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Abstract

In this paper, we contribute a new B-spline based interval field decomposition method as a non-probabilistic1

approach that takes into account local effects in interval field modelling. With B-spline basis functions, the2

interval field formulation is highly intuitive and easy to construct. The computational efficiency outperforms3

the traditional local interval field decomposition method. The explicit expression of the proposed method4

facilitates the use of optimisation methods in determining field bounds where deterministic local values are5

available. The proposed method can incorporate the use of truncated hierarchical B-spline basis functions6

and multi-patch stitching method that facilitate modelling of inhomogeneous interval fields, which effectively7

address the spatial variability of the parameters describing the interval field. A numerical case of a simply8

supported beam with non-deterministic material parameters subjected to external loads is performed to9

illustrate the applicability of the proposed method.10

Keywords: Non-probablistic methods, interval field, B-spline, uncertainty quantification

1. Introduction

In practical engineering, non-deterministic approaches have become increasingly popular as a large range

of real-world problems involve uncertainties. For example, heterogeneities properties of materials such as

cement or biological tissues, varying external loads such as wind or snow loads, imperfections in geometries

such as the dimensions of airframes of aircraft all involve a considerable level of uncertainties. These un-

certainties are generally accounted for by two distinctive approaches, namely probabilistic and possibilistic

methods. Probabilistic methods use the probability distributions of the uncertain parameters to propagate

forwards the uncertainties and obtain the statistical properties of the quantities of interest. Among proba-

bilistic methods, random fields [1, 2] are particularly suitable for modelling field uncertainties, in which the

variability is spatially dependent. Moreover, the stochastic finite element method (SFEM) [3] was developed

based on the random field concept for solving structural mechanics problems involving indeterminacy. How-

ever, the probabilistic methods require a massive amount of measurement data to estimate the probability
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distribution of the uncertain parameters, which is very expensive to obtain, or an assumed probabilistic

distribution (often Gaussian), which demands expert knowledge and still requires some hyperparameters

(indirect parameters, such as the correlation length) to be estimated.

On the other hand, possibilistic methods require less restrictive information about the uncertain variables

and thus alleviate the need to identify a full probabilistic data description. The interval analysis method [4, 5]

is a typical representative of this group as it specifies only the crisp bounds for the non-deterministic values.

Fuzzy approach [6, 7] extends the interval method by introducing a membership function indicating to what

extent a parameter belongs to a specific interval. Evidence theory [8, 9] and the imprecise probability method

[10, 11] also belong to this group. Further information concerning these methods can be found in [12, 13].

Possibilistic methods are also extensively used in structural uncertainty analysis. For example, the interval

finite element method (IFEM) [14, 15] was developed to obtain the structure’s response bounds given the

parametric input bounds. The main problem of IFEM (and other possibilistic methods mentioned above) is

that it only concerns scalar uncertain variables such that each variable is deemed mutually independent. This

mutual independence assumption brings two significant drawbacks in the presence of uncertain parameter

field, namely expensive computational cost due to dimension explosion; and the loss of spatial dependency

information resulting in unphysical realisations in practical engineering and an over-estimation of the output

bounds. It was not until a decade ago that the concept of interval fields was proposed by Moens et al. [16]

as an alternative to random fields in a non-probabilistic framework. In its original form, an interval field

is represented by a linear combination of a series of independent interval factors multiplied with a set of

deterministic basis functions. The spatial dependency is defined through these basis functions as they take

the location-based vectors as input.

Over the past decade, research on the topic of interval field modelling has received much attention.

Numerous interval field modelling methods have been developed and can be broadly categorised into the

following three groups: explicit formulation, Karhunen-Loéve (K-L) expansion based formulation and convex

descriptors based formulation [17]. The explicit formulation, to which the original form of the interval field

method belongs, can be expressed as the superposition of spatially dependent basis functions, scaled by

independent interval scalars as indicators of the magnitude of uncertainty. For the basis functions, Faes and

Moens [18] proposed the Inverse Distance Weighting (IDW) interpolation method, where the basis functions

interpolate the local uncertainty based on the inverse distance from several pre-defined control points to the

rest of the field domain. The number and location of the control points depend on either the expert knowledge

or indirect measurement data [19]. The major drawback of the IDW interpolation method is that the basis

functions have non-vanishing values by definition throughout the whole domain, which hinders the expression

of local effects. To address this issue, Mierlo et al. [20] proposed a scaled IDW interpolation method, in
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which the standard IDW is adapted including an additional distance measure such that the weights can be

manipulated in higher dimensional feature space to emphasise the local effects. Callens et al. [21] updated

the weight function by locally supported quartic splines so that the basis functions have non-vanishing values

only in an adjacent region around the control points and thus guarantee the local effects. Another set of basis

functions is defined in the framework of the so-called Local interval field decomposition (LIFD) introduced

by Imholz et al. [22, 23], where a set of piecewise second-order polynomial functions serve as basis functions

with constraints on their bounds as well as maximum gradient as a measure of spatial dependency. Chen et

al. [24] modified these basis functions into non-negative polynomials on their supports. However, the LIFD

method has its limitations. Firstly, the restriction of the maximum gradient of the basis functions is not

intuitive, as it is at most of the time not known a priori. Secondly, the intensive computational cost stands

as a barrier for applying LIFD because the multiple evaluations of the polynomials can become cumbersome.

Besides, the final form of the interval field formulation is not intuitive as the properties of the interval field,

such as its interval centre and interval radius, can not be reflected directly from the formulation.

The K-L expansion based formulation for interval field modelling, proposed by Sofi [25], is an analogy to

the random field generation stemming from the same theory with two significant modifications. First, the

correlation function is replaced by the so-called spatial dependency function, which uses a midpoint operator

of interval variables to quantify the spatial dependencies. Second, the concept of the extra unitary interval

is introduced as the source of uncertainty, which is the corresponding counterpart of random variables in

the K-L based random field formulation. Uncertainty propagation problems using such a formulation have

been investigated towards Euler-Bernouilli beams [26, 25], Timoshenko beams [27] as well as large-scale

realistic FE models [28]. The convex descriptors based formulation for interval filed (or process) modelling

was firstly proposed by Jiang et al. [29]. In this formulation, the dependence between two points in the field

is characterised by a convex model defined by the relevant angle and two ellipsoidal semi-axes. The convex

model can be constructed by the available data [30] and was firstly aimed to deal with the time-variant and

dynamic uncertainties [31] and then has been generalised to account for spatially varying uncertainties in

structural mechanics [32]. Luo et al. [33] proposed the non-probabilistic series expansion (NPSE) method

to model spatially varying uncertainties, the parameters of which are bounded by a multi-ellipsoid convex

model. Recently, the NPSE method has been successfully applied in structural reliability assessment [34].

