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Abstract  The model-based method plays an essential 

role in crack detection of rotor systems. To improve the 

reliability and accuracy of model-based method in rotor 

crack detection, this paper proposes a coupled multi-

crack rotor model by considering the coupling effect 

between cracks under complex excitations as additional 

flexibility. The systemic stiffness matrix is derived 

based on the Timoshenko beam theory and fracture 

mechanics, in which a detailed description of the 

coupling mechanism between cracks is presented. The 

systemic stiffness variation with rotation angles and the 

effects of crack orientation angles, unbalance orientation 

angles, and crack depths on dynamic characteristics of 

the coupled multi-crack rotor are analysed at 1/3 and 1/2 

subcritical speeds. The complex nonlinearity induced by 

the coupling effect between cracks is responsible for the 

dynamic differences between the coupled and uncoupled 

models of a multi-crack rotor. The magnitudes of most 

of 2X and 3X components (X is the rotating frequency of 

rotor system) of the coupled rotor model are nearly twice 

as those of the uncoupled model. The prominent super- 
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harmonic components and orbits’ morphological 

features of the coupled multi-crack rotor model are 

shown to be suitable for early crack detection and crack 

parameter identification. The theoretical findings of the 

proposed coupled model show an excellent agreement 

with the experimental results. This work can give 

confidence in the applications of the model-based 

method in health monitoring and multi-crack detection 

for actual rotors. 
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1 Introduction 

Cracks in rotors may cause unexpected 

catastrophic failure of equipment and 

expensive maintenance cost. Hence, the timely 

detection of cracks is of vital significance to 

maintain healthy and stable operations of 

rotors. The common crack detection methods 

can be broadly categorised as the model-based 

[1], the signal-based [2], and the artificial 

intelligence-based methods [3]. The model-
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based method can conveniently model rotor 

faults (such as crack, misalignment, 

eccentricity and rub impact) and realize fault 

diagnosis by studying the relationship between 

fault parameters and system dynamics. In 

addition, the model-based method can also 

generate dynamic responses in different signal-

to-noise ratios, different load conditions and 

different fault combinations at low cost, which 

can provide different kinds of data for the 

signal-based method and the artificial 

intelligence-based method. Thus, the 

applications of the model-based method in fault 

diagnosis and structural health monitoring are 

still an active research topic in the study of 

rotating machinery [1, 4]. 

In the model-based method, cracks are 

usually modelled as additional equivalent loads 

[5-7], rotational springs [8-13], and stiffness 

variation [14-22] in the finite element (FE) 

model. Considering the crack-induced changes 

as equivalent loads in a cracked rotor model, 

Sekhar [5] identified crack depths and locations 

by minimising the error between measured 

equivalent forces and the theoretical ones 

through the modal expansion method and least-

square fitting. Pennacchi et al. [6] sought the 

minimum error of the harmonic component 

amplitudes in simulated and experimental 

signals by the least-square identification 

method to determine crack position and depth. 

Singh et al. [7] proposed a method to identify 

crack and bearing parameters of a flexible rotor 

system through the vibration displacements and 

active magnetic bearing current signals. Based 

on the rotational spring model of cracks, the 

transfer matrix method was applied to the 

natural frequency analysis of a multi-crack 

beam [8]. El Arem [9] analysed the nonlinear 

dynamics, instability and chaotic behavior of a 

rotating shaft with a switching crack based on 

the Floquet’s theory, Poincaré maps and 

bifurcation diagrams. A high-precision modal 

parameter identification method and a wavelet 

FE model were employed to determine crack 

parameters [10]. Some investigators [11, 12] 

used the changes in natural frequencies to 

detect locations and sizes of multiple cracks in 

a beam. Lee [13] identified multiple cracks in a 

beam using the amplitude changes of forced 

vibration, and obtained crack locations and 

sizes by the Newton–Raphson iteration method 

and singular value decomposition method. 

Compared with the additional equivalent 

loads and rotational springs, the approach 

regarding the crack effects as stiffness variation 

is widely used in dynamic analysis and crack 

identification of rotors, which can accurately 

depict different types of cracks (longitudinal 

crack, transverse crack, slant crack, 

open/breathing crack) in system model. AL-

Shudeifat [14] conducted research on systemic 

stability and backward whirl of a rotor with an 

open crack through the harmonic balance 

method. The influences of crack depth, shaft 

slenderness ratio, and rotating speed ratio on 

system dynamics were revealed based on a 

cracked Jeffcott rotor model accounting for the 



3 

contribution of general transverse forces to the 

mode I crack [16]. Fu et al. [17] investigated 

the effects of interval uncertain parameters on 

the dynamic behaviors of a cracked rotor, and 

established a surrogate model to quantify the 

bounds of nonlinear dynamic responses. Xiang 

et al. [19] analysed the nonlinear crack 

characteristics of different multi-fault rotors 

and developed a crack detection method based 

on orbit characteristics. The squared gains of 

vibration amplitude were presented to detect 

cracks and eliminate the influence of adverse 

disturbances based on auto-correlation and 

power spectral density functions of rotor 

vibrations [20]. The natural frequencies for 

bending vibration in both horizontal and 

vertical planes were used to detect and locate 

cracks in non-rotating rotors [21]. 

