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ABSTRACT

Influenza virusesmutate rapidly and can pose a threat to public health, especially to those in vulnerable
groups. Throughout history, influenza A viruses have caused pandemics between different species. It
is important to identify the origin of a virus in order to prevent the spread of an outbreak. Recently,
there has been increasing interest in using machine learning algorithms to provide fast and accurate
predictions for viral sequences. In this study, real testing data sets and a variety of evaluation metrics
were used to evaluate machine learning algorithms at different taxonomic levels. As hemagglutinin is
the major protein in the immune response, only hemagglutinin sequences were used and represented
by position-specific scoring matrix and word embedding. The results suggest that the 5-grams-
transformer neural network is the most effective algorithm for predicting viral sequence origins, with
approximately 99.54% AUCPR, 98.01% F1 score and 96.60% MCC at a higher classification level,
and approximately 94.74% AUCPR, 87.41% F1 score and 80.79%MCC at a lower classification level.

1. Introduction
Influenza is an infectious disease that affects up to one-

fifth of the world’s population each year, although its preva-
lence tends to be underestimated (Cox and Subbarao, 1999).
In comparison to seasonal influenza pandemics, influenza
pandemics occur less frequently, although each such crisis
may result in millions of deaths. The influenza epidemic
has adversely affected vulnerable individuals with chronic
diseases, and the pandemic has affected people of all ages.

The influenza viruses are classified into four types based
on their internal ribonucleoprotein: A, B, C, andD. Influenza
D virus does not cause disease in humans. The influenza C
virus is only infective in humans, however, it is unlikely to
lead to epidemics on a large scale. Because of this, seasonal
influenza vaccine strains cannot be used to vaccinate against
influenza C and D viruses. Seasonal epidemics are primarily
caused by influenza A and B viruses. The influenza B virus
is only infectious to humans, while the influenza A virus
is infectious to humans and animals, and may result in
global epidemics (e.g. pandemics). There are two glycopro-
teins under the virus envelope that distinguish the influenza
A virus subtypes: hemagglutinin (HA) and neuraminidase
(NA). A total of 18 HA subtypes (numbered 1-18) and 11
NA subtypes (numbered 1-11) have been identified so far
(Lazniewski et al., 2018).

HA or NA proteins contain antigenic sites that are recog-
nised by the immune system and which inhibit flu infec-
tion. These antigenic sites can rapidly alter in order to
escape recognition by the immune system. There is a process
known as antigenic drift that generates new influenza A,
B, and C strains that are not fully recognized by human
immune systems, thereby contributing to seasonal influenza.
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When influenza A virus proteins undergo drastic changes
on antigenic sites, this can cause antigenic shifts. Antigenic
shifts may result from the reassortment of different viruses
within one or more hosts, leading to the emergence of
new viruses (Brockwell-Staats et al., 2009). In the past,
several pandemics have been the result of extreme antigenic
shifts in which most people were incapable of resisting the
novel virus. As a result of recombination between animal
viruses (swine and avian) and human viruses, four ma-
jor influenza epidemics have emerged since 1900: Spanish
flu (1918–1919), Asian flu (1957–1958), Hong Kong flu
(1968–1969), and the 2009 flu pandemic (2009–2010).

The virus responsible for the Spanish flu was A/H1N1.
An estimated 17 - 100 million people died in this pandemic
and it was the deadliest in recorded history (Spreeuwen-
berg et al., 2018), (Morens and Fauci, 2007), (Johnson and
Mueller, 2002). Despite the mystery surrounding the origins
of Spanish flu (Antonovics et al., 2006), recent studies
suggest it may have originated in birds or pigs (Tauben-
berger et al., 2005), (Worobey et al., 2014), (Smith et al.,
2009a). The virus adapted and kept playing a major role in
flu epidemics until 1957, when major changes in HA and
NA resulted in the novel A/H2N2 virus and the Asian flu
pandemic. The Asian flu is associated with a higher rate of
morbidity and mortality compared to the Hong Kong flu
of 1968, as the Hong Kong flu was caused by A/H3N2,
which only changed the HA antigen (Kilbourne, 2006). The
Asian flu and the Hong Kong flu occurred as a result of
reassortment between human and avian viruses. A/H1N1
was also responsible for the 2009 flu pandemic, however
that iteration involved a triple reassortment between human,
avian, and swine viruses (Garten et al., 2009). (Smith et al.,
2009b).

It is known that influenza viruses can infect a number
of hosts, including humans, birds, pigs, and horses. Birds
are a major natural reservoir for the influenza A virus (Long
et al., 2019), (Gorman et al., 1990), which can infect humans
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and pigs alike (Webster et al., 1992). Additionally, pigs
are considered to be an intermediate host for influenza A
viruses between humans and birds (Brown, 2001). The re-
assortment of viruses between different hosts can result
in life-threatening risks for human populations, since the
viruses don’t require an intermediate host to propagate.

