analysis (MDA) is a non-linear classification model based on linear 

discriminant analysis (LDA), where instead of each class coming from a single normal 

distribution, each data point has a probability of belonging to each class [26, 27]. Within MDA, 

each class is represented by multiple multivariate normal distributions, and this number can be 

controlled [26]. A single multivariate normal distribution is then generated from the multiple 

multivariate normal distribution by creating a per-class mixture and the class of a new sample 

is then determined by the position of it within the multivariate normal distribution for each 

class [26].  

1.2.6.2.2. Support vector machines (SVM) 
Support vector machines (SVM) were originally developed by Vapnik for classification 

problems which seek to find the optimal hyperplane within the predictor space which can 

separate the classes [15, 27, 61, 73]. The optimal hyperplane would have the maximum 
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separation between the classes and the data points defining this separation are called support 

vectors, which are used to find the class probability for the new samples [26, 61, 73]. For a data 

set that is not completely separable, SVM utilises different kernel functions to map the input 

space into a high dimensional feature space, allowing calculation without needing to transform 

the predictors [26, 27, 61, 73]. When there are data points that lie on the wrong side of the 

hyperplane or within the margin, the margin is penalised by adding a cost [26, 27].  

The SVM algorithm had also been adapted to solve regression problems. In regression 

problems, SVM is used to minimise the effect of outliers on the regression equations where ε 

controls the width of the ε-insensitive zone which the data points contributes linearly to the 

regression [26, 73]. For data points that are outside of the ε-insensitive zone, they are penalised 

by the cost parameter [26, 73]. As in classification problems, SVM also utilises different kernel 

functions in regression problems to allow calculation of the distance between a data point and 

the regression line without transforming the predictors (Figure 1.10) [26, 73].  

 

Figure 1.10. An example of SVM for regression, taken from [74]. Left: SVM before kernel 

function transformation; Right; SVM after kernel function transformation for non-linear data.  

SVM has had many success within the pharmaceutical industry, including virtual screening 

[75, 76], predicting the likeness of a molecular compound to be a kinase inhibitor [77], drug-

induced ototoxicity prediction [78], milk / plasma drug concentration prediction [79] and 

cytochrome P450 inhibitor / non-inhibitor classification [80]. In the study of drug-induced 

ototoxicity prediction by Zhou et al. [78], a database of 572 reported ototoxic small molecules 

(positive) and 347 reported non-ototoxic small molecules (negative) was used. A test set of 11 

positives and 63 negatives was extracted from the database and three subsets of the database 

were selected based on the risk or strength in ototoxicity. 0-2D descriptors were then calculated 

for these molecules and predictive models were constructed using a SVM based method, where 

their performance was compared with other models developed within the study using the test 

set.  

1.2.6.2.3. K-nearest neighbours (KNN) 
K-nearest neighbours (KNN) is another widely used non-linear model algorithm that simply 

predicts a new sample using the K-closest samples from the training set [12, 15, 26, 27, 61]. 

Due to this nature, KNN construction is solely based on the observations from the training set 

and therefore cannot be summarised by a model clearly [26]. In regression, the predicted value 
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of the new sample is the mean of the K-closest samples’ observation value and the value of K 

can be determined by resampling [26, 27, 61]. In classification, the class probability of the new 

sample is the proportion of K-closest samples’ observed in each class [12, 15, 26, 27].  

KNN has found some applications such as cytochrome P450 inhibitor / non-inhibitor 

classification [80] and predicting the isoform 2 of human cyclooxygenase (COX-2) inhibition 

within the pharmaceutical field [81]. In the prediction of COX-2 inhibition by Baurin et al. 

[81], 354 COX-2 inhibitors were investigated (Figure 1.11). 2-3D descriptors were calculated 

and the log value of inhibitor concentration for inhibiting 50% of the enzymatic activity (pIC50) 

of COX-2 was modelled with KNN method. The model was then analysed in a classification 

style method against other models developed within the research by inducing a threshold of 

pIC50 = 7.5 to classify the activity of the inhibitors (i.e. active: pIC50 ≥ 7.5, inactive: pIC50 < 

7.5).  

 

Figure 1.11. Molecular scaffold of the 354 COX-2 inhibitors were investigated in the 

prediction of COX-2 inhibition by Baurin et al., taken from [81]. 

1.2.6.2.4. Neural networks (nnet) and their derivatives  
Neural networks (nnet) are non-linear regression model algorithms that were inspired by brain 

function [26, 61]. Within this type of algorithm, linear combinations of predictors are 

transformed by a sigmoidal function to form hidden units, where predicted values are then 

computed by a linear combination of all the hidden units (Figure 1.12) [15, 26, 61, 73]. The 
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number of hidden units is one of the tuning parameters of nnets, with weight decay as the other, 

which penalise and regularise the model to reduce overfitting. However, a nnet is an algorithm 

where the generation of hidden units relies on random values initially, which means the model 

generated is usually not the global solution, but a local solution that is dependent on the initial 

random values, inducing model instability [26]. As a solution to this, model averaged neural 

networks (avNNet) are often used where several models are created with different initial 

random values and averaged to produce a more stable model [26]. In relation to nnet, deep 

neural network (DNN) is one of the algorithms amongst the deep learning algorithms, a more 

recently expanding yet fast-growing field of statistical algorithms. In essence, DNN is a 

variation of nnet where the nnet only has one layer of hidden units while DNN have multiple 

layers of hidden units, and the number of hidden units within each layer can be tuned to find 

the optimum [82].  

 

Figure 1.12. A diagram of a neural network with a single hidden layer, taken from [26].  

Application of neural network derivatives include estimation of partition coefficients for drug 

discovery [83], predicting the likeness of a molecular compound to be a kinase inhibitor [77] 

and predicting the isoform 2 of human cyclooxygenase (COX-2) inhibition within the 

pharmaceutical field [81]. In the prediction of the “kinase inhibitor-likeness” of molecules by 

Briem et al. [77], a database of 565 active and 7194 inactive compounds was used, where the 

activity is classed by the inhibitor concentration for inhibiting 50% of the enzymatic activity 
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(IC50). Due to the unbalanced dataset, an ensemble-based sampling approach was taken where 

the inactive compounds were split into 13 subsets and 13 training sets were formed by 

combining each of the 13 inactive compound subsets with the 565 active compounds. 

Fragment-based descriptors were then calculated for the database and nnet models were 

constructed for the 13 training sets. The models were then used to predict the activity of 10 

kinase inhibitors not present in the original database (Figure 1.13). The final class prediction 

for the 10 kinase inhibitors was derived from the majority voting of the predictions made by 

the 13 models. The performance of the nnet model ensemble was finally compared with other 

model ensembles constructed in the study.   
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Figure 1.13. Structures of the test set used in the prediction of the “kinase inhibitor-likeness” 

of molecules by Briem et al., taken from [77]. 
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1.2.6.3. Tree/Rule-based models 

1.2.6.3.1. C5.0 
C5.0 (C5) is an advanced version of Quinlan’s C4.5 classification model [26]. The algorithm 

of C5 proceeds by splitting the training set based on the predictors which provide the maximum 

information gain, such that the minimum number of predictors is used for the split. The subsets 

defined by the first split are then each split again, this time based on a different set of predictors. 

The process is then repeated until the subsets cannot be split any further. At this stage, the 

conditions of the final splits are examined, and the ones which do not contribute significantly 

to the accuracy of the model are removed [26, 84]. Although there is little literature on the 

improvements C5 contain, the author of the “caret” package unravelled the program source 

code and found that the improvements within C5 lead to generation of smaller and simpler trees 

than C4.5, including carrying out a final global pruning procedure that attempts to remove the 

sub-trees until the error rate exceeds that when there was no pruning [26]. C5 is the only model 

used that does not contain any parameters for tuning.  

1.2.6.3.2. Random forest (RF) 
Random forest (RF) is a robust tree modelling algorithm used widely in statistical analysis and 

predictive modelling, that has the capability of producing one of the most accurate models 

without the need of pre-processing the input data [27, 85]. RF is essentially an ensemble of 

multiple classification trees, where each tree is built using bootstrap samples of the input data 

and a random subset of the top k predictors at each split of the tree (Figure 1.14), specified by 

mtry [26, 27, 61, 85].  
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Figure 1.14. A flowchart of a random forest modelling algorithm taken from [86]. 

In classification problems, each of the classification trees produces a prediction for the class of 

a new sample as a vote, and the proportion of votes in each class across all the trees within the 

ensemble is the predicted probability for each class [26, 85]. In regression problems, the 

predicted value of a sample is in return the mean of the predicted values of each of the trees 

[26, 85]. Due to this ensemble nature of RF, it is not easy to gain an understanding of the 

relationships between the predictors and the observations, however, it is possible to quantify 

the impact of the predictors within the ensemble on prediction [26, 27, 85].  

Successful uses of RF include cytochrome P450 inhibitor / non-inhibitor classification [80] and 

prediction of drug aqueous solubility [87]. In the prediction of drug aqueous solubility by 

Palmer et al. [87], a database of 988 organic molecules with experimental aqueous solubility 

data was used. The database was split into a training set of 658 molecules and test set of 330 

molecules by random partition. 3D conformations of the molecules were generated from their 

SMILES strings and over 200 descriptors, including 126 2D descriptors and 36 3D descriptors 

were calculated. RF models were then constructed based on the 2D descriptors and a 

combination of 2D and 3D descriptors. The importance of the 2D and 3D descriptors was 
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compared by comparing the performance of the models and the predictor importance of the 

models which used the combination of the 2D and 3D descriptors. The performance of the 

model was also compared with other models constructed within the studies and in previous 

studies.  

1.2.6.3.3. Stochastic gradient boosting (GBM) 
Stochastic gradient boosting (GBM) is a variation of boosted tree model which uses a loss 

function in combination with a weak learner [26]. A loss function is a function which calculates 

the distance between the current prediction and the observation [88], such as squared error for 

regression and area under the Receiver Operating Characteristic curve (AUROC) for 

classification; decision tree with depth restriction serves as a weak learner [26]. Within the 

algorithm, it seeks to find an additive model that minimises the loss function with multiple 

iterations [26, 89]. GBM holds similarity to RF where both are ensembles of tree models, 

however, the tree models within GBM are built using a randomly selected subset of the input 

data at each iteration, dependent on previously computed trees. The tree models within GBM 

also have depth restriction and unequal contributions to the final model, which differs from RF 

[26]. GBM can have the tendency to over-fit as, although with restriction, regression trees seek 

to find the optimum model for the given data, and therefore can be low in prediction for new 

data. As a countermeasure a regularisation parameter, shrinkage, is used to constrain the 

learning progress, where the coefficients in the decision tree are made to shrink towards 0 [26]. 

An alternative version of GBM, extreme gradient boosting (XGB) contains more regularisation 

parameters within the algorithm to aid the control of over-fitting [26, 90], which results in 

possibly better performance.  

These boosting methods have found their use in areas such as organic compound boiling point 

prediction in structure-property relationship analysis [91] and prediction of biological activity 

(e.g. as cyclooxygenase-2 inhibitors) of molecules [92]. In the boiling point prediction of 

organic compounds by Zhang et al. [91], a database of 2475 organic compounds with known 

boiling point was split into a training set of 1856 compounds and a test set of 619 compounds. 

3D conformations of the compounds were then calculated and 810 0-3D descriptors were 

calculated from the 3D conformations. GBM models were constructed based on the 2D and 3D 

descriptors separately and their performance was compared. A comparison of the GBM models 

was also made with other models constructed within the study.   

1.2.6.3.4. Cubist 
Cubist is a rule-based modelling algorithm that was originally only available in a commercial 

capacity [26]. Compared to other rule-based modelling algorithms, although the model tree 

construction involved is almost identical to a regression tree model construction, cubist has 

some significant differences in the techniques used during the smoothing process for reducing 

the chance of over-fitting, rule creation and pruning for rule reduction/combination [26]. Cubist 

also has the option to generate model committees to aid bias reduction of the final rule-based 

model in a boosting-like procedure [26]. Another aspect of cubist which differs from other rule-

based modelling algorithm is the ability to adjust the predicted value with the K most similar 

samples from the training set (neighbours), where the adjustment is accordant to the difference 

between the predicted value of the new sample and its closest neighbours [26]. However, there 

are no established techniques for measuring the importance of each predictor within the model 

[26].  

Uses of cubist include the modelling of immediate release tablet formulation database within 

the pharmaceutical field by Shao et al. [93]. Within the study, a database of 205 tablet 
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formulations containing the ingredient composition, process conditions and tablet properties 

was used. The eight measured tablet properties were treated as the endpoints. The database was 

split into a training set of 177 record and a test set of 28 records based on the randomised 

experimental design of the database origin. Cubist models were then calculated for each 

endpoint and their performance was compared with other models constructed within the same 

study.  

1.2.7. Performance analysis 
Depending on if the model is a regression model or classification model, a different set of 

metrics is used to assess its performance. 

1.2.7.1. Regression performance metrics 
When the performance of a regression model is being assessed for its validity, Golbraikh and 

Tropsha originally suggested the following criteria which need to be all fulfilled for the model 

to be deemed acceptable [94]:  

• Cross-validated R2 via internal resampling on training set > 0.5,  

• R2 on test set > 0.6,  

• R² through origin (R0²) close to R2,  

• 
𝑅2−𝑅0

2

𝑅2 < 0.1 or 
𝑅2−𝑅′0

2

𝑅2 < 0.1, and 

• Corresponding 0.85 ≤ k ≤ 1.15 or 0.85 ≤ k’ ≤ 1.15,  

where R2 is the squared correlation coefficient, the correlation coefficient between the 

predicted and observed value; R’0
2 is the inversed squared correlation coefficient through 

origin; k is the gradient of predicted values vs. observed values; k’ is the gradient of observed 

values vs. predicted values.  

They emphasised the predictive ability of a regression model can only be estimated using an 

external test set that was not used for building the model, and moreover that both the normal 

R2 and the R2 through the origin must have similar values for the model to have a high 

predictive ability. However more recently Alexander, Tropsha and Winkler published a paper 

which emphasised the importance of RMSE and suggested that for a predictive model, the 

following criteria needs to be fulfilled [95]:  

• High R2 on test set and 

• Low RMSE of test set predictions,  

where RMSE is the root mean square error, the average distance between the observed and 

predicted values.  

1.2.7.1.1. Examples of regression performance analysis 
In the study of predicting drug aqueous solubility by Palmer et al. [87], PLS, SVM, nnet and 

RF were used to construct regression models on 988 organic molecules for the prediction of 

their solubility. As part of the analysis, the performance metric of the four models during cross 

validation and on the test set were compared (Table 1.4), and RF was found to be better 

performing then the other three models during both cross validation and prediction of test set.  
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Table 1.4. The R2 and RMSE result for the 10-fold cross-validation within the training set and 

for the prediction of the test set in the study of predicting drug aqueous solubility by Palmer et 

al. [87] 

Model Cross-validated R2 Cross-validated RMSE Test set R2 Test set RMSE 

PLS 0.856 0.787 0.859 0.773 

nnet 0.864 0.742 0.866 0.751 

SVM 0.880 0.726 0.878 0.720 

RF 0.896 0.685 0.890 0.690 

 

In the study of organic compound boiling point prediction by Zhang et al. [91], GBM models 

were constructed based on the 2D or 3D descriptors of 2475 organic compounds with observed 

boiling point. In order to compare the performance of the models, the R2 and RMSE of the two 

models were compared, where the 2D descriptor-based models were found to have a better 

performance (Table 1.5).  

Table 1.5. The result of the cross-validation within the training set and for the prediction of the 

test set based on 2D and 3D descriptors in the study of organic compound boiling point 

prediction by Zhang et al. [91] 

Descriptors 

based upon 

Cross-validated 

R2 

Cross-validated 

RMSE 
Test set R2 Test set RMSE 

2D 17.89 0.957 18.19 0.954 

3D 19.96 0.946 20.11 0.948 

 

1.2.7.2. Classification performance metrics 
The performance of classification models can be assessed using a variety of metrics: Sensitivity 

(Sens, Equation 1.3) and specificity (Spec, Equation 1.4) which describes how much of each 

class are correctly predicted [26], accuracy (Acc, Equation 1.5) which describes the overall 

rate of true predictions for all observations [26], balanced accuracy (BalAcc, Equation 1.6) 

which describes accuracy with data skewness considerations [96], area under the Receiver 

Operating Characteristic curve (AUROC) which can assess how much better the model 

prediction is over a random guess [26, 97] and Kappa. Many of these metrics are based on a 

combination of aspects of a confusion matrix for the model (Table 1.6) and for all of these 

metrics, a higher value indicates better performance.  

Table 1.6. An outline of a confusion matrix for a classification model where Class A is chosen 

as the positive class and Class B is the negative class  

 

Observation 

 Class A 

(positive) 

Class B 

(negative) 

P
re

d
ic

ti
o
n

 

Class A 

(positive) 

True Positive  

(TP) 

False Positive  

(FP) 

Positive =  

TP + FP 

Class B 

(negative) 

False Negative  

(FN) 

True Negative  

(TN) 

Negative =  

FN + TN 

 
True =  

TP + FN 

False = 

 FP + TN 

Total =  

TP + FP + FN + TN  
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𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (Equation 1.3) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 (Equation 1.4) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 (Equation 1.5) 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
 (Equation 1.6) 

Kappa (Equation 1.7) assesses the accuracy aspect of a model with class distribution 

considerations which can have a value between -1 to 1. However, normally Kappa of a model 

is a value between 0 and 1, where it is commonly interpreted as follows:  

• < 0.20 = poor agreement 

• 0.20 – 0.40 = fair agreement 

• 0.40 – 0.60 = moderate agreement 

• 0.60 – 0.80 = good agreement 

• 0.80 – 1.00 = very good agreement 

Models with moderate agreement or above are usually considered to be good. However, Kappa 

can be prone to error induced by prevalence [98, 99] of the data and therefore as a safety net, 

Kappa should be considered together with accuracy such that models with high accuracy and 

Kappa values are ones that are truly in good agreement [98]. 

𝐾𝑎𝑝𝑝𝑎 =
(𝑇𝑃 + 𝑇𝑁) − (𝑇𝑟𝑢𝑒 × 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 × 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

1 + (𝑇𝑟𝑢𝑒 × 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 × 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)
 (Equation 1.7) 

The Matthews correlation coefficient (MCC) is another metric for analysing the performance 

of the models based on the confusion metrics. It is a class symmetrical metric, where switching 

the positive and negatives leads to the same result, calculated by Equation 1.8 [100]. However, 

although MCC is considered more informative than Kappa in binary classification problems, 

it is found that  MCC and Kappa generate similar and concordant scores when Kappa is positive 

[100]. 

𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃) × (𝑇𝑃 + 𝐹𝑁) × (𝑇𝑁 + 𝐹𝑃) × (𝑇𝑁 + 𝐹𝑁)
 (Equation 1.8) 

1.2.7.2.1. Examples of classification performance analysis 
In the study of drug-induced ototoxicity prediction by Zhou et al. [78], a database of 572 

reported ototoxic small molecules (positive) and 347 reported non-ototoxic small molecules 

(negative) was used. After the extraction of a test set composed of 11 positives and 63 negatives 

from the database, three SVM based classification models were constructed based on the subset 

of the remaining database, defined by the risk or strength in ototoxicity of the molecule. The 

performance of the models was then compared using sensitivity, specificity, accuracy and 

MCC (Table 1.7). As a result, model 2 was found to have better performance in predicting 
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both the positives and negative across the training set and test set in comparison to the other 

two models.  

Table 1.7. The performance metric for the three SVM based model on the training set and test 

set in the study of drug-induced ototoxicity prediction by Zhou et al. [78]  

Model  
Training set Test set 

Sens Spec  Acc  MCC Sens  Spec  Acc  MCC 

SVM model 1 0.847 0.785 0.823 0.629 0.636 0.889 0.723 0.500 

SVM model 2 0.829 0.901 0.867 0.734 0.818 0.921 0.853 0.707 

SVM model 3 0.594 0.986 0.914 0.689 0.405 1.000 0.609 0.435 

 

1.2.7.3. y-randomisation and Z score 
Validation of models can be carried out by random shuffling of the observations before 

training, building models in the same way as for the true data (e.g. hyperparameter 

optimisation) and the best models applied to the test set and performance metrics obtained (y-

randomisation) [21]. A minimum of three repeats of y-randomisation can be used to test the 

validity of models built of the true data. Model robustness (Equation 1.9) can be calculated 

subsequently [101], where H is the metric chosen for robustness calculation, e.g. H = Kappa 

for classification models and H = R2 for regression models.  

𝑍 =
𝐻𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 − 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝐻𝑦−𝑟𝑎𝑛𝑑𝑜𝑚𝑖𝑠𝑒𝑑 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔)

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝐻𝑦−𝑟𝑎𝑛𝑑𝑜𝑚𝑖𝑠𝑒𝑑 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔)
 (Equation 1.9) 

If the original model was valid, the overall performance of y-randomised models should be 

greatly reduced in comparison, with an expected measure of performance being close to 

random. This can be observed by a high Z score, with Z > 3 considered as significant [102].  

1.3. Visualisation of Chemical Libraries 
Aside from QSAR and QSPRs, computational chemistry can also aid the visualisation of 

chemical libraries. When investigating a chemical library, there are often aspects of the library 

one is interested in important to their research, such as the 2D and 3D structure of the 

molecules, the proportion of the library with a certain number of rings, the number of molecules 

with charged atoms, the 3-dimentionality of the molecules, etc. These areas can often be 

visualised by usage of 2D or 3D graphs to present molecular properties of interest regarding 

the library, or presenting the molecular graph of the individual molecular structures (Figure 

1.15). Such visualisations are beneficial when trying to present one’s work to an audience, in 

form of publications or presentations, as they help the presenter to present and the audience to 

grasp the image.  
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a) 

 

b) 

 

Figure 1.15. Examples of visualisation of chemical libraries a) using normalized PMI ratios as 

shape descriptors for molecule a to g [103], and b) using DataWarrior [4].  

In medicinal chemistry, important images in relation to molecular structures could include their 

shape, their 3-dimensionality, the location of their pharmacophores (e.g. the hydrogen bond 
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donors and acceptors on the structure, Figure 5.16). Approaches to capture the shape and 3-

dimensionality include the use of normalised principal of inertia to present the chemical library 

as to how rod, disc or sphere-like the molecular structures are [103], and using the plane of best 

fit and the distance of the heavy atoms from the plane of best fit of the molecular structure to 

determine how three-dimensional it is [104]. On the other hand, approaches to identify and 

visualise the pharmacophores of molecular structures within chemical libraries, and measure 

their diversity includes Pharma [105], HookSpace [106] and gridding and partitioning [107].  

 

Figure 5.16. Example structure with pharmacophoric features highlighted, taken from [108].  

With description of each of the methods detailed in Chapter 5: Visualisation of Chemical 

Functionality for a Chemical Library, Pharma is a search tool built to identify and calculate 

pharmacophore features [105], HookSpace assesses the diversity of functional groups for a 

chemical library using the spatial relationship between functional group pairs [106], and 

gridding and partitioning which tracks the position of the pharmacophores in relation to a 

predefined core [107]. Application of these approaches is mainly in the analytical area, for 

example Pharma was used in the benchmark exercise of unpublished data from pharmaceutical 

companies by Carlson et al. for matching small molecule ligands to pharmacophore models 

developed by them [109]; Gridding and partitioning formed the base of the shape comparison 

algorithm in the Quantum Isostere Database, a web-based tool for predicting bioisosteric 

replacements [110]. However, although these approaches can analyse and compare 

pharmacophores of molecules within a library, they do not hold the ability to visualise query 

pharmacophores of the whole, or a selected part of the chemical library in 3D, which can be 

important when trying to identify areas of chemical space the library can or cannot explore 

[19].  
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1.4. Thesis Overview 
Chapter 2 describes the development of robust QSARs for predicting Ames mutagenicity of 

molecules and compare the models vs. commercial and open source alternatives. QSPRs for 

polymer cleaning properties are developed in Chapter 3 and key structural molecular properties 

are identified.  

A novel protocol for automated search of hydrophobic and hydrophilic section boundary of 

surfactant is explained in Chapter 4 with surfactant QSPRs explored incorporating the 

descriptors generated from the protocol. 

Chapter 5 described the protocol for visualising pharmacophore of a chemical library.  
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2.1. Ames Mutagenicity and its Importance 
Within the modern drug discovery field, the mutagenicity of a compound is a crucial 

property that can restrict the development of a particular compound series at all stages of 

drug development due to its close relationship with carcinogenicity [1, 2]. In order to assist 

the early identification of potential mutagenic compounds and hence reduce the time and 

expense associated with hit to lead optimisation, in silico prediction of compound 

mutagenicity has attracted much attention from several research groups [3-5]. One of the 

most widely used assays for testing the mutagenicity of a compound is the Ames test, 

invented by Professor Bruce Ames in the early 1970s [6-9]. The Ames test contains a 

bacterial revertant mutation assay with a simulation of mammalian metabolism, which is 

highly sensitive for chemicals which can induce genetic damage and frameshift mutation 

in the environment [10]. However, there are limitations to mutagenicity detection using this 

approach, including identification of false-positives and false-negatives amongst the 

outputs [11], and the interlaboratory reproducibility rate is not 100% [12-14]. Nonetheless, 

it still serves well as a quick and cheap alternative to the standard carcinogen assays on test 

animals.  

2.2. Current State of Art 
As the Ames test can take considerable time and material to carry out especially where very 

large compound libraries need to be analysed, the availability of a reliable in silico model 

would be advantageous. By using robust predictive in silico models, the number of Ames 

tests needed to be carried out can be reduced, thus reducing the time and resources needed. 

In addition, an in silico model could be used to evaluate compounds prior to synthesis.  

Over the past several decades, there have been many statistical models [15, 16] and 

structural alert based models [3, 17, 18] published in literature alongside various 

commercial [4, 19] and open source software packages [19] which attempt to address Ames 

mutagenicity prediction. In one of the works, the performance of commercial programmes 

for Ames prediction (DEREK, MultiCASE, and an off-the-shelf Bayesian machine learner 

in Pipeline Pilot) have been compared with statistical models [15]. It was found that the 

statistical models constructed within the work outperform the commercial programs when 

analysing the corresponding Receiver Operating Characteristic curve (ROC). However, the 

predictive accuracy and robustness of these models are not yet satisfactory as their 

application domain is bound by the database which the models were constructed from and 

none of them have over 95% predictive accuracy [20-22]. Although for theoretical reasons, 

it is impossible to reach 100% accuracy with statistical models and with the imperfect 

reproducibility of the experimental Ames test itself, it is difficult to achieve models with 

accuracy over 95%, it is still important to investigate this method to overcome this hurdle.  

In order to try and overcome the above difficulties, Xu et al. constructed a large database 

based on five different sources containing more than 8300 compounds with experimentally 

derived mutagenicity [5]. Using this, the Xu group reported some predictive models using 

molecular fingerprints, a type of molecular descriptor widely used in similarity searching 

[23], virtual screening [24] and classification [25, 26]. In addition, recently an Ames/QSAR 

(Quantitative Structure Activity Relationship) International Challenge Project has been 

reported where 12 QSAR vendors across the world have worked in collaboration to test 

and improve their Ames QSAR tools using a database of over 12,000 molecules established 

by the Division of Genetics and Mutagenesis, National Institute of Health Sciences of Japan 

[14].  
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2.3. Our Approach 
We have taken the openly available mutagenicity database published by Xu et al. and 

produced a different range of models in order to try to identify improved models to those 

from Xu et al. [5]. By combining a range of physicochemical molecular properties and 

molecular fingerprints as compound descriptors and an alternative selection of modelling 

algorithms, we aimed to identify models that have excellent predictive ability and that can 

provide molecular insights to uncover aspects of the molecules that cause mutagenicity. 