The present paper proposes a new explicit interval field formulation, termed B-spline Interval Field

Decomposition (BIFD). In this formulation, the basis functions are a set of B-spline functions to account for

spatial dependencies. By taking advantage of the partition of unity property of the B-spline functions, an

intuitive form of the interval field that indicating the interval properties, such as interval centre and interval

radius, can be trivially obtained. The computational cost is alleviated by using mature spline techniques,
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which significantly improves the efficiency compared with the LIFD method, thus facilitating the BIFD

method to be applied on higher-dimensional problems. Moreover, the problems of interval field construction

with single and multiple deterministic local values are addressed, the bounds of which can be obtained

through optimisation methods. Finally, as an extension to the BIFD method, an inhomogeneous interval

field modelling method is provided, addressing the description of local effects with uniform or non-uniform

interval properties.

The remainder of this paper is organised as follows. The BIFD method is introduced in Sec 2 with

one-dimensional and multi-dimensional formulations. The quantification of an homogeneous interval filed

with deterministic local values using BIFD method is addressed in Sec 3. For the extension of BIFD method

to model inhomogeneous interval field, we propose to use truncated hierarchical B-spline basis functions and

multi-patch stitching method, both of which are discussed in Sec 4. A numerical case is studied in Sec 5 of a

simply supported beam subjected to uniformly distributed transversal loads, in which the Young’s modulus

and the cross-sectional diameter are modelled as interval fields. Finally, concluding remarks are given in Sec

6.

2. B-spline based interval field decomposition (BIFD) method

2.1. Interval analysis basics

The interval analysis and B-spline techniques serve as the foundations for the BIFD method and are thus

provided in this section as preliminaries. A bounded uncertain parameter is an interval scalar XI, which is

a convex subset of the domain R constrained by its lower bound
¯
X and upper bound X̄ as

XI = [
¯
X, X̄] = {X ∈ R,

¯
X ≤ X ≤ X̄}. (1)

The interval centre Xc and interval radius Xr are defined as

Xc = ¯
X + X̄

2
, Xr = ¯

X − X̄
2

. (2)

Similarly, an interval vector XI ∈ Rn is defined as a set of interval scalars as

XI =



XI
1

XI
2

...

XI
n


. (3)
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The sample space of the interval vector XI is a multi-dimensional hypercube, in which the interval scalars

are mutually independent, thus no dependency among the components are taken into account. For a deter-

ministic function Y = f(X), which takes multidimensional input and generates multidimensional output,

subjected to a vector X taken values from an interval vector XI, the set formed by all outputs can also be

seen as an interval vector such as

YI = {Y ∈ Rm |Yi ∈ [
¯
Yi, Ȳi]}, (4)

where

¯
Yi = min

X∈XI
fi(X),

Ȳi = max
X∈XI

fi(X),

where fi(X) denotes the i-th output generated by f(X). The exact bounds for the output interval vector

YI are generally difficult to obtain and usually demand global optimisation methods [17]. However, the

interval analysis often suffers from the over-conservatism that the interval radius of the output is usually

larger than the true interval radius. Such a phenomenon is often termed ’dependency phenomenon’ [35]

and it stems directly from the neglection of dependencies among the input interval variables. The degree of

over-conservatism is found to be related to the interval radii of the input/output interval variables as well as

the dimensions of the problem [36]. Possible solutions to this problem are to consider the interdependency

of the interval variables, e.g. by interval field modelling methods.

2.2. One-dimensional BIFD method

A general explicit formulation for interval field ΦI(x) : Ω̃× Rnd 7→ R is defined as

ΦI(x) =

nd∑
i=1

ψi(x)αI
i, (5)

where ψi(x) : Ω̃ 7→ [0, 1], i = 1, . . . , nd are basis functions representing the spatial uncertain patterns and

αI
i, i = 1, . . . , nd are a set of independent interval scalars representing magnitude of uncertainty. In the IDW

method, the basis functions are constructed based on the inverse of the distance to each predefined control

point, and in the LIFD method, these are chosen as a set of piecewise second-order polynomial functions.

In this paper, we propose to use B-spline functions as basis functions of the interval field. B-spline basis

functions of degree k are built upon a non-decreasing knot vector Ξ = {t1, t2, ..., tN+k+1}, where ti is the

i-th knot entry and N is the total number of the B-spline basis functions. A k-th degree univariate B-spline
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basis function Bi,k can be obtained recursively through the Cox-de Boor formula [37], such as for k = 0

Bi,0(x) =


1 ti ≤ x < ti+1

0 otherwise

. (6)

and for k > 0

Bi,k(x) =
x− ti
ti+k − ti

Bi,k−1(x) +
ti+k+1 − x
ti+k+1 − ti+1

Bi+1,k−1(x) . (7)

The B-spline basis functions possess a few merits that make them competitive over other choices:

• Controllable continuity. A k-th degree B-spline function is globally Ck−1 continuous, which means that

it has continuous derivatives up to order k − 1. The continuity can thus be manipulated by order

elevation through (7).

• Linear independence, as they form a complete set of basis functions in the domain based on which they

define.

• Non-negativity. All B-spline basis functions are non-negative on their support.

• Partition of unity. This property is vital for the interval field modelling and can be expressed as

N∑
i=1

Bi,k(x) = 1, tk+1 ≤ x ≤ tN . (8)

For example, Fig.1 depicts a set of B-spline basis functions built on the knot vector Ξ̂1 = {0, 1, 2, . . . , 10}

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Fig. 1. Quadratic B-spline basis functions and their sum value.

(equispaced in [0, 10]) and their sum value. It can be observed that the sum value equals 1 when x takes
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values from the third knot to the last third knot. Such a property is readily suitable for constructing a field

with bounds.

Given the interval centreHc and interval radiusHr, and an equispaced knot vector Ξ = {t1, t2, ..., tN+k+1}

that encloses the domain of interest, an interval field formulation by BIFD method can be expressed intu-

itively with the use of {Hc, Hr} as

HI(x) = Hc +Hr

N∑
i=1

Bi,k(x) ξI
i , tk+1 ≤ x ≤ tN , (9)

where Bi,k, i = 1, . . . , N are k-th degree B-spline basis functions defined on Ξ and ξI
i = {ξi| − 1 ≤ ξi ≤

1} i = 1, . . . , N are unitary interval scalars that are called interval field coordinates (IFCs) in this paper.

It is obvious that the field satisfies the prescribed bounds, such that HI(x) = [Hc − Hr, Hc + Hr]. The

extremities take place when all IFCs ξI
i take their upper/lower bound value, namely 1 or -1. The use of an

equispaced knot vector guarantees that the B-spline basis functions are of the same shape, as shown in Fig.1,

which is essential to model an homogeneous interval field.