The transmission of influenza viruses can therefore occur
through animal-to-human (zoonosis) as well as animal-to-
animal (enzootic) contact (Long et al., 2019). Zoonotic
infections can either be dead-end transmissions or lead to
a pandemic in the human population after accumulating
enough adaptive mutations to sustain transmissions between
people, which then regularly circulates as a seasonal in-
fluenza virus (Long et al., 2019),(Taubenberger and Kash,
2010). The origin of each virus during a virus outbreak is
difficult to determine because some viruses can cross species
boundaries. It is thus possible to isolate swine-origin viruses
from humans. However, the virus must be given sufficient
time to complete the adaptive mutation and accumulation
process (Long et al., 2019). Thus, early isolation of the
original viral host can effectively prevent or control the
spread of a viral outbreak.

Most traditional methods are laboratory-based, such as
the use of hemagglutination inhibition (HI) assays to sub-
type viruses. Laboratory-based methods are laborious and
time-consuming. To save manpower and time, a variety of
machine learning algorithms have been used to predict viral
hosts, such as k-nearest neighbours (KNNs) (Sherif et al.,
2017), random forests (RFs) (Sherif et al., 2017), artificial
neural networks (ANNs) (Attaluri et al., 2010a), and deci-
sion trees (DTs) (Kargarfard et al., 2016). Most previous
studies selected balanced data sets manually (Sherif et al.,
2017), (Attaluri et al., 2010b), used small data sets (Attaluri
et al., 2010a), encoded the sequence as sparse matrices
(Attaluri et al., 2010a), (Mock et al., 2021) or incorporated
feature extraction procedures (Yin et al., 2018). Moreover,
some deep learning techniques, such as convolutional neural
networks (CNN), have been applied in this field, although
only to avian and human viruses thus far (Scarafoni et al.,
2019).

We used various machine learning algorithms (i.e. RF,
RUSBoost, SVM, XGB, MLP, transformer, and CNN) to
determine the origin host of influenza viruses. To vec-
torize a sequence, both alignment-based and alignment-
free approaches are used. With respect to alignment-based
sequence representation, evolutionary features of viral se-
quences were extracted by PSI-BLAST and fed into four
traditional machine learning models. A word embedding
technique is used as an alignment-free approach to process
sequences. The morphological structure of sequence data is
similar to that of text data, which suggests that methods for
vectorizing sequences in natural language processing (NLP)
could also be applied to process viral sequence data, such
as word embedding. Word embeddings are a widely used
and powerful technique for processing sequential data. By
learning themeanings of words, similar words will have sim-
ilar embeddings. In this study, instead of evaluating models

only at a higher classification level, we divided avian classes
and evaluated models at a lower classification level (Sherif
et al., 2017), (Attaluri et al., 2010a),(Kargarfard et al., 2016),
(Attaluri et al., 2010b), (Mock et al., 2021), (Xu et al., 2017),
(Yin et al., 2018). In addition, we discussed the impact of
incomplete virus sequences on model performance. The re-
sults show that the transformer neural network outperforms
other models in most scenarios.

2. Data
In this study, two data sets were used. The primary dif-

ference between the two sets is that data set 2 includes both
complete and incomplete HA protein sequences. Therefore,
data set 2 is completely unforeseeable for models and noisier
than data set 1. We used data set 2 as additional testing set
to test the performance of the pre-trained model further. The
per-trained models were trained and validated by data set 1.

2.1. Data Set 1
Data set 1 includes the complete Influenza A virus

(IAV) hemagglutinin (HA) protein sequences isolated from
avian, swine, and human samples in the GISAID (GISAID)
database (status 2020-09-25). Only HA protein sequences
are used, as HA is the most dominant protein for immunity
response and helps the virus bind to target hosts (Earn
et al., 2002). To maintain the quality of the data, we further
removed sequences that are either redundant, multi-label, or
contain amino acids X, B, and Z (WORTHS). Therefore, a
total of 59,785 sequences from the original set have been
selected. Only data set 1 was subjected to nested cross-
validation (CV), as described in Section 5.2.

2.2. Data Set 2
Data set 2 is an additional testing set. It includes the IAV

HA protein sequences collected from 2020-09-26 to 2022-
05-05 in the GISAID (GISAID) database. Those sequences
that appear in both data sets 1 and 2 are removed from data
set 2, so the data sets are mutually exclusive. In addition,
any redundant or multi-label sequences are also removed.
Therefore, the sequences in data set 2 are also unique and
have an unambiguous isolated host. The final set consists of
3,686 sequences.

The change in the amount of data before and after
filtering appears in Table 1. Fig. 1 and Fig. 2 show the
data distribution of different taxonomic levels. In terms of
the performance of the model at a higher taxonomic level,
we only consider three classes: human, avian, and swine,
whereas at a lower classification level, avian data is divided
further and results in 26 classes. When the number of classes
increases, models face more challenges.
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Table 1
Number of Data Before and After Selection

Data Sets Original # Selected # Only Complete? NRa? No Multi-label? No X, B, Z? Purposesb

1 180,833 59,785 ✓ ✓ ✓ ✓ Train, Val and Test

2 13,798 3,686 ✓ ✓ Test

a NR: non-redundant
b The purpose of the data set: training, validation or testing.
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Figure 1: Data distribution (higher taxonomic level)

3. Sequence Representations
3.1. Position-Specific Scoring Matrix-Based

Representations
3.1.1. Position-Specific Scoring Matrix

One of the most commonly used methods for extract-
ing evolutionary information from protein sequences is the
position-specific scoring matrix (PSSM) (Altschul et al.,
1997), which can be generated using Position-Specific Iter-
ated BLAST program (PSI-BLAST) (Altschul and Koonin,
1998).