Scheme 2.1 displays the overall approach, with further details and discussion presented 

below.  
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Scheme 2.1. A flow chart of the process of searching for the best performing model and 

data set. Rounded rectangle: raw data; rectangle: processes; coloured background: Software 

used. Each step is further described in 2.4. Process of Library Curation, 2.5.1. Training/test 

set splitting, 2.5.2. Descriptor generation, 2.5.3. Data pre-processing, 2.5.5. Model 

building and performance assessment and 2.5.8. Validation via y-randomisation. 
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2.4. Process of Library Curation 
The raw data used in this study was Xu’s Ames data collection provided within ‘In silico 

Prediction of Chemical Ames mutagenicity’ as Supporting Information 2.1a – c [5]. The 

data collection consists of a training set (7617 molecules), an external validation set (731 

molecules) and a balanced external set (234 molecules). The balanced external set is a 

subset of the external validation set in which the number of mutagens and non-mutagens 

are balanced. We discovered that the library Xu et al. presented in their work contained 

over 2000 duplicates, and therefore we curated the library.  

The curation was achieved using Pipeline Pilot 2017 [27] via the following steps, as 

suggested by Tropsha [28] while taking into account the steps Xu et al. [5] followed. 

Firstly, any inorganic molecules, defined as those without carbon atoms within the 

structure, were removed. Secondly, each molecule was analysed and any molecules with 

unspecified stereochemistry were removed. Thirdly, the molecules were standardised using 

the InChI key [29]. Fourthly, any salt fragments, defined with the built-in salt fragment list 

in Pipeline Pilot, were removed to leave the ionic drug molecule. Finally, any duplicates 

across the data collection were identified and removed using the InChI key. For any instants 

where the Ames mutagenicity differs between the duplication of structures, both instants 

are removed.  

2.5. Construction of Ames Mutagenicity Predictive Models 

2.5.1. Training/test set splitting 
Continuing in Pipeline Pilot 2017 [27], the curated data collection was split into training 

and test sets by the following steps. Firstly, the data collection was clustered into 1000 

clusters using extended connectivity fingerprints [30] (ECFP, diameter = 6) with a  

maximal dissimilarity partitioning relocation method. Secondly, where possible, a 

mutagenic and a non-mutagenic representative closest to the cluster centre were taken from 

each cluster as candidates for the test set. Thirdly, the representative molecules from any 

cluster with only one representative were put into the test set. Fourthly, the mutagenic 

representatives from the clusters with two representatives were put into the test set until the 

threshold of 500 molecules was reached. Fifthly, the non-mutagenic representatives from 

the rest of the clusters were put into the test set. Finally, any molecules not in the test set 

were put into the training set.  

2.5.2. Descriptor generation 
Next, remaining in Pipeline Pilot 2017, molecular properties (MP) (AlogP, molecular 

weight, number of atoms, number of hydrogen acceptors, number of hydrogen donors, 

number of rotatable bonds, number of rings, number of aromatic rings, molecular surface 

area, molecular polar surface area, molecular polar solvent-accessible surface area, 

molecular solubility, logD), extended connectivity fingerprints [30] (ECFP, diameter = 4, 

2048 bits) and functional-class fingerprints [30] (FCFP, diameter = 4, 2048 bits) for both 

the training and test set were calculated. Various combinations of these generated predictors 

sets were exported as separate .csv files for each of the training and test sets, resulting in 

seven predictor data sets: 

1. ECFP: 2048 bits of extended connectivity fingerprints only,  

2. FCFP: 2048 bits of functional-class fingerprints only,  

3. MP: 13 molecular properties,  

4. ECFP+FCFP: combination of 2048 bits of extended connectivity fingerprints and 

2048 bits of functional-class fingerprints,  
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5. MP+ECFP: combination of 13 molecular properties and 2048 bits of extended 

connectivity fingerprints,  

6. MP+FCFP: combination of 13 molecular properties and 2048 bits of functional-

class fingerprints,  

7. MP+ECFP+FCFP: combination of 13 molecular properties, 2048 bits of extended 

connectivity fingerprints and 2048 bits of functional-class fingerprints.  

Using the training set of each predictor data set, an applicability domain was defined by 

tracking the property range and analysing the optimum prediction space [31]. The 

molecules from the test set were then filtered for model applicability by analysing them 

against the defined applicability domain. Any molecules which did not pass the model 

applicability filter were swapped for the next molecule closest to the cluster centre within 

the same cluster with the same mutagenicity label from the training set. The applicability 

domain was then defined again via the same process until no more swaps could be made. 

Any molecules which did not pass the model applicability filter were then removed from 

the test set and placed back into the training set. The training and test sets were then 

exported as .sdf files (Supporting Information 2.2 – 2.3) and .csv files for further 

calculation. 

2.5.3. Data pre-processing 
For each of the seven predictor data sets (see 2.5.2. Descriptor generation), the training 

and test set were imported into R and the column containing the mutagenicity label was 

converted into factors, the categorical data type within R.  

Using the training set, near zero variances predictors, predictors with low frequency ratio 

for the most common value over the second most common value were removed. As a result, 

two variations of each predictor set are selected using the following rules:  

• Variation 1: the full set of filtered predictors where predictors with frequency ratio 

above #observation/10 were removed 

• Variation 2: the reduced set of filtered predictors where predictors with frequency 

ratio above #observation/100 were removed 

Predictors with pair-wise absolute correlations over 0.9 were identified with 

caret:::findCorrelation. For each predictor pair, the average correlation with the rest of the 

predictors was calculated and the predictor with the higher average correlation was 

removed to give the final version of the two variations of each predictor set.  

2.5.4. Algorithm selection 
One linear (PLSDA), three non-linear (MDA, SVM and KNN) and four tree/rule-based 

(C5, RF, GBM and XGB) model algorithms were chosen to investigate their performance 

on the seven data sets, covering the range of simpler and more interpretable models to 

potentially more robust but more complex models for identifying the optimally performing 

methods. 

2.5.5. Model building and performance assessment 
Model construction using caret:::train() with the default tuning parameters outlined above 

and 10-fold cross validation on the training set for each of the predictor data sets (see 2.5.2. 

Descriptor generation) proceeded. For PLSDA, SVM and KNN, the predictors were 

centred and scaled within caret:::train() using the preProcess option. The constructed 

models were then tested using the test set.  
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The performance of classification models was assessed using a variety of metrics: 

Sensitivity (Sens, Equation 2.1) and specificity (Spec, Equation 2.2) which describes how 

much of each class are correctly predicted [32], accuracy (Acc, Equation 2.3) which 

describes the overall rate of true predictions for all observations [32], balanced accuracy 

(BalAcc, Equation 2.4) which describes accuracy with data skewness considerations [33], 

area under the Receiver Operating Characteristic curve (AUROC) which can assess how 

much better the model prediction is over a random guess [32, 34] and Kappa. Many of these 

metrics are based on a combination of aspects of a confusion matrix for the model (Table 

2.1) and for all of these metrics, a higher value indicates better performance.  

Table 2.1. An outline of a confusion matrix for a classification model where Class A is 

chosen as the positive class and Class B is the negative class 

 

Observation 

 Class A 

(positive) 

Class B 

(negative) 

P
re

d
ic

ti
o
n

 

Class A 

(positive) 

True Positive  

(TP) 

False Positive  

(FP) 

Positive =  

TP + FP 

Class B 

(negative) 

False Negative  

(FN) 

True Negative  

(TN) 

Negative =  

FN + TN 

 
True =  

TP + FN 

False =  

FP + FN 

Total =  

TP + FP + FN + TN 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (Equation 2.1) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 (Equation 2.2) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 (Equation 2.3) 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
 (Equation 2.4) 

Kappa (Equation 2.5) assesses the accuracy aspect of a model with class distribution 

considerations which can have a value between -1 to 1. However, normally Kappa of a 

model is a value between 0 and 1, where it is commonly interpreted as follows:  

• < 0.20 = poor agreement 

• 0.20 – 0.40 = fair agreement 

• 0.40 – 0.60 = moderate agreement 

• 0.60 – 0.80 = good agreement 

• 0.80 – 1.00 = very good agreement 

Models with moderate agreement or above are usually considered to be good. However, 

Kappa is prone to error induced by prevalence [35, 36] of the data and therefore as a safety 

net, Kappa should be considered together with accuracy such that models with high 

accuracy and Kappa values are ones that are truly in good agreement [35]. 
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𝐾𝑎𝑝𝑝𝑎 =
(𝑇𝑃 + 𝑇𝑁) − (𝑇𝑟𝑢𝑒 × 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 × 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

1 + (𝑇𝑟𝑢𝑒 × 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 × 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)
 (Equation 2.5) 

The Matthews correlation coefficient (MCC) is another metric considered for analysing the 

performance of the models based on the confusion metrics. However, although MCC is 

considered more informative than Kappa in binary classification problems [37], as our 

predictive models only consisted of Kappa > 0 (see 2.5.8. Cross-validation models, 2.5.9. 

Test set performance check, Supporting Information 2.4 and 2.5), MCC and Kappa 

generate similar and concordant scores above this threshold, MCC was not added to the 

assessment.  

Across all models constructed, the number of times a modelling algorithm produced a 

model with Kappa > 0.45 on the test set were counted and the top three (SVM, RF and 

XGB) were selected for validation. The threshold was chosen to be 0.45 as this can still be 

considered to fall within the moderately accurate classification. Details of the results are 

described within 2.5.10. Validation via y-randomisation. 

2.5.6. Model validation via y-randomisation and model robustness 
Validation of the SVM, RF and XGB models using all the predictor data sets apart from 

the MP data set (for reason explained within 2.5.10. Validation via y-randomisation) was 

carried out by random shuffling of the observations before training using base:::sample(). 

This was repeated three times for SVM, RF and XGB to test the validity of original models. 

The Model robustness, Z (Equation 2.6), is calculated subsequently [38]. 

𝑍 =
𝐾𝑎𝑝𝑝𝑎𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 − 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝐾𝑎𝑝𝑝𝑎𝑦−𝑟𝑎𝑛𝑑𝑜𝑚𝑖𝑠𝑒𝑑 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔)

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝐾𝑎𝑝𝑝𝑎𝑦−𝑟𝑎𝑛𝑑𝑜𝑚𝑖𝑠𝑒𝑑 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔)
 (Equation 2.6) 

 

If the original model was valid, the overall performance of y-randomised models should be 

greatly reduced in comparison, with an expected measure of performance being close to 

random. This can be observed by a high Z score, with Z > 3 considered as significant [39]. 

The variable importance of the predictors of the original models were also calculated using 

caret:::varImp.  

2.5.7. Data set generation 
From Xu’s Ames Data collection [5], a total of 5395 unique molecules were identified. 

These 5395 molecules were split into a training set of 4402 molecules (2549 mutagens and 

1853 non-mutagens) and a test set of 993 molecules (498 mutagens and 495 non-mutagens). 

A total of 4109 predictors (13 molecular properties and 2 × 2048 bits fingerprint from ECFP 

and FCFP) were calculated for each molecule (Table 2.2). Using the training set, near zero 

variance and highly correlated predictors were removed to give the final number of 

predictors for each data set as shown in Table 2.2.  
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Table 2.2. The number of predictors generated within Pipeline pilot and after data pre-

processing 

Data set Original number of predictors Variation 1# Variation 2# 

ECFP 2048 1425 196 

FCFP 2048 788 138 

MP 13 8 8 

ECFP+FCFP 4096 2200 337 

MP+ECFP 2061 1433 204 

MP+FCFP 2061 796 146 

MP+ECFP+FCFP 4109 2208 345 
# See 2.4. Data pre-processing for detail 

2.5.8. Cross-validation models 
Within this study, a total of 112 binary classification models were constructed using the 

combination of eight algorithms with the two variations of predictor set for each of the 

seven predictor data sets (see 2.5.2. Descriptor generation). All the models found showed 

good performance of AUROC > 0.7, Spec > 0.5, Sens > 0.7, balanced accuracy > 0.6 and 

accuracy > 0.6. 45 out of the 112 constructed models also have Kappa > 0.7 and accuracy 

> 0.85, which shows they are in good agreement. On the other hand, most models 

constructed with the variation 1 of the predictor sets are seen to have a slightly better 

performance than the corresponding model built with the variation 2 of the predictor sets 

(differences: AUROC +0.022 ± 0.033, Spec +0.025 ± 0.045, Sens +0.025 ± 0.044, balanced 

accuracy +0.025 ± 0.041, accuracy +0.025 ± 0.042, Kappa +0.051 ± 0.084). The detailed 

performances of these models are given in Supporting Information 2.4.  

2.5.9. Test set performance check 
All of the 112 constructed models were assessed using the test set, with the detailed 

performance of these models given in Supporting Information 2.5. In comparison to the 

training set, the performance on the test set was seen to decrease for each model, especially 

in Kappa (-0.285 ± 0.116), Sens (-0.221 ± 0.052) and AUROC (-0.149 ± 0.043). Although 

the Kappa metric for these models dropped notably in general, 44 of the 112 models still 

had Kappa > 0.45 and accuracy > 0.7 on the test set (Table 2.3 and Supporting 

Information 2.5). In particular, most models constructed with the MP descriptors had very 

poor performance where specificity was less than 0.5, sensitivity less than 0.5 and balanced 

accuracy between 0.5 – 0.7. Again, the models constructed with the variation 1 of the 

predictor sets are seen to have approximately the same performance generally (AUROC 

+0.002 ± 0.027, Spec -0.005 ± 0.046, Sens +0.010 ± 0.038, balanced accuracy +0.002 ± 

0.024, accuracy +0.002 ± 0.024, Kappa +0.004 ± 0.048) as the corresponding model built 

with the variation 2 of the predictor sets. With the decrease in performance on the test set 

in comparison to the training set, concerns of possible overfitting were considered. 

However, this possibility was reduced via two approaches taken throughout the model 

construction process. First, the training and test split was carried out in a fashion which 

allows the test set to cover all the chemical structural domain the entire database covers. 

Secondly, during the 10-fold cross validation at the model construction phase, the 

integrated model tuning identifies the model kernel parameters with the best predictive 

performance and least overfitting.  
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Table 2.3. The number of times a modelling algorithm produced a model with Kappa > 

0.45 on the test set 

Modelling algorithm Number of models with Kappa > 0.45 on the test set 

PLSDA 3 

MDA 2 

SVM 11 

KNN 0 

RF 11 

C5 0 

GBM 6 

XGB 11 

 

2.5.10. Validation via y-randomisation 
Y-randomisation was performed on the models with Kappa > 0.45 on the test set (Table 

2.3.; SVM, RF and XGB). Kappa was selected as the focusing analysis metric as the 

accuracy of the models with Kappa > 0.45 also had moderate to good performance when 

looking at the other metrics (Supporting Information 2.4 and 2.5). As the MP data set has 

been identified to have poor performance when used to construct models alone, y-

randomisation was not performed for the models which were constructed using only the 

MP descriptors. As expected, the performance of the y-randomised models for SVM, RF 

and XGB was reduced greatly for both the 10-fold cross validation and test set, verifying 

that the performance of the models is much better than random (Figure 2.1, Supporting 

Information 2.6). This is supported by the high Z scores of the models (Table 2.4). It is to 

note that some SVM models have Z score of infinity due to all predictions of the y-

randomised models during training were in the positive class, leading to the denominator 

of Z score, standard deviation of the training y-randomised Kappa, being zero.  

  



CHAPTER 2: PREDICTING AMES MUTAGENICITY 

 

51 

 

 
(a) 

 
(b) 

Figure 2.1. Kappa of the selected classification models1 using (a) the variation 1 of the 

predictor sets; (b) variation 2 of the predictor sets.1 ECFP extended connectivity fingerprint, 

FCFP functional class fingerprint, MP molecular properties, RF random forest, SVM 

support vector machine, XGB extreme gradient boosting.2 The average test set Kappa of 

the repeats. 
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Table 2.4. Z scores of the selected classification models 

Predictor 

data set 

Predictor 

variation
# 

Mode

l 

Z 

Score 

Predictor 

data set 

Predictor 

variation
# 

Mode

l 

Z 

Score 

ECFP 1 SVM Inf ECFP 2 SVM Inf 

ECFP 1 RF 54.96 ECFP 2 RF 93.75 

ECFP 1 XGB 69.88 ECFP 2 XGB 23.08 

FCFP 1 SVM Inf FCFP 2 SVM 
144.6

4 

FCFP 1 RF 
124.4

3 
FCFP 2 RF 43.67 

FCFP 1 XGB 42.22 FCFP 2 XGB 25.62 

ECFP+FCF

P 
1 SVM Inf 

ECFP+FCF

P 
2 SVM Inf 

ECFP+FCF

P 
1 RF 54.24 

ECFP+FCF

P 
2 RF 39.90 

ECFP+FCF

P 
1 XGB 11.29 

ECFP+FCF

P 
2 XGB 71.20 

MP+ECFP 1 SVM Inf MP+ECFP 2 SVM 
104.1

8 

MP+ECFP 1 RF 
142.3

9 
MP+ECFP 2 RF 

176.0

0 

MP+ECFP 1 XGB 22.12 MP+ECFP 2 XGB 93.11 

MP+FCFP 1 SVM Inf MP+FCFP 2 SVM 
209.7

7 

MP+FCFP 1 RF 
148.8

2 
MP+FCFP 2 RF 

148.3

4 

MP+FCFP 1 XGB 40.25 MP+FCFP 2 XGB 38.50 

MP+ECFP 

+FCFP 
1 SVM Inf 

MP+ECFP 

+FCFP 
2 SVM 22.78 

MP+ECFP 

+FCFP 
1 RF 50.91 

MP+ECFP 

+FCFP 
2 RF 

124.6

9 

MP+ECFP 

+FCFP 
1 XGB 

101.9

5 

MP+ECFP 

+FCFP 
2 XGB 

140.7

5 
# See 2.4. Data pre-processing for detail  

Inf - infinity 

2.5.11. Variable importance of validated models 
The variable importance of the models that successfully passed the y-randomisation 

validation assessment was calculated and is summarised in Table 2.5. From this, we can 

conclude MP predictors are often important in contributing toward constructing a good 

predictive model, followed by ECFP and closely FCFP. However, we must bear in mind 

that the MP predictors were never used alone in the models analysed as MP predictors alone 

produce poor predictive models. This suggests the MP predictor requires additional 

structural information from the fingerprint predictors to provide vital information for a 

good predictive model. A detailed summary of the average variable importance per 

predictor is given in Supporting Information 2.7.  
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Table 2.5. The overall importance of each predictor type within the SVM, RF and XGB 

models 

Predictor type Number of models present in Overall importance 1 ± SD 

MP2 6 51.8 ± 12.0 

ECFP 8 21.6 ± 1.7 

FCFP 8 21.8 ± 2.6 
1 sum of average importance (Table S2.3) divided by total number of predictors within 

each predictor type 
2individual predictors are shown in Table 2.6 

2.5.12. Comparison of different predictor sets used in model building 
From the results of the 10-fold cross validation and external validations (Figure 2.1, 

Supporting Information 2.4 and 2.5), we can conclude that the MP predictors are not 

sufficient alone to construct a good model using most of the algorithms. This is expected 

as the number of MP predictors is very small and the distribution of all 8 molecular 

properties, including Lipinski’s Rule of Five parameters [40, 41] such as number of 

hydrogen bond donors and LogD, overlap greatly (Figure 2.2), so a simple set of 

descriptors would not be able to distinguish mutagen from non-mutagen in general. On the 

other hand, when the MP predictors are used in combination with fingerprint predictors, 

they can have a relatively high variable importance (Table 2.5 and Supporting 

Information 2.7). In particular, the molecular solubility and molecular surface area have 

high average variable importance of 69.6 ± 31.2 and 62.11 ± 25.2 respectively whereas the 

lowest average importance of the MP predictors is the number of hydrogen bond donors 

(30.8 ± 26.6) (Table 2.6). This suggest that although the MP predictors alone are not 

sufficient, they can still contribute towards the construction of a good model.  
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Figure 2.2. Distribution of the 8 retained predictors on the training set from the MP 

predictor data set. 

Table 2.6. The overall importance the MP predictors within the SVM, RF and XGB 

models, correlations displayed in Figure 2.3. 

Predictors Average importance SD 

LogD 59.8 20.8 

Molecular polar solvent accessible surface area 52.4 25.1 

Molecular solubility 69.6 31.2 

Molecular surface area 62.1 25.2 

Number of aromatic rings 37.5 32.2 

Number of hydrogen bond donors 30.8 26.6 

Number of rings 54.4 44.3 

Number of rotatable bonds 47.8 32.4 
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Figure 2.3. Correlation plot of the MP predictors. All correlations are between -0.9 and 

0.9.  

During the 10-fold cross validation, the ECFP predictors are seen to have a slightly better 

performance (+0.01 ±0.13) than the FCFP predictors in four out of six performance metrics 

on average when using the same algorithm, whether alone or in combination with the MP 

predictors. ECFP is a circular fingerprint which represent molecular structures by circular 

atom neighbourhoods, defined by the fingerprint diameter, while FCFP is a variation of 

ECFP which generalises the atoms of a molecule by their functional classes [30]. As the 

fingerprints are generated using the circular atom neighbourhoods, it is able to capture any 

novel substructures.  

For 16 out of 32 models, FCFP is seen to have a slightly better performance (+0.01 ± 0.15) 

than ECFC in four out of six performance metrics on average when using the same 

algorithm, whether alone or in combination with the MP predictors.  

From the model performance (Supporting Information 2.4 and 2.5), variable importance 

(Table 2.5) and the above analysis, we can rate the predictor set as MP < ECFP ≤ FCFP 

for the amount of information they each contain that is crucial to mutagenicity prediction 

(Table 2.7). It was also noted that by combining the predictor sets, better performing 

models were constructed. Together with the fact that the variation 1 of the predictor sets 

results in models with slightly better performance, we can conclude that increased numbers 

of predictors allow the generation of models which perform better. 
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Table 2.7. Summary of predictor type performance  

Predictor type 

Number of 

models with 

Kappa > 0.7 in 

10-fold cross 

validation 

Number of 

models with 

Kappa > 0.45 on 

either or both 

validation sets 

Overall 

importance 1 ± 

SD 

MP 24 21 51.8 ± 12.0 

ECFP 30 31 21.6 ± 1.7 

FCFP 28 32 21.8 ± 2.6 

Colour code: green highest, orange middle, red lowest. 1 sum of average importance 

(Supporting Information 2.7) divided by total number of predictors within each 

predictor type on models selected for y-randomisation validation 

2.5.13. Comparison of different algorithms used for predicting mutagenicity 
Out of the eight algorithms (PLSDA, MDA, SVM, KNN, C5, RF, GBM and XGB) used 

within this study, RF was seen to have the best performance with the test set across all data 

sets (ECFP, FCFP, MP, ECFP+FCFP, MP+ECFP, MP+FCFP, MP+ECFP+FCFP) when 

using the variation 1 of the predictor sets and in four out of seven data sets when using the 

variation 2 of the predictor sets (AUROC > 0.70, Sens > 0.65, Spec > 0.65, balanced 

accuracy > 0.65, Kappa > 0.45).  

RF is a robust tree modelling algorithm used widely in statistical analysis and predictive 

modelling. RF is an ensemble of multiple classification trees, and due to this nature, it can 

be difficult to gain an understanding of the relationships between the predictors and the 

observations. However, it is possible to quantify the impact of the predictors within the 

ensemble on prediction using the improvement criteria aggregated across the ensemble 

[32]. As mentioned previously, due to the poor performance of the MP predictors alone, 

the models with MP predictors only were excluded from the analysis. Upon inspection of 

the variable importance of the nine best performing models (Table 2.8 and Supporting 

Information 2.7), we can identify that one to five predictors with importance of over 70. 

It is clear that when MP predictors are provided for model construction (Model 2.5 – 2.9), 

molecular surface area, number of rings and logD are seen to have high importance in all 

cases, closely followed by molecular solubility. It is to note that in these models, the 

molecular fingerprints generally do not have importance over 70. Although the molecular 

fingerprints do not have high importance, as mentioned previously, the MP predictors alone 

do not give good models. Therefore, even though the importance is not high, the molecular 

fingerprints must hold some importance in the models.  
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Table 2.8. The variable importance of the selected best performing RF models 

Model 

No. 
Predictor data set 

Predictor 

variation# 
Important predictors 

2.1 ECFP 1 ECFP bit: 925 

2.2 ECFP 2 ECFP bit: 1069 

2.3 FCFP 1 FCFP bits: 466, 870 and 1966 

2.4 ECFP+FCFP 1 ECFP bit: 925 

2.5 MP+ECFP 1 

ECFP bit: 925, molecular solubility, 

molecular surface area, molecular polar 

surface area, number of rings and logD 

2.6 MP+ECFP 2 
Molecular solubility, molecular surface 

area, number of rings and logD 

2.7 MP+FCFP 1 

Molecular solubility, molecular surface 

area, molecular polar surface area, 

number of rings and logD 

2.8 MP+ECFP+FCFP 1 

Molecular solubility, molecular surface 

area, molecular polar surface area, 

number of rings and logD 

2.9 MP+ECFP+FCFP 2 
Molecular surface area, number of rings 

and logD 
# See 2.5.3. Data pre-processing for detail 

Aside from the best performing RF models, the performance of the other algorithms was 

looked at in an attempt to aid the understanding from the RF models. XGB was found to 

have the best performance with the test set across all data sets (ECFP, FCFP, ECFP+FCFP, 

MP+ECFP, MP+FCFP, MP+ECFP+FCFP) when using the variation 1 of the predictor sets 

and in three out of seven data sets when using the variation 2 of the predictor sets (AUROC 

> 0.65, Sens > 0.65, Spec > 0.60, balanced accuracy > 0.65, Kappa > 0.45). On the other 

hand, SVM was found to have the best performance in four of seven data sets when using 

the variation 2 of the predictor sets (AUROC > 0.75, Sens > 0.65, Spec > 0.75, balanced 

accuracy > 0.70, Kappa > 0.45). Although the performance of these models does not look 

as good as the 10-fold cross validation training data and are not to the desired level (e.g. 

AUROC > 0.9), they are still good models as all the metrics are closely matching and the 

Kappa signifies fair to moderate agreement.  

SVM is an algorithm widely used for predictive modelling as it has shown to have great 

capability of fitting non-linear relationships within the pharmaceutical industry [42-44]. 

However, as the predictors within SVM models are transformed by the radial basis kernel 

function, it is the type of model where the analysis of predictor – observation relationship 

can only be achieved via the number of times a predictor appears in the model. Therefore, 

the use of SVM models to identify the direct predictor – observation relationship poses 

some difficulty. Nonetheless, upon close inspection of the variable importance of the four 

top performing SVM models (Table 2.9 and Supporting Information 2.7), we can 

identify that 7 and 65 predictors have importance of over 70. In particular, number of 

rotatable bonds and molecular solubility have high importance in both of the models which 

used MP predictors (Model 2.13 and 2.14), whereas only >20% of the used fingerprint 

predictors in such models have an importance of over 70.  
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Table 2.9. The variable importance of the selected best performing SVM models 

Model 

No. 
Predictor data set 

Predictor 

variation# 
Important predictors 

2.10 ECFP 2 7 ECFP bits 

2.11 FCFP 2 10 FCFP bits 

2.12 MP+FCFP 2 
27 FCFP bits + molecular solubility + 

number of rotatable bonds 

2.13 MP+ECFP+FCFP 2 

36 ECFP bits + 27 FCFP bits + 

molecular solubility + 

number of rotatable bonds 
# See 2.5.3. Data pre-processing for detail 

XGB is a relatively new modelling algorithms which holds great potential in tackling 

machine learning problems [45]. As a tree-based algorithm, it would be possible to derive 

some rules for the underlying predictor – observation relationship; however, this is not a 

straightforward task. Upon inspection of the variable importance of the eight top 

performing XGB models (Table 2.10 and Supporting Information 2.7), we can identify 

that number of rings and number of aromatic rings both have importance of 100 in two out 

of the 10 models (Model 2.20 and 2.21), whereas for molecular fingerprints, ECFP bit: 925 

and FCFP bit: 870 have both made their appearance in four and three of the analysing 

models respectively, with importance over 70.  