The field domain of interest should be entirely enclosed by the set [tk+1, tN ] to validate the use of partition

of unity. The authors note that in this setting, the total span of the knot vector is always larger than the

field domain of interest. This oversize is due to abandoning the use of an open knot vector, in which the

first and last knots are repeated k + 1 times. B-spline basis functions defined on an open knot satisfies the

partition of unity everywhere in the total span. However, this would cause some basis functions to deform

and thus deviate heavily from others, especially at the edge of the domain. For example, Fig.2 shows a set of

quadratic B-spline basis functions defined on an open knot Ξ̂2 = {2, 2, 2, 3, 4, 5, 6, 7, 8, 8, 8}. The sum of these

functions satisfy the partition of unity everywhere in the domain spanned by the knot vector. However, the

basis functions close to the edge are apparently distorted. Since only one basis function has a non-zero value

at the edge, the realisation of this point in the field would depend solely on the interval scalar attached to

that basis function, which means a loss of the information of spatial dependency.

To construct an interval field as (9), the next question is how to set the knot vector so that the spatial

dependencies of points in the interval field can be incorporated into the basis functions. Considering ∆t =

|ti − ti+1|, 1 ≤ i ≤ N + k as the knot span between two adjacent knots, a B-spline basis function of degree

k typically has support over (k + 1)∆t. The influence radius Rd [22] indicating the distance over which the

B-spline basis function has a non-vanishing influence, can be defined as

Rd = (k + 1)∆t/2. (10)
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Fig. 2. Quadratic B-spline basis functions defined on an open knot vector and their sum.

Therefore, by predefining the influence radius Rd based on the knowledge of the spatial dependencies, the

knot span can be readily derived.

This influence radius Rd can be compared with the commonly used ’correlation length’ in the probabilistic

approach. In Appendix A, the relation between these two parameters is investigated and a linear relation

between them is found. Such an approximately linear relation implies that the influence radius of the interval

field plays the role of the correlation length in the probabilistic framework.

The process for the generation of a 1D homogeneous interval field is summarised in Algorithm 1. To

Algorithm 1: 1D homogeneous interval field construction by BIFD

Input : Interval centre Hc, interval radius Hr, degree k.
(1) Determine the influence radius Rd and derive the knot span ∆t = 2Rd/(k + 1).
(2) Extend k∆t to the left side of the domain Ω, |Ω| = L, and extend (N + k)∆t− L to the right
side of the domain, where N = ceil(L/∆t).

(3) Discretise the extended field domain into N + 2k elements with element size ∆t and take all
nodes to form the knot vector Ξ̂.

(4) Build a set of B-spline basis functions of degree k with a total number N based on the knot
vector Ξ.

(5) Generate realisations of {ξi}Ni=1.
(6) Generate the interval field through (9).

illustrate the use of this algorithm, Fig.3 depicts four cases of interval fields with the same interval properties

(Hc = 0, Hr = 5) and field domain Ω = [0, 10] but with different influence radius using BIFD method. Ten

realisations are performed in each case. It can be observed that the influence radius indeed constrains the

spatial dependencies among points as what a correlation length does in random fields modelling. Additionally,

the authors note that the number of IFCs of the interval fields depends on the ratio of influence radius to

the span of the field domain such that a small ratio results in a dense discretisation of the field domain and
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thus a large number of IFCs. For the first case, this number is 32, while for the last case, only 4.

0 2 4 6 8 10
-5

0

5

(a)

0 2 4 6 8 10
-5

0

5

(b)

0 2 4 6 8 10
-5

0

5

(c)

0 2 4 6 8 10
-5

0

5

(d)

Fig. 3. 1D interval field realisations with influence radius equals to (a) 0.5; (b) 2.0; (c) 5.0; (d) 10.0.

2.3. Multi-dimensional BIFD method

The one-dimensional BIFD method can be readily extended to multiple dimensions by constructing

the basis function as a tensor product of one-dimensional B-spline basis functions. Specifically, in two-

dimensional case, the basis functions of degree k can be formed as

Bk
i,j(x) = Bi,k(x)Bj,k(y), i = 1, . . . , Nx, j = 1, . . . , Ny, (11)

and in three dimensions as

Bk
i,j,l(x) = Bi,k(x)Bj,k(y)Bl,k(z), i = 1, . . . , Nx, j = 1, . . . , Ny, l = 1, . . . , Nz, (12)

where x = (x, y) in two-dimensional case and x = (x, y, z) in three-dimensional case, respectively. Hereafter,

we restrict the discussion in two dimensions since the extension to three dimension is straightforward.
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(a) (b)

Fig. 4. (a) Basis functions in two-dimensional case; (b) partition of unity check in two dimensions.

The construction of knot vectors in x and y directions follows the same procedure in 1D case ac-

cording to the field domain of interest in that dimension and can be done separately, such as Ξx =

[tx,1, tx,2, . . . , tx,Nx+k+1] and Ξy = [ty,1, ty,2, . . . , ty,Ny+k+1]. Afterwards, a set of B-spline basis functions

{Bi,k(x)}Nx
i=1 and {Bj,k(y)}Ny

j=1 are built upon these knot vectors. The basis functions in two dimensions

can thus be obtained through tensor product of these one-dimensional B-spline basis functions in x and y

directions, as shown in (11). The partition of unity still holds in two dimensions, as

Nx∑
i=1

Ny∑
j=1

Bk
i,j(x) = 1, tx,k+1 ≤ x ≤ tx,N , ty,k+1 ≤ y ≤ ty,N (13)

For example, the quadratic 2D basis functions for the field domain Ω2 = [−10, 10]× [−10, 10] with influence

radius Rd = 5 in both directions is depicted in Fig.4a. The partition of unity holds that the sum of these

basis functions equals 1 in the domain Ω2, as shown in Fig.4b. Besides, the authors note that the knot

vectors, the influence radius or even the degree of the B-spline basis functions are not necessarily confined

to be the same in x and y directions. In fact, they can be set separately to form the 2D basis functions

for a non-square field domain with different influence radii. Four 2D interval field realisations with different

parametric settings are shown in Fig.5. The results show that the 2D-BIFD method can effectively model

the interval field with a prescribed field domain of interest, influence radii in both dimensions, and interval

properties.

Finally, the authors would like to note that the BIFD method also benefits from its high efficiency.

Although dimension reduction is not involved in the interval field modelling with the BIFD method, the

existing mature spline techniques facilitate the fast evaluation of B-spline basis functions and thus accelerate

the construction of realisations. In Fig.6 the computational time between the LIFD method and the BIFD

method are compared, where both methods are used to generate an interval field with the same resolution,
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and a indicates the side length of the field domain. Both numerical experiments are performed on the

MATLAB2021a platform with an Intel Core i9 (2.4GHz) CPU. It can be observed that as the growth of side

length, the computational time required by the LIFD method increases to over 100s, while that by the BIFD

method only increases slightly to less than 20s. The high efficiency of the BIFD method can facilitate its

incorporation into a finite element (FE) model to solve complex solid mechanics problems.

Remark 1. The authors would like to note that a large-scale FE problem does not necessarily involve a

large number of interval variables leading to dimension explosion. This would only happen when the cross

dependency of points in the field has a small influence radius, or many local refinements should be performed.