As to the model of multi-crack systems, the 

crack effects are usually treated as the changes 

in physical properties (stiffness variation, 

additional equivalent load and rotational 

spring) of the corresponding cracked element in 

many literatures. Arem [23] handled the crack 

influence through the stiffness loss of cracked 

element and discussed the nonlinear dynamics 

of a cantilever beam with two cracks under 

bending moment. Khorrami et al [15] regarded 

the crack effects as the stiffness variation for a 

two-crack rotor system, and investigated the 

effects of crack parameters such as depths, 

locations and relative angular positions on 

critical speeds and axis orbit under unbalance 

and gravitational forces. Sekhar [22] treated 

cracks by local flexibility changes and 

estimated the crack depths and locations of a 

double-crack shaft based on modal expansion 

approach. Morassi and Rollo [11] used two 

equivalent massless rotational springs to 

simulate two cracks in a beam under bending 

moment. Patil and Maiti [12] modelled cracks 

by rotational springs and determined the 

locations and sizes of multiple open cracks in 

beams under different support conditions. The 

foregoing researches all neglected the 

interaction between cracks, reducing the 

accuracy of cracked rotor system model. 

The coupling mechanism between cracks in 

rotors has still attracted the attentions of some 

scholars [15]. Darpe et al. [18] considered the 

interaction of two cracks as the additional 

flexibility in both lateral directions, and studied 

the influence of crack orientation angles and 

unbalance orientation angles on the nonlinear 

dynamics of a Jeffcott rotor under the gravity 

and unbalance forces. Li et al. [24] modelled 

cracks as the contact between two adjacent 

crack surfaces in the FE mesh model for a 

cantilever beam with multiple cracks, in which 

the crack coupling effect was considered as the 

displacement, strain and stress among cracked 

element nodes. Zhao et al. [25, 26] used the 

Green's functions to describe the interaction 

between cracks, and simulated cracks by 

rotational and transversal springs for a weaken 

beam under a harmonic concentrated force. 

The above model-based researches have 

significant efficiency advantages in rotor 
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dynamic analysis and crack detection. The 

model-based method demands a reliable 

system model, which requires accurate 

modelling of various faults and coupled faults. 

Rotors in actual harsh environments are often 

subjected to complex excitations such as 

bending moments, torques, unbalance and axial 

impulse forces, increasing the difficulty of 

system modelling. For this reason, the coupling 

effect between cracks in rotors under complex 

excitations has still not been expounded in 

detail, which greatly limits the application and 

popularization of the model-based method in 

fault diagnosis of multi-crack rotors. Aiming at 

this situation, this paper proposed a coupled 

multi-crack rotor model by considering the 

coupling mechanism between cracks under 

complex excitations as additional flexibility. 

The stiffness matrix in the equations of motion 

is derived based on the Timoshenko beam 

theory and fracture mechanics, containing the 

additional stiffness variation produced by the 

multi-crack coupling effect. Then the systemic 

stiffness variation with rotation angles and the 

rotor dynamic characteristics with respect to 

different crack orientation angles, unbalance 

orientation angles and crack depths are 

analysed. Finally, a preliminary experimental 

investigation is conducted to validate the 

proposed coupled multi-crack rotor model. 

2 Coupled multi-crack rotor 

modelling 

The rotor system is composed of a shaft with 

two transverse breathing cracks (crack-1 and 

crack-2), two discs and two ball bearings, as 

shown in Fig. 1(a). Figures 1(b)-(d) depict the 

coordinate system of two cracks, the load 

diagram of a cracked shaft element, and the 

cross section of a crack. In order to maintain the 

consistency between simulation and 

experiment, the physical parameters of rotor 

system selected in this paper are given in Table 

1. The Rayleigh damping coefficients a and b 

are calculated by assuming that the modal 

damping ratios of the first two modes are 0.005 

and 0.01, respectively [27]. And the first 

critical speed is obtained from the stiffness and 

mass of an uncracked rotor. In order to 

accurately describe the variation of crack 

section with crack breathing, while considering 

the computational complexity and model 

accuracy, the crack closure line method [28] is 

adopted to model the breathing crack in this 

paper with an assumption that the crack surface 

is flat and the crack tip is a straight line. 