Table 2.10. The variable importance of the selected best performing XGB models 

Model 

No. 
Predictor data set 

Predictor 

variation# 
Important predictors 

2.14 ECFP 1 ECFP bit: 925 

2.15 FCFP 1 FCFP bit: 870, 1226 and 1966 

2.16 ECFP+FCFP 1 ECFP bit: 925 

2.17 ECFP+FCFP 2 FCFP bit: 870 and 2007 

2.18 MP+ECFP 1 ECFP bit: 925 and number of rings 

2.19 MP+ECFP 2 Number of rings 

2.20 MP+FCFP 1 
FCFP bit: 870 and number of 

aromatic rings 

2.21 MP+ECFP+FCFP 1 
ECFP bit: 925 and number of 

aromatic rings 
# See 2.5.3. Data pre-processing for detail 

Nonetheless, as the performance of the constructed XGB models do not match the desired 

values, especially when looking at Kappa (Kappa > 0.6), we decided not to attempt to 

examine further the predictor – observation relationship.  

2.6. Comparison with Present Work 
In addition to the model validation process, predictions of the Ames mutagenicity of the 

curated data was calculated using the commercial mutagenicity categorical model in 

StarDrop [46] and open source Toxicity Estimation Software Tool (TEST) [47] for 

comparison. The StarDrop mutagenicity categorical model is based on a range of decision 

tree algorithms which employs the C4.5 algorithm introduced by Quinlan [46, 48]. TEST 

predicts Ames mutagenicity via the weighted average of predictions from several different 
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cluster models and the estimation based on the three nearest chemical neighbours in the 

training set of TEST to the predicting molecule [47]. Both of these models were constructed 

using the same database [15]. A confusion matrix was created for the training set and test 

set individually.  

In order to compare the performance of the top performing models, the StarDrop Ames 

mutagenicity category model and TEST, mutagenic predictions were made for the Class A 

mutagenic chemicals from the Ames/QSAR International Challenge Project [14]. The 

SMILES of the Class A mutagenic chemicals were extracted from the relevant PDF files, 

and any incomplete SMILES were removed as were molecules without a provided CAS 

number. The molecules were then processed and compiled as described in 2.1. Data 

preparation and 2.2. Data compilation. The mutagenicity of the molecules was predicted 

using the top performing models, the StarDrop Ames mutagenicity categorical model and 

TEST. As only mutagenic chemicals are available in this dataset (non-mutagens were not 

published), the performance of these models was compared using sensitivity only.  

2.6.1. Performance comparison of top performing models with commercial product 
When comparing the average Kappa of the selected classification models verified via y-

randomisation and Z score with the Kappa from StarDrop and TEST (Table 2.11), it is 

clear that there is a clear drop in performance for the selected classification models between 

the training set and test set. The decrease in performance also existed for TEST, however 

this is not as prominent as the constructed classification models. On the other hand, 

StarDrop shows comparable performance across the training and test sets (Kappa difference 

= 0.07). The classification models are constructed using the training set and assessed using 

the test set, while 4657 of the 6512 molecules involved in the overall construction process 

of the StarDrop model and TEST were included in the training and test set. One note needed 

to be taken is that across the training and test sets, 202 and 102 molecules did not have a 

prediction (predict result = N/A).  

Table 2.11. Kappa of the selected classification models and StarDrop Ames mutagenicity 

category model on the training and test set 

Model Training set Test set 

SVM1 0.76 ± 0.06 0.48 ± 0.02 

RF1 0.98 ± 0.03 0.52 ± 0.04 

XGB1 0.76 ± 0.02 0.49 ± 0.03 

StarDrop 0.69 0.62 

TEST 0.70 (0.62)2 0.57 (0.41) 2 
1average Kappa (Supporting Information 2.4 and 2.5) of the selected classification 

models and their standard deviation 
2Kappa within the bracket calculated for the unpredicted molecules counted as falsely 

predicted (i.e. unpredicted mutagens as false negative and unpredicted non-mutagens as 

false positive) 

Therefore, the Class A mutagenic chemicals from the Ames/QSAR International Challenge 

Project [14] was used as a fairer comparison between the selected classification models, 

the StarDrop model and TEST. The Class A mutagenic chemicals were published much 

more recently and therefore are more unlikely to be involved in the construction process of 

the StarDrop model and TEST. After data curation and cross-checking against the 

molecules involved in model construction of our models, StarDrop’s model and TEST, 508 
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mutagens were extracted from Ames/QSAR International Challenge Project [14] and used 

for comparison. From Table 2.12, we can note that our selected classification models are 

marginally better performing than both the StarDrop model and TEST. Here again, TEST 

failed to predict 71 molecules of the extracted Class A mutagenic chemical. However, we 

have to bear in mind that this only captures the ability of the models to predict mutagens 

correctly as no non-mutagens are involved in this analysis.  

Table 2.12. Sensitivity of the selected classification models and StarDrop Ames 

mutagenicity category model on the Class A mutagenic chemicals from the Ames/QSAR 

International Challenge Project [14] 

Model Sens 

SVM1 0.62 ± 0.01 

RF1 0.62 ± 0.02 

XGB1 0.61 ± 0.02 

StarDrop 0.56 

TEST 0.57 (0.49) 2 
1average sensitivity (Supporting Information 2.4 and 2.5) of the selected classification 

models and their standard deviation 
2Sensitivity within the bracket calculated for the unpredicted molecules counted as falsely 

predicted (i.e. false negatives) 

From Table 2.11, we can see that our constructed models have a better chance in correctly 

predicting an Ames mutagenic compound than the StarDrop model and TEST. This then 

brought our interest to if our models can correctly predict the mutagenicity of the Class A 

mutagenic chemical which one or zero models within the Ames/QSAR International 

Challenge Project predicted correctly [14] . Out of the 36 curated Class A mutagenic 

chemicals which were correctly predicted by one or fewer models within the Ames/QSAR 

International Challenge Project, our models can correctly predict the mutagenicity of 28 of 

them (Supporting Information 2.8). In comparison, the StarDrop model and TEST can 

only each correctly predict six compounds. Again, here TEST fails to produce prediction 

for six of the molecules. This further shows the capability of our models to correctly predict 

mutagens, possibly due to the different chemical space the training set covers in comparison 

to the StarDrop model and models within the Ames/QSAR International Challenge Project. 

However, as the specificity of models are also important due to the possibility of predicting 

a strong drug candidate incorrectly as mutagen, similar analysis using non-mutagens will 

be necessary.  

2.7. Conclusion 
Within this work, we attempted to build models with comparable performance to the 

models Xu et al. presented using a different range of descriptors and modelling algorithms. 

During the process, we discovered that the library Xu et al. presented in their work 

contained duplicates, and therefore we curated the library identifying 5395 unique 

molecules. As this resulting library is different to the library Xu et al. used for their work, 

comparison of model performance against their work was not carried out. After 

constructing 112 models using eight different algorithms, we discovered SVM, RF and 

XGB to have the best performance. The RF models had the best performance across most 

data sets during the 10-fold cross validation training (AUROC > 0.95, Sens > 0.90, Spec > 

0.95, balanced accuracy > 0.95, Kappa > 0.90) and on the test set (AUROC > 0.75, Sens > 

0.75, Spec > 0.65, balanced accuracy > 0.70, Kappa > 0.40); the SVM and XGB models 
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had good performance during the 10-fold cross validation (AUROC > 0.90, Sens > 0.85, 

Spec > 0.75, balanced accuracy > 0.80, Kappa > 0.65) and on the test set (AUROC > 0.65, 

Sens > 0.65, Spec > 0.60, balanced accuracy > 0.65, Kappa > 0.30).  

With the RF, SVM and XGB models, we discovered that the MP descriptors showed the 

highest importance when used in combination with molecular fingerprints. Such 

descriptors are logD, molecular solubility, molecular surface area, number of aromatic 

rings, number of rings and number of rotatable bonds, with their importance differing with 

different modelling algorithms.  

By comparing the performance of our top performing models against the StarDrop Ames 

mutagenicity prediction model and TEST using the Class A mutagenic compounds from 

the Ames/QSAR International Challenge Project, we found our models to be better 

performing in predicting mutagens correctly. We also discovered that our models were able 

to predict some of the Class A mutagenic compounds where one or less models were able 

to predict correctly in the Ames/QSAR International Challenge Project. Attempts to 

improve the performance and robustness of the models would involve searching for more 

experimental Ames data and extend the variation of modelling algorithms used, as well as 

the range of molecular descriptors calculated.  
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3.1. Detergent Properties and Polymers as Surfactants 
A detergent is a surfactant or a mixture of surfactants with cleaning properties in dilute 

aqueous solutions [1]. One of the keys to the cleaning properties of detergents is their ability 

to lower the interfacial tension between different phases, such that oil and grease can be 

removed from surfaces [2]. The ability of a detergent to lower the interfacial tension is 

often partly gauged by its critical micelle concentration (CMC). The critical micelle 

concentration describes the concentration where the surfactant molecules aggregate to form 

clusters called micelles which have their hydrophobic groups clustering towards the oil 

phase and the hydrophilic groups pointing outwards towards the aqueous phase [3]. When 

the phase changes from monomeric surfactant solution to micellar solution, this invokes a 

sharp change of physical properties [4]. This sharp change can be measured via various 

different method (e.g. surface tension, conductivity), and the suitable method of 

measurement is dependent on the nature of surfactant investigated [4]. The CMC is 

dependent on the experimental conditions, such as temperature and the equipment used, as 

these can affect the physical properties of the solution containing the surfactant molecules 

[5]. In addition, although the discontinuity of the physical properties is sharp, the phase 

change from monomeric surfactant solution to micellar solution occurs over a small range 

of concentration, and therefore is difficult to obtain a single precise value.  

Although CMC is the key scientific parameter scientists look at when trying to understand 

the cleaning properties of detergents, for commercial detergent products, developers would 

often look at other properties, such as the viscosity and result of cleaning tests, when 

developing new liquid detergent formulas. This is because consumers would often pay 

attention to how viscous the product is when they select them from the shelf and how well 

they can remove stains. Therefore, construction of quantitative structure-property 

relationships (QSPRs) to aid understanding of the properties of the detergent formulas that 

affects viscosity and cleaning results is important for developers.  

Traditionally, surfactants commonly refer to molecules with an ionic hydrophilic head and 

a carbon chain hydrophobic tail. This is the structure of surfactant that formed bar soap in 

the early days (Figure 3.1) [1]. However, as research advances, surfactants also refers to 

any molecule with hydrophobic and hydrophilic section which can sit at the interface 

between difference phases to lower surface tension [1]. This includes non-ionic molecules 

with sections distinctively more hydrophilic then the rest of the molecule which can arrange 

themselves in solution to form micelles.  
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Figure 3.1. Example of common surfactant a) sodium stearate and b) 4-(5-dodecyl) 

benzenesulfonate with their hydrophilic head and hydrophobic tail labelled.  

Polymers are macromolecules which are composed of small repeated units, monomers, and 

copolymers are polymers formed of more than one species of repeated unit [1]. Block 

copolymers are copolymers with each species of the repeated units in distinct blocks [1] 

(Figure 3.2a). When these blocks have distinctively different hydrophilicity and their 

relative size and position allows them to form micelles at its CMC, the polymer can be 

defined as a surfactant [6, 7] (Figure 3.2b). Theoretically the relative hydrophilicity and 

size of the junction blocks would determine the CMC of the polymer and therefore its 

ability to remove stains; the total length of the polymer chains would increase the viscosity 

of the detergent formula it is present in as they can tangle with each other.  

  

a) 

b) 

Hydrophilic head Hydrophobic tail 
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Figure 3.2. Example of a) block polymer and b) how block polymer can form micelles.  

3.2. Polymer Data 
Although it is possible to include polymers with surfactant properties in detergent formulas, 

QSPR with polymer data is an ongoing challenge. First, the composition of the polymer is 

not always certain [8, 9]. With block copolymers, they are usually formed via living 

polymerisation techniques, such that the block of the polymer would grow as long as the 

conditions allow. However, as multiple blocks would form at the same time, it is not 

possible to fully control all forming polymer chains’ length, but instead indicate the range 

of length of the blocks, i.e. there is an unknown distribution of polymer lengths typically. 

Another challenging point of polymer data is the molecular structures. Currently companies 

would each store their own polymer data with their inhouse database using their own 

methods and there is no one universal structure to how one should structure their database. 

Therefore, different databases would have different construction to each other and may 

contain different properties. This makes usage and analysis of polymer data from different 

sources require extra steps to unify and curate the data. This may not be such a problem 

when dealing with a single database, however, if one was to apply previously constructed 

QSPR models derived from one database on another, difficulties may arise.   

3.2.1. Data used 
The data collection used in this project is a polymer surfactant library (PSL) provided by 

Dr Jerry Winter, Unilever. The members of the PSL are all star-block polymers based on 

chemically similar cores and various chemically similar arms of different sizes, tipped with 

different chemical functionalities (Figure 3.3). This data collection is anonymised as it is 

part of a proprietary technology development programme. Therefore, that no attempt is 

made in this chapter to explain the structure property relationships in terms that could be 

used to infer the proprietary chemistries involved, but it is the purpose to show that useful 

models can be created using descriptors derived from the chemical structure of a real 

industrially relevant data set. A limited set of chemical characteristics and properties of the 

PSL members have been derived from the structures and are listed in the first column in 

Supporting Information 3.1. The observation of this data collection is measured on 

formulations in which each member of a PSL is added to one of two “base formulations” 

(BF1 and BF2) containing other typical cleaning product ingredients in water. The two base 

hydrophilic hydrophobic 

Aqueous 

phase 
Oil phase 

hydrophilic 

a) 

b) 
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formulations vary in composition, but both contain a 10% water hole for adding water and 

PSL sample. Each of the formulations were evaluated for their properties as via one or more 

of the three possible tests, each providing a different endpoint:  

• The viscosity (measured in mPa.s) at the shear rate of about 21 s-1 experienced by 

the fluid while being poured (Vis) 

• A reflectance change (measured in ΔE) measure of the amount of red pottery clay 

removed from a “white” polyester fabric in a test wash (RPC) 

• A reflectance change (measured in ΔE) measure of the amount of yellow pottery 

clay removed from a “white” polyester fabric in a test wash (YPC) 

Within the data collection, various calculated properties of the PSL members were provided 

as descriptors for the formulations (Supporting Information 3.1).  

 

Figure 3.3. Illustration displaying the generic structures of the members of the PSL, 

including the points of variation for the structures.  

  

Chemically 

similar core 
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chemically similar arms 

of different sizes 
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3.3. Constructing of Detergent Properties QSPR Models 
Scheme 3.1 displays the overall workflow for developing and testing QSPR models. 

 

Scheme 3.1. A flow chart of the process of achieving a successful model. Rounded 

rectangles: raw data; rectangles: processes; circle: interpretation; hexagon: solutions ideas. 

Each step is further described in 3.3.1. Data compilation, 3.3.2. Data pre-processing, 3.1.1. 

Initial algorithm selection, 3.3.4. Model building and performance assessment, 3.1.1. 

Predictor – observation relationship interpretation, 3.5.2. Models with transformed 

observation values and 3.5.3. Models with altered predictors.  

3.3.1. Data compilation 
Each of the spreadsheets of the PSL excel file containing the descriptors for the PSL 

members, formulation compositions and test results were exported as .csv files, which were 

then imported into R [10] as individual data frames.  
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For the data frame from the test result spreadsheet, the observations were normalised 

against their respective controls unique to the particular batch of experiments. The batch 

control normalised observations were then normalised again against their respective 

controls for the specific series of formulation and end point. For all data frames, the rows 

with no observations were removed and only columns with essential information for data 

compilation and model building are retained.  

Next, data regarding to the formulation involving each base formulation (BF1 and BF2) 

were extracted from the formulation composition spreadsheets. Information regarding the 

percentage composition of the base formulation and water within the formulation 

composition data frame was removed and reformatted to accommodate an extra column for 

the presence of a second polymer ingredient. The descriptors for the polymer used in each 

formulation was extracted from the PSL spreadsheet.  

The data frames for each combination of base formulation and endpoint (Vis, RPC and 

YPC) were then merged to give one data frame using the formulation ID. The descriptors 

of the polymer involved in the relevant formulation was then merged with the newly formed 

data frames. Once the data frames are composed, all columns other than the observations 

and the descriptors listed in the first column of Supporting Information 3.1 were removed 

to leave only the essential information required for model construction. At this stage, a data 

frame for each of the data sets, BF1_Vis, BF2_Vis, BF2_RPC and BF2_YPC, was formed 

with 83, 198, 170 and 76 observations in them respectively (Table 3.1).  

Table 3.1. The number of observations for each data set 

End Point# 
Base formulation 

BF1 BF2 

Vis 83 198 

RPC - 170 

YPC - 76 
# see 3.2.1. Data sets for detail 

3.3.2. Data pre-processing 
For each data set, a training/test split was carried out with a 9:1 ratio using 

caret:::createDataPartition to ensure the resulting training set and test set contain the correct 

ratio of observation values from each percentile based section of the overall observation 

values [11].  

Near zero variance predictors were removed to reduce the likelihood of error induced by 

the lack of information of these predictors by the following rules:  

• Variation 1: the full set of filtered predictors where predictors with frequency ratio 

above #observation/5 were removed (Supporting Information 3.1).  

• Variation 2: the reduced set of filtered predictors where predictors were removed 

following the below criteria  

• Predictors with frequency ratio above #observation/25 for total 

#observation<100 or 

• Predictors with frequency ratio above #observation/50 for total #observation 

between 100-1000 (Supporting Information 3.1).  



CHAPTER 3: UNDERSTANDING POLYMER DETERGENT PROPERTIES VIA QSPR 

METHOD 

 

73 

 

Correlation plots of the predictors were also examined. However, due to the nature of the 

predictors, if the highly correlated predictors were removed, only one predictor would be 

left. Therefore, no procedures were carried out to reduce the correlation between predictors.  

Any factor predictors were manually transformed into integers to avoid errors arising 

during model building. 

3.3.3. Initial algorithm selection 
Initially four non-linear model algorithms (SVM [12, 13], KNN [13, 14], nnet and avNNet 

[13]) and three decision tree/rule-based model algorithms (RF [13, 15], cubist [13] and 

XGB [16]) were selected to investigate their performance on the four data sets, covering 

the range of simple yet interpretable (e.g. KNN) to robust but black-box like models (e.g. 

cubist) for discovering the optimal performing model that can be interpreted to uncover 

some of the predictor – observation relationships. Each of the algorithms contain different 

tuning parameters as descripted in Table 3.2.  

Table 3.2. Tuning parameters for the selected algorithms 

Algorithm Tuning parameter 

SVM 
ε 

cost 

KNN K 

Nnet 
Decay 

Size 

avNNet 

Decay 

Size 

Bag 

RF mtry 

Cubist 
Committees 

Neighbours 

XGB 

N rounds 

Max depth 

Eta 

Gamma 

Col sample by tree 

Minimum child weight 

 

3.3.4. Model building and performance assessment 
Model construction using caret:::train() with the default tuning parameters and 10-fold 

cross validation on the training set for each data set (see 3.3.1. Data compilation) 

proceeded. For PLSDA, SVM and KNN, the predictors were centred and scaled within 

caret:::train() using the preProcess option. The constructed models were then tested using 

the test set. 

  



CHAPTER 3: UNDERSTANDING POLYMER DETERGENT PROPERTIES VIA QSPR 

METHOD 

 

74 

 

Commonly, when assessing the performance of a regression model, the following metrics 

are assessed:  

• Correlation coefficient (R2): measures how well the predictions match the 

observations  

• Root mean square error (RMSE): standard deviation of the prediction error 

• Gradient of regression line (k) 

Normally, these metrics are calculated by prediction vs. observation. Variant of the metrics 

includes the inverse metrics (denoted by dash) calculated by observation vs prediction and 

through the origin metrics (denoted by subscript 0).  

When the performance of a model is being assessed for its validity, Golbraikh and Tropsha 

originally suggested the following criteria which need to be all fulfilled for a regression 

model to be deemed acceptable [17]:  

• Cross-validated R2 via internal resampling on training set > 0.5 

• R2 on test set > 0.6 

• R² through origin (R0²) close to R2 

• 
𝑅2−𝑅0

2

𝑅2 < 0.1 or 
𝑅2−𝑅′0

2

𝑅2 < 0.1 

• And the corresponding 0.85 ≤ k ≤ 1.15 or 0.85 ≤ k’ ≤ 1.15 (See 1.2.7.1. Regression 

performance metrics for full definition) 

They emphasised the predictive ability of a model can only be estimated using an external 

test set that was not used for building the model, and more over that both the normal R2 and 

the R0
2 must have similar values for the model to have a high predictive ability. However 

more recently Alexander, Tropsha and Winkler published a paper which emphasised the 

importance of RMSE and suggested that for a predictive model, the following criteria needs 

to be fulfilled [18]:  

• High R2 on test set 

• Low RMSE of test set predictions 

Generally, R2 on training set is higher than R2 on test set as the data is seen by the model 

during construction. However, in the cases where R2 on training set is calculated based on 

the model during the cross-validation stage, it is possible that the R2 on training set is lower 

than the R2 on test set as the hold-out data during the cross-validation stage is not seen by 

the model during construction.  

In addition, the Z score had been proposed by a number of QSPR papers [19, 20] as a 

measurement of robustness of models. The Z score compares the performance of the 

models to multiple repeats of models with their observation randomly shuffled before 

training. In this project, ten repeats of the y-randomised models were carried out and the Z 

score was calculated following Equation 3.1 [21].  

𝑍 =
𝑅2

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 − 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝑅2
𝑦−𝑟𝑎𝑛𝑑𝑜𝑚𝑖𝑠𝑒𝑑 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔)

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝑅2
𝑦−𝑟𝑎𝑛𝑑𝑜𝑚𝑖𝑠𝑒𝑑 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔)

 (Equation 3.1) 



CHAPTER 3: UNDERSTANDING POLYMER DETERGENT PROPERTIES VIA QSPR 

METHOD 

 

75 

 

If the original model was valid, the overall performance of y-randomised models should be 

greatly reduced in comparison, resulting in a high Z score. Models with Z scores of over 3 

are considered as significant [21].    
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Taking in account of both literatures and Z score, the follow modified criteria for validity 

was used to assess the successes of the tuned models in terms of their predictability and 

understanding the trend within the data:  

• On training set 

• Cross-validated R² > 0.5 

• RMSE < 0.5 

• On test set 

• (Adjusted) R² > 0.6 

• (Adjusted) R0² close to R2 

• |
𝑅2−𝑅0

2

𝑅2
| < 0.1 

• RMSE < 0.35 

• Slope of R0² regression line: 0.85 ≥ k ≥ 1.15 

• Z score > 3 

After analysis of the models constructed, models fulfilling all criteria were tuned with an 

expanded set of tuning parameters as shown in Table 3.3 to refine the models.  

Table 3.3. The difference between the defaults set and expanded set of tuning parameters 

used  

Algorithm Tuning parameter Default set Expanded set 

Nnet 

Decay 0, 0.0001, 0.1 
0, 0.00001, 0.0001, 

0.001, 0.01, 0.1 

Size 1, 3, 5 
1, 2, 3, 4, 5, 6, 7, 8, 

9, 10 

avNNet 

Decay 0, 0.0001, 0.1 
0, 0.00001, 0.0001, 

0.001, 0.01, 0.1 

Size 1, 3, 5 
1, 2, 3, 4, 5, 6, 7, 8, 

9, 10 

Bag FALSE FALSE 

Cubist 
Committees 1, 10, 20 1, 5, 10, 20, 50, 100 

Neighbours 0, 5, 9 0, 1, 3, 5, 7, 9 

 

3.3.5. Predictor – observation relationship interpretation 
As all the selected algorithms are non-linear or tree like models, it is difficult to interpret 

the correlation between the predictors and the observation, i.e. does the predictor have a 

positive or negative effect on the observation. Therefore, two linear model algorithms (LM 

and PLS) were used as a simple tool on data sets for which successful models had been 

found after tuning, in an attempt to aid the understanding of the predictor – observation 

relationships by looking for trends of a linear relationship. In addition, if these linear 

models do not perform well, it shows the necessity to use the more complex model 

algorithms as the observation cannot be explained by simple models.   

Both LM and PLS were used with the in the same fashion as the other model algorithms in 

3.3.3. Initial algorithm selection. For LM, the predictors were centred, scaled and principle 

components generated caret:::train() using the preProcess option due to the high correlation 

between the predictors. The predictors for PLS were centred and scaled within caret:::train() 
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using the preProcess option and the number of components to retain is tuned by extending 

the maximum number of components to retain to the number of predictors available to find 

the optimum model.  

As the linear models did not perform well to provide enough insight to fully discover the 

predictor – observation relationship, refinement of the models by shortlisting the predictors 

was carried out in attempt to refine any potential relationships already noted. Predictors 

were shortlisted using the best performing model’s variable importance by only including 

predictors that took part in the model, i.e. by removing predictors with zero importance. 

The shortlisted predictors were then subject to model building and validation process all 

model algorithms used previously, i.e. LM, PLS, SVM, KNN, RF, cubist and XGB. 

3.4. Constructed models for BF1 data set 
14 models were constructed using SVM, KNN, nnet, avNNet, RF, cubist and XGB initially 

for the BF1 dataset containing 83 observations with viscosity as the endpoint, where the 

observed values were normalised against the controls. Out of the 85 descriptors provided 

with the database for each observation, 60 and 48 descriptors remained respectively in the 

variation 1 and 2 predictor set after the removal of the near zero variance predictors as 

described in 3.3.2. Data pre-processing.  On analysis of the models trained using the default 

parameters, all 14 models have R2 > 0.5 on both the training set and the test set. Therefore, 

in an attempt to narrow down the selection of models for tuning, the models were assessed 

against the modified criteria for validity (Table 3.4). Upon validity assessment, nnet and 

avNNet fulfilled all criteria with the variation 1 predictor set (Model 3.5 and 3.7) while 

cubist fulfilled all criteria with both variation 1 and 2 predictor sets (Model 3.11 – 3.12). 

Consequently, these three models were tuned over an extended set of tuning parameters 

(Table 3.3) in attempt to refine the models. However, while cubist maintained its 

performance and fulfilled all criteria after tuning, both nnet and avNNet failed to fulfil one 

or more criteria after tuning (Table 3.5). This phenomenon of nnet and avNNet losing their 

validity can be explained by the random value dependency initially within their algorithms. 

Both of these algorithms involve calculation of a set of hidden units from the inputted 

predictors initially, which are then used to calculate the prediction value. In the calculation 

of the hidden units, the coefficients which relate the predictors to the hidden units are 

initialised to random values, which is then optimised via their specialised algorithms. 

Although the algorithm of avNNet aims to reduce this model instability, the results 

illustrates that avNNet still has the possibility of not finding the global optimum. 
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Table 3.4. Performance of the original models against the validity criteria  

Model  

No. 

Modelling  

Algorithm 

Predictor  

variation 

Training  

R²* 

Training  

RMSE* 
Test R² 𝑅2 − 𝑅0

2 |
𝑅2 − 𝑅0

2

𝑅2
| 

Test  

RMSE 
k0 Z Score 

Criteria 

 fulfilled 

3.1 SVM 1 0.776 0.121 0.802 0.108 0.134 0.218 0.720 19.198 5 

3.2 SVM 2 0.782 0.118 0.857 0.073 0.085 0.208 0.717 19.525 7 

3.3 KNN 1 0.740 0.125 0.739 0.175 0.236 0.191 0.801 27.755 5 

3.4 KNN 2 0.713 0.135 0.798 0.127 0.160 0.187 0.786 27.730 5 

3.5 nnet 1 0.749 0.125 0.912 0.052 0.057 0.118 0.916 27.991 8 

3.6 nnet 2 0.715 0.126 0.860 0.065 0.076 0.193 0.768 29.194 7 

3.7 avNNet 1 0.747 0.124 0.909 0.054 0.059 0.119 0.920 24.679 8 

3.8 avNNet 2 0.700 0.129 0.859 0.066 0.077 0.193 0.765 22.976 7 

3.9 RF 1 0.788 0.117 0.816 0.122 0.150 0.158 0.859 12.002 6 

3.10 RF 2 0.769 0.118 0.801 0.132 0.165 0.161 0.864 10.218 5 

3.11 Cubist 1 0.761 0.122 0.895 0.056 0.063 0.141 0.873 4.011 8 

3.12 Cubist 2 0.764 0.125 0.901 0.054 0.059 0.137 0.876 4.168 8 

3.13 XGM 1 0.784 0.120 0.761 0.165 0.216 0.167 0.877 24.941 6 

3.14 XGM 2 0.770 0.118 0.788 0.142 0.180 0.164 0.870 24.046 6 
*Training R2 and Training RMSE extracted from average of 10-fold cross validation 

Bold: values that meets the criteria (detail see 3.3.4. Model building and performance assessment) 
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Figure 3.4. Plot of observation against prediction of the training set and test set for Model 3.11 and 3.12.  