However, we think such a problem exists universally in all interval field modelling methods: the smaller the

cross dependency area covers and the more local information is incorporated, the more interval variables are

needed, and thus, the more computational resource is required.

(a) (b)

(c) (d)

Fig. 5. 2D interval field realisations with Hc = 0, Hr = 5 and (a) Ω = [−10, 10]2 and Rdx = Rdy = 2; (b) Ω = [−10, 10]2 and
Rdx = 5, Rdy = 2; (c) Ω = [−10, 10] × [−5, 5] and Rdx = Rdy = 2; (d) Ω = [−10, 10] × [−5, 5] and Rdx = 5, Rdy = 2.
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Fig. 6. Computational time comparison for LIFD and BIFD methods.

3. Interval field quantification with deterministic local values

In this section, the problem of constructing an interval field with some deterministic local values is

addressed. These deterministic local values are given in the form that the values in certain locations of

the field are fixed. The authors note that the field properties in this case are known a priori based on the

expert knowledge. For those cases where the field properties are not known a priori, the problem becomes

an identification problem, for which the parameters should be quantified beforehand [19, 38]. Uncertainty

vanishes at these locations, which means all realisations of the interval field should pass through these points.

Let us start from a simple case where only a single deterministic local value is available. Suppose a

one-dimensional domain Ω, on which an interval field is constructed with field properties {Hc, Hr, Rd}, has

the value of the field at location xo equal to ho. The interval field can thus be expressed as

HI(x) = Hc +Hr

N∑
i=1

Bi,k(x) ξI
i , (14)

where {Bi,k}Ni=1 are k-th degree B-spline basis functions determined by Algorithm 1 and {ξi}Ni=1 are inde-

pendent IFCs. Considering the known local value, the following equation is established as

HI(xo) = Hc +Hr

N∑
i=1

Bi,k(xo) ξI
i = ho. (15)

For the B-spline basis functions of degree k, there are at most k+ 1 basis functions that take non-vanishing
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values at a given point in the domain. The problem can thus be simplified as

m+k∑
i=m

Bi,k(xo) ξI
i =

1

Hr
(ho −Hc), (16)

where Bi,k(xo) are non-vanishing B-spine basis functions for i ∈ [m,m+ k]. To satisfy (16), unlike [22], the

basis functions remain unchanged but the values of {ξI
i}

m+k
i=m are adjusted, and it will not yield the problem

to the so-called ’maximum gradient’ condition [22], because such a condition has already been satisfied

implicitly by the determination of B-spline basis functions. It should be noted that in this case, {ξI
i}

m+k
i=m

are not mutually independent anymore. Generally, the IFCs related to the max{Bi,k(xo)} will be set as

constraint interval variables, while others are set as free (but bounded) interval variables. Figure 7 shows

several realisations of an interval field, in which all realisations cross the deterministic point (0, 1).

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

0

5

Fig. 7. Realisations of interval filed with Ω = [−5, 5], Hc = 0, Hr = 5, Rd = 1.5, k = 2 and the deterministic point locates
at (0, 1).

For the case with multiple deterministic local values, the interpolation method is similar but with ad-

ditional complexity. With the same setting as the interval field properties mentioned in (15), suppose now

a set of deterministic local values are given {(xj , hj)}No
j=1 with No � N and moreover those deterministic

locations are spaced far enough from each other such that no k+ 1 points are located in the same knot span,

which is set to ensure that the system is not over-constrained. Consider xj is related to k+ 1 B-spline basis

functions {Bm,k}
mj+k
m=mj , the constraints can be written in a matrix form as

A ξI = b, (17)
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where A is an No × N coefficient matrix containing B-spline basis functions evaluated at the determin-

istic locations, with notation A(j,mj : mj + k) = [Bmj ,k, . . . , Bmj+k,k], j = 1, . . . , No. The vector

ξI = {ξI
1, . . . , ξ

I
N}T contains all IFCs and b is an No × 1 right hand side vector with b(j) = (hj −Hc)/Hr.

Note that there will be N−No IFCs to be set as free interval variables, and their values are used to determine

those of the constrained ones.

The other quantities of interest are the changes of bounds of the interval field with some deterministic

local values. It is reasonable to believe that those points in the vicinity of the deterministic locations have

shrinking bounds due to the uncertainty reduction. Such constraints can also be used to impose boundary

conditions to the field. The computation of the updated interval bounds of the field entails an optimisation

method of the following problem, mathematically written as

Objective. minHI(x) or maxHI(x), ∀x ∈ Ω

s.t. A ξI = b

ξI
i ∈ [−1, 1] i = 1, . . . , N.

(18)

Finally, a numerical simulation is performed for an interval field with deterministic local values {(−4.0,−2.0),

(−2.0,−3.0), (1.5, 4.0), (3.5, 2.5)} to illustrate the method. The interval field parameters are the same as the

case shown in Fig.7. The results are presented in Fig.8(a), where the bold black line in the figure indicates

the updated interval bounds obtained by optimisation method, e.g sequential quadratic programming (SQP)

method [39]. The light lines enclosed by the interval bounds are Monte-Carlo realisations of the interval

field. It is observed that the existence of the deterministic local values decrease the uncertain level in their

proximity as expected and the interval bounds of those points are adjusted accordingly.

The interval field modelling with deterministic local values is much like training a Gaussian emulator

[40], which is often used to infer the field uncertainty in a probabilistic regime when taking the deterministic

local values as the training set. As a comparison, a Gaussian process emulator with the same deterministic

local values is generated [41] as shown in Fig.8(b), where the solid line denotes the predicted mean value

and the shaded area the predicted standard deviation. The emulator uses the radial basis function kernel

with an inverse width lk = 1.5 equivalent to the influence radius used in the interval field modelling. A few

observations can be made as follows. (1) Given expert knowledge of the field properties and limited amount

of measured information, both interval field and Gaussian emulator can be used to construct the uncertain

model of the field with similar shapes; (2) For both models, the uncertainty decreases when the points are

located in the vicinity of the deterministic locations, and the uncertainty level decreases to zeros at these
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Fig. 8. (a) Interval field modelling with deterministic local values using BIFD method. Bold lines: the interval bounds, light
lines: Monte-Carlo realisations; (b) Gaussian process emulator with deterministic local values as training set. Solid line: mean
value, shaded area: standard deviation.

measured points; (3) The interval field model can compute the crisp bounds of every point in the field,

while it can not determine the likelihood of the positions at which the points will be located. The Gaussian

emulator, on the other side, is able to predict the confidence regions of the outputs but is not suitable to

compute their bounds.
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4. Inhomogeneous interval field modelling with BIFD

The proposed BIFD method is capable of modelling interval fields with spatially homogeneous interval

properties such as interval centre and interval radius and spectral property such as influence radius. However,

sometimes local effects in the field have to be taken into account, such as modelling local damage or spatial

temperature variation, which requires locally variable interval and spectral properties. This section proposes

two methods by modifying the original BIFD method, presented in previous sections, to account for local

effects, which respectively use truncated hierarchical B-spline (THB-spline) basis functions and multi-patch

stitching method. For illustration purposes, only one-dimensional case is discussed, but extensions to higher

dimensions can be constructed following the same ideas with additional algorithmic complexity.