As protein sequences typically contain 20 different types
of amino acids (A, R, ... V), a PSSM is a L × 20 matrix for
a query protein sequence with L length. The PSSM for the
sequence a a1a2… aL can be expressed as follows:

PSSMoriginal =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

A R … V
a1 p1,1 p1,2 … p1,20
a2 p2,1 p2,2 … p2,20
⋯ ⋯ ⋯ ⋯ ⋯
aL pL,1 pL,2 … pL,20

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (1)

where pi,j is the score of the amino acid ai that mutates
to aj . It can also be interpreted as a probability of mutation
in the range of [0,1] using the sigmoid function:

pi,j =
1

(

1 + e−pi,j
) , i = 1, 2,… , L; j = 1, 2,…20, (2)

We ran PSI-BLAST (blast) iteratively with default pa-
rameters (E-value = 0.001, number of iterations = 3) on a
non-redundant (nr) database. PSSMs cannot be fed directly
into classic machine learning models due to their variable

size. To overcome this hindrance, we propose three sequence
encoding schemes based on PSSM. In order to reduce the
complexity of proteins and unnecessary computations, we
first introduce a residue grouping rule.

3.1.2. Residue Grouping Rule
As amino acids have similar properties in proteins, they

can be classified into 10 groups (Li et al., 2003): G1 (F, Y,
W), G2 (M, L), G3 (I, V), G4 (A, T, S), G5 (N, H), G6 (Q,
E, D), G7 (R, K), G8 (C), G9 (G) and G10 (P). A grouped-
PSSM (GPSSM) with L × 10 dimensions can be created
by applying residue grouping rules to each column of the
original PSSM:

PSSMG =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

G1 G2 … G10
a1 g1,1 g1,2 … g1,10
a2 g2,1 g2,2 … g2,10
⋯ ⋯ ⋯ ⋯ ⋯
aL gL,1 gL,2 … gL,10

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (3)

where

gi,j =

∑

pi,Gj

|

|

|

Gj
|

|

|

, (4)

TheGPSSM is produced based on the original PSSM (1),
thence

∑

pi,Gj
represents the score of an amino acid ai that

is mutated to an amino acid belonging to group j. L is the
length of sequences; i = 1, 2,… , L; ||

|

Gj
|

|

|

is the number of
amino acids types in group j. The GPSSM (3) was used
to derive the following proposed feature sets: EG-PSSM,
GDPC-PSSM, and ER-PSSM.

3.1.3. EG-PSSM
The length of the input sequence as well as the original

PSSM (1) and GPSSM (3) may vary. This means that they
cannot be directly used in many machine learning models.
There is an intuitive method for overcoming this problem
by applying the residue grouping rule to each row of the
GPSSM (3). This will result in a matrix of 10 × 10. We
reformat the matrix from top to bottom and left to right to
generate a 1 × 100 feature vector from a GPSSM (3) before
feeding it to classical machine learning models:

PSSMEG =
(

EG1,G1
EG1,G2

⋯ EG10,G10

)T , (5)

where
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Figure 2: Data distribution (lower taxonomic level)

EGi,Gj
=

∑

gGi,Gj

|

|

Gi
|

|

, i, j = 1…10, (6)

3.1.4. GDPC-PSSM
By using dipeptide compositions (DPCs) (Saravanan

and Gautham, 2015), we are able to determine amino acid
composition information and partial local-order information
in protein sequences. DPC acts directly on raw sequence
data and generates a 400-dimensional feature vector for each
sequence, but it can also be extended to PSSM (Liu et al.,
2010). Therefore, each L × 10 GPSSM (3) can be rewritten
as a 10 × 10 matrix by grouped dipeptide composition
encoding. This 10 × 10 matrix can then be reshaped as a
100-dimensional feature vector:

PSSMGDPC =
(

D1,1 D1,2 ⋯ D10,10
)T , (7)

where

Di,j =
1

L − 1

L−1
∑

k=1
gk,i × gk+1,j i, j = 1, 2,… , 10, (8)

Each gk,i is the value of row k and column i in the
GPSSM (3).

3.1.5. ER-PSSM
The third proposed sequence representation is adapted

from RPSSM (Ding et al., 2014), which computes the
pseudo-composition of the dipeptide in sequences. As with
GDPC-PSSM, RPSSM also extracts partial local sequence
order information from sequences. RPSSMs only compute
the pseudo-composition of any two adjacent amino acids.
We extended the computation of RPSSM for any two amino
acids akak+t with gap t in sequences and extract a 91 × 10
matrix per sequence, the matrix can be reformatted as a
1 × 910 feature vector:

PSSMER =
(

M1,1,1 M1,2,1 ⋯ M10,10,9 T1 ⋯ T10
)T , (9)

where

Mi,j,t =
1

L − t

L−t
∑

k=1

(

gk,i − gk+t,j
)2

2
,

i, j = 1, 2,… , 10; t = 1, 2,… , 9

(10)

and

Ti =
1
L

L
∑

k=1

(

gk,i − Ḡi
)2 , i, j = 1, 2,… , 10. (11)

Ḡi is the average of values of GPSSM (3) in column i, Ti
computes the average pseudo-composition of all the amino
acids in the protein sequence corresponding to column i in
GPSSM (3).