Table 3.5. Performance of the refined models, tuned over an expended set of tuning parameters, against the validity criteria  

Model  

No. 

Modelling  

Algorithm 

Predictor  

variation 

Training  

R²* 

Training  

RMSE* 
Test R² 𝑅2 − 𝑅0

2 |
𝑅2 − 𝑅0

2

𝑅2
| 

Test  

RMSE 
k0 Z Score 

Criteria 

 fulfilled 

3.5T nnet 1 0.802 0.114 0.823 0.104 0.127 0.177 0.818 18.968 5 

3.7T avNNet 1 0.795 0.114 0.902 0.050 0.056 0.164 0.794 18.457 7 

3.11T Cubist 1 0.758 0.125 0.887 0.060 0.068 0.150 0.855 6.601 8 

3.12T Cubist 2 0.757 0.126 0.902 0.053 0.059 0.136 0.878 10.603 8 
*Training R2 and Training RMSE extracted from average of 10-fold cross validation 

Bold: values that meets the criteria (detail see 3.3.4. Model building and performance assessment)
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3.4.1. Predictor importance across different models 
Having identified some very good models it is important to assess the predictor importance in 

order to help understand what and how the viscosity of the formulations is influenced, even at 

a semi-quantitative molecular level. Due to the complexity of the cubist model algorithm, there 

is currently no established method to measure the predictor importance of a cubist model [14]. 

The only statistic related to the predictor importance available is the usage of predictors as a 

percentage of times each predictor was used in a condition and/or a linear model within the 

final model using the varImp() function within the caret package [22]. However, it is important 

to note that this is a form of usage count and therefore does not give any in depth information 

to how the predictors were used and hence their importance. 

3.4.1.1. Predictor importance of the cubist models 
There are some similarities and differences between the predictor importance for the models 

built with the two predictor set variants (Model 3.11T – 3.12T). For both predictor set 

variations, fewer than half, of the predictors available (Supporting Information 3.2) were 

used in the model. All the predictors used within the model with the variation 2 of the predictor 

set are also used for the model with the variation 1 predictor set, where the repeated use of 

those predictors indicates the high possibility of them in containing some useful information. 

On the other hand, there are some predictors that are not used within either of the model with 

variation 1 or 2 predictor set. Together with the high correlation between the groups of 

predictors indicated earlier on (3.3.2. Data pre-processing), this implies that some of the 

information included within those unused predictors has already been provided by those which 

have been used. For example, the ChargeContourDensity and ChargeDensity predictors are 

highly correlated and as both of them are some form of mole fraction of total charge measure 

and are effectively the same for the datasets investigated. Out of all predictors, mole fraction 

of total charge at pH7 (ChargeDensity_pH7), Abraham's parameter for hydrogen bond 

accepting at pH7 (ABS_HBondAcceptor_pH7) and number average molecular weight (Mn) 

are some of the top most used predictors with their usage between 70% and 100% for both 

models (Supporting information 3.3), therefore it is reasonable to consider that they contain 

highly important information. For Model 3.12T, number average molecular weight 

(PSL_MW) have the second highest usable of 82.2%. However, using the cubist models alone 

is not possible to define the effect each of the predictor has as the usage only accounts for the 

number of times a predictor was used in a linear model or a split within the algorithm and 

ignores the neighbour-based correction the algorithm also performs during prediction.  

In general, the predictors that are used for both of the models should be considered to contain 

some possibly significant information, followed by the predictors that are only used in the 

model with the variation 1 predictor set, whereas the predictors that are not used in both of the 

models should be considered as predictors containing information that is already covered by 

other predictors or insignificant information. 

3.4.1.2. Predictor importance of the neural network models 
As the cubist model cannot give a true indication of the variable importance, the nnet and 

avNNet models using the variation 2 predictor set (Model 3.5 and 3.7) before tuning were used 

to aid the understanding as they both have comparable performance to cubist models. For 

neural networks, caret determined the variable importance by partitioning the connection 

weights between the input and hidden layer [22]. 

The variable importance from from the nnet and avNNet are somewhat contradictory; while 

Mn have the score of 66.53 (maximum score possible: 100) for the nnet model, its importance 
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score in the avNNet model is only 24.93 where on the other hand ABS_HBondAcceptor_pH7 

has the score of 100 for the avNNet model but only score 5.17 for its importance within the 

avNNet model. The predictors with 70% - 100% usage in either of the cubist models generally 

have a reverse order of relative importance in the nnet and avNNet models.  However, this 

could be explained by the fact that the avNNet model is an average of several nnet models. Due 

to the reported higher stability of the avNNet algorithm in comparison to the nnet algorithm, 

its variable importance should be deemed more reliable than those from the nnet, and hence 

takes the focus of the subsequent analysis. 

The predictors with 70% - 100% usage in either of the cubist models also have a similar trend 

in the avNNet model. It is to note that ABS_HBondAcceptor_pH7, which has 78% and 88% 

usage in the cubist models with variation 1 and 2 predictor sets respectively, has 100% 

importance in the avNNet model, suggesting that it is one of the most important predictors. 

ChargeDensity_pH7, which was also highlighted for its high usage in the cubist models 

previously (85% and 100% for Model 3.11 and 3.12 respectively), also has a relatively high 

variable importance of 87% in the avNNet model to support its possibility of high overall 

importance. On the other hand, the other highlighted predictor for the cubist models, Mn 

(usage: 73% and 76% for Model 3.11 and 3.12 respectively), has a low variable importance of 

25% within the avNNet model in comparison, suggesting that it might not actually contain 

much useful information. Overall, Abraham's parameter for hydrogen bond accepting at 

specified pH (ABS_HBondAcceptor), Abraham's parameter for hydrogen bond accepting 

divided by the molecular volume at specified pH (ABS_HBondAcceptor_d), mole fraction of 

total charge (ChargeDensity) and Abraham's parameter for hydrogen bond donation divided by 

the molecular volume (ABS_HBondDonor_d) are the predictors that are used within the cubist 

models which have variable importance over 85%, suggesting they should be the factors of the 

polymers within the formulations influencing the viscosity. However, as the structure of the 

neural network algorithms transforms the predictors using a sigmoidal function prior to 

combining them to calculate the hidden units, and the prediction is calculated as a combination 

of the hidden units, it is not possible to define which predictors have positive or negative effects 

on the predicted values.  

Investigation of any trends within the variable importance for the nnet and avNNet models was 

also carried out. It is important to note that for the predictors noted with _pH# (Supporting 

Information 3.1, first column) can be grouped together by what property of the PSL they are 

describing. The difference between them is the pH of the environment when the 

measurement/calculation was carried out, e.g. ChargeDensity_pH7, ChargeDensity_pH8 and 

ChargeDensity_pH9 represent the mole fraction of total charge of the PSL at pH 7, 8 and 9 

respectively. However, upon investigation the effect of the pH on the variable importance was 

not clear.  

3.4.1.3. Predictor – observation relationship interpretation using LM and PLS 
As the analysis of the variable importance of the cubist and the neural network models cannot 

establish the relationships between the predictors and the observations due to the nature of the 

algorithm, two approaches were taken in attempt to contribute to the understanding of any 

relationship existing. One of which is the use of LM and PLS. Although as expected these 

linear models do not fulfil all of the modified criteria for validity, the performance of PLS 

models (Model 3.17 and 3.18) and LM model with predictor variation 1 (Model 3.15) are 

acceptable as their values are not too far from the margin set for the criteria (within ±0.05 of 

the margin, Table 3.6).
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Table 3.6. Performance the test set of each of the linear models with the variation 1 prediction set against the validity criteria. 

Model 

No. 

Modelling 

Algorithm 

Predictor 

variation 

Training 

R²* 

Training 

RMSE* 

Test 

R² 

𝑅2

− 𝑅0
2 

|
𝑅2 − 𝑅0

2

𝑅2
| 

Test 

RMSE 
k0 

Z 

Score 

Criteria 

fulfilled 

3.15 LM 1 0.687 0.139 0.835 0.099 0.119 0.167 0.835 30.640 6 

3.16 LM 2 0.626 0.150 0.858 0.090 0.105 0.169 0.790 14.852 6 

3.17 PLS 1 0.675 0.138 0.858 0.082 0.096 0.163 0.828 21.898 7 

3.18 PLS 2 0.657 0.144 0.859 0.088 0.103 0.164 0.806 18.539 6 
*Training R2 and Training RMSE extracted from average of 10-fold cross validation 

Bold: values that meets the criteria (detail see 3.3.4. Model building and performance assessment)
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Another attempt to increase the understanding of the predictor – observation relationships was 

to build models with the list of predictors that took part in the cubist models. However, only 

the cubist and nnet models with the shortlisted variation 1 predictor set fulfil all the validity 

criteria (Table 3.7). We had already established that these models are not suitable for the 

analysis of the correlation between predictor and observation for the following reasons; for 

cubist, it is only possible to obtain the usage of the predictors within the algorithm for a linear 

model or a split, without the neighbour-based correction; for neural network models, the 

relation between predictors and the outputting prediction involves overlapping sigmoidal and 

linear relationships. Therefore, further investigation on the variable importance of these models 

were not investigated. On the other hand, the LM and PLS models here again have values close 

to the margins of the validity criteria, therefore it was considered suitable to further investigate 

these models (Model 3.19 – 3.22) in combination with the ones with the original sets of 

predictors to identify potential predictor – observation relationships. It is to note that the RF 

model using variation 1 predictor set is also close to the margin, however, due to its complex 

tree ensemble nature, it is again not suitable for analysis of the correlation between predictor 

and observation.    
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Table 3.7. Performance of the original models with the variation 1 predictor set shortlisted from the cubist model against the validity criteria  

Model 

No. 

Modelling 

Algorithm 

Predictor 

variation 
Training 

R²* 

Training 

RMSE* 

Test 

R² 

𝑅2

− 𝑅0
2 

|
𝑅2 − 𝑅0

2

𝑅2
| 

Test 

RMSE 
k0 

Z 

Score 

Criteria 

fulfilled 

3.19 LM 1 0.617 0.147 0.862 0.086 0.100 0.168 0.791 12.590 6 

3.20 LM 2 0.636 0.150 0.881 0.074 0.084 0.162 0.794 13.645 7 

3.21 PLS 1 0.628 0.147 0.861 0.087 0.101 0.168 0.792 12.634 6 

3.22 PLS 2 0.613 0.150 0.881 0.073 0.083 0.162 0.794 15.283 7 

3.23 SVM 1 0.696 0.135 0.804 0.118 0.147 0.229 0.677 10.438 5 

3.24 SVM 2 0.708 0.131 0.889 0.057 0.064 0.200 0.717 15.264 7 

3.25 KNN 1 0.687 0.137 0.831 0.107 0.129 0.166 0.825 9.292 5 

3.26 KNN 2 0.682 0.141 0.825 0.113 0.137 0.169 0.813 12.104 5 

3.27 nnet 1 0.707 0.141 0.938 0.038 0.041 0.114 0.867 10.641 8 

3.28 nnet 2 0.753 0.124 0.804 0.136 0.168 0.161 0.837 14.428 5 

3.29 avNNet 1 0.778 0.120 0.903 0.061 0.068 0.135 0.848 11.807 7 

3.30 avNNet 2 0.787 0.117 0.881 0.077 0.087 0.141 0.849 8.957 7 

3.31 RF 1 0.785 0.120 0.819 0.120 0.146 0.156 0.862 11.568 6 

3.32 RF 2 0.771 0.119 0.810 0.127 0.157 0.158 0.864 10.254 6 

3.33 Cubist 1 0.748 0.126 0.899 0.055 0.061 0.132 0.909 6.280 8 

3.34 Cubist 2 0.764 0.125 0.859 0.086 0.100 0.144 0.905 9.472 7 

3.35 XGM 1 0.780 0.117 0.802 0.130 0.163 0.161 0.872 10.344 6 

3.36 XGM 2 0.786 0.119 0.767 0.160 0.208 0.168 0.868 8.946 6 
*Training R2 and Training RMSE extracted from average of 10-fold cross validation 

Bold: values that meets the criteria (detail see 3.3.4. Model building and performance assessment)  
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Caret defines the variable importance of the PLS variable by the weighted sums of the absolute 

regression coefficients proportionally to the reduction in the sum-of-squared errors [22]. 

Across all four PLS models (Model 3.17 – 3.18, 3.21 – 3.22), there is a big gap in importance 

between the top two to five most important predictors and the rest of the rest of the predictors. 

This gap ranges from a drop from 50.23% to 5.75% (Support information 3.4, Model 3.17) 

to the extreme case where the importance drop from 98.76% to 5.86% (Support information 

3.4, Model 3.18). Within the top two to five most important predictors, Mn and PSL_MW are 

seen commonly. As previously noted, Mn is one of the top most used predictors in both of the 

cubist models. Although it did not appear so in avNNet model, the high variable importance of 

Mn within the four PLS models successfully supported this proposal. PSL_MW is another 

predictor that is used within both of the cubist models, with a high usage of 82% within the 

model with the variation 2 predictor set (Model 3.12T). However, similar to Mn, it also has a 

low variable importance within the avNNet model. 

With the above analysis, it was reasonable to focus the investigation of the key properties 

correlated to experimental measurements to the following: ABS_HBondAcceptor_pH7, 

ABS_HBondAcceptor_d_pH7 ChargeDensity_pH7, ABS_HBondDonor_d_pH7, Mn and 

PSL_MW. By assessing the distribution of their coefficients across all of the components of 

the PLS models (Model 3.17 – 3.18, 3.21 – 3.22, Supporting information 3.5), it was found 

that PSL_MW, ABS_HBondAcceptor_pH7 and ABS_HBondAcceptor_d_pH7 contribute 

positively and ChargeDensity and ABS_HBondDonor_d_pH7 contributes negatively towards 

the predictor – observation relationship. For Mn, the contribution varies between the 

components across the models. In a third of the PLS components Mn took part in, it has a 

negative coefficient, with the remaining two third being positive. However, when considering 

the overall amplitude of the coefficients, Mn contributes positively towards the predictor – 

observation relationship in broad terms. 

It was found during the analysis of the PLS model coefficients that the change in coefficient in 

relation to pH for ABS_HBondAcceptor, ABS_HBondAcceptor_d, ABS_HBondDonor_d and 

ChargeDensity is such that the lower the pH, the larger the coefficient is, i.e. the value of the 

coefficient gets larger regardless of the sign. On the other hand, on the analysis of the variable 

importance across the four PLS models, the balance of predictors used within the cubist model 

with the variation 2 predictor set is tilted towards being in pH ascending order whereas for the 

predictors used within the cubist model with the variation 1 predictor set is tilted towards being 

in pH descending order. Combining the trends identified for the neural network models, it is 

still very difficult to truly establish the relationship between the pH of the predictors and the 

observations. 

Consolidating all the analyses performed regarding the variable importance of the cubist, neural 

networks and PLS models, the main conclusions drawn were that Mn, PSL_MW, 

ABS_HBondAcceptor, ABS_HBondAcceptor_d, ChargeDensity and ABS_HBondDonor_d 

are the descriptors that have the most influence on the observation prediction. Out of which, 

Mn, ABS_HBondAcceptor and ChargeDensity at pH7 were found to be the most important 

ones. Mn, PSL_MW, ABS_HBondAcceptor and ABS_HBondAcceptor_d have a positive 

effect on the outcome whereas ChargeDensity and ABS_HBondDonor_d have a negative 

effect. It was not possible to draw a clear conclusion regarding the relation between the 

predictors and the viscosity with the aid of the neural networks and PLS models. Even though 

the cubist models can be used to predict the viscosity of a new formulation, it was not 

appropriate for the analysis of the influence of PSL properties on viscosity of current 
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formulations and therefore is not suitable for aiding the design of new PSL to be included in 

the formulation.  

3.4.1.4. Proposed mechanism of viscosity 
Out of the predictors identified to be important, it was found that Mn and PSL_MW increase 

the viscosity of the formulation. Both of these predictors describe the PSL in terms of its 

molecular weight where the former describes the number average molecular weight of the PSL 

which includes the terminal substitution where the latter only describes the molecular weight 

of the PSL core. According to the Mark-Houwink equation, molecular weight of a polymer is 

directly related to its contribution to the viscosity of a solution [23], and therefore the 

relationship between the viscosity of the formulation and the two PSL molecular weight 

descriptors seems consistent with this. However, as the molecular weight of the PSLs analysed 

are low for hyperbranched polymers (PSL_MW = 6000 – 215000, where branched polymer 

MW can vary into 106 region [24]), the Mark-Houwink equation alone is not sufficient to 

explain the phenomenon. Another possible explanation to the correlation between Mn and 

PSL_MW with viscosity is the interference of the PSL molecules with the surfactant 

mesomorphic phases (mesophases). Mesophase is the phase of state in between liquid and solid  

[1] and with surfactants, this contributes to their viscosity. By introducing PSL molecules to a 

detergent formulation, the PSL molecules would interact with the existing surfactant 

mesophases [25]. The number of PSL molecules interfering with the surfactant mesophase is 

correlated to how ordered the mesophases are and therefore the viscosity of the detergent 

formulation. The lower the molecular weight of the PSL molecules are, the smaller the PSL 

molecules are and therefore more PSL molecules can interact with the surfactant mesophases.  

3.5. Constructed models for BF2 data sets 

3.5.1. Initial constructed models 
For the BF2 data sets, only SVM successfully produced a model for the BF2_YPC with R2 > 

0.5 on the training set and the test set (Table 3.8, Model 3.41). However, upon tuning, and 

assessment against the validity criteria (e.g. R2 > 0.6 on the test set), it was not accepted as a 

successful model.  

Table 3.8. The list of initial models with R2 > 0.5 on either training or test set for the BF2 data 

sets  

Model 

No. 
End point 

Modelling 

Algorithm 

Predictor 

variation 
Training set R2* Test set R2* 

3.37 RPC Nnet 1 0.51 0.13 

3.38 RPC avNNet 1 0.50 0.13 

3.39 Vis Nnet 1 0.20 0.64 

3.40 Vis avNNet 1 0.24 0.68 

3.41 YPC SVM 1 0.52 0.71 

3.42 YPC Nnet 1 0.36 0.91 

3.43 YPC avNNet 1 0.38 0.92 

3.44 YPC avNNet 2 0.22 0.97 
*Training R2 extracted from average of 10-fold cross validation 

Bold: R2 > 0.5 
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3.5.2. Models with transformed observation values 
As there were no models accepted as a successful model after tuning, observation values were 

regulated in attempt to find a successful model. Two methods were used for observation value 

regulation: 

• Taking log10 values of the data pre-processed observation values or 

• Taking log10 values of the raw data observation values during normalisation within the 

data compilation process 

However, neither method manage to yield any successful predictive models.  

3.5.3. Models with altered predictors 
As a transformation of the observation values did not produce any successful predictive 

models, transformations of the predictors were attempted as follows: 

• Principle component analysis (PCA) using the preProcess option within caret:::train() 

• Yeo Johnson using the preProcess option within caret:::train() 

• Limiting the predictors to certain pH by removing the irrelevant pH related predictors 

• Using weighted descriptors calculated from the repeat unit descriptors provided within 

the data collection (62 descriptors) and calculated by Dragon6 [26] (1807 zero to two 

dimensional descriptors) according to the fraction each repeat unit is present in the 

polymer 

The Yeo Johnson function is a function able to accommodate zero and negative values while 

eliminating any skewness possibly occurring within the predictors. However, application of the 

function did not successfully yield any predictive models. Adjustment of the predictors via 

PCA, a commonly used data reduction method which seeks to find the linear combination of 

predictors which capture the most possible variance, and limiting the predictors according to 

their pH by removal of the irrelevant pH related predictors yielded some models with limited 

success where those models only have R2 > 0.5 on the test set (Table 3.9). 

  



CHAPTER 3: UNDERSTANDING POLYMER DETERGENT PROPERTIES VIA QSPR METHOD 

 

88 

 

Table 3.9. The list of models with R2 > 0.5 on the test set alone after predictor adjustments  

End point Predictor variation Predictor regulation Modelling algorithm 

Vis 1 PCA nnet 

Vis 1 PCA avNNet 

Vis 1 pH7 predictors only nnet 

Vis 1 pH7 predictors only avNNet 

Vis 1 pH8 predictors only cubist 

Vis 2 pH8 predictors only  

Vis 1 pH8 predictors only nnet 

Vis 1 pH8 predictors only avNNet 

Vis 1 pH9 predictors only nnet 

Vis 1 pH9 predictors only avNNet 

YPC 1 PCA SVM 

YPC 2 PCA SVM 

YPC 1 PCA nnet 

YPC 1 PCA avNNet 

YPC 2 PCA avNNet 

YPC 1 pH7 predictors only SVM 

YPC 1 pH7 predictors only nnet 

YPC 1 pH7 predictors only avNNet 

YPC 2 pH7 predictors only avNNet 

YPC 1 pH8 predictors only SVM 

YPC 2 pH8 predictors only SVM 

YPC 2 pH8 predictors only nnet 

YPC 1 pH8 predictors only avNNet 

YPC 2 pH8 predictors only avNNet 

YPC 1 pH9 predictors only SVM 

YPC 1 pH9 predictors only nnet 

YPC 1 pH9 predictors only avNNet 

 

As the above methods did not result in any successful models, an alternative set of predictors 

were calculated by using a combination of the descriptors for the repeat units of the PSLs 

provided within the data collection and ones calculated by Dragon6 [26]. Using Dragon6, a 

total of 1807 0-2D descriptors were calculated based on the 2D structure of the repeat units. 

For each of the PSLs used within the formulations, the predictors were calculated as the 

weighted descriptors of PSL repeat units (Example 3.1). However, this approach following the 

original data pre-processing procedure also only managed to produce some models with R2 > 

0.5 on the test set alone (Table 3.10). Predictors with an absolute correlation above 0.95 were 

then removed to try to improve the performance of the models. Nonetheless, this approach as 

well only managed to produce some models with R2 > 0.5 on the test set alone, i.e. did not 

satisfy the criteria for training set (Table 3.11). 

Repeat units A B C D Total 

Proportion present within PSL 0.6 0.2 0.1 0.1 1.0 

× Mn 90 25 41 12  

= Weighted Mn 54 5 4.1 1.2 64.3 

Example 3.1. An example of the calculation of weighted descriptors of PSLs.  
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Table 3.10. The list of models with R2 > 0.5 on the test set alone with the weighted descriptors 

as predictors. 

End point Predictor variation Modelling algorithm Test set R2 

RPC 1 KNN 0.53 

RPC 2 KNN 0.56 

RPC 2 RF 0.50 

Vis 1 RF 0.67 

Vis 1 Cubist 0.51 

YPC 1 SVM 0.57 

YPC 1 Cubist 0.92 

 

Table 3.11. The list of models with R2 > 0.5 on the test set alone with the weighted descriptors 

as predictors and highly correlated ones removed. 

End point Predictor variation Modelling algorithm Test set R2 

RPC 1 SVM 0.72 

RPC 1 KNN 0.50 

RPC 1 RF 0.64 

RPC 1 Cubist 0.55 

RPC 1 XGB 0.61 

RPC 2 SVM 0.67 

RPC 2 RF 0.54 

RPC 2 Cubist 0.68 

YPC 1 RF 0.68 

YPC 1 Cubist 0.79 

YPC 1 XGB 0.78 

YPC 2 RF 0.70 

YPC 2 Cubist 0.68 

YPC 2 XGB 0.65 

 

It was noted that with the BF2 data sets, most of them produce models which have a R2 > 0.5 

on the test set but not for the training set. This phenomenon was thought to occur due to the 

training/test split of the data, i.e. there is always a possibility that molecules in the test set are 

predicted well just as a consequence of which compounds are in the test set. This hypothesis 

was tested by repeating the data pre-process and model building process with the original 

predictor sets three times. Each time the data pre-processing is carried out, a different 

training/test split is performed using a different random seed number. The R2 values of the all 

models on the test set was then plotted against the values on the training set according to the 

data set. If the performance does not cluster in the same area as the original models, it proves 

that the variation in the training/test split contributes to the difference in performance between 

the training and test set. As seen in Figure 3.5, the test set of models with the BF2_RPC data 

set usually underperform in comparison to the training set, the BF2_Vis data set tends to 

outperform and the performance for BF2_YPC is fairly equal in comparison to the training set.  
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c) 

Figure 3.5. A graph of R2 values of test set against training set for a) BF2_RPC, b) BF2_Vis 

and c) BF2_YPC. 

Although none of the methods above were successful in building a predictive model for any of 

the BF2 data sets, possibly important predictors were defined as those which had 50% variable 

importance in at least 10 out of the 28 models, including the three sets of models built for the 

test set performance validation, for each data set as concluded in Table 3.12.  
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Table 3.12. List of predictors above 50% variable importance (description see Support 

information 3.1) across at least 10 models 

End point Predictor variation 1 Predictor variation 2 

RPC 

mf_FG2 

mf_FG9 

ABS_LogP_pH9 

Hydrophobe_Length 

ABS_LogP_pH8 

Vis 

Mn 

Molecules_vs_Current 

mf_FG2 

mf_FG9 

mf_FG5Hion_pH8 

ChargeContourDensity

_pH7 

IonContourDensity_pH

7 

ABS_HBondDonor_pH

9 

ABS_HBondDonor_d_

pH9 

Hydrophobe_Length 

Mn 

Molecules_vs_Current 

mf_FG5Hion_pH9 

IonContourDensity_pH

8 

ABS_HBondDonor_pH

7 

ABS_HBondDonor_pH

9 

YPC 

mf_FG5Hion_pH9 

ChargeContourDensity

_pH7 

ABS_HBondAcceptor_

d_pH7 

ChargeDensity_pH9 

ABS_HBondAcceptor_

pH7 

ABS_HBondDonor_pH

8 

ABS_HBondDonor_d_

pH9 

 

3.6. Conclusion 
Out of all the data sets investigated, only BF1_Vis data set has yielded a predictive model using 

the cubist algorithm. Within the model, Mn, PSL_MW, ABS_HBondAcceptor, 

ABS_HBondAcceptor_d, ChargeDensity and ABS_HBondDonor_d are the factors considered 

to have the most influence on the observation prediction, where Mn, PSL_MW, 

ABS_HBondAcceptor and ABS_HBondAcceptor_d is thought to have a positive effect on the 

prediction and ChargeDensity and ABS_HBondDonor_d have a negative effect.  

Although no predictive models were successfully built from the BF2 data sets using various 

approaches, possibly important predictors for each of the data set were marked by the number 

of times they were used between all of the models.  

In order to build a successful model for the BF2 data sets and increase the performance of the 

simpler models, such as PLS, for BASD1_Vis, predictors that are more closely related to the 

observations, such as amphiphilicity, will need to be obtained by experiment or calculation for 

the PSLs – calculation of amphiphilicity related descriptors is described in Chapter 4: Novel 

Surfactant Descriptor – Potential Amphiphilicity. 
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4.1. Amphiphilicity and Surfactants 
As mentioned in Chapter 3: Understanding Polymer Detergent Properties via QSPR method, 

surfactants are a key chemical in detergents. Surfactants are amphiphilic (or amphipathic) 

molecules containing lyophilic and lyophobic sections which are strongly attracted or repulsive 

to a specific solvent respectively [1, 2]. When the specific solvent is water, the sections are 

usually referred to as hydrophilic and hydrophobic sections respectively. When a surfactant 

dissolves in an aqueous phase, the weak attraction between the hydrophobic section and water 

molecules breaks the hydrogen bond interactions between the water molecules, distorting the 

structure of the aqueous phase. This distortion causes some of the surfactant molecules to be 

exposed to the interface between the aqueous phase and non-aqueous phase (e.g. air, lipophilic 

phase). The exposed surfactant molecules then arrange themselves such that the hydrophobic 

sections have the minimum contact with the water molecules (Figure 4.1). As a result, the 

hydrophobic sections predominantly point towards the non-aqueous phase, lowering the 

surface tension by reducing the dissimilarity between the two phases [1, 2]. Surfactants can be 

classified into different groups depending on the nature of the hydrophilic sections: anionic, 

cationic, zwitterionic and non-ionic (Figure 4.2).  