4.1. BIFD method with THB-spline basis functions

The B-spline basis functions can be locally refined by the use of hierarchical B-spline (HB-spline) basis

functions [42]. To define the HB-spline basis functions, firstly a nested sequence of univariate B-spline

function spaces of depth L

V0 ⊂ V1 ⊂ · · · ⊂ VL−1, (19)

are defined on the original domain Ω0. Furthermore, a nested sequence of domains

Ω0 ⊇ Ω1 ⊇ · · · ⊇ ΩL−1, (20)

are used to define a hierarchical grid of depth L, where each domain Ωl indicates the grid refined at level l.

Each spline space V l has a set of normalised basis functions Bl that spans the domain Ωl. Following [43],

the classical support definition is modified as

supp = {x| f(x) 6= 0 and x ∈ Ω0}, (21)

and the HB-spline basis H can be constructed recursively as follows.


H0 := {B0 ∈ B0 | supp B0 6= ∅}

Hl+1 := {Bl ∈ Hl | supp Bl 6⊆ Ωl+1} ∪ {Bl+1 ∈ Bl+1 | supp Bl+1 ⊆ Ωl+1}, for l = 0, . . . , L− 2.

H := HL−1.

(22)

The HB-spline functions essentially replace the basis functions of the lower level spline space (V l) by the

basis functions of higher level spline space (V l+1) on the refined domain. This is feasible because those basis
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functions of different levels are linearly dependent. As for a dyadic cell refinement, for which the cell size of

adjacent level is related to a constant ratio of two, e.g. hl = 2hl+1, where hl is the cell size of level l, such

dependency can be explicitly represented as

Bl
i,k(ξ) =

k+1∑
r=0

αk
r B

l+1
2i+r(ξ), αk

r =
1

2k

(
k + 1

r

)
, (23)

where Bl
i,k denotes the B-spline function of degree k on level l, α is the binomial coefficient. In this case, a

B-spline function of degree k can be decomposed by k+ 2 B-spline functions defined on a dyadically refined

cell. Dyadic cell refinement will be used throughout this section and an example of two adjacent levels of

quadratic B-spline functions obtained by dyadic cell refinement is provided in Fig.9, where a quadratic B-

spline function is decomposed into four higher level B-spline functions defined on the same domain. A typical

way to construct HB-spline functions is indicated in Fig.10(a) and Fig.10(b), where a B-spline function of

level 0 is replaced by four B-spline functions of level 1.

Fig. 9. Adjacent two levels of quadratic B-spline basis obtained by dyadic cell refinement.

However, HB-spline functions do not satisfy the partition of unity due to the overlapping of B-spline

functions between adjacent hierarchical levels, which is not acceptable for the interval field modelling. On

the other side, THB-spline functions fix this problem by truncating the B-spline functions of lower level in

the overlapping region and thus preserve the partition of unity. Specifically, let Bl be a set of basis functions

in Bl and according to (23), we can represent Bl with respect to the basis functions Bl+1 ∈ Bl+1 as

Bl =
∑

cl+1
Bl+1(Bl)Bl+1, (24)

where cl+1
Bl+1(Bl) ∈ R are coordination coefficients. The truncation of Bl concerning Bl+1 in Ωl+1 is defined
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Fig. 10. The procedures to construct THB-spline basis functions. Red line: B-spline basis functions of level 0; green line:
B-spline basis functions of level 1; blue line: decomposed B-spline components of level 1; purple line: truncated B-spline basis
functions of level 0; dashed line: the B-spline basis functions to be replaced.

as

truncl+1Bl =
∑

supp Bl+1 6⊂Ωl+1

cl+1
Bl+1(Bl)Bl+1. (25)

The THB-spline basis functions T can thereby be constructed recursively as


T 0 := H0

T l+1 := {truncl+1B̂l| supp B̂l 6⊆ Ωl+1} ∪ Hl+1, for l = 0, . . . , L− 2.

T := T L−1,

(26)
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where the hat notation in B̂l indicates the base could be truncated for multiple times and should be updated

according to the most current state. The procedures to construct THB-spline functions from HB-spline

functions are illustrated in Fig.10(c) and Fig.10(d), where two B-spline functions of level 0 overlapped with

the B-spline functions of level 1 but not fully contained in Ω1 are decomposed by the B-spline functions of

level 1 as shown in Fig.9 and truncated by eliminating the components inside Ω1.

0 5 10 15 20 25 30
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0.4

0.6
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1
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0 5 10 15 20 25 30
-5
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(b)

Fig. 11. (a) THB-spline basis functions with 3 hierarchical level and their sum; (b) interval fields modelling with THB-spline
basis functions with Hc = 0, Hr = 5, R1

d = 1.5, R2
d = 0.75, R3

d = 0.375.

An inhomogeneous interval field can be constructed as follows. Suppose that the domain has the same

interval properties (interval centre Hc and interval radius Hr) everywhere but a different spectral property

(influence radius Rd) at certain areas. The THB-spline basis functions of degree k are built on knot vector

Ξ = {t1, t2, . . . , tN+k+1}, which contains knots from all hierarchical levels up to depth L. Within each level

N l original B-spline basis functions and N l
tr truncated B-spline basis functions are contained.The interval

field can thus be represented as

HI(x) = Hc +Hr

L−1∑
l=0

N l∑
i=1

Bl
i,k(x) ξI

l,i +Hr

L−2∑
l=0

N l
tr∑

j=1

B̂l
j,k(x) ξ̂I

l,j , tk+1 ≤ x ≤ tN , (27)

where {Bl
i,k} and {B̂l

j,k} are the original and truncated B-spline basis functions of level l, respectively. {ξI
l,i}

and {ξ̂I
l,j} are IFCs with bounds [−1, 1]. A numerical case is exemplified in Fig.11, where the interval field

19



realisations are constructed using 3-level THB-spline basis functions. The local effect can be observed within

the support of B-spline basis functions of level 2 and level 3 in Fig.11(a) where the influence radius is only

half and a quarter of that of level 0.

4.2. Multi-patch stitching method

BIFD method with THB-spline basis functions is suitable for modelling inhomogeneous interval fields with

different local spectral properties, e.g. influence radii, while the interval bounds must be the same. However,

it is no longer suitable if the interval field has varying interval centres or interval radii, such as spatially varying

temperature or varying constitutive relations [20]. To tackle such problems, this section proposes the multi-

patch stitching method. The multi-patch stitching method connects multiple fields with different interval

properties or spectra properties, meanwhile satisfying continuity constraints at the connecting interfaces.