3.2. Learning Representations
Traditional machine learning algorithms require manual

preprocessing and feature extraction to extract representative
features from each protein sequence. A priori knowledge is
required to select suitable features during the feature extrac-
tion process. Conversely, deep learning algorithms can learn
the implicit representations of protein sequences directly.
In this study, a powerful vectorization scheme in natural
language processing (NLP), word embedding, is applied to
map protein sequences into numerical vectors.

3.2.1. Overlapping N-grams
Protein sequences are morphologically similar to text

sentences, except that text is composed of words whereas
amino acid letters comprise a protein sequence. In order to
transform a protein sequence into a protein "sentence", we
split the sequence into overlapping n-grams (n varies from 3
to 5). An n-gram is a protein "word" composed of successive
n amino acids. Fig. 3 is an example of overlapping 3-grams
for a protein sequence, and Fig. 4 shows the word clouds of
trigrams for human, avian and swine.
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seq: M L S I T I L F L . . .

trigrams: MLS LSI SIT ITI TIL ILF LFL . . .

Figure 3: Example of overlapping trigrams: the protein se-
quence MLSITILFL can be converted into a protein "sentence"
containing 7 protein "words" MLS, LSI, SIT, ITI, TIL, ILF and
LFL.
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Figure 4: Word clouds of trigrams for each class, generated by
MATLAB®

3.2.2. Word Embedding
Word embedding overcomes the drawbacks of one-hot

encoding. It cannot only produce dense vectors but also
capture the relationship between similar words. It is capable
of producing dense vectors as well as capturing relation-
ships between words. The idea behind word embedding is
to map words to an embedding space, where words with
similar meanings are closer together, and hence have similar
embeddings. Word2Vec (Mikolov et al., 2013) is a popular
implementation of word embedding, but it does not include
domain-specific words. Thus, we generated a custom word
embedding from the training set and mapped the n-grams
of each sequence to the embedding vectors. An n-gram is
represented as a vector of size N , and a protein sequence
is represented as a L × N , where L is the length of the
sequence (number of n-grams in the sequence) andN is the
embedding dimension.

To unify the dimensions of matrices, we left-padding the
sequence with the longest sequence length. Therefore, most
sequence information will be retained, however, more noise
will be introduced to the shortest sequence.

4. Machine Learning Algorithms
4.1. RUSBoost

Class imbalance can be addressed using data sampling
and boosting algorithms. Oversampling (enriching minority
classes) and undersampling (decreasing majority classes)
are common methods of data sampling. Random under-
sampling boosting (RUSBoost) (Seiffert et al., 2008) is an
algorithm that uses undersampling together with boosting
techniques. RUSBoost is computationally cheaper and more
efficient than other oversampling methods, such as SMOTE-
Boost (Chawla et al., 2003).

4.2. Extreme Gradient Boosting
Extreme Gradient Boosting (XGBoost) (Chen and

Guestrin, 2016) implements gradient boosting algorithms

in a scalable and efficient fashion. Gradient boosting algo-
rithms are similar to AdaBoost, except that gradient boosting
algorithms use gradient descent to optimize the derivable
loss function when adding new models. XGBoost can help
in handling tough problems in data science, such as solving
missing values and sparse data automatically. One of the
biggest advantages of XGBoost is that it provides parallel
training to speed up the training process and can handle large
datasets.

4.3. Random Forest
The bagging algorithm reduces the variance of the

model, while decision trees have higher variance and lower
bias. Therefore, this model performs better when bagging
and decision trees are combined (random forest). Random
forests (Ho, 1995) consider only a small portion of all
features in each split. Each decision tree is thus more
random. Contrary to boosting-based ensembles, bag-based
ensembles tend to construct deep trees, which means bag-
based ensembles are more complicated. In this respect,
bag-based ensembles may, in some instances, require more
training time than boosting-based ensembles, but omit the
validation process to estimate generalization performance.

4.4. Support Vector Machine
Support Vector Machine (SVM) is one of the most

commonly used supervised learning algorithms (Gove and
Faytong, 2012). In addition to being able to classify linearly
separable data, SVM can also classify non-linearly sepa-
rable data by introducing a kernel trick. The kernel trick
allows SVMs to successfully handle high-dimensional (even
infinite-dimensional) data by mapping lower-dimensional
data into higher-dimensional data without explicitly trans-
forming it. We construct the multi-class SVM by using the
Gaussian kernel function as the kernel function.

4.5. Multi-Layer Perceptron
Multi-Layer Perceptron (MLP) is a feed-forward neural

network. It compensates for the limitation of a single-layer
perceptron that cannot process linearly separable problems
(Minsky and Papert, 2017). A simple MLP usually consists
of three layers: an input layer, a hidden layer, and an out-
put layer. Fig. 5 shows an example of a three-layer fully
connected MLP, where the input layer, hidden layer, and
output layer have three, four, and two neurons, respectively.
The number of neurons in the input layer equals the number
of features in the input data, and the number of classes in
the data set determines the number of neurons in the output
layer.