2.1 Equations of motion 

The cracked shaft is discretized into 60 

Timoshenko beam elements with length of l 

and radius of R, each element contains two 

nodes having six degrees of freedom each. A 

cracked shaft element is shown in Fig. 1(c). The  



5 

 
 (a) (b) 

  
 (c) (d) 

Fig. 1  Model of coupled multi-crack rotor system: a system details, b coordinate system of two cracks, c load diagram 

of cracked shaft element, d cross section of crack 

Table 1  Physical parameters of rotor system 

Parameter Value Parameter Value 

Shaft diameter, D 0.01 m Polar moment of inertia of disc 1 5.76×10−4 kg·m2 

Density of shaft (40Cr) 7.87×103 kg·m-3 Diametrical moment of inertia of disc 1 3.18×10−4 kg·m2 

Shaft length 0.6 m Polar moment of inertia of disc 2 5.84×10−4 kg·m2 

Young’s modulus, E 2.11×1011 N·m-2 Diametrical moment of inertia of disc 2 3.23×10−4 kg·m2 

Shear modulus, Sm 8.26×1010 N·m-2 Disc eccentricity 2.0×10-5 m 

Poisson’s ratio, v 0.277 Rayleigh damping coefficient, a 0.684 

Gravitational acceleration 9.8 m·s-2 Rayleigh damping coefficient, b 2.80×10-5 

Mass of disc 1 0.759 kg First critical speed, Ω0 3229 rpm 

Mass of disc 2 0.770 kg   

two discs are regarded as rigid bodies with 

three translational and three rotational inertias, 

added to the mass matrix of the corresponding 

beam elements. The ball bearings are 

simplified as springs and dampers to constrain 

the two lateral degrees of freedom at 

corresponding nodes. The equations of motion 

for a coupled multi-crack rotor system in a 

stationary coordinate system can be expressed 

as [27]: 

( g)   M D D K Fq q q  (1) 

where M is the systemic mass matrix, including 

the shaft mass matrix and the disc mass matrix. 

D = aM+bK the systemic Rayleigh damping 
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matrix, Ω the systemic rotational speed, Dg the 

systemic gyroscopic matrix, K is the systemic 

stiffness matrix. F is the load vector containing 

the systemic unbalance force, gravity, and 

external excitations (including bending 

moments, torques and so on). The systemic 

displacement vector q is denoted as: 

 
T

1 2, , , , ,k Num    q q q q q  (2) 

where  
T

1 2 3 4 5 6, , , , ,k k
u u u u u uq  represents 

the displacement vector of the k-th node, Num 

is the number of nodes. 

The Newmark method [29] is applied to 

solve the equations of motion numerically, i.e. 

computing the variables of �̈�, �̇�, q in Eq. (1). 

The specific iterative process is detailed in Ref. 

[29] with a computational complexity of O(s), 

where s denotes the number of executors in the 

iterative process. In addition, the Newmark 

integration constants BN and RN are set as 0.25 

and 0.5 to insure the stability and convergence 

rate of the algorithm. Here, the convergence 

condition is that the response difference of two 

adjacent iteration steps (Δt = 0.001 s) is less 

than the tolerance (1.0×10-11). It should be 

stated that the stiffness and damping matrices 

and the excitation terms are constantly updated 

with crack breathing during the calculation 

process. 

2.2 Stiffness matrix 

The two cracks with a crack orientation angle γ  

(the relative angle between cracks) in Fig. 1(b) 

are assumed to be sufficiently apart to keep 

their stress fields independent [18], which 

implies that the stress field of one crack will not 

affect that of the other. F1 c, F2 c are the load 

vectors acting on the crack-1 and crack-2 cross-

sections in Fig. 1(a), which contain three 

translational forces and three moments each. 

 
T1 c , , , , ,Q Q Q M M M     F  (3) 

 
T2 c , , , , ,Q Q Q M M M     F  (4) 

From the equilibrium of the forces in the 

elements containing crack-1 and crack-2 and 

the coordinate system of two cracks in Fig. 

1(b), F2 c can be expressed by F1 c [18]: 

2 c cp 1 cF T F  (5) 

where Tcp is named as the coupling matrix 

between F1 c and F2 c. 

cp

1 0 0 0 0 0

0 cos sin 0 0 0

0 sin cos 0 0 0

0 0 0 1 0 0

0 0 0 0 cos sin

0 0 0 0 sin cos

 

 

 

 

 
 
 
 

  
 
 
 

 

T

 (6) 

Considering the interaction of the two cracks 

(the coupling effect between cracks), the 

additional displacement vector q2~1 c due to 

crack-1 at crack-2 is written as [18]: 

2~1 c cp 1 cq T q  (7) 

where q1 c is the additional displacement vector 

resulted from crack-1 at crack-1: 

 
T

1 c 1 c 1 c 1 c 1 c 1 c 1 c

1 2 3 4 5 6, , , , ,u u u u u uq  (8) 