Suppose that a sequence of N one-dimensional continuous domains {Ω1,Ω2, . . . ,ΩN} is at hand, each of

which only has one element in common with their adjacent domains located in the interface and is mutually

exclusive with other domains such as Ωi ∩ Ωi+1 = {ti}, Ωi ∩ Ωj = ∅, j 6= {i − 1, i, i + 1}. Upon each

domain Ωi the interval properties Hi
c and Hi

r and influence radius Ri
d are defined individually so that a set

of B-spline basis functions of degree k, e.g. {Bi
j,k}, can be constructed according to Algorithm 1. A set of

interval fields can be modelled as

HI
i(x) = Hi

c +Hi
r

Ni∑
j=1

Bi
j,k(x) ξI

i,j , x ∈ Ωi, i = 1, 2, . . . , N, (28)

where Ni is the number of B-spline basis functions defined on Ωi and {ξIi,j} are IFCs with bounds [−1, 1]. In

order to preserve the Ck−1 continuity (originated from the use of B-spline basis functions) at the interfaces

between adjacent domains, following constraints need to be satisfied as



HI
i(ti) = HI

i+1(ti)

HI(1)
i (ti) = HI(1)

i+1(ti)

...

HI(k−1)
i (ti) = HI(k−1)

i+1 (ti)

, i = 1, 2, . . . , N − 1 (29)

where the superscript (j) indicates the j-th derivative. Note that (29) actually enforces constraints on the

value of IFCs related to the interfacial knot ti. Since the number of B-spline basis functions in the support

of a specific point in the domain Ωi is k+ 1, an equal number of IFCs will be involved. In this case, one IFC

will be set as a free variable due to the fact that (29) has only k constraints while others are constrained

variables whose values are dependent on this free variable.
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Table 1: Interval properties and spectra properties.

Index
Domain

Ω
Interval centre

Hc

Interval radius
Hr

Influence radius
Rd

1 [0, 5] 0 1.0 1.0
2 [5, 10] 0 5.0 0.2
3 [10, 15] 0 2.0 0.5
4 [15, 20] 0 5.0 1.0
5 [20, 25] 0 1.0 0.3
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Fig. 12. (a) B-spline basis functions of five consecutive domains; (b) interval field realisations using multi-patch stitching
method.

To illustrate the multi-patch stitching method, an example is provided that constitutes five consecutive

interval fields with independent interval properties and spectra properties summarised in Table.1. The

quadratic B-spline basis functions are built accordingly as shown in Fig.12(a), where the bold horizontal line

with various colours indicates the domain in which the corresponding colour of B-spline basis functions are

used to construct the interval fields. Finally, Fig.12(b) exhibits five interval field realisations modelling with

these B-spline basis functions and field properties. It is observed that in each domain the realisations are
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bounded by prescribed interval properties , and the local variations caused by imposing different influence

radii also take effect as the realisations within [5, 10] are significantly more fluctuant than that in [15, 20].

These results demonstrate that the multi-patch stitching method can effectively model inhomogeneous fields

with locally defined field properties.

Remark 2. The authors would like to note that the proposed methods to model inhomogeneous interval fields

are not exclusive. Other methods may also be available to address local effects and varying internal radii.

For instance, the use of a non-equispaced knot vector can model local effects, but it would result in the change

of the whole knot vector, which has a global impact on the interval field. Multiplying the basis function of the

interval field by a weight function can result in a local variation of the interval radius, but it can not change

the interval centre. For conciseness, these methods are not further discussed in the present paper.

5. Numerical application

In this section, two numerical cases are performed to illustrate the use of the BIFD method into solving

structural mechanics problems. Specifically, a simply supported beam case and a steel plate case with some

material parameters modelled as interval field are under investigation. These problems are solved using an

interval finite element formulation, briefly described in Appendix B.

5.1. Case 1: Simply supported beam

A numerical case of a simply supported beam with non-deterministic material parameters is studied in

this section to illustrate the incorporation of the proposed BIFD method. As shown in Fig.13, an Euler-

Bernoulli beam of length L under simply supported boundary conditions at both ends, subjected to uniformly

distributed transversal loads py, is discretised into 20 finite elements. The Young’s modulus and the cross-

sectional diameter are considered non-deterministic due to heterogeneities and manufacturing imperfections

and are modelled as interval fields (termed as ’IF’ model in the following content). The parameters used in

the simulation are summarised into Table.2. The bounds of the first five order natural frequencies and the

transverse displacement are investigated. As a comparison, the results of modelling the Young’s modulus and

the cross-sectional diameter as spatially independent interval variables (termed as ’II’ model in the following

content) and the results of modelling those parameters as single spatially constant interval variables (termed

as ’SV’ model in the following content) will also be presented. The output bounds are obtained by performing

105 Monte-Carlo realisations for all three non-deterministic models.

The results of the first five natural frequencies are shown in Fig.14(a), in which the bounds are represented

by textured bars. The presented frequencies are normalised by the results of the deterministic model (termed
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Fig. 13. Simply supported beam with uniformly distributed load.

Table 2: Simulation parameters for the numerical case.

Parameter
Density

ρ [kg · m−3]
Length
L [m]

Loads
py [N · m−1]

Young’s modulus
E [GPa]

Influence radius
RdE [m]

Cross-sectional diameter
ds [cm]

Influence radius
Rdr [m]

Value 7860 1 -500 [1.68, 2.52] 0.2 [8, 12] 0.5

as ’DM’ model in the following content) of the corresponding order. The deterministic model takes the value

of the interval centre of these non-deterministic parameters, such as Young’s modulus Ec = 2.1 [GPa] and

cross-sectional diameter dsc = 10 [cm]. The results of the deterministic model can be obtained analytically

[44] as

fn =
(nπ)2

2π

√
EcIz
ρAL4

, n = 1, 2, 3, . . . (30)

where Iz = πd4
sc/64 is the polar moment of inertia of the section and A = πd2

sc/4 is the area of the section. It

can be observed that for all presented five natural frequencies, the output bounds of the ’SV’ model encloses

those of the ’IF’ model, which then encloses the output interval bounds of the ’II’ model. These findings

are supported by examining the bounds of the transversal displacements, as shown in Fig.14(b). The ’SV’

model shows the least restrictive bounds for the transversal displacement, whereas the ’II’ model shows the

most restrictive ones. The output bounds of the ’IF’ model lies in between, and the result of the ’DM’ model

is enclosed by all the output bounds of the above models. These results indicate that the ’SV’ model, which

can be seen as the ’IF’ model with an infinitely large influence radius, always generates the broadest interval

bounds for the output as it corresponds to a less informative model. On the other side, the ’II’ model, which

can be seen as the ’IF’ model with an infinitely small influence radius, becomes too conservative as it ignores

all the spatial dependency information. As a comparison, the ’IF’ model takes the nondeterminency as well

as the spatial dependency into account so as to generate reasonable output interval bounds without being

too conservative.