4.6. Convolutional Neural Network
Convolutional neural networks (CNNs) are widely used

in a variety of fields, including facial recognition, object
recognition, and autonomous vehicles. CNNs were initially
trained on images and expanded to take in other types of
data, such as time series, text, and audio data. As opposed
to traditional machine learning, CNNs learn data features
in each hidden layer. CNNs also differ from standard fully
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Figure 5: Example of a fully connected MLP architecture

connected neural networks (Fig. 5) in that they sparsely
connect layers and reduce the number of parameters that
must be learned. CNNs typically include three layers: the
convolutional layer for learning spatial features, the activa-
tion layer for activating features, and the pooling layer for
downsampling the features.

We designed a simple CNN for classifying protein se-
quences. The CNN in this study consists of one input layer
(Input), three convolution layers (Conv), three max-pooling
layers (Max-Pool), one flattening layer (Flatten), three dense
layers with Rectified Linear Unit (ReLU) activation (Dense)
and one dense layer with softmax activation (Output). PSSM
or tokenized virus sequences can be used as input data. The
CNN also includes an embedding layer (Embedding) when
the input data are tokenized sequences, as shown in Fig. 6.
The hyperparameter settings for CNN can be seen in Table 2.

4.7. Transformer
Transformer neural network is an improvement on nor-

mal recurrent neural networks (RNNs) and performs better
than many state-of-the-art models on theWinograd schemas
language translation tasks (Ackerman, 2014) according to
Bilingual Evaluation Understudy (BLEU) scores (Vaswani
et al., 2017). Typical RNNs are slow to train sequential data
as they must process words in order resulting in a lack of
parallelisation capability. Additionally, RNNs cannot handle
long sequences very well due to vanishing and exploding
gradients phenomena.

Contrary to RNNs, transformer networks abandon recur-
rence and embrace self-attention mechanisms. The attention
mechanism, as the name suggests, focuses on the parts of the
input it deems important. The attention takes a query and
key-value pairs as input. The specific attention mechanism
used in the classic transformer network is scaled dot-product
attention, expressed in the following formula:

Attention(Q,K, V ) = softmax(QKT
√

dk
)V (12)

where dk is the dimension of the key, so 1∕√dk is the scaling
factor. Q, Kand V denote for query vector, key vector and
value vector, respectively. The softmax function converts
the attention score to attention distribution. The core idea

behind dot-product attention is that the dot product is higher
between similar sequences than in dissimilar ones.

One of the innovations of the transformer is multi-
head attention. The multi-head attention assembles multiple
scaled dot-product attentions. Compared with single-head
attention, multi-head attention avoids words that focus them-
selves too much and produces more robust results. Similar
to bag-of-words, attention lacks sequence order information.
The input embedding layer (Input Embedding) retrieves the
meaning of words but not their positions. To compensate for
this drawback, the original paper (Vaswani et al., 2017) adds
positional encoding to input embedding, and in this paper,
we added positional embedding (Positional Embedding) for
the same purpose. More details of the transformer can be
referred to (Vaswani et al., 2017).

The sequence-sequence transformer model usually in-
cludes an encoder block and a decoder block which take a se-
quence as input and output a sequence, such as the sequence-
to-sequence model often used in language translation. In
contrast, a sequence-to-vector model accepts a sequence as
input and outputs a class label for that sequence; no decoder
block is needed. We used a sequence-vector transformer
model which accepts a sequence as input and outputs a
class label for that sequence. Thus, the transformer used
in this study only has an encoder block. The transformer
architecture used in this study is shown in Fig. 7. The number
of heads (num_heads) ranges from 1 to 5 and the dimension
of embedding (embed_dim) varies between 32, 64, and 128.

5. Model Implementation and Evaluation
5.1. Model Implementation

All models were evaluated using optimized parameters,
as shown in Table 2. We used Bayesian optimization to
automatically adjust hyperparameters in 5 iterations. RF,
SVM and MLP were implemented by the Scikit-learn (Pe-
dregosa et al., 2011), RUSBoost was implemented by im-
blearn (Lemaître et al., 2017), XGBoost was implemented in
XGBoost Python package (Chen and Guestrin, 2016). CNN
and transformer mode were implemented by Keras (Chollet
et al., 2015). The data is available at https://github.com/

dkdjb/IAV_Host_Prediction.

5.2. Cross-Validation
StratifiedK-fold cross-validation (CV) was used to eval-

uate models. The class ratio of the training set was almost the
same as that of the test set. The generalization performance
of models was only evaluated on the test set (unseen data to
the model). Nested CV adds the outer K-fold CV for final
evaluation to reduce bias when it comes to hyperparameters
optimization or model selection (Cawley and Talbot, 2010).
Therefore, a nested CV will take advantage of the full
diversity of the data set and ensure that all data will be tested.
The example of stratified nested CV is shown in Fig. 8.

In this study, we chose kouter = 5 and kinner = 4.
Therefore, approximately 80%, 20%, and 20% of the data
from data set 1 were used for training, validation, and testing
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purpose, respectively. The nested CV was only applied to
data set 1, as data set 2 only served as an additional test set.

Data Set

Training outer Test
final evaluation
of data set

Validation Training inner

divide into 5 outer folds

divide into 4 inner folds

...

hyperparameter tuning

Pre-trained Models

Figure 8: Example of nested CV (kouter = 5 and kinner = 4): we
used models trained during nested cross-validation (i.e. pre-
trained models) to predict for unseen data. In this study, data
set 2 and a proportion of data set 1 served as unseen data for
pre-trained models.