 

Figure 4.1. Illustration of the arrangement surfactant molecules take when exposed to the 

interface between aqueous phase and non-aqueous phase, where size of the sections is not to 

scale.  

 
Anionic surfactant 

 
Cationic surfactant 

 
Zwitterionic surfactant 

 
Non-ionic surfactant 

Figure 4.2. Examples of different types of surfactants.  

Aqueous phase 

Non-aqueous phase 
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Hydrophobic 

section 

Interface  
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It is known that amphiphilicity is dependent on the hydrophilicity and hydrophobicity of the 

molecule, and the relative position of the hydrophilic and hydrophobic sections [3]. There had 

been attempts to quantify amphiphilicity for small charged drug molecules and α-helices of 

proteins as amphiphilicity plays a critical role in biology [4, 5]. Similar to the mechanism of 

surfactants orienting themselves into position where the hydrophobic sections have minimum 

contact with water molecules, amphiphilic molecules in living matter have an inherent 

tendency to orient themselves in a suitable environment (e.g. a lipid bilayer) [4]. This ability 

to orient themselves into a suitable position within the environment holds the key for the 

structural organisation of living matter and how interactions can occur [4]. For α-helices of 

proteins, amphiphilicity is quantified by the hydrophobicity moment, defined as the magnitude 

of the vector sum of the hydrophobicity of the amino acid residues projected perpendicular to 

the axis of the helix [5].  

Extending this idea further, conformation dependent amphiphilicity of a molecule can be 

defined as the amphiphilic moment, which is defined as the vector pointing from the centre of 

the hydrophobic domain to the centre of the hydrophilic domain, with the strength of the 

amphiphilic moment quantified by the vector length [6]. For small charged drug molecules, 

amphiphilicity is defined by amphiphilic moment, calculated by vector addition of individual 

atom/fragment contribution values and calibrated with known free energy of transfer of a 

compound from aqueous phase to air-water interface or into a micelle [4]. However, to the best 

of our knowledge, there is no literature that quantifies specifically the amphiphilicity of a 

surfactant molecule using calculated or measured molecular properties at present. Therefore, 

to attempt to quantify this property could provide a great step forward towards surfactant 

related modelling.  

One of the most challenging areas in quantifying amphiphilicity is the relative position of the 

hydrophilic and hydrophobic sections. First, it requires the identification of the “boundary” 

between the hydrophilic and hydrophobic sections. Although this can be done manually using 

relevant chemistry knowledge [7], when this is a step within the analysis of library of hundreds 

of molecules or more, there is a necessity to automate this process. Once the “boundary” is 

identified, energetically reasonable conformations of the hydrophilic and hydrophobic sections 

need to be calculated. This can be a time-consuming step as an increasing number of rotatable 

bonds increases the number of local energetic minimum conformations the molecule can adopt 

[8], e.g. if a single rotatable bond can adapt 6 torsion angles, two rotatable bonds can give rise 

to 62 = 36 conformations; three rotatable bonds can give rise to 63 = 216 conformations. 

Also, it is difficult to calculate what fraction of the molecule would adopt which conformation 

as surfactants when used as cleaning product would be used in a solution of various 

concentrations and temperatures. Therefore, calculation of the relative position of the 

hydrophilic and hydrophobic sections is not the focus of this chapter due to the high time 

consumption and computational cost. 

4.1.1. What is potential amphiphilicity 
As the number of rotatable bonds is directly related to the number of possible conformations 

of a molecule, the number of rotatable bonds of the hydrophobic and hydrophilic sections can 

be considered as some sort of indicator for their flexibility of conformations [9]. The more 

flexible a molecule is, the higher the possibility that the conformations it can take arrange the 

hydrophobic and hydrophilic sections in such a way that the molecule can sit “well” at the 

interface with the hydrophobic section in the non-aqueous phase and hydrophilic section in the 

aqueous phase. However, as mentioned above, the calculation of the conformers can be very 

time consuming, especially for large data sets with molecules with many rotable bonds. On the 
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other hand, if the hydrophobic and hydrophilic sections are considered separately and it is 

assumed that all the hydrophobic and hydrophilic sections can be positioned in the aqueous 

and non-aqueous phase respectively, which in practice may be hindered by the lack of 

flexibility (Figure 4.3), it is possible to calculate the potential amphiphilicity for the molecule.  

 

Figure 4.3. Illustration of the difference between actually amphiphilic molecule and potentially 

amphiphilic molecule, which in reality is not amphiphilic due to lack of flexibility.  

In the calculation of the potential amphiphilicity, our hypothesis was that AlogP [10] and 

electronegativity surface area (ESA) of the hydrophilic and hydrophobic sections would be 

crucial to in the quantification of the hydrophilicity and hydrophobicity of the sections of the 

molecule. ESA here defined as the electronegativity of all bonds in the section × surface area 
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of the section, where the electronegativity of a bond is calculated as the difference in 

electronegativity of the bonding atoms. The difference in AlogP between the hydrophilic and 

hydrophobic sections provides the basis of what amphiphilicity refers to, and we hypothesise 

is an important factor in the identification of the boundary between the hydrophilic and 

hydrophobic sections in this work (See 4.2. Calculating Potential Amphiphilicity). The number 

of rotatable bonds of the hydrophilic and hydrophobic sections are also included as an 

indication of the flexibility of the sections.  

4.2. Calculating Potential Amphiphilicity 
Potential amphiphilicity properties were calculated following Scheme 4.1 within Pipeline Pilot 

[11]. Overall, the aim of the protocol is to identify the optimal position to cleave a molecule 

into hydrophilic and hydrophobic fragments which retain all important functional groups, 

identify the cleavage which give rise to the highest ALogP difference between the hydrophilic 

and hydrophobic fragments, and calculate properties for each fragment (Table 4.1). Molecules 

4.1 – 4.3 are used as examples for protocol exemplification.  
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Scheme 4.1. Overall procedure for calculating potential amphiphilicity related properties.  
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Table 4.1. Description of potential amphiphilicity properties calculated  

Potential amphiphilicity 

property 
Description 

Hydrophilic ALogP Total ALogP of the hydrophilic fragments 

Hydrophobic ALogP Total ALogP of the hydrophobic fragments 

Fragment ALogP 

difference 

Difference between total ALogP of the hydrophilic fragments 

and the total ALogP of the hydrophobic fragments 

Hydrophilic number of 

rotatable bonds 
Total number of rotatable bonds of the hydrophilic fragments 

Hydrophobic number of 

rotatable bonds 
Total number of rotatable bonds of the hydrophobic fragments 

Polar Electronegative 

Surface Area (ESA) 

Total surface areaa x electronegativityb of the hydrophilic 

fragments 

Non-polar 

Electronegative Surface 

Area (ESA) 

Total surface areaa x electronegativityb of the hydrophobic 

fragments 

a Surface area is calculated using the Pipeline Pilot inbuilt 2D approximation 
b Electronegativity is calculated as the sum of the electronegativity differences of the two 

atoms of every bond in the molecule 
1) 

 
2) 

 
3) 

 
Molecule 4.1 – 4.3. Example molecules to illustrate main steps of the potential amphiphilicity 
descriptor calculator.  

4.2.1.  Input molecules 
First, surfactant molecules are imported to the protocol as one of the following: 

• SD file 

• .txt file with SMILES  

• .txt file with SMARTS 

• .csv file with SMILES 

The imported molecules are filtered for salt fragments. The salt counter ion(s) of any molecules 

are extracted and stored as their SMILES. For any molecules with duplicated counter ions 

(Example 4.1), the duplication is removed.  

 

Example 4.1. Molecule 4.1 and 4.2 with their salt extracted.  

Stored as [Na+] 

Stored as [Br-] 
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4.2.2. Terminal count 
After removing the salt fragments, the number of “terminals” each molecule has is counted 

(Example 4.2). The number of terminals provides a starting point to how many fragments a 

molecule could be cleaved into in order to obtain the hydrophobic and hydrophilic sections. 

This is a procedure to reduce the computational cost when generating fragmentation patterns, 

especially with larger molecules. Within this protocol, terminals are defined as any groups of 

short branches, functional groups, rings with short branches (Figure 4.4). It is to note that short 

side branches up to 2 atoms in length or 2 atoms plus oxygen as points of attachment are 

disregarded as a terminal (Figure 4.4, R groups). This choice of criteria of terminal and short 

branches is due to the fact that it is unreasonable to expect short branches have any chance of 

partitioning themselves into a different phase (aqueous/non-aqueous) to the section they are 

attached to. 

 

Example 4.2. Terminal count of Molecule 4.1 and 4.3.  

  

Terminals 
Small branches are not 
counted as terminals 
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a) 
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b) Any ring structures 

 
A = Any non-carbon atoms 
C* = non-ring carbon atoms 

 

Figure 4.4. Structures of a) terminals and b) functional group substructures. Unless specified, 

all bonds can be single, double or triple bonds where atom valence allows. Multiple R groups 

can be present on the ring structures where atom valence allows. #Only one attachment point 

can be present in total for the infused ring structures to be a vaild terminal.  

4.2.3. Identifying possible cleavage points 
Next, possible cleavage points of the molecules are identified. Cleavage points are identified 

in such a way that functional groups and rings are retained where possible. In situation where 

without cleavage within terminal branches or a functional group leads to zero cleavage points, 

terminal branches and functional groups are allowed to be cleaved. Any repeat units, for 

example ethyl oxide or alkyl chains, are also retained except the bond connected to atoms other 

than the connecting repeat units (Example 4.3). AlogP values [10]  are calculated at this point.  
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Example 4.3. Molecule 4.1 – 4.3 with their functional groups circled. Dotted circles indicate 

the repeat unit joined to atoms other than the connecting repeat units. Red highlighted bonds 

indicate the identified possible points of cleavage. Methyl groups of the propylene oxide repeat 

units are not cleaved as they are short side branches not disregarded as terminal in 4.2.2. 

Terminal count.  

4.2.4. Enumerate fragmentation pattern 
Once the possible cleavage points are identified, all possible fragmentation patterns with up to 

number of cleavages equal to the number of terminals counted in 4.2.2 Terminal count are 

enumerated. Any fragmentation patterns which give single heavy atom fragments are 

discarded, except when such fragmentation pattern is the only one possible (Example 4.4). The 

heteroatom to carbon ratio and sum of atomic AlogP score of each fragment are then calculated.  

 

Example 4.4. Example cleavage patterns of Molecule 4.3.  

4.2.5.  Label fragments as hydrophobic/hydrophilic 
For each fragmentation pattern generated, the fragments are labelled as 

hydrophobic/hydrophilic following the decision tree in Scheme 4.2 (Example 4.5). The 

decision tree is constructed in such a way that it is possible for fragments with low heteroatom 

to carbon atom ratio to be hydrophobic and any fragments which shares the same heteroatom 

to carbon ratio to have the same hydrophobic/hydrophilic label. It is noted that the labels are 

only valid if there are fragments labelled as hydrophobic and hydrophilic within the same 

fragmentation , i.e. if there are no fragments labelled as hydrophilic, the set of labels are invalid.  

For each fragmentation, there can only be up to two sets of labels. 

Alkyl 
chain 

Sulphate 
group 

Amine with short branches 

Ethylene oxide 
Propylene oxide 

Removed due to single heavy atom fragment and existence of other fragmentation patterns 

 

Fragmentation patterns carried forward 
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Scheme 4.2. Decision tree for hydrophobic/hydrophilic label of fragments. For each fragmentation pattern, a decision is made upon whether the 

fragmentation pattern contains one or more fragments with a heteroatom/carbon ratio of 0 (i.e. hydrocarbons, halocarbon). If the fragmentation 

pattern contains one or more fragments with a heteroatom/carbon ratio of 0, two labelling options are available: Label set A – the fragments with 

heteroatom/carbon ratio of 0 labelled as hydrophobic, other fragments labelled as hydrophilic, Label set B – the fragments with heteroatom/carbon 

ratio of 0 and the fragments with lowest heteroatom/carbon ratio labelled as hydrophobic, other fragments labelled as hydrophilic. If the 

fragmentation pattern contains no fragments with a heteroatom/carbon ratio of 0, two labelling options are available: Label set C – the fragments 

with lowest heteroatom/carbon ratio labelled as hydrophobic, other fragments labelled as hydrophilic, Label set D – the fragments with lowest and 

second lowest heteroatom/carbon ratio labelled as hydrophobic, other fragments labelled as hydrophilic. 

All Fragments 

Heteroatom/Carbon ratio = 
0 fragment(s) 

Other 
fragment(s) 

Heteroatom/Carbon ratio = 
0 fragment(s) 

Lowest Heteroatom/Carbon 
ratio fragment(s) 

Label set A Label set B 

Other 
fragment(s) 

0 fragment with 
Heteroatom/Carbon ratio = 0 

Other 
fragment(s) 

Other 
fragment(s) 

Label set C Label set D 

Lowest Heteroatom/Carbon 
ratio fragment(s) 

Lowest Heteroatom/Carbon 
ratio fragment(s) 
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Heteroatom/Carbon ratio 

fragment(s) 
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 Number of fragments with 
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= 0 
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hydrophobic 
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4.2.6. Hydrophobic/hydrophilic AlogP difference calculation 
With the fragments from each fragmentation labelled, the AlogP difference between the 

hydrophobic and hydrophilic fragments can be calculated. In the cases where there are two 

labelling options available for the same fragmentation pattern, the AlogP difference for each 

option is calculated and the option with the largest AlogP difference is carried forward for 

analysis (Example 4.5). For each molecule, once the largest AlogP difference label set for each 

fragmentation pattern is determined, the fragmentation patterns are compared against each 

other. The labelled fragmentation pattern with the largest AlogP difference and the minimum 

number of fragments is selected. This helps to reserve the overall structure of the hydrophobic 

and hydrophilic sections for any fragment property calculation.  

Fragment 
Heteroatom/

Carbon ratio 
AlogP Label set A Label set B 

 
0.33 1.17 Hydrophilic Hydrophobic 

 
0.67 -0.55 Hydrophilic Hydrophilic 

 
0 5.08 Hydrophobic Hydrophobic 

 Total AlogP difference 4.46 5.70 

Example 4.5. Example fragmentation pattern for Molecule 4.3 and the 

hydrophobic/hydrophilic labelling of the fragments.  

4.2.7. Loop for Increasing number of fragments 
Some molecules require more fragments than the number of terminal count from 4.2.2. 

Terminal count suggests to capture their hydrophobic and hydrophilic sections. This occurs 

when one or more hydrophilic groups are sandwiched between hydrophobic groups, and vice 

versa. Therefore, 4.2.4. Enumerate fragmentation pattern to 4.2.6. Hydrophobic/hydrophilic 

AlogP difference calculation are looped with the maximum number of fragments increased by 

one each time until one of the following conditions is met: 

• Maximum number of fragments allowed by the total number of possible cleavage points 

is achieved (Example 4.6) 

• The same largest AlogP difference is observed three times in a row at 4.2.6. 

Hydrophobic/hydrophilic AlogP difference calculation of each loop to ensure a plateau 

of maximum total AlogP difference is reached 
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Example 4.6. increasing the number of fragments for Molecule 4.2 in search for the fragments 

which capture best the hydrophobic and hydrophilic sections.  

4.2.8. Export result 
For the fragmentation pattern with the largest AlogP difference between hydrophobic and 

hydrophilic fragments and fewest cleavages at the end of 4.2.7. Test to Increase number of 

fragments. the potential amphiphilicity properties in Table 4.1 are calculated. The fragments 

are exported as a SD file and the potential amphiphilicity properties exported in a .csv file. A 

html file is also generated capturing the potential amphiphilicity properties with the point of 

cleavage highlighted (Example 4.7).  

2 Terminals 

↓ 

Initial maximum number 
of fragments = 3 

↓ 

Maximum Total ALogP 
difference = 13.56 

Maximum number of 
fragments = 4 

↓ 

Maximum Total ALogP 
difference = 13.56 

Maximum 
number of 

fragments + 1 

Maximum number of 
fragments = 5 

↓ 

Maximum Total ALogP 
difference = 16.04 

Maximum 
number of 

fragments + 1 
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Example 4.7. Screenshot of HTML output of the potential amphiphilicity properties with point of cleavage highlighted in pink. The table had been 

split into two parts for clarity.  
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4.3. Critical Micelle Concentration (CMC), Amphiphilicity and Potential 
Amphiphilicity 

Although the factors related to potential amphiphilicity, e.g. ALogP and number of rotatable 

bonds for the hydrophilic and hydrophobic sections, can be calculated using the above protocol 

currently there is no method to verify a calculated potential amphiphilicity value as there are 

no absolute reference points for amphiphilicity or potential amphiphilicity. However, as 

surfactant molecules are amphiphilic molecules, it is commonly accepted that typical surfactant 

phenomena, such as lowering interfacial tension and aggregation to form micelles, are 

characteristics of amphiphilic molecules [1, 2]. It is therefore reasonable to hypothesise a 

quantitative relationship between a quantitative amphiphilicity descriptor, such as potential 

amphiphilicity we propose here, and these surfactant phenomena. Critical micelle 

concentration (CMC) is a commonly used quantitative descriptor for surfactants. As described 

in Chapter 3: Understanding Polymer Detergent Properties via QSPR method, CMC describes 

the concentration where the surfactant molecules aggregate to forms micelles [12], and this 

temperature dependent phase change due to this aggregation can be observed by the sharp 

change in physical properties, measurable via various different methods (e.g. surface tension, 

conductivity) [13]. This provides a route to evaluate the utility of the potential amphiphilicity 

descriptors by comparing the predictive performance of models which include these descriptors 

as an input to models which do not.  

In addition, according to previous research within Unilever, there is reference to previous 

literature which defined a link between oil/water interfacial tension and CMC when looking at 

the free energy of micellisation [14]. This relation is important as these quantities are useful 

indicators of detergent performance and can be used to aid the design and selection of new, 

more effective and planet friendly surfactants, e.g. improved cleaning properties with smaller 

quantity of surfactant. To date, there are several different literature reports which indicate the 

use of molecular dynamic simulations to calculate interfacial energy reduction [15] and 

micellization [16, 17]. However, the computational cost of such simulations is still high and 

therefore is impractical to apply such calculations to large libraries for selection of surfactant 

candidates for further investigation and development. Molecular thermodynamic models are 

also calculatable for micellization [14, 18]. As this type of model can be evaluated quickly in 

comparison to molecular dynamics simulations, it is seemingly possible to use such models to 

perform selection of candidates from a large library, although the narrow chemical space the 

parameters of the models are adjusted for hinder such possibility.  On the other hand, by 

applying QSPR models which use simple and quick to calculate molecular descriptors to 

identify potential candidates, the cost of the candidate selection process can potentially be 

greatly reduced.  

4.3.1. CMC QSPR 
There has been previous work in constructing CMC QSPR models using molecular properties 

[7, 19-22]. Often, these studies are restricted to a single type of surfactant, for example anionic 

surfactants or ethylene oxide surfactants only [7, 20, 23]. In this work, we aim to expand this 

and construct CMC QSPR models that can accommodate multiple types of surfactants, e.g. 

models which can predict CMC for sulfonic surfactants, ethylene oxide surfactants and amine 

surfactants. Nevertheless, the descriptors that were identified in the literature as important 

could provide some insight for choosing descriptors to calculate for our models.  

Preselecting descriptors prior to QSPR model construction by hypothesising which descriptors 

are appropriate is an approach used in molecular thermodynamic modelling [14]. In this work, 

this approach is taken as the hypothesis that the potential amphiphilicity descriptors alone are 
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unlikely to work well unless other descriptors such as flexibility indicators (e.g. number of 

rotatable bonds, Kier flexibility index) are included. In addition, when evaluating the utility of 

the potential amphiphilicity descriptors via QSPR model comparison, it would be beneficial to 

select the range of descriptors which have already proven to be correlated to the observation 

by previous research. By using descriptors proven to be correlated, models with acceptable 

performance can be expected without the potential amphiphilicity descriptors when using 

dataset covering the same chemical space. This can then be used as a benchmark when 

comparing the performance of the models which includes potential amphiphilicity descriptors.   

Within one of the previous studies [7], it was shown that including descriptors such as Kier and 

Hall connectivity index, Kier flexibility index and moment of inertia calculated for the 

hydrophilic and hydrophobic sections in addition to the molecular properties for the whole 

molecule contributes to a good CMC model by providing hydrophilic and hydrophobic specific 

information to the model. In the study, hydrophobic and hydrophilic sections are defined 

precisely for the molecule within the database [7]. In comparison, our potential amphiphilicity 

descriptors protocol enumerate the hydrophobic and hydrophilic fragments automatically. By 

including the fragment descriptors in the QSPR model construction and gauging the importance 

of such descriptors in well performing models, the utility of the protocol in enumerating the 

hydrophobic/hydrophilic sections can also be proven.  

Within the previous QSPR studies, CODESSA was used in several of the studies to calculate 

the descriptors [7, 20, 22]. CODESSA calculated descriptors including average information 

content [24, 25], complementary information content [24, 25], fractional partial negative 

surface area [24], relative negative charge surface area [24], momentum of inertia [26], Kier & 

Hall connectivity index [27], Kier flexible index [24] were found to play a part in good CMC 

prediction [7, 20, 22, 28]. However, CODESSA is no longer available and therefore within this 

work, alternatives (CDK descriptor calculator [29] and alvaDesc [30]) were used to calculate 

the descriptors identified within those studies where possible.   

4.4. Utility of Potential Amphiphilicity via QSPR 

4.4.1. Surfactant library generation 
In order to investigate the potential amphiphilicity descriptor and links to CMC, it was 

necessary to construct a surfactant library which contains various surfactant structures and their 

CMC. One challenging area in constructing such a library is that CMC values are method, 

equipment and temperature dependent. As changes in any of these experimental factors would 

change the accuracy of the observed value, it was necessary to record them in the library as 

well. In this project, a surfactant database was provided by Unilever containing CMC values 

from various sources, including previously published QSPRs [7, 31-35] (Supporting 

Information 4.1). Where possible, each entry was traced back to the original experimental 

source and experimental details including method, equipment and temperature were recorded. 

Any incomplete entries, i.e. where structure was missing and/or CMC value was missing were 

removed.  

4.4.2. Construction of surfactant CMC QSPR models Part 1 

4.4.2.1. Data preparation 
The above database was divided into 3 subsets based on the following: 

• Subset A: entries from a previous QSPR study [35], where traceable measured via 

surface tension at 25°C (45 entries) 

• Subset B: entries with CMC measured via surface tension at 25°C (76 entries) 
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• Subset C: whole database (477 entries) 

For all subsets, descriptors for each entry were calculated as follows: 

• Functional class fingerprint [36] (FCFP) 2048 bits and number of rotatable bonds 

calculated using Pipeline Pilot 2017 [11] 

• Potential amphiphilicity related properties calculated using Pipeline Pilot [11] protocol 

Scheme 4.1 

• Kier & Hall connectivity index (SP), Fractional partial positive surface area (FPSA), 

Fractional partial negative surface area (FNSA), relative positive charge surface area 

(RPCS), relative negative charge surface area (RNCS), momentum of inertia (MOMI) 

for whole molecule and hydrophobic/hydrophilic fragments calculated using CDK 

descriptor calculator [29], based on the correlation proven in previous research 

• Calculated for the whole molecule and for the hydrophobic/hydrophilic 

fragments 

• Lowest energy 3D conformation calculated using DataWarrior [37] using 

default settings prior descriptor calculation 

• Average information content (IC), complementary information content (CIC), Kier 

flexible index (PHI) calculated for whole molecule and hydrophobic/hydrophilic 

fragments calculated using alvaDesc [30], based on the correlation proven in previous 

research 

• Calculated for the whole molecule and for the hydrophobic/hydrophilic 

fragments 

For Subset B and C, the type of salt counter ion is also included as a descriptor. In addition, for 

Subset C, the CMC measuring method and measurement temperature were also included as 

descriptors.  

For the fragments, when there were 2 or more hydrophobic fragments or hydrophilic fragments, 

the sum of their descriptors was used (Example 4.8).   

 Hydrophobic fragment(s) Hydrophilic fragment(s) 
 

 
+ 

 

 

Number of rotatable bonds 23 + 11 = 34 9 
Example 4.8. The number of rotatable bonds for the hydrophobic and hydrophilic fragments 

of Molecule 4.3 

When a CMC entry was for a mixture of surfactants, the FCFP was aggregated before folding 

[38] into 2048 bits, the number of rotatable bonds were added together and the weighted sum 

of the other descriptors was taken (Example 4.9).   
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Example 4.9. The FCFP, hydrophilic fragment number of rotatable bonds and polar ALogP of 

a surfactant mixture entry (Observation ID 7 in Subset C) 

Molecule Fraction FCFP 
Hydrophilic fragment 

number of rotatable bonds 

Hydrophilic 

ALogP 

1 0.67 

1 

0 

16 

5 

8 

1872154524 

-1096398038 

203677720 

1618154665 

1186303932 

-1272798659 

136597326 

260714409 

-1276502889 

-578281385 

-453677277 

-1133295320 

-1959657804 

-728595178 

1175638033 

-1577600103 

-729123682 

0 -3.3010 

2 0.33 

0 

1 

5 

8 

136597326 

-1272798659 

-1043339860 

85389210 

1872154524 

260714409 

565998553 

-1143715940 

136627117 

-1577600103 

1175638033 

-55265897 

-1307727540 

-288711152 

-16971222 

339830961 

3 -3.1100 
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Molecule Fraction FCFP 
Hydrophilic fragment 

number of rotatable bonds 

Hydrophilic 

ALogP 

Combined 1.00 

1 

0 

16 

5 

8 

1872154524 

-1096398038 

203677720 

1618154665 

1186303932 

-1272798659 

136597326 

260714409 

-1276502889 

-578281385 

-453677277 

-1133295320 

-1959657804 

-728595178 

1175638033 

-1577600103 

-729123682 

0 

1 

5 

8 

136597326 

-1272798659 

-1043339860 

85389210 

1872154524 

260714409 

565998553 

-1143715940 

136627117 

-1577600103 

1175638033 

-55265897 

-1307727540 

-288711152 

-16971222 

339830961 

3 -3.2373 

  ↓   

  

2048 bits 

beginning 

with 0000…  
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4.4.2.2. Data compilation 
Once all descriptors were calculated, the data were imported into R [39] and each subset was 

separated into different datasets by the descriptor types as stated in Table 4.2.  Note that 

descriptors calculated by CDK descriptor calculator and avlaDesc for hydrophobic and 

hydrophilic fragments are treated as an expansion to the descriptor calculated by CDK 

descriptor calculator and alvaDesc for the whole molecule and are never included in a dataset 

alone. This resulted in 20 datasets for each of the three subsets (A, B and C), giving a total of 

60 datasets.  

Table 4.2. The breakdown of the descriptors included for each dataset  

Dataset 

Potential 

amphiphilicity 

related 

descriptors 

Functional 

Class 

fingerprint 

Number of 

rotatable 

bonds for 

the whole 

molecule 

Descriptors 

calculated by 

CDK 

descriptor 

calculator and 

alvaDesc for 

whole 

molecule 

Descriptors 

calculated by 

CDK descriptor 

calculator and 

alvaDesc for 

hydrophobic and 

hydrophilic 

fragments 

1 ✓     

2  ✓    

3    ✓  

4    ✓ ✓ 

5 ✓  ✓   

6 ✓ ✓    

7 ✓   ✓  

8 ✓   ✓ ✓ 

9  ✓ ✓   

10  ✓  ✓  

11  ✓  ✓ ✓ 

12   ✓ ✓  

13   ✓ ✓ ✓ 

14 ✓ ✓ ✓   

15 ✓  ✓ ✓  

16 ✓  ✓ ✓ ✓ 

17  ✓ ✓ ✓  

18  ✓ ✓ ✓ ✓ 

19 ✓ ✓ ✓ ✓  

20 ✓ ✓ ✓ ✓ ✓ 

 

4.4.2.3. Data Pre-processing 
For each of the 60 data subsets (3 Subsets × 20 descriptor datasets), a training/test split was 

carried out with a 9:1 ratio using caret:::createDataPartition to ensure the resulting training set 

and test set contain a similar ratio of observation values from each percentile based section of 

the overall observation values.  
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Using the training set, near zero variance predictor, predictors with low frequency ratio 

(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 5⁄  or above) for the most common value over the second most 

common value, were removed due to the lack of information in these predictors.  