Another point the authors would like to note is that the ’IF’ model results can be totally different if

some known local values are predefined in the field. For example, Fig.15 presents the results in which the

’IF’ model contains two deterministic local values for the cross-sectional diameter, while other parameters

stay unchanged (Fig.16 shows 100 realisations of the interval field of the cross-sectional diameter). It can

be observed from Fig.15(a) that the bounds of the first five order of natural frequencies of the ’IF’ model
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Fig. 14. (a) First five normalised natural frequencies; (b) the transversal displacements.
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Fig. 15. (a) First five normalised natural frequencies and (b) the transversal displacements with known local values as
ds(0.2250) = 9.5 [cm] and ds(0.7250) = 10.5 [cm].

substantially reduce compared with the case containing no known information. Moreover, except for the first

order, the resulting bounds of natural frequencies of the ’IF’ model are enclosed by those of the ’SV’ model

and the ’II’ model. Similar results can be obtained considering the transversal displacement, as shown in

Fig.15(b). The displacement bounds of the ’IF’ model become the most restrictive compared with the ’SV’

model and the ’II’ model. These results indicate that the deterministic local values in the interval field can

significantly reduce the uncertainties and thus reduce the range of the outputs’ bounds.

5.2. Case 2: Steel plate

In this section, the plane-stress problem of a steel plate is presented to illustrate the incorporation of

a 2D interval field modelled by BIFD method to solve a 2D problem. The problem setting is depicted in

Fig.17(a), where the geometry can be considered as a square with a quarter of a circle in its left-bottom

corner subtracted. The left edge of the plate is fixed and the motion in the y-direction of the bottom edge is

constrained. A uniform external pressure is applied to the right edge of the plate. The thickness of the plate

is taken as 1 [mm]. The linear elastic material is used with Poisson’s ratio ν = 0.3 and Young’s modulus

modelled as an interval field. The upper and lower bounds of the stress and displacements in the x-direction
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Fig. 16. A hundred realisations of cross-sectional diameter with two deterministic local values.

are of our interest. To solve such a problem, the plate is firstly discretised using structured quad mesh, as

shown in Fig.17(b).
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Fig. 17. (a) Problem setting for the steel plate; (b) adopted FE mesh.

The uncertain parameters for the interval field modelling Young’s modulus are introduced as follows: the

interval centre Ec = 200 [GPa] and interval radius Er = 20 [GPa]. The influence radius is isotropically 0.5

[m] in the whole domain except for a refined part in the area {(x, y)| 0.5 ≤ x ≤ 1, 0.5 ≤ y ≤ 1}, in which

the influence radius is set to 0.25 [m]. The interval field is constructed by using 2D B-spline basis functions

of the second degree, illustrated in Fig.18. Note that the support of the basis functions, within which the

partition of unity is fulfilled, must enclose the plate. Figure.19 displays two realisations of the interval field

of Young’s modulus.

Results are obtained from a total number of 105 Monte Carlo simulations. The crisp bounds of the
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Fig. 18. Basis functions with 2 levels.

(a) (b)

Fig. 19. Two realisations of the distribution of Young’s modulus. In [Pa].
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Fig. 20. (a) Displacements and (b) stress in the x-direction. UB/LB: upper and lower bounds of the outputs by the interval
field model, DT: output of the deterministic model.
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displacement and stress in the x-direction are shown in Fig.20. The deterministic results are also shown

as a reference, computed by setting the interval radius to zero. It can be observed that both bounds of

the interval field model enclose the deterministic results. Furthermore, the same number of simulations are

also conducted to model Young’s modulus of each point in the plate as an independent interval variable

with bounds [Ec − Er, Ec + Er]. To compare the results from the interval field model (IF), independent

interval model (II) and the deterministic model (DT), the displacement and stress in the x-direction of the

points (1, 0) is collected and shown in Table.3. It can be observed from the table that the results of the IF

model have narrower bounds compared with those of the II model, which shows that the II model can be

conservative when the cross dependency of the interval variables is taken into account and the IF model can

be more suitable in such circumstances.

Table 3: Comparison of results at the point (1, 0).

Model ux [mm] σxx [GPa]

DT 0.6466 0.0996
IF [0.6096, 0.6852] [0.0989, 0.1003]
II [0.5878, 0.7185] [0.0962, 0.1030]

6. Conclusions

A new explicit interval field formulation, termed B-spline based interval field decomposition (BIFD)

method, is proposed in this paper to account for spatial dependencies among interval variables in the field.

Using the partition of unity of the B-spline basis functions, an intuitive formulation directly constituted

by interval properties is easily obtained. Moreover, the fast evaluation of B-spline functions alleviates the

computational burden to a large extent, thus facilitating the use of the BIFD method in higher dimensional

or more complex problems. The proposed BIFD method allows to take into account known values for the

interval field at some locations and impose zero-interval at these locations. The interval field construction

with such deterministic local values also addresses the variations of bounds effectively quantified through

optimisation methods. The extension of the BIFD method for modelling inhomogeneous interval fields is

performed. Two approaches, namely BIFD with truncated hierarchical B-spline (THB-spline) basis functions

and multi-patch stitching method, are proposed to account for the local effects. These approaches succeed

in modelling inhomogeneous interval fields. Finally, the numerical cases show that the BIFD method can

generate reasonable output bounds while avoiding being too conservative, and taking into account local

known values in the interval field can significantly reduce the output bounds and avoid over-consevartism.
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Appendix A Dependency function and dependency length of interval field with the BIFD

method.

In the probabilistic framework, correlation length is used to characterise the distance within which two

points in the field are considered to be correlated. It is generally defined as a parameter in the correlation

function. For example, let x1 and x2 be two random variables in the field, the correlation function in the

Gaussian form can be expressed as

corr(x1, x2) =
E[(x1 − µx1

)(x2 − µx2
)]

σx1
σx2

= e
− ‖x1−x2‖

2

l2c , (A.1)

where E[•] denotes the mathematical expectation and µx = E[x], σx =
√
E[(x− µx)2] are the mean value

and standard deviation, respectively. ‖ • ‖ denotes Euclidean norm and lc denotes the correlation length.