5.3. Evaluation Metrics
Evaluation measurements used in the study include F1-

score, Area Under Precision-Recall Curve (AUCPR) and
Matthews’s correlation coefficient (MCC). The equations of
F1-score and MCC for each class are defined as follows:

F1i = 2 ⋅
Precisioni ⋅ Recalli
Precisioni + Recalli

, (13)

MCC i =
TPi×TNi−FPi×FNi

√

(TPi+FPi)(TPi+FNi)(TNi+FPi)(TNi+FNi)
, (14)

whereRecalli = TPi∕(TPi+FNi),Precisioni = TPi∕(TPi+FPi),
i = 1, 2,… , N , N is the number of classes; TP (True
Positive) and TN (True Negative) represent the number
of data correctly predicted, FP is the number of negative
data misclassified as positive, and FN counts the number of
positive data incorrectly predicted as negative. For multi-
class classification, the one-vs-all strategy is applied to
produce F1-score, for each class.

The overall F1-score (OF1) and overall AUCRP (OAU-
CRP) are the micro-average of the corresponding metric to
each class, and the overall MCC (OMCC) are defined as
follows:

OverallMCC =
c ⋅ s −

∑N
i pi ⋅ ti

√

s2 −
∑N

i p2i ⋅
√

s2 −
∑N

i t2i

(15)

where ti is the number of times that class i truly occurred,
pi is the number of times class i was predicted, c is the total
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Table 2
Hyperparameter Settings

Algorithms Hyperparameters

SVM
C = 0.01, 0.1, 1, 10, 100

gamma = 0.001, 0.01, 0.1, 1

RF
n_estimators = 100, 200, 500, 1000,

1500, 2000

max_depth = 5, 10, 15, 20

RUSBoost
n_estimators = 50, 100, 200, 500, 1000,

1500, 2000

learning_rate = 0.001, 0.01, 0.1

XGBoost
max_depth = 5, 10, 15, 20

eta = 0.001, 0.01, 0.05

colsample_bytree = 0.1, 0.3, 0.5, 0.8, 1

MLP
alpha = 0.001, 0.01, 0.05

max_iter = 500

learning_rate_init = 0.001, 0.01, 0.05

CNN

num_filters = 64, 128, 256

learning_rate = 0.01, 0.05, 0.001, 0.0001

batch_size = 128

epochs = 300

kernel_size = 3

Transformer

embed_dim = 32, 64, 128

num_heads = 1, 2, 3, 4, 5

batch_size = 128

epochs = 300

number of correctly predicted data, s is the total number of
data items.

In Section 6, we also used mean score to present overall
performance of each model. The mean score is defined as
the mean of AUCPR, OF1 and OMCC:

Mean Score = average(OAUCPR,OF1, OMCC) (16)

Regarding the models’ performance in each class, we
only show the results of AUCPR asAUCPR is recommended
(Branco et al., 2016) for evaluating classifiers when data is
highly imbalanced.

6. Results
6.1. Performance at Different Taxonomic Levels

We evaluated all models at different taxonomic levels.
The higher taxonomic level represents only three classes:
avian, human, and swine; while at a lower taxonomic level,
the avian class was further subdivided resulting in a total of
26 classes. The performance of sequence representations and
machine learning algorithms across data set 1 are provided
in Section 6.1.1 and 6.1.2. Section 6.1.3 presents the overall
results of each model.

6.1.1. Comparison of Sequence Representations
In order to encode protein sequences, we used two kinds

of representation: sequence alignment-free (word embed-
ding) and sequence alignment-based (PSSM-based repre-
sentations). Table 3 presents a comparison of sequence
representation with metric scores averaged across machine
learning algorithms. At lower and higher taxonomical levels,
triangle embeddings reach a mean score of 87.73% and
97.94%, respectively. In contrast, PSSM-based representa-
tions have wider variability due to their instability and poor
performance on RUSBoost. When comparing PSSM-based
representations, EG-PSSM has a relatively low deviation
and a higher mean score.

At the lower taxonomic level, data becomesmore skewed,
with mean score drops for all sequence representations rang-
ing from 10% to 15%. ER-PSSM is the most affected with a
mean score drop of 14.85%, while trigram embeddings are
the least affected with a mean score drop of 10.21%.

6.1.2. Comparison of Machine Learning Algorithms
Table 4 represents the comparison of machine learn-

ing algorithms with the averaged metric scores across se-
quence representations. RUSBoost performs the worst at
both classification levels, but it is the only algorithm with
narrower variability at higher classification levels than at
lower classification levels. Contrary to RUSBoost, SVM has
a larger deviation when the data is more skewed and the
class increases. Therefore, the performance of RUSBoost
and SVM is most dependent on the sequence representation,
but RUSBoost is least affected by data skewness among all
methods compared with SVM.

Transformer and XGB perform best at the higher and
lower taxonomic levels, respectively. All classifiers perform
worse at the lower taxonomic level, with mean score drops
ranging from 9% to 30%. SVM is the most affected with a
mean score drop of 26.1%, opposite with XGB with a mean
score drop of 9.74%

6.1.3. Overall Results
Fig. 9 shows the top 10 models with the highest per-

formance at different taxonomic levels. The results were
ranked in descending order according to the mean score of
each model. The name of the model is denoted as sequence
representation - machine learning algorithm. Most of the
models reached at least a 96% mean score when the data has
fewer classes. ER-PSSM-XGB, 3-grams-CNN and 5-grams-
transformer work better at both taxonomic levels than other
models.