Predictors with pair-wise absolute correlations over 0.9 were identified with 

caret:::findCorrelation. For each predictor pair, the average correlation with the rest of the 

predictors was calculated and the predictor with the higher average correlation was removed to 

give the final version of the predictor set. 

4.4.2.4. Algorithm selection 
One linear (Partial least square, PLS), one non-linear (Support vector machine, SVM) and one 

tree-based (Random forest, RF) model algorithm were chosen to investigate their performance 

on the 60 data subsets, covering a simpler and more interpretable model (PLS) to more complex 

models (SVM, RF) for identifying the optimally performing methods [40]. In comparison to 

previous chapters where over five algorithms are selected, only three algorithms were selected 

here because the aim of the models is to prove the utility of the potential amphiphilicity 

descriptors protocol in providing useful descriptors and enumerating hydrophobic and 

hydrophilic sections. Also, apart from the potential amphiphilicity descriptors and molecular 

fingerprint, the descriptors are pre-selected by their correlation to CMC displayed in previous 

studies. Therefore, it is not necessary to search over a large number of algorithms for this 

comparative study. In an attempt to obtain more information on predictor-observation 

relationship and possible persistent outliers, defined as observation entries which are 

highlighted as outliers in multiple models and/or have extremely high RMSE in comparison to 

other entries, ten models using each modelling algorithm were built for each of the 60 data 

subsets, resulting in a total of 1800 models. 

4.4.2.5. Model building and performance assessment 
Model construction with the default tuning parameters and 10-fold cross validation on the 

training set for each predictor data sets (see 4.4.2.2. Data compilation) was performed in order 

to optimise the hyperparameters for each modelling algorithm against R2. For PLS, the 

predictors were centred and scaled within caret:::train() using the preProcess option. The 

models were then tested using the test set. 

Model performance was assessed using the following criteria suggested by Golbraikh and 

Tropsha and we defined that all needed to be fulfilled for a regression model to be deemed 

acceptable [41]:  

• Cross-validated R2 via internal resampling on training set > 0.5 

• R2 on test set > 0.6 

• R² through origin (R0²) close to R2 

• 
𝑅2−𝑅0

2

𝑅2 < 0.1 or 
𝑅2−𝑅′0

2

𝑅2 < 0. 1, where R’0
2 is R0² when observation and prediction are 

inversed 

• And the corresponding 0.85 ≤ k ≤ 1.15 or 0.85 ≤ k’ ≤ 1.15 

where k is the gradient of the observation vs. prediction line of best fit and k’ is the gradient of 

the prediction vs. observation line of best fit (See 1.2.7.1. Regression performance metrics for 

full definition). In addition to the above criteria, a more recent literature by Alexander, Tropsha 

and Winkler emphasised the importance of RMSE and suggested that for a predictive model, 

the following criteria needs to be fulfilled [42]:   
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• High R2 on test set 

• Low RMSE of test set predictions 

Generally, R2 on training set is higher than R2 on test set as the data is seen by the model during 

construction. However, in the cases where R2 on training set is calculated based on the model 

during the cross-validation stage, it is possible that the R2 on training set is lower than the R2 

on test set as the hold-out data during the cross-validation stage is not seen by the model during 

construction.  

These criteria were also adopted in order to identify the best models overall using Pareto sort 

for optimisation [43] (see 4.4.2.7. Selection of best performing model). With the above criteria 

in mind, Spearman’s rank correlation coefficient (ρ) was also considered for model 

performance. Spearman’s rank correlation coefficient is used to measure the strength and the 

direction of the association between the observation and prediction, which can have a value 

between -1 to 1 [44]. By looking at the absolute value, ρ is commonly interpreted as follows:  

• < 0.20 = poor agreement 

• 0.20 – 0.40 = fair agreement 

• 0.40 – 0.60 = moderate agreement 

• 0.60 – 0.80 = good agreement 

• 0.80 – 1.00 = very good agreement 

Models with moderate agreement or above are usually considered to be good. When a 

Spearman test is carried out to calculate ρ, an associated probability value (p-value) which 

measures the likelihood of the observed correlation is due to chance is also calculated. The 

closer the p-value is to zero, the more likely the observed correlation is not due to chance and 

therefore the more likely the correlation is valid.   

4.4.2.6. Model robustness 
Validation of the models for each of the data subset was carried out by random shuffling of the 

observations before training using base:::sample(). This was repeated ten times for each of the 

built original models. Using the training set R2 of the original models and these y-randomised 

models, the statistical significance of the original models for the training set was evaluated with 

the standard hypothesis testing method. Specifically, the robustness of the models was 

examined using the Z score statistics following Equation 4.1 [45].   

𝑍 =
𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑅𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

2 − 𝐴𝑣𝑔(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑅𝑦−𝑟𝑎𝑛𝑑𝑜𝑚𝑖𝑠𝑒𝑑
2 )

𝑆𝐷(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑛𝑔 𝑅𝑦−𝑟𝑎𝑛𝑑𝑜𝑚𝑖𝑠𝑒𝑑
2 )

 (Equation 4.1) 

If the original model was valid, the overall performance of y-randomised models should be 

greatly reduced in comparison, resulting in a high Z score. Models with Z scores of over 3 are 

considered as significant [45].  
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4.4.2.7.  Selection of best performing model 
Taking account of the literature and Z score, the follow modified criteria for validity was used 

to assess the successes of the tuned models in terms of their predictability and understanding 

the trend within the data:  

• On training set 

• Cross-validated R² > 0.5 

• RMSE < 0.5 

• On test set 

• (Adjusted) R² > 0.6 

• (Adjusted) R0² close to R2 

• |
𝑅2−𝑅0

2

𝑅2 | < 0.1 

• RMSE < 0.35 

• Slope of R0² regression line: 0.85 ≥ k ≥ 1.15 

• ρ > 0.80 

• Z score > 3 

Good performing models are identified by the high number of the above criteria fulfilled, and 

the best performing models are selected by putting the well performing models through a Pareto 

sort to find the models with the optimum performance across all criteria. Pareto optimisation 

is a multi-objective optimisation algorithm which identifies the models with the optimum 

performance where the criteria are maximised or minimised, i.e. maximum R2, minimum 

RMSE, etc [43]. For k, the Pareto optimisation is set to minimise |1 − 𝑘|. The optimal models 

are defined as those for which it is not possible to improve on one criterion without degrading 

at least one other.  

Once the optimal models are identified, the variable importance is calculated using 

caret:::varImp. The importance score calculation is dependent on the model algorithm; for PLS, 

it is based on the weighted sums of the absolute regression coefficients; for RF, it is based on 

the prediction difference for the out-of-bag data during cross validation with the variable 

permuted; for SVM, it is based on the relationship between each variable and the prediction.  

4.4.2.8. Constructed models 
After consolidating the performance of the models constructed using the same data subset and 

algorithm, it was found that only the models constructed using Subset A had excellent 

performance (Table 4.3). It was also seen that the performance drops as the data subset 

progress from Subset A, B to C (Table 4.3 – 4.5). 
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Table 4.3. Average performance of the models constructed using Subset A (Supporting Information 4.2) 

Model 

No. 
Dataset 

Modelling 

Algorithm 

Training 

R²* 

Training 

RMSE* 

Test 

R² 
𝑅2 − 𝑅0

2 |
𝑅2 − 𝑅0

2

𝑅2
| 

Test 

RMSE 
k ρ 

Z 

Score 

Criteria 

fulfilled 

A1 1 PLS 0.945 0.216 0.973 0.024 0.025 0.212 0.924 1.000 15.770 9 

A2 1 RF 0.969 0.222 0.990 0.008 0.009 0.171 0.956 0.980 14.625 9 

A11 4 RF 0.957 0.294 0.976 0.020 0.020 0.273 0.908 0.960 11.475 9 

A13 5 PLS 0.934 0.231 0.970 0.028 0.028 0.216 0.922 1.000 11.025 9 

A14 5 RF 0.965 0.227 0.988 0.010 0.010 0.183 0.953 0.960 12.384 9 

A16 6 PLS 0.904 0.269 0.974 0.024 0.024 0.202 0.907 0.960 11.039 9 

A17 6 RF 0.954 0.288 0.967 0.028 0.029 0.273 0.902 0.980 13.254 9 

A20 7 RF 0.963 0.270 0.985 0.011 0.012 0.238 0.925 0.960 12.646 9 

A23 8 RF 0.960 0.297 0.974 0.022 0.023 0.269 0.920 0.960 10.103 9 

A32 11 RF 0.952 0.304 0.974 0.022 0.023 0.273 0.918 0.940 10.599 9 

A38 13 RF 0.961 0.292 0.978 0.018 0.018 0.270 0.907 0.960 10.686 9 

A40 14 PLS 0.913 0.278 0.964 0.032 0.034 0.215 0.921 0.960 15.046 9 

A47 16 RF 0.961 0.294 0.975 0.020 0.021 0.269 0.930 0.960 5.159 9 

A56 19 RF 0.962 0.266 0.988 0.010 0.010 0.224 0.924 0.960 10.609 9 

A59 20 RF 0.960 0.293 0.975 0.020 0.021 0.279 0.901 0.960 10.958 9 

Bold Model No.: Criteria optimised models 

Bold: Criteria fulfilled 
*Training R2 and Training RMSE extracted from average of 10-fold cross validation 
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Table 4.4. Average performance of the models constructed using Subset B (Supporting Information 4.3) 

Model 

No. 
Dataset 

Modelling 

Algorithm 

Training 

R²* 

Training 

RMSE* 

Test 

R² 
𝑅2 − 𝑅0

2 |
𝑅2 − 𝑅0

2

𝑅2
| 

Test 

RMSE 
k ρ 

Z 

Score 

Criteria 

fulfilled 

B3 1 SVM 0.280 2.358 0.538 0.345 0.641 1.913 0.194 0.32 3.228 1 

B16 6 PLS 0.507 1.923 0.488 0.438 0.898 1.630 0.398 0.48 9.334 2 

B17 6 RF 0.449 2.021 0.417 0.474 1.138 1.919 0.229 0.66 7.040 1 

B18 6 SVM 0.475 1.956 0.616 0.312 0.507 1.384 0.445 0.56 8.147 2 

B29 10 RF 0.362 2.194 0.538 0.360 0.668 1.900 0.293 0.52 3.551 1 

B31 11 PLS 0.518 1.909 0.567 0.365 0.643 1.558 0.456 0.4 3.567 2 

B33 11 SVM 0.443 2.018 0.582 0.349 0.601 1.516 0.443 0.6 5.871 1 

B41 14 RF 0.442 2.024 0.415 0.477 1.150 1.917 0.226 0.6 5.264 1 

B42 14 SVM 0.483 1.947 0.588 0.340 0.578 1.395 0.449 0.56 3.980 1 

B50 17 RF 0.371 2.189 0.563 0.337 0.599 1.854 0.303 0.52 4.604 1 

B52 18 PLS 0.517 1.921 0.567 0.365 0.642 1.557 0.456 0.42 3.808 2 

B55 19 PLS 0.512 1.913 0.574 0.365 0.636 1.535 0.475 0.5 6.679 2 

B57 19 SVM 0.471 1.963 0.619 0.313 0.506 1.371 0.440 0.7 6.329 2 

B58 20 PLS 0.517 1.895 0.567 0.366 0.645 1.552 0.460 0.5 6.535 2 

B60 20 SVM 0.461 1.985 0.566 0.362 0.640 1.494 0.413 0.66 4.797 1 

Bold: Criteria fulfilled 
*Training R2 and Training RMSE extracted from average of 10-fold cross validation 
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Table 4.5. Average performance of the models constructed using Subset C (Supporting Information 4.4) 

Model 

No. 
Dataset 

Modelling 

Algorithm 

Training 

R²* 

Training 

RMSE* 

Test 

R² 
𝑅2 − 𝑅0

2 |
𝑅2 − 𝑅0

2

𝑅2
| 

Test 

RMSE 
k ρ 

Z 

Score 

Criteria 

fulfilled 

C4 2 PLS 0.261 2.373 0.633 0.292 0.461 1.621 0.349 0.825 37.751 3 

C5 2 RF 0.244 2.356 0.545 0.374 0.686 1.627 0.307 0.785 34.779 1 

C6 2 SVM 0.285 2.361 0.624 0.296 0.475 1.578 0.316 0.825 40.737 3 

C9 3 SVM 0.244 2.559 0.220 0.492 2.238 2.738 0.220 -0.018 36.295 1 

C13 5 PLS 0.180 2.911 0.179 0.391 2.186 4.973 -0.127 0.587 23.181 1 

C15 5 SVM 0.181 2.685 0.220 0.479 2.177 2.809 0.196 0.307 24.196 1 

C30 10 SVM 0.461 2.166 0.375 0.389 1.037 2.470 0.383 0.533 17.832 1 

C31 11 PLS 0.421 2.289 0.350 0.396 1.131 2.616 0.431 0.654 53.469 1 

C33 11 SVM 0.486 2.115 0.406 0.369 0.908 2.408 0.425 0.579 27.356 1 

C36 13 SVM 0.243 2.560 0.216 0.495 2.286 2.741 0.218 -0.022 29.916 1 

C51 17 SVM 0.459 2.171 0.379 0.386 1.018 2.464 0.387 0.531 48.959 1 

C52 18 PLS 0.421 2.294 0.350 0.396 1.131 2.617 0.431 0.647 32.513 1 

C54 18 SVM 0.482 2.122 0.408 0.367 0.899 2.402 0.427 0.579 53.963 1 

C57 19 SVM 0.475 2.136 0.395 0.376 0.953 2.430 0.411 0.413 61.919 1 

C60 20 SVM 0.486 2.114 0.411 0.366 0.892 2.395 0.430 0.458 54.243 1 

Bold: Criteria fulfilled 
*Training R2 and Training RMSE extracted from average of 10-fold cross validation 
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A Pareto sort of the 19 models constructed using Subset A which fulfil all nine criteria 

showed that Model A2 was the optimum performing model (Test R2 = 0.99, RMSE = 0.17, 

ρ = 0.98, Z = 14.6).  

4.4.2.9. Predictor importance 
On analysis of Model A2, it was found that out of the five descriptors 

(PhobicNumRotatableBonds, PhobicALogP, PhobicESA, PhilicALogP, 

PhilicNumRotatableBonds), only the hydrophobic predictors were deemed to be important 

in their relation to CMC (Figure 4.5). Out of the three hydrophobic descriptors, 

PhobicNumRotatableBonds (importance = 98.64 ± 2.62) was deemed to be the most 

important, followed by PhobicALogP (importance = 87.46 ± 10.56) and PhobicESA 

(importance = 62.59 ± 9.04). This is an unexpected phenomenon as the hydrophobic and 

hydrophilic balance is generally considered to be important to the amphiphilicity of a 

molecule. On analysis of the descriptors and structures of the surfactants in Subset A, the 

following hypothesis was drawn to in attempt to rationalise this observation. The 

surfactants in Subset A are all analogues of non-ionic ethylene oxide surfactant analogues. 

Although 11 out of 45 surfactants contains a phenol ring, they are all flexible straight chain 

surfactants. When comparing the size of hydrophobic and hydrophilic sections, the 

hydrophobic sections are generally the same size or smaller than the hydrophilic sections. 

However, during micelle formation, the hydrophilic sections are able to freely extend 

outwards towards the aqueous phase while the hydrophobic sections would cluster together 

towards the centre of the micelle (Figure 4.6). Therefore, the flexibility of the hydrophobic 

sections, indicated by the PhobicNumRotatableBonds, is key to how well the hydrophobic 

sections can cluster together to form the micelle, followed by the PhobicALogP which is 

an important factor in defining the concentration of the hydrophobic sections clustering 

together to form micelles. In addition, the absolute number and the range of the AlogP for 

the hydrophobic sections are larger than the hydrophilic sections.  

 

Figure 4.5. The predictor importance for all ten repeats of Model A2. For all ten repeats, 

the descriptors with importance are all descriptors for the hydrophobic sections.  
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Figure 4.6. Possible position of hydrophobic and hydrophilic sections of a surfactant in a 

micelle.  

4.4.3. Construction of surfactant CMC QSPR models Part 2 
As there were no good models with RMSE < 1 on the training or test set for Subset B and 

C, several modifications to the QSPR model construction process were made. First, Subset 

C was split into the following subsets: 

• Subset D: ionic surfactants only, defined by the presence of salt counter ions (399 

entries) 

• Subset E: non-ionic surfactants, defined by the absence of salt counter ions (78 

entries) 

Both subsets were then filtered and any entries with unknown source or measurement 

temperature were removed. Two different approaches were taken in an attempt to construct 

good models. One method was to start with the whole database and prune the entries which 

have RMSE > 1 using the model with the highest cross validated R2. The modelling and 

pruning were repeated until no entries in the model with the highest cross validated R2 have 

RMSE > 1.  

The other method was to cluster the whole database based on their similarity calculated 

using DataWarrior [37] and build the QSPR models from the largest clusters, remove 

persistent outliers defined as any entries with RMSE > 1 and add the next largest cluster 

for modelling. This was repeated until all entries had at least been added for modelling 

once. Different to previously, only one repeat of the model was constructed for each method 

before pruning/addition of entries. We took the first approach in priority and used the 

second method to verify the pruned entries as outliers. As a result, 210 entries were left in 

Subset D and 40 entries remaining in Subset E, and the final models constructed using the 

first method were taken for analysis.  

Once outliers for Subset D and E were identified and pruned, pruned Subset D and E were 

combined to give Subset F (pruned Subset C, 250 entries). Models were constructed using 

Subset F to test the ability of the descriptor datasets in constructing QSPR models for ionic 

and non-ionic surfactants combined.  

  

Hydrophilic section Hydrophobic section 
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4.4.3.1. Constructed models 
Using the pruned data sets 180 models were constructed in total (Table 4.6 – 4.8). Out of 

the 60 models constructed for the pruned Subset D, one model fulfilled all criteria (Model 

D60, Test R2 = 0.95, RMSE = 0.35, ρ = 0.90, Z = 79.3) while three criteria optimised 

models (Model D33, D51 and D57, Test R2 > 0.94, RMSE < 0.36, ρ > 0.89, Z > 30.0), 

fulfilling eight out of nine criteria, were found through Pareto sort of all metrics after 

inspection. It is to note that FCFP are included in all these models. In addition, SVM 

constructed most of the models with optimised criteria.  

For pruned Subset E, four models were found to fulfil all criteria (Model E2, E14, E20 

and E44, Test R2 > 0.99, RMSE < 0.20, ρ = 1, Z > 7.3), within which two models (Model 

E14 and E20, Test R2 > 0.99, RMSE < 0.20, ρ = 1, Z > 11.5) were found to be the most 

optimal through Pareto sorting. Caution needs to be taken when analysing these models as 

the high performance can be due to the small size of the Subset (40 entries) and hence the 

small coverage of chemical space. It is to note that these models all contain potential 

amphiphilicity descriptors. Different to pruned Subset D, RF constructed most models of 

the with the best performance.  

Using the Subset F, one model was found to fulfil eight out of nine criteria (Model F57, 

Test R2 = 0.92, RMSE = 0.34, ρ = 0.86, Z = 59.2), whiles two models fulfilling seven out 

of nine criteria were found to have their performance optimised against the criteria on 

inspection of the Pareto sort (Model F17 and F33, Test R2 > 0.93, RMSE < 0.50, ρ > 0.88, 

Z > 59.2). However, it is noted that none of these models fulfil the training RMSE < 0.5 

criteria, and only the model fulfilling eight out of nine criteria fulfils the test RMSE < 0.35 

criteria. In comparison to the top models from Subset D and E, the performance of these 

models has decreased. It is to note that the better performing models for Subset F are 

constructed using RF or SVM.  
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Table 4.6. Performance of the top 15 models identified by Pareto sort, constructed using ionic surfactants (pruned Subset D) only (Supporting 

Information 4.5) 

Model 

No. 
Dataset 

Modelling 

Algorithm 

Training 

R²* 

Training 

RMSE* 

Test 

R² 
𝑅2 − 𝑅0

2 |
𝑅2 − 𝑅0

2

𝑅2
| 

Test 

RMSE 
k ρ Z Score 

Criteria 

fulfilled 

D12 4 SVM 0.883 0.574 0.893 0.098 0.109 0.498 0.886 0.762 67.480 5 

D18 6 SVM 0.805 0.731 0.928 0.065 0.070 0.448 0.837 0.911 62.878 6 

D26 9 RF 0.842 0.668 0.890 0.101 0.113 0.521 0.864 0.950 27.906 5 

D27 9 SVM 0.783 0.794 0.924 0.067 0.073 0.474 0.784 0.857 28.336 6 

D29 10 RF 0.849 0.653 0.862 0.126 0.146 0.565 0.882 0.968 71.089 5 

D30 10 SVM 0.887 0.544 0.951 0.044 0.047 0.345 0.897 0.929 88.653 8 

D33 11 SVM 0.929 0.455 0.944 0.051 0.055 0.360 0.917 0.887 29.927 8 

D42 14 SVM 0.805 0.694 0.954 0.042 0.044 0.341 0.886 0.932 66.237 8 

D50 17 RF 0.848 0.654 0.855 0.132 0.155 0.580 0.880 0.968 88.653 5 

D51 17 SVM 0.888 0.538 0.951 0.045 0.047 0.346 0.897 0.929 98.795 8 

D53 18 RF 0.868 0.605 0.784 0.197 0.252 0.720 0.852 0.971 29.927 5 

D54 18 SVM 0.920 0.478 0.948 0.047 0.050 0.353 0.903 0.887 100.218 8 

D55 19 PLS 0.786 0.760 0.822 0.162 0.197 0.651 0.870 0.922 46.804 5 

D57 19 SVM 0.887 0.538 0.957 0.039 0.041 0.323 0.911 0.953 71.975 8 

D60 20 SVM 0.928 0.461 0.949 0.046 0.049 0.346 0.910 0.899 79.332 9 

Bold Model No.: Optimal models 
Italic Model No.: Model fulfilling most criteria 

Bold: Criteria fulfilled 
*Training R2 and Training RMSE extracted from average of 10-fold cross validation 
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Table 4.7. Performance of the top 15 models identified by Pareto sort, constructed using non-ionic surfactants (pruned Subset E) only (Supporting 

Information 4.6) 

Model 

No. 
Dataset 

Modelling 

Algorithm 

Training 

R²* 

Training 

RMSE* 

Test 

R² 
𝑅2 − 𝑅0

2 |
𝑅2 − 𝑅0

2

𝑅2
| 

Test 

RMSE 
k ρ 

Z 

Score 

Criteria 

fulfilled 

E2 1 RF 0.927 0.438 0.999 2.98E-04 2.99E-04 0.144 1.089 1 11.417 9 

E14 5 RF 0.945 0.420 0.998 9.30E-04 9.32E-04 0.197 1.127 1 12.098 9 

E17 6 RF 0.907 0.516 0.999 7.06E-04 7.07E-04 0.094 1.052 1 12.101 8 

E18 6 SVM 0.925 0.758 0.999 6.78E-03 6.78E-03 0.308 0.790 0.8 12.227 7 

E20 7 RF 0.928 0.448 0.995 3.76E-03 3.78E-03 0.152 1.043 1 11.542 9 

E23 8 RF 0.879 0.597 0.998 2.04E-03 2.05E-03 0.071 0.976 0.8 6.025 8 

E32 11 RF 0.854 0.713 0.999 1.00E-02 1.00E-02 0.379 0.744 0.8 4.728 6 

E41 14 RF 0.894 0.532 0.998 1.37E-03 1.38E-03 0.080 1.036 1 8.470 8 

E42 14 SVM 0.906 0.792 0.999 6.82E-03 6.83E-03 0.319 0.783 0.8 6.025 7 

E44 15 RF 0.927 0.454 0.995 3.31E-03 3.33E-03 0.166 1.054 1 7.301 9 

E47 16 RF 0.890 0.624 0.998 2.03E-03 2.03E-03 0.070 0.986 0.8 1.851 7 

E53 18 RF 0.914 0.731 0.999 1.22E-02 1.22E-02 0.410 0.728 0.8 6.703 6 

E55 19 PLS 0.884 0.708 0.917 7.13E-02 7.78E-02 0.414 0.961 1 12.101 7 

E56 19 RF 0.908 0.569 0.999 2.48E-04 2.48E-04 0.151 1.070 1 12.227 8 

E59 20 RF 0.861 0.730 0.996 1.59E-03 1.60E-03 0.165 1.077 0.8 8.649 8 

Bold Model No.: Criteria optimised models 

Italic Model No.: Model fulfilling most criteria 

Bold: Criteria fulfilled 
*Training R2 and Training RMSE extracted from average of 10-fold cross validation 
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Table 4.8. Performance of the top 15 models identified by Pareto sort, constructed using Subset F (Supporting Information 4.7) 

Model 

No. 
Dataset 

Modelling 

Algorithm 

Training 

R²* 

Training 

RMSE* 

Test 

R² 
𝑅2 − 𝑅0

2 |
𝑅2 − 𝑅0

2

𝑅2
| 

Test 

RMSE 
k ρ 

Z 

Score 

Criteria 

fulfilled 

F4 2 PLS 0.546 3.163 0.988 0.001 0.001 1.796 1.408 0.800 36.513 6 

F5 2 RF 0.616 2.682 0.930 0.002 0.002 1.966 1.342 1.000 54.534 6 

F6 2 SVM 0.637 2.678 0.984 0.004 0.004 1.167 1.232 0.800 51.736 6 

F14 5 RF 0.828 0.773 0.926 0.065 0.070 0.497 0.874 0.850 69.155 7 

F17 6 RF 0.844 0.713 0.925 0.066 0.071 0.492 0.909 0.963 59.157 7 

F18 6 SVM 0.850 0.819 0.955 0.039 0.040 0.402 0.879 0.898 46.577 7 

F23 8 RF 0.861 0.706 0.891 0.096 0.108 0.595 0.855 0.890 58.288 6 

F33 11 SVM 0.905 0.715 0.960 0.034 0.036 0.398 0.881 0.881 59.891 7 

F41 14 RF 0.845 0.748 0.921 0.069 0.075 0.504 0.904 0.970 55.919 7 

F47 16 RF 0.868 0.694 0.900 0.088 0.098 0.571 0.855 0.890 45.488 7 

F54 18 SVM 0.892 0.737 0.962 0.032 0.034 0.400 0.868 0.881 69.155 7 

F56 19 RF 0.804 0.826 0.893 0.094 0.105 0.590 0.859 0.970 31.624 6 

F57 19 SVM 0.834 0.864 0.971 0.025 0.026 0.344 0.886 0.863 59.157 8 

F59 20 RF 0.866 0.699 0.902 0.086 0.095 0.563 0.865 0.968 44.654 7 

F60 20 SVM 0.899 0.718 0.957 0.037 0.039 0.395 0.890 0.892 45.714 7 

Bold Model No.: Criteria optimised models 

Italic Model No.: Model fulfilling most criteria 

Bold: Criteria fulfilled 
*Training R2 and Training RMSE extracted from average of 10-fold cross validation 
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4.4.3.2. Predictor importance 

4.4.3.2.1. Pruned Subset D 
On inspection of the predictor importance of Model D60 (Supporting Information 4.8), 

Phobic_MOMI.Y, Phobic_FPSA.2, FragmentALogPDifference, Phobic_SP.7, SP.1, 

MOMI.R, IC0, FPSA.2 and SP.7 where found to have an importance of over 70 (Importance = 

100.00, 96.64, 96.24, 92.62, 84.79, 78.03, 77.36, 73.53 and 71.50 respectively, Figure 4.7). It 

is again interesting to see the several hydrophobic descriptors (Phobic_MOMI.Y, 

Phobic_FPSA.2 and Phobic_SP.7) have high importance while the most important hydrophilic 

descriptor is PhilicALogP (Importance = 15.27, Figure 4.7). However, different to Model A2, 

the difference between the hydrophobic and hydrophilic sections of the surfactants are 

accounted through the FragmentALogPDifference descriptor (Importance = 96.24).  