Analogously, define the operator 〈•〉 to compute the interval centre for an interval scalar xI ∈ [x, x] such as

〈xI〉 = (x+ x)/2. (A.2)

Here the term ’dependency function’ is used to quantify the dependencies between interval scalars and it is

defined as

DepI(xI
1, x

I
2) =

〈(xI
1 − 〈xI

1〉)(xI
2 − 〈xI

2〉)〉√
〈(xI

1 − 〈xI
1〉)2〉

√
〈(xI

2 − 〈xI
2〉)2〉

=
〈xI

1x
I
2〉 − 〈xI

1〉〈xI
2〉√

〈xI2
1 〉
√
〈xI2

2 〉
. (A.3)

For an interval field defined on domain Ω with influence radius Rd, a knot vector Ξ = [t1, t2, . . . , tN+k+1]

can be determined through Algorithm 1 such that Ω ⊆ [tk+1, tN ], based on which a set of B-spline basis

functions {Bi,k(x)}Ni=1 of degree k can be determined. For the ease of notation we set the interval centre to

zero (Hc = 0) and interval radius to one (Hr = 1), the interval field can thus be obtained as

HI(x) = Hc +Hr

N∑
i=1

Bi,k(x) ξI
i , x ∈ Ω, (A.4)

where {ξI
i} are independent unitary interval scalars. We define a dimensionless dependency function of two
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Fig. A.1. Evaluation of the dependency function with interval field parameters Ω = [0, 10], Hc = 0, Hr = 1, Rd = 1.5, k = 2
and knot vector Ξ = [−2,−1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12].

points x1, x2 in the field to illustrate their spatial dependency as

CH(x1, x2) = DepI(HI(x1),HI(x2))

=
〈HI(x1) ·HI(x2)〉 − 〈HI(x1)〉 · 〈HI(x2)〉√

〈HI2(x1)〉
√
〈HI2(x2)〉

= max{
N∑
i=1

Bi,k(x1) ξI
i ·

N∑
j=1

Bj,k(x2) ξI
j}+ min{

N∑
i=1

Bi,k(x1) ξI
i ·

N∑
j=1

Bj,k(x2) ξI
j}

= 1 + min(ξTB(x1)BT(x2)ξ),

(A.5)

where ξ = [ξI
1, ξ

I
2, . . . , ξ

I
N ]T and B(x) = [B1,k(x), B2,k(x), . . . , BN,k(x)]T.. The authors note that the de-

termination of the dependency function becomes an optimisation problem as shown in the last equation of

(A.5). Figure A.1 presents the results of the evaluation of dependency function of the interval field with field

parameters indicated in the caption of the figure. It is clearly observed that the field is non-stationary as the

dependency coefficient varies when x1 takes distinct positions in the field, especially when x1 is coincident

with the knot. This is because the total span of B-spline basis functions that contains a knot point is always

smaller than the total span of those basis functions containing a non-knot point, which makes the knot point

slightly less ’influential’ in the field.

Practically, the dependency structure of the interval field can be quantified through numerical realisations.

Discretise the domain Ω and take M increasing coordinates [x̂1, x̂2, . . . , x̂M ] such that x̂i+m = x̂i +mτ, 1 ≤
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i ≤M − 1, 1 ≤ m ≤M − i. Following [33], define the dependency function as

CI
H(mτ) = CH(x̂i, x̂i+m) =

〈HI(x̂i) ·HI(x̂i+m)〉 − 〈HI(x̂i)〉 · 〈HI(x̂i+m)〉√
〈HI2(x̂i)〉

√
〈HI2(x̂i+m)〉

= maxi=1,...,M−m{HI(x̂i) ·HI(x̂i +mτ}+ mini=1,...,M−m{HI(x̂i) ·HI(x̂i +mτ)}, m = 1, 2, . . . ,M − 1.

(A.6)

The dependency function is then modified in the following way to maintain a decreasing trend of the depen-
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Fig. A.2. (a) Ten realisations of the interval field with the same field parameters as shown in Fig.A.1; (b) dependency
coefficients and the curve fitting into the Gaussian form.

dency coefficient in an increasing distance between measured points and also to ensure the non-negativity of

the dependency coefficient as

C̃I
H(mτ) = max{0,min{CI

H(τ), CI
H(2τ), . . . , CI

H(mτ)}}, m = 1, 2, . . . ,M − 1. (A.7)
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Figure A.2(a) illustrates ten realisations of the interval field, based on which the dependency coefficients

0 5 10 15 20
0

5

10

15

Fig. A.3. Approximately linear relationship between influence radius and dependency length.

are calculated by (A.6) and (A.7) and are shown in Fig.A.2(b) with respect to mτ . These data are then

interpolated with least square fitting technique into the exponential form as shown in (A.1) to identify the

corresponding dependency length. The result reveals that the dependency structure of the interval field

realisations is consistent with the dependency function of the exponential form with a dependency length

identified as l̂c = 1.023.

A further analysis is performed to see whether the influence radius and the corresponding dependency

length have a stable relation. Multiple realisations of the interval field with varying influence radii are

conducted. For each case, the corresponding dependency length of the exponential form is identified by

least-squares fitting technique. The results are depicted in Fig.A.3 and are interpolated by a linear function.

It is observed that a linear relationship between the influence radius and the estimated dependency length

is approximately satisfied as

l̂c ≈ 0.69535Rd. (A.8)

Such an approximately linear relation demonstrates that the influence radius of the interval field plays the

role of the correlation length in the probabilistic framework, with the only difference of a scaling factor.

The dependency structure of a multi-dimensional interval field is beyond the scope of this paper but it

is an interesting research topic worth investigating in the future.
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Appendix B Interval finite element formulation

A typical linear FEM problem is built upon the domain of interest A that is discretised by several finite

elements, e.g. A =
⋃

i∈I Ai where I is the set of all element indices. The equilibrium equation of an element

can be constructed as

Keue = Fe, (B.1)

where ue is the element-based vector of nodal displacements, Fe is the element-based vector of equivalent

nodal forces. Ke is the element stiffness matrix that has the form of

Ke =
w

Ae

BTDBdA, (B.2)

where B is the strain-displacement matrix and D is the elasticity matrix comprised of material parameters

such as Young’s modulus E and Poisson’s ratio ν. In the non-deterministic setting, the uncertainties in the

material properties can be taken into account and thus making D a non-deterministic matrix. For instance,

an interval field modelling of Young’s modulus of an interval centre Ec, interval radius Er and influence

radius Rd has the form of

EI(x) = Ec + Er

∑
i

Bi,2(x) ξI
i , x ∈ A, (B.3)

where EI(x) is expanded by second order B-splines basis functions that have support in A and are controlled

by the influence radius, and {ξI
i} are IFCs. In such a case, the elasticity matrix becomes an interval matrix

and so is the element stiffness matrix, which can be expressed as

KI
e(x, ξI) =

w

Ae

BTDI(x, ξI)BdA, (B.4)

where ξI = {ξI
i}. Finally, the global stiffness matrix and force vector can be obtained as

KI(x, ξ) =
ne

A
e=1

Ke(x, ξI), F =
ne

A
e=1

Fe, (B.5)

where A denotes the standard finite element assembly procedure. The equilibrium equation for the system

can thus be expressed as

KI(x, ξ)u = F. (B.6)

Note that due to the interval matrix KI(x, ξ) the displacement vector to be sought also becomes an interval

vector, e.g. u = uI(x, ξ). In most cases, solving (B.6) directly can be much complicated. Instead, the

solution of interest is usually to estimate its upper and lower bounds through numerical methods such as
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Monte Carlo method or (anti-) optimisation methods. In this paper, Monte Carlo method is adopted.
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