6.2. Performance in Individual Hosts
Most machine learning algorithms focus on the majority

class; therefore, it can be assumed they perform better on the
majority class than on the minority class. In data set 1, 55%
of sequences belong to humans, while only 0.01% sequences
belong to partridges. This degree of data imbalance brings
great challenges to classifiers. ER-PSSM-XGB, 3-grams-
CNN, and 5-grams-transformer are the top three models that
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Table 3
Comparison of Sequence Representations on data set 1.

Classification Level Higher Classification Level Lower Classification Level

Representations Mean Score (%) AUCPR (%) F1(%) MCC (%) Mean Score (%) AUCPR (%) F1 (%) MCC (%)

WE*(2-grams) 97.83 (0.19) 99.50 (0.07) 97.78 (0.19) 96.21 (0.32) 87.42 (0.74) 94.64 (0.42) 87.18 (0.71) 80.45 (1.09)

WE (3-grams) 97.94 (0.16) 99.51 (0.05) 97.90 (0.16) 96.41 (0.29) 87.73 (0.56) 94.76 (0.35) 87.52 (0.55) 80.92 (0.81)

WE (4-grams) 97.54 (0.36) 99.41 (0.09) 97.48 (0.36) 95.72 (0.61) 87.21 (0.47) 94.41 (0.35) 87.02 (0.43) 80.22 (0.65)

WE (5-grams) 97.32 (0.85) 99.36 (0.22) 97.26 (0.87) 95.34 (1.46) 86.56 (1.33) 93.97 (0.94) 86.41 (1.24) 79.30 (1.80)

EG-PSSM 92.52 (8.02) 96.02 (5.93) 92.93 (7.33) 88.62 (10.85) 79.30 (10.81) 87.78 (10.06) 79.97 (9.54) 70.16 (12.88)

ER-PSSM 89.77 (13.81) 94.15 (9.40) 90.20 (13.72) 84.95 (18.38) 75.42 (15.29) 85.42 (13.63) 76.15 (14.18) 64.68 (18.99)

GDPC-PSSM 85.13 (21.06) 90.96 (14.46) 85.50 (20.94) 78.92 (28.00) 70.28 (19.79) 82.15 (18.08) 72.90 (16.54) 55.77 (30.31)

* WE: Word Embedding

Table 4
Comparison of Machine Learning Algorithms on data set 1

Classification Level Higher Classification Level Lower Classification Level

Classifiers Mean Score (%) AUCPR (%) F1 (%) MCC (%) Mean Score (%) AUCPR (%) F1 (%) MCC (%)

CNN 97.07 (0.74) 99.20 (0.31) 97.05 (0.71) 94.96 (1.22) 85.71 (2.01) 93.43 (1.31) 85.63 (1.87) 78.06 (2.86)

MLP 93.00 (0.97) 96.63 (0.85) 93.49 (0.77) 88.88 (1.33) 78.10 (1.64) 87.42 (1.61) 78.95 (1.28) 67.94 (2.08)

RF 97.41 (0.16) 99.31 (0.07) 97.38 (0.16) 95.52 (0.28) 87.57 (0.40) 94.53 (0.26) 87.43 (0.38) 80.75 (0.59)

RUSBoost 59.49 (17.92) 72.80 (11.56) 60.74 (18.93) 44.92 (23.79) 47.96 (7.27) 55.97 (11.12) 51.88 (6.60) 36.02 (5.85)

SVM 90.67 (3.78) 95.17 (2.33) 91.39 (3.51) 85.46 (5.55) 64.57 (15.01) 85.72 (3.63) 68.12 (11.21) 39.86 (30.68)

Transformer 97.86 (0.18) 99.48 (0.06) 97.82 (0.18) 96.27 (0.32) 87.33 (0.41) 94.55 (0.24) 87.11 (0.41) 80.34 (0.62)

XGB 97.72 (0.18) 99.42 (0.07) 97.69 (0.18) 96.04 (0.31) 87.98 (0.52) 94.83 (0.34) 87.80 (0.49) 81.31 (0.75)

work better no matter how skewed the data. Their AUCPR
score in individual hosts of data set 1 is shown in Fig. 10.

All three models scored AUCPR below 80% in all hosts,
with the exception of human, swine, and chicken which
account for approximately 81% of the sequences in data set
1. However, the baseline of the AUCPR for each class is the
proportion of each class in the data set. Therefore, human,
swine, and chicken classes also have a relatively higher
baseline than other classes. The AUCPR and corresponding
baseline for each class are shown in lime and green. These

three models achieved higher scores than the baseline, but
the variability increased with fewer classes.

Fig. 11 illustrates the performance of the three models
in individual hosts at a lower taxonomic level for data set
2. The AUCPR of 5-grams-transformer and 3-grams-CNN
in each class still outperform the baseline, even with the in-
troduction of incomplete sequences, while ER-PSSM-XGB
very slightly beat the baseline.