 

Figure 4.7. The predictor importance of Model D60 with an importance of over 10.00. Out of 

the 37 predictors with an importance of over 10.00, nine of the predictors are identified with 

high importance (importance > 70.00).  

When considering the criteria optimised models (Model D33, D51 and D57) in addition to 

Model D60, it was found that SP.1, MOMI.R, IC0 and FPSA.2 have importance of over 70 

across the four models, whiles SP.7 and MOMI.X have importance of over 70 in three models 

(Supporting Information 4.9).   

When inspecting the predictors with importance over 70 in the four top models of pruned 

Subset D, the following can be rationalised for their high importance. First, SP.1 is the Kier 

and Hall’s connectivity index of order 1 which indicates the bimolecular interaction 

possibilities of a molecule when considering individual bonds [27] (Figure 4.8). When a 

micelle is forming, surfactant molecules would come into close proximity and interact with 

each other to form a micelle. Therefore, it is natural for a descriptor which indicates this 

interaction possibility to be important in predicting CMC. Next, MOMI.R is the radius of 

gyration. In chemistry, this is a parameter characterising the size of a particle of any shape [26] 

(Figure 4.9). This is an important factor to micelle formation and the shape of the molecules 

indicates how well they can pack together to form a micelle. Following that, IC0 information 
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content of order 0 measures molecular symmetry, where the diversity of the elements are 

accounted for [24, 25, 46] (Figure 4.10). If a molecule is asymmetrical when considering its 

elements, there is a higher probability of a large difference in hydrophobicity/philicity across 

the molecule, leading to a large amphiphilicity, which is desired for surfactants. Finally, 

FPSA.2 is the fractional charged partial positive surface area, calculated as the total charge 

weighted positive surface area divided by total molecular solvent-accessible surface area [24]. 

In the pruned Subset D, about 22% of the surfactants are cationic. It is possible that due to this 

it was necessary to include a positive charge related descriptor to distinguish between the 

cationic and anionic surfactants, and FPSA.2 was the one which was the most suitable.  

 

Figure 4.8. Illustration indicating the possible bimolecular interaction between two of the same 

surfactant molecules on the interface between aqueous phase and non-aqueous phase.  

 

Figure 4.9. Illustration indicating radius of gyration of a molecule, calculated as the root mean 

square average of the distance of all scattering elements from the centre of mass of the molecule 

[47].  
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Chemical structures 

 
C5H12 

 
C5H12 

 
C4H12N

+ 
Molecular graphs 

 

  
Atom type counts 

C atoms: 1×1 + 1×2 + 1×2 

H atoms: 1×2 + 1×4 + 1×6 

C atoms: 1×1 + 1×4 

H atoms: 1×12 

N atoms: 1×1 

C atoms: 1×4 

H atoms: 1×12 

Information content of order 0 (0 bond length) 
0.87 0.87 1.09 

Information content of order 1 (1 bond length) 

1.16 1.09 1.09 

Figure 4.10. Illustration displaying the difference in information content of order 0 and 1 for 

two C5H12 isomers, pentane (left) and neopentane (middle), and tetramethylammonium (right).  

Although SP.7 and MOMI.X were not have important in all four top models of pruned Subset 

D, they still post high importance in a majority of them. Their importance can be rationalised 

as follows. SP.7, similar to SP.1 is the Kier and Hall’s connectivity index of order 7 which 

indicates the bimolecular interaction possibilities of a molecule [27]. In comparison to SP.1 

which accounts for the interaction possibility over a short length (1 bond), this accounts for the 

interaction over a longer length (7 bonds). MOMI.X is the moment of inertia along the X axis 

(Figure 4.11). Although dependent on the alignment prior to descriptor calculation, this 

describes how much torque it takes to spin the molecule along the X axis, and therefore 

indicates the shape of the molecule [24, 26]. The shape of the molecule is important to how 

well it can pack to form the micelle. Variation due to alignment is minimised by generating the 

3D conformation for all molecules using the same process (see 4.4.2.1. Data preparation).  
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Figure 4.11. Illustration of moment of inertia along the X axis for a surfactant molecule.  

4.4.3.2.2. Pruned Subset E 
On inspection of the predictor importance of Model E2, E14, E20 and E44 (Figure 4.12, 

Supporting Information 4.10), a similar phenomenon to the predictor importance of Model 

A2 was observed. The hydrophilic descriptors were either removed due to high correlation 

during 4.4.2.3. Data Pre-processing or have 0 importance. In all four models, PhobicESA has 

an importance of 100 and PhobicALogP has an importance of over 70 in three (Model E2, E14 

and E44, importance = 71.2, 76.0 and 85.0 respectively). The next most important predictor 

which can account for the hydrophilic section of the surfactants is FragmentALogPDifference, 

although the importance is below 51 (50.6 – 29.9). On inspection of the pruned Subset E, we 

see a very similar range of structures to Subset A. Except one entry, all entries in the pruned 

Subset E are ethylene oxide surfactant analogues. Due to the nature of the data, there is also a 

large overlap of entries between Subset A and pruned Subset E (29 entries). Here again, the 

hydrophobic sections are generally the same size or smaller than the hydrophilic sections, and 

they are all highly flexible. Different to Model A2, PhobicESA which describes the surface 

area in relation to the total electronegativity of the hydrophobic section have the highest 

importance. This is important to how the hydrophobic sections interact with each other when 

forming micelles. Extending from this, the other highly important predictor, PhobicALogP, 

contributes in defining the concentration at which the intermolecular hydrophobic sections 

cluster together to form micelles.  

X axis 

Surfactant 

molecule 
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Figure 4.12. The predictor importance of Model E2, E14, E20 and E44, with the absence of 

the descriptor in the inputting predictor list of the model indicated by the corresponding colour 

× sign.  

4.4.3.2.3. Subset F 
When the pruned Subset D and E were combined to give Subset F, the best model (Model F57) 

had PhobicNumRotatableBonds, FragmentALogPDifference and PhobicALogP as its highly 

important predictors (Importance = 100.0, 92.6 and 88.6 respectively, Figure 4.13, Supporting 

Information 11). PhobicNumRotatableBonds indicates how flexible the hydrophobic section 

of the molecule is, which is important in determining how well the molecules can cluster 

together to form micelles. FragmentALogPDifference indicates the difference in ALogP 

between the hydrophobic and hydrophilic sections, which is crucial to determining how well 

the molecule can sit at the oil-water interface. Similar to Model A2 and the top performing 

models for pruned Subset E, PhobicALogP holds the key in defining the concentration of the 

hydrophobic sections clustering together to form micelles.  
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Figure 4.13. the predictor importance of Model F57 with an importance of over 10.00. Out of 

the 30 predictors with an importance of over 10.00, three of the predictors are identified with 

high importance (importance > 70.00). 

In addition to Model F57, Model F17 and F33 also performed well for Subset F. When 

inspecting their predictor importance (Supporting Information 4.12), 

FragmentALogPDifference, PhobicALogP and Phobic_MOMI.Y are again seen to have high 

importance (Importance = 100.0 and 93.6 for Model F17 and Importance = 100.0 for Model 

F33 respectively). The rationale behind their high importance mirrors the good performing 

models for pruned Subset D and E, in that FragmentALogPDifference accounts for the 

relativity between the hydrophobic and hydrophilic sections, PhobicALogP contributes in 

defining the concentration at which the hydrophobic sections cluster together to form micelles, 

and Phobic_MOMI.Y describes how much torque it takes to spin the hydrophobic section along 

the Y axis [24, 26]. Phobic_MOMI.Y therefore indicates the size and shape of the hydrophobic 

section of the surfactant, which is important to how well the molecule can pack to form the 

micelle.  

Different to the other good performing models, Model F17 and F33 have some highly 

important predictors that have not been seen before, although the rationale can easily be 

mirrored from previously identified highly important predictors. PhilicESA is a highly 

important predictor for Model F17 (Importance = 94.2). it describes the surface area in relation 

to the total electronegativity of the hydrophilic section of the molecule. This is important to 

how the hydrophilic sections interact with each other when forming micelles, especially when 

the hydrophilic sections are not linear and the formal charge is strong (e.g. sulphate groups). 

Phobic_MOMI.R and Phobic_IC5 are highly important predictors for Model F33 (Importance 

= 80.8 and 70.4). They respectively describe the size [26] and the element-related symmetry of 

the hydrophobic section [24, 25]. The size of the hydrophobic section affects how well 

molecules can pack together to form micelles, while the element-related symmetry can affect 

the intermolecular interaction when the hydrophobic sections are in close proximity due to 

electronegativity.  
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4.4.3.3. Outlier analysis 
After identifying and rationalising the important predictors for the highly performing models, 

any outliers were identified as being 0.5 log unit between the observation and prediction.  This 

value is the estimated measurement error anticipated for the variation of experimental CMC 

measurement method and temperature [48].  

4.4.3.3.1. Pruned Subset D 
On analysis of the top models for pruned Subset D (Model D33, D51, D57 and D60, Figure 

4.14), eight entries were found to be outliers for all four models, while one is an outlier in three, 

four were in two and three were in one (Table 4.9). On inspection of the eight outliers for all 

four models, there were 4 cationic and 4 anionic (Table 4.10). Six entries were measured at 

25°C, with the remaining two at 28°C and 40°C. Five out of eight of the measurement methods 

were via conductivity, although their equipment varies where it was identifiable (Table 4.10). 

Three of the eight outliers were sulphur containing (one sulphonate and two sulphuric), and 

one entry contains a 4-cyanopyridine (Table 4.10). The outlier that has 0.5 log unit between 

the observation and prediction in three of the top models for pruned Subset D is a sulphonate 

containing surfactant measured by conductivity at 25°C. The four outliers for two of the models 

were mainly measured by conductivity, with one of them calculated via micelle aggregation 

number. one of the conductivity measured entries was measured at 40°C, with the others 

measure at 25°C. Here again, one of the outliers is a sulphonate containing surfactant. Two of 

the three outliers in only one of the models were sulphonate containing surfactants, both 

measured at 28°C via surface tension method. The other outlier was an anionic surfactant 

measured by conductivity at 25°C.  

 

Figure 4.14. Histogram of the distribution of the observations and prediction by Model D33, 

D51, D57 and D60.  
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Table 4.9. The observation and prediction of the outliers for the top models of pruned subset 

D (Model D33, D51, D57 and D60) 

Entry 

No. 

Observation 

(Log CMC mol/l) 

Prediction (Log CMC mol/l) 

Model D33 Model D51 Model D57 Model D60 

81 -3.75 -3.92 -4.81 -4.86 -3.92 

82 -2.70 -2.87 -4.08 -4.39 -2.87 

89 -2.73 -3.46 -5.23 -5.38 -3.34 
93 -3.62 -4.19 -3.79 -3.79 -4.13 

102 -2.06 -2.59 -3.21 -3.51 -2.60 

119 -4.34 -3.39 -3.61 -3.68 -3.62 
199 -2.32 -2.97 -3.09 -3.01 -3.03 
203 -1.71 -2.25 -2.45 -2.42 -2.33 
227 -4.41 -5.04 -5.33 -5.12 -5.04 
292 -6.35 -5.83 -5.84 -5.87 -5.83 

355 -3.40 -3.98 -4.01 -3.97 -3.98 
357 -3.96 -4.37 -4.13 -4.18 -4.49 

360 -4.90 -4.61 -4.38 -4.52 -4.73 

492 -4.93 -5.56 -5.55 -5.53 -5.44 

494 -6.01 -5.32 -5.57 -5.57 -5.53 

515 -7.01 -6.22 -6.68 -6.71 -6.31 
Bold: prediction over 0.5 log unit difference to observation
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Table 4.10. Details of outliers common across the four top models of pruned subset D (Model D33, D51, D57 and D60) 

Molecule 
Entry 

No. 
Structure Measurement method Equipment 

Temperature 

(°C) 

4.4 89 
 

Micelle aggregation number 

(Fluroescence Probing 

method) 
Unknown 25 

4.5 102 

 

Conductivity 
Kyoto 

conductometer 
24.85 ± 0.01 

4.6 119 

 

Conductivity 

Philips PW 

9501/01 

conductivity 

meter 

25.0 ± 0.1 

4.7 199 
 

Refractive index 

Rayleigh-

Haber-Löwe 

type of 

interferometer 

25.000 ± 

0.003 

4.8 203 

 
Conductivity Unknown 40.00 ± 0.05 

4.9 227 

 
Conductivity 

Pye type 1170 

conductance 

bridge 

25 

4.10 355 

 

Surface tension 

(Du Noüy ring technique) 
Unknown 28 

4.11 492 
 

Conductivity Unknown 25 



CHAPTER 4: NOVEL SURFACTANT DESCRIPTOR – POTENTIAL AMPHIPHILICITY 

 

138 

 

From the above information, the models seem to be poor at predicting the CMC for sulphonate 

containing surfactants and surfactants measured via conductivity. However, this is due to the 

high proportion of outliers of the ionic surfactants containing sulphonate (54 out of 210 entries, 

with five entries being outliers) and measured via conductivity (135 out of 210 entries, with 10 

entries being outliers). It is noteworthy that the salt counter ion, method of measurement and 

the temperature of measurements were not identified as important predictors (< 20). 

Nonetheless, in order to overcome this weakness, more CMC data on sulphonate containing 

surfactants and surfactants measured via conductivity could help.  

In addition to the above analysis, the outliers in Table 4.10 were inspected against the database 

to find similarities and difference between the outliers and the ones well predicted. It was found 

that Molecule 4.4 and 4.5 both have a similar structure within the database which were 

identified as outliers in two of the top models. Molecule 4.6 shares no alike structure with other 

entries as the structures from the same source contain no triple bonds. For these entries, addition 

of similar structure may improve the predictability of these structure. On the other hand, 

although Molecule 4.7 – 4.10 share similarities with other well predicted structures within the 

subset, Molecule 4.7 – 4.10 have the shortest alkyl chains of like molecules where any shorter 

alkyl chain analogues were pruned. This suggests a current limitation to the predictability of 

the structures with short alkyl chains. In order to overcome this limitation, addition of entries 

with the same surfactant structure to Molecule 4.7 – 4.10 varying in salt counter ion, method 

of measurement and temperature may improve their predictability by providing similar data. 

Different to the above, when Molecule 4.11 was inspected, it was found that the surfactant 

structure disregarding the salt counter was exactly the same as seven other entries. The range 

of observed Log CMC mol/l ranged between -5.4 to -5.7, greatly differing from the -4.9 

observed for Molecule 4.11. In addition, an entry with observed -5.4 Log CMC mol/l was 

found to have the same salt counter ion (OH-) to Molecule 4.11 and was also measure via 

conductivity at 25°C, suggesting possible error within the source data.  

4.4.3.3.2. Pruned Subset E 
On the other hand, possibly due to the general high similarity in structure of the pruned Subset 

E, only one entry was found to be an outlier across all top models (Model E2, E14, E20 and 

E44, Figure 4.15), with another entry as outlier in one model (Model E14). Figure 4.16 

presents the similarity of all structures in pruned subset E with each other (ECFP_4 fingerprint, 

Tanimoto similarity). The entry found to be an outlier across all top models was octylphenol 

ethoxylate with 12 ethylene oxide repeat units (DP12, Molecule 4.12) where the method of 

measurement was unspecified. Although the distance between the observation and prediction 

is not much further than 0.5 log unit (0.77 – 0.86), this was not unexpected as other surfactants 

of the same series with longer hydrophilic sections (16 – 55 ethylene oxide repeat units) were 

pruned and this surfactant has the longest hydrophilic section of the unpruned entries. This 

suggests that the length 12 ethylene oxide units is the border line between length of the 

hydrophilic section beyond which an accurate prediction cannot be made.  
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Figure 4.15. Histogram of the distribution of the observations and prediction by Model E2, 

E14, E20 and E44.  

 

Figure 4.16. Correlation plot of the Tanimoto coefficients between the 40 structures within 

pruned Subset E using ECFP_4 fingerprint. Tanimoto coefficients on the structures themselves 

are omitted.   
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prediction in the other models was also close to 0.5 log unit (0.42 – 0.45). This entry was 

measured via surface tension through the drop volume method at 25°C. However, most 

surfactants of the same series had not been pruned.  

 
Molecule 4.12 

 
Molecule 4.13 

Molecule 4.12 – 4.13. Outliers for top models of pruned Subset E (Model E2, E14, E20 and 

E44).  

4.4.3.3.3. Subset F 
With the combined pruned Subset D and E, more outliers were expected as now the structures 

contain ionic and non-ionic species. As expected, a larger number of outliers were observed. 

Four entries were found to be outlier in all three of the top performing models (Models F17, 

F33 and F57, Figure 4.17), there were 13 outliers between two of the models and 20 outliers 

for one model only. When comparing theses outliers to the outliers for the top models of pruned 

Subset D and E, only 22% of the outliers overlap. Here again octylphenol ethoxylate DP12 is 

an outlier across all three of the top performing models, however, most of the related analogues 

of the same series where the measurement method was unspecified are also outliers in two out 

of three models. Where some of the outliers do not overlap, their analogues are noted to be 

outliers in some occasions. This suggests that as there is a change of the overall structure of the 

QSPR model constructed, the outliers change but the series of surfactants, related by structure, 

measurement method, temperature or other descriptors, prone to producing outliers remain the 

same. Therefore, again it would be important to obtain more CMC data related to the outlier 

prone surfactant series in order to construct models which can predict accurately for these 

surfactant series.  
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Figure 4.17. Histogram of the distribution of the observations and prediction by Models F17, 

F33 and F57.  

4.4.3.4. Analysis of pruned entries 
As a result of pruning, a total of 227 entries were pruned from the 477 entries of Subset C. Out 

of these pruned entries, 149 entries were without measurement temperature. These entries are 

mainly where the original data source cannot be accessed (purchase required or material not 

available online, 102 entries), failure to identify the reported CMC record in the original data 

source (36 entries) or the original source was unknown (six entries).  

Within the remaining 78 pruned entries, 54 entries were ionic surfactants (21 cationic and 33 

anionic). Looking closely at the method and the temperature of the pruned ionic surfactants 

(Table 4.11), the majority of the pruned entries were measured using conductivity, at 25°C (15 

entries) and 40°C (eight entries). However, when looking at the entries pruned, the calculation 

method and conductivity at 30°C and 50°C stands out to have over 50% of the recorded entries 

pruned. Looking closer at the entries obtained via calculation method, only one of the entries 

was not pruned. This entry has the shortest hydrophobic section out of this series of surfactant 

CMC (Molecule 4.14).  

 
Molecule 4.14. the unpruned entry with CMC obtained through calculation. 

For the two entries obtained via conductivity at 30°C, they are from different sources. Looking 

at the source where the pruned entries were referenced from, it contained four more entries 

where the CMC was measured at 25°C, with one being a structural analogue (Molecule 4.15) 

of the pruned entry (Molecule 4.16). Based on this, it is possible to conclude there were 

insufficient entries which share the similarity in structure (mean Tanimoto coefficient against 
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Subset F = 0.30 ± 0.10, Figure 4.18), measurement method and temperature for the models to 

capture and predict its CMC.  

 
Molecule 4.15. analogue of pruned entry 

 
Molecule 4.16. pruned entry 

Molecule 4.15 – 4.16. the pruned entry with CMC obtained through conductivity at 30 and its 

not pruned structural analogue.  

Table 4.11. The breakdown of the pruned entries of Subset D (ionic surfactant entries of Subset 

C) Numbers quoted as (number of pruned entries)/(number of total entries at specified 

temperature) 

Method 
Temperature (°C) 

25 27 28 30 40 50 

Calculation 3/4 - - - - - 

Calorimetry 3/10 - - - - - 

Conductivity 15/93 - - 1/2 8/59 1/2 

Micelle aggregation number 6/17 - - - - - 

Refractive index 1/7 - - - - - 

Sound velocity 4/13 - - - - - 

Surface tension 8/31 2/6 2/7 - - - 

 

 

Figure 4.18. Histogram of the Tanimoto coefficients between Molecule 4.16 and Subset F.  
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Looking at the 24 temperature recorded pruned non-ionic surfactants, they were all measured 

at 25°C (Table 4.12). The majority of the pruned entries are measured by surface tension, in 

particular 15 of them share the same source. Only three entries came from the sources that 

contain entries which are not pruned. For one of them, the pruned entry was the shortest 

ethylene oxide analogue of the C8Ph(EO)n series (n = 1, Molecule 4.17). The inability of the 

models to accurately predict this analogue could be due to the lack of non-ionic surfactants in 

the database which shares the same ethylene oxide chain and CMC measurement method and 

temperature in the pruned database to provide the necessary information. 

 
Molecule 4.17. The shortest ethylene oxide analogue of the C8Ph(EO)n series (n = 1).  

For the other two entries, they were the longer alkyl chain analogues of the Cn(EO)8 series (n 

= 12 and 14, Molecule 4.18). However, there are analogues with alkyl chain length shorter, 

longer, or in between them and none of these analogues were identified as outliers in the top 

models for Subset F and E (n = 10, 11, 13 and 15). For the n = 12 analogue, there is another 

entry in the pruned database which shares the same structure. Both were originally included in 

the database as although their measurement method and temperature are the same, the 

equipment used was different and the resulting CMC are not the same (logCMC = -4 and -9.55 

mol/l). As there are no indications to which is the correct value, they were both included to see 

whether models would help identify through consideration of other analogue’s predictions. On 

the other hand, the n = 14 analogue did not have any duplicate entries. Therefore, similar to 

C8Ph(EO)1, the reasonable rational for the inability of the models to accurately predict this is 

the lack of non-ionic surfactants in the database which shares the same hydrophobic alkyl chain 

and CMC measurement method and temperature in the pruned database to provide the 

necessary information.  

 
Molecule 4.18. pruned analogues of the Cn(EO)8 series (n = 12 and 14).  

Table 4.12. The breakdown of the pruned entries of Subset E (non-ionic surfactant entries of 

Subset C), all recorded at 25°C 

Method Number of pruned entries Number of temperature recorded entries 

Calorimetry 1 1 

Surface tension 19 55 

Unspecified 4 8 

 

4.4.4. Comparison with present CMC QSPR models  
When comparing the top performing models constructed using pruned Subsets D and E with 

previous CMC QSPR studies [7, 19, 21-23, 35], our models have comparable performance 

(Table 4.13). It is important to remember when comparing the models, that as the databases 

used are different, the chemical spaces covered by each of the studies are different. Especially 

when comparing the Subset D top models with the ionic models from previous studies, we have 

to take care that our database contains both anionic and cationic surfactants (162 and 48 entries 

respectively) while some of the previous studies only contain anionic surfactants.  
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Table 4.13. Performance comparison of good performing models constructed using pruned 

Subset D and E and previous QSPR studies 

Surfactant Type Training R2 Test R2 

Ionic (pruned Subset D) 0.89-0.93 0.94-0.96 

Non-ionic (pruned Subset E) 0.93-0.95 0.99 

Mixed (Subset F) 0.83-0.91 0.93-0.97 

Anionic [7, 21, 23] 0.88-0.98 0.90-0.99 

Ionic [19, 32] 0.95-0.99 0.94-0.99 

Non-ionic [22, 35] 0.95-0.99 0.94 

 

The important point here is that in our models, they contain predictors which are calculated 

either directly by the potential amphiphilicity protocol (Scheme 4.1) or using the hydrophobic 

and hydrophilic sections identified by the protocol. This demonstrates that the protocol was 

successful in identifying the hydrophobic/philic boundary of surfactants and output properties 

that through QSPR can be related to CMC, which is related to amphiphilicity. It is also to note 

that in comparison to some of the previous studies where high computational cost descriptors 

such as solvation energy [7] and hardness [20] are required, our models use properties which 

can be calculated quickly. For example, for a library of around 500 molecules, the descriptors 

can be calculated within minutes (PC used: Intel(R) Core(TM) i5-6500 CPU @ 3.20GHz 3.19 

GHz, 32GB RAM). 

4.5. Conclusion 
In the search to quantify amphiphilicity for surfactants, a protocol which is capable to 

automatically identify the hydrophobic and hydrophilic sections of a surfactant has been 

constructed, outputting properties which could be related to amphiphilicity. As there are no 

quantitative amphiphilicity values these properties can be compared against, we constructed 

CMC QSPR models using calculated properties. As a result, we were able to construct good 

performing models for ionic surfactants (Test R2 > 0.94, RMSE < 0.36, ρ > 0.89, Z > 30.0) and 

non-ionic surfactants (Test R2 > 0.99, RMSE < 0.20, ρ = 1, Z > 7.3). Within these models, 

hydrophobic and hydrophilic descriptors were identified as highly important to predicting 

CMC (See 4.4.3.2. Predictor importance). This demonstrates that the protocol is successful in 

properties related to amphiphilicity implying that the calculation of the hydrophobic/philic 

sections was useful. Especially, it was noted that descriptors related to the hydrophobic sections 

of the surfactants is seen to be much more important than the hydrophilic sections.  

4.6. Future Work 
In order to further test and improve the potential amphiphilicity protocol in its ability to 

automatically identify the hydrophobic and hydrophilic sections, surfactant molecules of 

various structures, especially molecules which are not analogues of the ones used in this study, 

can be used. The protocol can also be further developed to identify if a molecule is a possible 

surfactant molecule or not by collecting data on the difference in outputs for surfactant 

molecules and non-surfactant molecules. In addition, expansion of the database used for QSPR 

to enrich the data for CMC measured using different methods and temperatures, preferably via 

surface tension or conductivity due to their consistency with the top performing models, can 

possibly increase the accuracy of the QSPR models, and further verification of the performance 

of the current QSPR models can be done by using an external validation set.   
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5.1. Chemical functionalities and pharmacophore 
A functional group is defined by IUPAC as an atom, or a group of atoms that has similar 

chemical properties wherever it occurs in different compounds [1]. The functional groups of a 

potential drug candidate determine its pharmacodynamic and pharmacokinetic effects, which 

affects its possible route of administration, mechanism of action, route of metabolism and 

elimination, toxicity and tendency to cause adverse effects [2]. There are many functional 

groups, and broadly speaking, they can be classed into hydrophobic and hydrophilic 

functionalities. Hydrophilic functionalities can include heterocycles, hydrogen-bond donors, 

acceptors, and positively and negatively charged atoms, while hydrophobic functionalities 

include aliphatic chains, carbon rings, and π-systems and aromatic rings [2]. When the 

molecular features, e.g. functionalities of a small molecule, are in a particular spatial 

arrangement required for specific interactions with its biological target and its activities, they 

can be defined as pharmacophores of the molecule [1, 3, 4]. The concept of pharmacophores 

is used widely in computer-aided drug design. It is used extensively in virtual screening, de 

novo design, lead drug candidate optimisation and multitarget drug design, whether in a ligand-

based or structure-based fashion [4, 5].  

When designing a chemical library, especially for fragment-based lead discovery for the 

pharmaceutical industry, it is important for a chemical library to cover a wide range of 

pharmacophores, and hence chemical functionalities, over a diverse 3D “chemical” space 

allowing a wide range of interactions and properties to be explored [6]. By knowing which 

chemical functionality is present on which part of a molecule, it is possible to predict the kind 

of interactions that the molecule could partake in.  

5.2. Visualisation of Chemical Functionality for a Molecule 
There had been various approaches to identify and visualise the pharmacophores and chemical 

functionalities of molecules within chemical libraries, and measure their diversity in 3D space. 

Pharma is a pharmacophore search tool which identifies and calculates pharmacophores’ 

features of molecules as coordinate-frame independent relation triangles (Figure 5.1) [7]. 

Using the pharmacophore feature triangles and other calculated spatial indices, matches 

between query pharmacophore features and chemical libraries can be found. As this approach 

uses relation triangles, it is necessary for the molecule or the query pharmacophore features to 

contain at least three pharmacophores to form the querying relation triangle. This tool had been 

adapted into an online interface – ZINCPharma [8] for searching purchasable compounds with 

desired pharmacophore spatial relation of the ZINC database, a comprehensive collection of 

commercially available, biologically relevant compounds suitable for screening [9].  
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a) 

 
b) 

 
Figure 5.1. a) The pharmacophore features (lettered spheres) identified using user-

configurable definitions for (2R)-2-amino-1-(azetidin-1-yl)propan-1-one. b) The collection of 

identified features is decomposed into coordinate-frame independent triangles. Taken from [7].  

HookSpace is a program which assesses the diversity of a chemical library using the spatial 

relationships between pairs of functional groups within each molecule [10]. These functional 

groups require a carbon head and can be user defined. In the literature, acetate, N-methyl 

acetamide, methanol, methyl ammonium, phenyl, fluoride, chloride, iodide, bromide, thio ether 

and phosphono ether were defined for investigation (Figure 5.2). HookSpace calculates the 

spatial relationship between each pair of functional groups within each molecule by the 

following steps (Figure 5.3) [10]:  

Step 1. Orientate the molecule such that one of the functional groups (head 1 – tail 1) 

lies along the positive x-axis, with the head atom (head 1) at the origin 

Step 2. Rotate the molecule around the x-axis so that the head atom of the second 

functional group (head 2) was on the xy-plane with the head-to-tail vector (head 2 → 

tail 2) pointing in the positive z-direction 

Step 3. Coordinate of the second head atom (head 2) was stored 

Step 4. Repeat step 1 – 3 with the second functional group along the x-axis 

HookSpace can present its result for analysis in various way: a histogram for distribution of 

the distance between the carbon heads of each pair of functional groups (Figure 5.4.a), a tile 

plot which display the number of functional groups present at each xy-position (Figure 5.4.b), 
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a 3D bar chart representing the frequency of each combination of functional groups (Figure 

5.4.c), and a defined space dependent quantitative HookSpace Index representing the 

percentage of non-zero positions in the xy-plane. Currently, there are several limitations for 

HookSpace. For HookSpace to compute any result for a molecule in the library, the molecule 

is required to contain at least two of the defined functional groups. It also does not present the 

functional groups in 3D space and most importantly is restricted to the single rigid 

conformation entered into the program.  

 

Figure 5.2. Functional groups defined in [10], taken from [10]. For N-methyl acetamide, two 

definitions were available and were treated separately as there are two carbon heads existing 

within the functional group.  
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Figure 5.3. A schematic illustration of the calculation of functional group geometries, 

illustrated using (R)-1-(2-((S)-1-aminoethyl)-5-methylphenyl)ethan-1-ol as an example. Taken 

from [10].  
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a) 

 
b) 

 
c) 

 
Figure 5.4. Example HookSpace results for the filtered CSD database analysed within [10], 

which contains 45887 molecules. a) histogram of the head – head distance between functional 

group pairs; b) tile plot displaying how many functional groups have that particular geometry 

(left) and how many different types of functional group have that particular geometry (right), 

where each tile is 0.2 Å in the x- and y-direction; c) 3D bar chart showing the number of 

occurrences (left) and HookSpace Index (right) for each type of functional group pair.  

Gridding and partitioning (GaP) is a computational method designed for classification and 

selection of monomers for a combinatorial library [11]. Combinatorial libraries are collections 

of molecules synthesised taking into account all possible combinations of the contributing 

building blocks – monomers, small molecules with generally two reactive sites (Figure 5.5) 

[12, 13]. GaP takes into consideration that monomers are small and therefore might not contain 

multiple functional groups. It is based on the idea that 3D space can be gridded into cells when 

each axis is split into a given number of ‘bins’. It then takes a common feature for a 

combinatorial library, whether a functional group or atom, as the origin and tracks the position 

of the pharmacophores with free rotation around the x-axis for each conformation a monomer 

can take in 3D space (Figure 5.6). This information is recorded using a binary code for cells 

that a pharmacophore ‘hits’. This binary code can easily be used to analye where the 

pharmacophores are present or absent, however, the length of this code is dependent on the 

total size of the analysing space and the size of the ‘bins’ each axis is split into. This makes it 

difficult to analyse the code without appropriate aid. In addition, as this method is designed for 

the monomers for combinatorial libraries, it does not consider the conformation hindered by 

substituents when developing into potential drug candidate molecules [14]. Nonetheless, this 
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method had been incorporated into screening procedures in pharmaceutical companies such as 

GlaxoSmithKline for matching 3D pharmacophoric patterns [15].  

 

Figure 5.5. A schematic illustration of an example combinatorial library generation via “split-

mix synthesis” method, one of the various methods of combinatorial library generation. Taken 

from [13]. 
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Figure 5.6. A schematic illustration of the GaP process, illustrated using phenylalanine as an 

example. Taken from [11].This molecule contains two pharmacophoric groups (aromatic ring 

and acid). The molecule is oriented with the primary alkylamine attachment group at the origin 

and the adjacent bond along the x-axis. For each conformation the molecule is permitted free 

rotation about the x-axis, tracking those pharmacophore cells that are “hit”. 

Each of the above methods comes with their own advantages and disadvantages. Pharma allows 

a user to define the pharmacophore of interest and calculates the pharmacophore feature 

relations without the complexity of library alignment as the relation triangles are coordinate-

frame independent. On the other hand, as the calculation of relation triangles of the identified 

pharmacophore is necessary, at least three of the defined pharmacophores are required to be 

present in the analysed molecule. HookSpace is able to present graphically the predefined 

functional group pair information for an analysed library graphically. However, its applicability 

is restricted to molecules with at least two of the defined functional groups being analysed. The 

defined functional groups are also required to have a carbon head and functional groups with 

multiple carbon heads are treated as separate functional groups. GaP is able to consider the 

conformations a monomer can take and analyse the location of the pharmacophore groups in 

relation to an attachment point. At the end of the calculation, it outputs an analysing space size 

dependent binary code for each monomer analysed, which is not necessarily straight forward 

to understand without prior knowledge.  
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In addition to the above advantages and disadvantages, the above tools/methods all miss the 

ability to visualise the query pharmacophores of the whole, or a selected part of the library in 

3D space. In order to visually aid prediction of likely interactions of molecules and fragment 

libraries and provide an “easy to grasp” 3D visualisation for reporting and presentation 

purposes, a series of protocols have been developed on Pipeline Pilot to visualise the chemical 

functionalities of molecules within a chemical library.  

In this chapter, the process to visualise the chemical functionalities within Pipeline Pilot will 

be explained and presented along with the pros and cons of the different visualisation methods 

used to create the 3D view of the chemical functionalities. Examples of the visualisation 

outputs are displayed using a series of example molecules and an in-house library for Liverpool 

ChiroChem Ltd. (LCC) [16], a company founded in 2014 with their expertise in synthesising 

chirally-pure compounds as 3D-rich building blocks for small molecule drug discovery.  

5.3. Process to Visualise Chemical Functionality for a Chemical Library 
The process of visualising the 3D chemical functionality for a chemical library consists of: 

import library, align library, identify query chemical functionalities and export visualisation. 

In this project, Pipeline Pilot protocols have been generated for these processes as shown below 

(Scheme 5.1).  
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Scheme 5.1. Main processes to visualise chemical functionalities for a chemical library. Black 

text: name of protocols. Orange ovals: main processes. Rounded rectangles: options of the 

linked process. Green hexagons: visualisation display options.  

5.3.1. Import Library 
In order to create visualisation of chemical functionalities for chemical libraries that can be 

used for comparison, any imported libraries need to be processed. Within the main protocols, 

the chemical library is imported as a SD file, preferably with 3D coordinates. The molecules 

are standardised regarding their stereo, charges and π-systems as follows:  

1. If the imported molecules contain 3D coordinates, the stereochemistry of the atoms and 

bonds are assigned using the 3D coordinates; if the imported molecules only contain 

2D coordinates, the up/down bond markings are used to assign their stereochemistry  
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2. Any stereochemical marking on non-stereo atoms or bonds are removed  

3. The formal charges of common functional groups, e.g. nitro groups, are standardised  

4. π-systems are converted to kekulised representations  

5. Any duplicate molecules are identified using canonical Simplified Molecular Input 

Line Entry System (SMILES) and removed  

6. Calculate 3D coordinates if 3D coordinates are not available 

7. All molecules are then energy minimised using the Clean forcefield [17] 

Sometimes visualisation of chemical functionalities of a library is desired based upon reference 

to a certain molecular structure (Figure 5.7). In such cases, reference molecular structure can 

be chosen and imported at this stage as SD files.   

 

Figure 5.7. Visualisation of chemical functionalities of a library with reference to a specific 

molecular structure 
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5.3.2. Align library 
The imported library is then aligned. Within this project, we provide 2 methods of alignments: 

geometric alignment by the plane and line of best fit of the heavy atoms within the molecules, 

or substructure alignment against template scaffold(s).  

5.3.2.1. Geometric alignment 
When geometric alignment is the selected method, the plane of best fit, followed by the line of 

best fit on the plane of best fit of all the heavy atoms within each molecule is identified. 

Geometrically aligning molecules using the coordinates of the heavy atoms is an approach 

taken similar to Plane of Best Fit in characterising the 3-dimentionality of molecules [18], 

where the average distance of the heavy atoms from the plane of best fit is used to quantify the 

3-dimentionality of the molecules.  The transformation required for the plane of best fit to align 

to the xy-plane and the line of best fit to align with the x-axis are calculated and is applied to 

all the atoms within the molecule (Figure 5.8). The benefit of this method that this is applicable 

to any molecules. However, it is rare for any substructures to be similarly aligned within the 

library and therefore may not be optimal for comparing different libraries.  

 

Figure 5.8. Schematic illustration of aligning a set of coordinates to the xy-plane and x-axis.  
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5.3.2.2. Substructure alignment 
When substructure alignment is the selected method, a list of templates containing scaffolds 

which the chemical library is to be aligned against is required. These templates need to be 

aligned against each other following unified criteria and capture the rotational axis of the 

scaffolds to be usable for comparisons. The details for the criteria and preparation of the 

templates are described in 5.2.2.2.1 Template preparation.  

With the prepared template list imported, molecules in the chemical library to be visualised 

(and referencing molecular structure if imported) are aligned against the template list. Where 

there are multiple template substructures within the molecule, the substructure with the most 

rings and atoms nearest to the centre of the molecule is selected as the aligning substructure.  

Once aligned, for any template substructures containing rotational axes identified using 

chemical structure viewer JMol [19] (C2, C3, C4, C5, C6 and C8), the aligned molecules are 

rotated accordingly (Figure 5.9). This is to capture all the possibilities of the molecule aligning 

to the specific template substructure.  
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Original C6 rotated clockwise C3/2×C6 rotated clockwise 

 
 

 
C2/3×C6 rotated clockwise 2×C3/4×C6 rotated clockwise 5×C6 rotated clockwise 

 
 

 
C2 rotated C2 rotated C2 rotated 

 
  

C2 rotated C2 rotated C2 rotated 

Figure 5.9. Example of a molecule with benzene scaffold rotated according to the C2, C3 and 

C6 rotational axis of benzene.  

The benefit of this method is that chemical functionalities are visualised in relation to a selected 

substructure and therefore different chemical libraries can be compared against each other 

provided the alignment templates used are identical or structurally similar. However, this 

method is not applicable to structures without ring scaffolds and the ring scaffold within the 
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molecules must exist in the alignment template list for alignment to occur. Any molecules not 

aligned are removed from further calculations.  

As the template scaffolds are the core of the substructure alignment, preparation of them to 

make sure they are aligned against each other and contain the necessary rotational axis 

information is required.  

5.3.2.2.1. Template preparation 
There are two options available for the template scaffolds (Scheme 5.2):  

i) using the prepared template list generated from Rings in Drugs [20] (RiD) list, or 

ii) a specific template list using the Template generation protocol. 
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Scheme 5.2. A flowchart showing the process of template preparation on default settings.  
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As Rings in Drugs captured all the U.S. Food and Drug Administration approved drug ring 

scaffolds in literature publication to date [20], the RiD list provides a ready prepared scaffold 

list for alignment, containing any rotational axis information generated from JMol where 

available, which captures many ring scaffolds likely to appear in a chemical library.  

On the other hand, when using the Template generation protocol to prepare a template list, it 

allows users to select specifically individual ring scaffolds which suits the visualising chemical 

library the best for a given use. However, extra steps might be required to manually add rotation 

axis information generated from JMol where necessary as rotational axis information cannot 

be obtained within Pipeline Pilot. The procedure is explained below.  

The template generation protocol first imports the selected ring scaffolds as SMILES or SD 

file, and the 3D conformations are calculated and energy minimised using the Clean forcefield 

[17]. Next, it compares the selected ring scaffolds against the RiD list. If a selected ring scaffold 

is identical to a scaffold within the RiD list, the corresponding record containing the aligned 

scaffold and any rotational axis information is selected for exportation.  

On the other hand, if the selected ring scaffold does not exist in the RiD list, it is aligned against 

a list of generic structure layouts (Figure 5.10) following the criteria below where possible:  

• First, when a structure contains multiple rings, the largest ring is placed towards the 

negative xy-direction with other rings extending towards to positive x- or positive xy- 

direction so the structure is as linear as possible; similar ring scaffolds are to be aligned 

in a similar fashion;  

• Secondly, when a structure contains heteroatoms, at least one of the heteroatoms are to 

be pointing towards the positive y- or positive x-direction where it does not violate the 

previous criterion.  
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Figure 5.10. Examples of generic structure layouts templates are to be aligned against.  

Once aligned, the alignments are exported as a SD file and imported into Jmol for rotational 

axis calculation (Figure 5.11). The rotational axis information is then added to the SD file 

manually using DataWarrior and processed using the Template generation protocol for correct 

formatting. This allows the substructure alignment protocol to correctly interpret the rotational 
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axis information and rotate molecules aligned to the template accordingly. The RiD list was 

originally prepared using the Template generation protocol.  

  

Figure 5.11. Jmol displaying rotational axis information of benzene.  

5.3.3. Identify query chemical functionalities 
Once the molecules in the library are aligned, they are analysed for chemical functionalities 

using SMiles ARbitrary Target Specification (SMARTS), a language used for describing 

molecular patterns and properties [21, 22]. Depending on the end user’s needs, different 

combinations of query chemical functionalities can be selected. Within the protocol, chemical 

functionalities are identified as Table 5.1 and Figure 5.12, where some of the SMARTS 

definitions used originate from Daylight Chemical Information System, Inc. [23]. Once 

identified, the atoms and coordinates of the chemical functionalities are stored, ready to be 

exported. 
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Table 5.1. The definitions of the chemical functionalities identifiable within the protocol (for SMARTS definition see Supporting information 

5.1) 

Chemical functionality Definition 

Hydrogen-bond donor 
Heteroatoms Coordinate of the hydrogen bond donor heteroatom 

Hydrogens Coordinate of the hydrogen bond donor hydrogen 

Hydrogen-bond acceptors Coordinate of the hydrogen bond acceptor atom 

Charged atoms 
Positive Coordinate of the positively charged atom 

Negative Coordinate of the negatively charged atom 

Hydrophobics 

 

 

 

 

Terminals 

Maximum length from point of 

attachment = 3 

Range of size: 1-7 atoms 

Branching possible 

(Figure 1a) 

Average of the atom coordinates 

Aliphatic chains 

Range of size: 1-3 atoms 

Branching possible 

(Figure 1b) 

Average of the atom coordinates 

Rings Range of size: 3-8 atoms Average of the atom coordinates 

Aromatic rings Range of size: 3-8 atoms Average of the atom coordinates 

sulphur  Coordinate of the hydrophobic Sulphur 

Pi systems The structure of the pi systems 
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Figure 5.12. Structures of a) hydrophobic terminals and b) aliphatic chains.  

5.3.4. Export visualisation 
The stored chemical functionality information is exported, ready for visualisation. Within this 

work, we provide two visualisation methods: DataWarrior graphical summary and PyMOL full 

visualisation.  

5.3.4.1. DataWarrior graphical summary 
The DataWarrior graphical summary is obtained by importing the stored chemical functionality 

information into DataWarrior and processing it using the macro provided with the protocol. It 

is to note that the coordinates of the chemical functionality information for this visualisation 

are binned into 0.5Å bins with conformer shape calculation error consideration for clearer 

imaging and easier identification of chemical functionality coordinate duplication by the same 

molecule (Figure 5.13). When only one template is used in the substructure alignment method, 

or when a reference molecule is imported, the individual atoms of the structure are represented 

in grey and labelled with their atomic symbol. When multiple templates are used in the 

substructure alignment method, a grey shape locates the origin (0, 0, 0).   

a) 

b) 
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a) 

 

b) 

 

Figure 5.13. Location of the four indicated chemical functionality with respect to centre of 

alignment of molecule (in Å). Difference in image clarity a) without and b) with binning of 

DataWarrior graphical overall summary using the LCC in-house library. Without binning, 

overlaps of functionality cannot be identified and therefore frequency scale is not available.  
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There are two options of graphical summaries: an overall summary (Figure 5.14a, Supporting 

Information 5.2) which also provides the frequency of a chemical functionality seen for each 

bin and does not disclose any of the molecular structure within the library, or a traceable 

summary (Figure 5.14b, Supporting Information 5.3) which by selecting a chemical 

functionality coordinate will highlight the molecular structures within the library which 

provides the chemical functionality at the specified coordinate.  

The DataWarrior graphical summary provides a quick way to render images of the chemical 

functionalities which can be saved for viewing later. However, as it is a graphical summary, 

the generated image does not necessarily resemble the shape of structures of the chemical 

functionalities identified. The shapes used in the graphical summary are also dependent on the 

number of different types of chemical functionalities identified and therefore can be difficult 

to interpret initially.  
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a) 

 
b) 

 
Figure 5.14. Example of DataWarrior graphical a) overall summary (Supporting Information 

5.2) and b) traceable summary (Supporting Information 5.3). In both summaries, chemical 

functionality groups are represented with different 3D shapes, noted by Type in the legend, and 

the size (number of atoms) of the group is represented with the according size. In the overall 

summary (a), the number of times a particular chemical functionality is seen at a particular 

coordinate is represented by the Frequency scale. In the traceable summary (b), the colour of 

the data points represents whether the data points represent the referencing structure, or if the 

particular chemical functionality stems from the templates used or the analysing library. The 

traceable summary (b) allows selection of chemical functionalities in the 3D graph and tracing 

back to the relevant structures.  
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5.3.4.2. PyMOL full visualisation 
There are two options for the PyMOL full visualisation.: Overall visualisation or Molecular 

visualisation.  

Overall visualisation disregards the individual molecular structures of the chemical library and 

outputs the overall image of the chemical functionalities available within the library. Molecular 

visualisation keeps the individual molecular structures of the chemical library and overlays 

them with the chemical functionalities.  

These visualisations are generated by running the PyScript generated at the end of the protocol 

in PyMOL initially, which is then saved as PySession for viewing later. The resulting 

visualisation (Figure 5.15) represents the chemical functionalities as shown for a simple 

example in Table 5.2. For the Overall visualisation, when only one template is used in the 

substructure alignment method, or when a reference molecule is imported, these structures are 

represented in green. On the other hand, when multiple templates are used in the substructure 

alignment method, a green sphere locates the origin (0, 0, 0).  

Both PyMOL visualisation methods provide more of a chemical structure/functionality view 

of the chemical functionalities than the ones DataWarrior can provide. However, these methods 

are high in computational cost, and the time required for generating and rendering this 

visualisation increases as the chemical library size increases. For example, a list of four 

molecules only takes minutes to render but a library of approximately 12000 molecules can 

take up to 15 hours to render but once saved as a PyMol session can be loaded very quickly 

(PC used: Intel(R) Core(TM) i5-6500 CPU @ 3.20GHz 3.19 GHz, 32GB RAM).  

 

Figure 5.15. An example of PyMOL visualisation output.  
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Table 5.2. The definitions of the chemical functionalities identifiable within the protocol 

Chemical 

functionality 
Visualization Example 

Hydrogen-bond 

donor 

Orange arrow from 

hydrogen-bond donor 

heteroatom to 

hydrogen 

 

Hydrogen-bond 

acceptors 

Light blue sphere 

with white cylinders 

showing non-

accessible areas due 

to bonds 

 

Positively charged 

atom 

Red sphere with 

white cylinders 

showing non-

accessible areas due 

to bonds 
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Chemical 

functionality 
Visualization Example 

Negatively 

charged atom 

Blue sphere with 

white cylinders 

showing non-

accessible areas due 

to bonds 

 

Hydrophobic 

terminals 

Light gray sphere of 

various size 

dependent on the 

number of atoms 

within the group 

 

Aliphatic chains 

Light gray sphere of 

various size 

dependent on the 

number of atoms 

within the group 
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Chemical 

functionality 
Visualization Example 

Carbon rings 

Light grey sphere of 

various size 

dependent on the 

number of atoms 

within the group 

 

Aromatic rings 

Light grey sphere of 

various size 

dependent on the 

number of atoms 

within the group 

 

Hydrophobic 

Sulphur 
Light grey sphere 

 

Pi systems Yellow structures 
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5.4. Example of Visualised Chemical Library 
Using example Molecules 5.1 – 5.4 and the LCC in-house fragment library, the different 

visualisation options available and their effect on the visualisation output are illustrated below.  

1) 

 

2) 

 

3) 

 

4) 

 

 

Molecule 5.1 – 5.4. Example molecules used to illustrate the visualisation options.  

5.3.1. Settings within the protocol 
There are four main settings within the Chemical functionality visualisation protocols which 

affects the display of the visualisation outputs:  

i) Molecule of interest 

ii) Visualisation Type 

iii) Output Type  

iv) Features.  

Molecule of interest is an option to add a molecule of interest as reference to the visualisation 

(Figure 5.16, Supporting Information 5.4 and 5.5). This allows comparison of the chemical 

functionalities of the analysing library and the structure of the molecule of interest.  
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a) 

 
b) 

 
Figure 5.16. Molecule 5.2 used as molecule of interest for visualisation of LCC in-house 

fragment library in the a) DataWarrior overall summary (Supporting Information 5.4) and b) 

PyMOL overall visualisation (Supporting Information 5.5). Both images are the cross-

sections of the visualisation where Molecule 5.2 is visible, with the atoms represented by grey 

octahedrons in the former and the molecule is in green for the latter, surrounded by the 

identified chemical functionalities.  
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As the DataWarrior graphical summary is quick to render visualisation, it is a standard in the 

visualisation type selection. On the other hand, as the PyMOL full visualisation is much heavier 

in computational cost to render, the visualisation type setting determines whether the PyMOL 

full visualisation will be calculated.  

Output type determines which of the visualisation options within the visualisation outputs are 

being calculated. As explained within 5.2.4.1. DataWarrior graphical summary and 5.2.4.2. 

PyMOL full visualisation), the overall summary/visualisation does not disclose any molecular 

structures within the library analysed (Figure 5.17, Supporting Information 5.6 and 5.7), and 

therefore is suitable for companies, in the example case LCC, to display the chemical 

functionality of their library without exposing their structures.  
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a) 

 
b) 

 
Figure 5.17. a) DataWarrior overall summary (Supporting Information 5.6) and b) PyMOL 

overall visualisation using the shape and colour as described in Table 5.2 (Supporting 

Information 5.7) of the LCC in-house fragment library, where individual structures are not 

available.  
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On the other hand, the for DataWarrior graphical tracable summary and PyMOL molecular 

visualisation (Figure 5.18, Supporting Information 5.3 and 5.8) display the chemical 

functionalities along with the individual molecule, allowing easy understanding of which 

molecules display which functionalities.  

a) 

 
b) 

 
Figure 5.18. a) DataWarrior traceable summary (Supporting Information 5.3) and b) PyMOL 

molecular visualisation (Supporting Information 5.8) of Molecule 5.1 – 4, where individual 

structures are available.  
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The feature option determines which categories of chemical functionalities are to be calculated. 

There are five categories of chemical functionalities selectable: hydrogen bond donor, 

hydrogen bond acceptor, charged atoms, π-system and hydrophobics (Detail see Table 5.1). 

Only the selected chemical functionalities would be calculated and it is suggested to calculate 

all categories as within the individual visualisation, there are options to turn the display of 

selected chemical functionalities off (Detail see 5.3.2. Options within each visualisation 

output). However, it is to note that for large libraries, this might lead to heavy computational 

cost, especially for the PyMOL full visualisation generation.  

5.3.2. Options within each visualisation outputs  

5.3.2.1. DataWarrior overall summary 
Figure 5.19 shows the DataWarrior overall summary of Molecule 5.1 – 4 (Supporting 

Information 5.2). Within area A, the following options are available to determine visibility of 

the functionalities displayed in area B where available: 

• Reference point/atom position outline 

• Chemical functionalities from the template structure 

• Chemical functionalities from the library visualising 

• Chemical functionality categories (Table 5.1) 

 

Figure 5.19. DataWarrior overall summary of Molecules 5.1 – 4 (Supporting Information 

5.2), where area A contains the options to adjust the visibility of the functionalities displayed 

in area B.  

A 

B 
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5.3.2.2. DataWarrior traceable summary 
Figure 5.20 shows the DataWarrior traceable summary of Molecule 5.1 – 4 (Supporting 

Information 5.3). Within section A, the following options are available to determine visibility 

of the functionalities displayed in section B where available: 

• Reference point/atom position outline 

• Chemical functionalities from the template structure 

• Chemical functionalities from the library visualising 

• Chemical functionality categories (Table 5.1) 

By selecting chemical functionalities within section B, the corresponding molecules entries are 

highlighted in section C. These molecules can then be extracted by creating a new file from the 

highlighted entries.  

 

Figure 5.20. DataWarrior traceable summary of Molecule 5.1 – 4 (Supporting Information 

5.3), where area A contains the options to adjust the visibility of the functionalities displayed 

in area B, and area C contains the table of molecule entries.  

5.3.2.3. PyMOL overall visualisation 
Figure 5.21 shows the PyMOL overall visualisation of Molecule 5.1 – 4 (Supporting 

Information 5.9). Section A lists the PyMOL objects, named following the chemical 

functionality categories (Table 5.1) available within the visualisation. By clicking on the 

objects, visualisation of the objects in section B can be triggered on and off. Some of the lists, 

for example Hydrophobics, can be expanded to show further breakdowns of the chemical 

functionalities by subtypes and size.  

A 

B 

C 
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Figure 5.21. PyMOL overall visualisation of Molecule 5.1 – 4 (Supporting Information 5.9), 

where area A contains the options to adjust the visibility of the functionalities displayed in area 

B.  

5.3.2.4. PyMOL molecular visualisation 
Figure 5.22 shows the PyMOL molecular visualisation of Molecule 5.1 – 4 (Supporting 

Information 5.8). Section A lists the PyMOL objects, named following the chemical 

functionality categories (Table 5.1) available within the visualisation. By clicking on the 

objects, visualisation of the objects in section B can be toggled on and off. Some of the lists, 

for example hydrophobics, can be expanded to show further breakdowns of the chemical 

functionalities by subtypes and size. Within section C is the control for moving between 

molecules of display.  

A 

B 
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Figure 5.22. PyMOL molecular visualisation of Molecule 5.1 – 4 (Supporting Information 

5.8), where area A contains the options to adjust the visibility of the functionalities displayed 

in area B, and area C contains the controls for moving between molecule of display.  

5.4. Further Work 
This work was the start of research which has developed further to an open innovation project 

with LCC and Abbvie called Project Vector where the aim was to quantify the efficiency of a 

library at covering 3D space. Project Vector uses the same fundamental steps to identify the 

vectors of various chemical functionalities of a fragment library, then uses the vector 

information to calculate vector efficiency, a novel quantity for quantifying the efficiency of a 

library at covering a defined 3D space with its chemical functionalities. Using the concept of 

vector efficiency, allows the analysis and comparison of the diversity and the 3-dimensionality 

of chemical functionalities of fragment libraries. Much work had been spent in this project at 

developing the Vector efficiency calculation algorithm and the most recent work had been on 

translating the protocol to an open platform KNIME for accessibility for a wider range of end 

users. Efforts have also been put toward testing the protocol with a wider range of libraries and 

preparation for publication.  

In addition, the applicable chemical space of the protocols can be expanded in theory by 

extending the substructure alignment algorithm from ring scaffold to any substructures. 

However, complications related to rotation axis and plane of alignment arise when the 

substructure become too simple, e.g. C-C, and therefore more work is required in order to apply 

this.  

  

A 

B 

C 
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