6.3. Effect of Incomplete Sequences
Additionally, we investigated the effect of incomplete

sequences on all models. Data set 1 contained numerous
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Figure 9: Performance of different models at different classification levels on data set 1.
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Figure 10: Performance of different models in individual hosts at a lower taxonomic level on data set 1.
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Figure 11: Performance of different models in individual hosts at a lower taxonomic level on data set 2.

selected HA sequences that we used to produce a pre-trained
model. Data set 2 contains 103 incomplete sequences, which
we also used for evaluating the impact of incomplete se-
quences on models for data set 2, as shown in Fig. 12 and
Fig. 13.

The transformer algorithm outperforms others at both
taxonomic levels and is least affected by incomplete se-
quences. Overall, the performance of each model on data set
2 was reduced, but the impact of the incomplete sequence on
the model was small.

6.4. Ensemble Results
We assembled all models and generated predictions for

data set 1. The prediction for 97.56% of sequences matched
the true label we assigned, while the prediction of 2.44% of
sequences did not match. More specifically, the predictions
from 0.88% of the sequences from all models did not match
the true labels. To determine which sequences were not
predicted “correctly” by all models, we performed a basic
statistical analysis.

Approximately 30% of the collected sequences were
collected between 2009 and 2011, when the 2009 Influenza
pandemics occurred; 57.52% and 40.76% of the sequences
belong to swine and human; and 50.66%, 23.42%, 8.57%,
and 4.00% of the sequences belong to H1N1, H5N1, H9N2,
and H5N6. We also plotted the word clouds for these se-
quences, as shown in Fig. 14. The most frequent tokens

revealed were LVL and GAI, which were also the most
frequent tokens in swine sequences (Fig. 4).

Sequences that failed to fit the model may have been
collected during outbreaks (e.g. pH1N1-like) or have strong
cross-species capabilities. For example, A/Beijing/1/2017
and A/India/TCM2581/2019 are avian viruses isolated from
human (Pan et al., 2018), (Potdar et al., 2019); therefore,
the label of these sequences is human while our prediction
is avian. Similarly, A/swine/Jangsu/48/2010 is a pH1N1-
like swine virus used to prove retro-infection from swine to
human in China (Zhao et al., 2012). This sequence is labelled
swine while our prediction is human.

7. Discussion and Conclusion
In this work, we applied popular supervised machine

learning algorithms to predict Influenza A virus hosts given
hemagglutinin sequences. Popular classic machine learning
and deep learning algorithms were evaluated. One difference
between classic machine learning and deep learning is how
the data is interpreted.Machine learning cannot interpret raw
data directly. Therefore, both forms require numerical input
data. Typical machine learning typically requires a feature
extraction step, while deep learning analyses the features of
the input data through hidden layers.

We implemented a positional-specific scoring matrix
(PSSM) to extract evolutionary features of sequences, and
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Figure 12: Performance of different models at a higher taxonomic level on data set 2.
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Figure 13: Performance of different models at a lower taxonomic level on data set 2.
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Figure 14: Word clouds of sequences that cannot be "cor-
rectly" predicted by all models, generated by MATLAB®

then fed them into classic machine learning algorithms
(SVM, RF, RUSBoost, and XGB). We proposed three meth-
ods to unify the dimension of each PSSM (i.e. ER, GDPC,
and EG). For deep learning models (i.e. transformer, CNN,
andMLP), an embedding layer can be added to learn features
automatically. Without an embedding layer, a feature extrac-
tion step should be applied before feeding the input data into

models. For large data sets, the computation of PSSMs is
time-consuming and laborious, taking days or even months.
To reduce computational time, we can reduce the size of
the data set or perform a BLAST search using a partial
protein database, but at the expense of reduced accuracy. The
other disadvantage of using PSSMs is that they do not have
a unified dimension, so unifying strategies are required to
process PSSMs in a more efficient manner. Therefore, end-
to-end deep learning approaches address these limitations
without the need for cumbersome feature engineering. In
this study, we demonstrate that word embedding can be a
useful alternative to processing sequences.

To evaluate the models on different taxonomic levels
and different data sets, nested cross-validation and a variety
of evaluation metrics were used. Sequences in data set 1
were chosen selectively, including only unique complete
sequences. The sequences in data set 2 were collected in the
most recent year, with only redundant sequences discarded.
The two data sets are mutually exclusive and the model is
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blind to data set 2. Based on our results, ER-PSSM-XGB has
the best performance in data set 1 at a lower classification
level, whereas 5-grams-transformer performs optimally at a
higher classification level.

Data set 2 contains a small proportion of incomplete
sequences, which can be assumed as noisy data or data
with incomplete information. In this circumstance, the 5-
gram-transformer still performs optimally. The transformer
is more powerful than classic RNNs and CNNs because it in-
corporates the multi-head attention mechanism that focuses
on the most important part of the sequence and introduces
the information of sequence order by positional encoding,
which is more powerful than classic RNNs.

We exclusively utilized supervised machine learning but
supervised learning relies on ground truth. We extracted
class labels for sequences from metadata, which indicated
the isolated host of sequences. As a result, some labels
used in this study do not perfectly represent the ground
truth. In contrast to supervised learning, semi-supervised
or unsupervised learning requires partial or even no ground
truth during training and can be combined in future studies.
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