So the total displacement vector at crack-2 

is written as: 
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2 2 0 2 c 2~1 cˆ   q q q q  (9) 

where q2 0 is the displacement vector of the 

uncracked element and q2 c is the additional 

displacement vector at crack-2, expressed as 

follows: 

 
T

2 0 2 0 2 0 2 0 2 0 2 0 2 0

1 2 3 4 5 6, , , , ,u u u u u uq  (10) 

 
T

2 c 2 c 2 c 2 c 2 c 2 c 2 c

1 2 3 4 5 6, , , , ,u u u u u uq  (11) 

Considering the axial forces, bending 

moments and torques, and shear forces in the 

element containing crack-2, the total 

displacement at crack-2 in the i-th direction can 

be obtained from Castigliano’s theorem, 

expressed as: 

2
2 2 0 2 c 2~1 c

2 c 2 c

2 0 2 c 2~1 c

( )i

i i

i i i

U
u U U U

P P

u u u

 
   
 

  

 (12) 

where 2 0

iu  the displacement of the uncracked 

element, 2 c

iu the additional displacement at 

crack-2, 2~1 c

iu the additional displacement due 

to crack-1 at crack-2, 2 c

iP  the load at the 

crack-2 cross-section along the i-th coordinate; 

i = 1-6. U2 is the total strain energy at crack-2, 

2 0U  the strain energy of the uncracked shaft 

element, 2 cU  the additional strain energy 

resulted from crack-2 at crack-2, 2~1 cU  the 

additional strain energy due to crack-1 at crack-

2; in which the detailed expressions of 2 0U  

and U2 c can be found in Ref. [28]. 

According to the fracture mechanics 

concepts, the additional strain energy of crack-

2 considering the coupling effect between the  

two cracks can be expressed as 

2  c

2~1 c c c

2~1( )d
A

U J A A   (13) 

where Ac is the area of crack region, A2 c the 

area of crack region at crack-2. J2~1(A
c) is the 

homologous strain energy density function, 

denoted as 

6 6
c I 2 II 2

2~1

1 1

6
III 2

1 2~1

1
( ) ( ) ( )

( )

i i

i i

s i

i

J A K K
E'

m K

 




 




 



 


 (14) 

where / (1 )E' E v   and 1sm v  , v is the 

Poisson ratio. 
I

iK , 
II

iK  and 
III

iK  are the 

relevant stress intensity factors along the crack 

edge of crack-2, corresponding to the opening, 

sliding and tearing modes of crack 

displacement (detailed in Ref. [28]). These 

stress intensity factors only depend on stresses 

acting on the crack edge of crack-2, and the 

magnitudes of which will not be affected by the 

stresses at crack-1 for the independence of the 

stress fields at the two cracks. 

Next, the flexibility coefficient 2

ijg  at 

crack-2 is derived as: 

2
2 2 0 2 c 2~1 c

2 c 2 c

2 0 2 c 2~1 c

( )i
ij i i i

j j

ij ij ij

u
g u u u

P P

g g g

 
   
 

  

 (15) 

where 2 c

jP  is the load at the crack-2 cross-

section along the j-th coordinate. 2 0

ijg , 2 c

ijg , 

2~1 c

ijg  are the flexibility coefficients of the 

uncracked element, the additional flexibility 

coefficient at crack-2, and the additional 
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flexibility coefficient due to crack-1 at crack-2; 

j = 1-6. 

The flexibility coefficients 2 0

ijg  and 2 c

ijg  

can be found in detail from [28] based on strain 

energy release rate theory [30]. Consequently, 

the flexibility matrix G2 0 of the uncracked 

element and the additional flexibility matrix 

2 c
G  at crack-2 are written as follows:

 

3 2

s

3 2

s

2 0

0

2

2

0 0 0 0 0

0 0 0 0
3 4

0 0 0 0
3 4

0 0 0 0 0

0 0 0 0
4

0 0 0 0
4

m

m

l

EA

l l l

A EI EI

l l l

A EI EI

l

EI

l l

EI EI

l l

EI E

S

I

S





 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 

 
 

G
 (16) 

2 c 2 c 2 c 2 c 2 c 2 c

11 12 13 14 15 16

2 c 2 c 2 c 2 c 2 c 2 c

21 22 23 24 25 26

2 c 2 c 2 c 2 c 2 c 2 c

2 c 31 32 33 34 35 36

2 c 2 c 2 c 2 c 2 c 2 c

41 42 43 44 45 46

2 c 2 c 2 c 2 c 2 c 2 c

51 52 53 54 55 56

2 c 2 c

61 62 63

g g g g g g

g g g g g g

g g g g g g

g g g g g g

g g g g g g

g g g

G

2 c 2 c 2 c 2 c

64 65 66g g g

 
 
 
 
 
 
 
 
  

 (17) 

 

where l the length of per shaft element, A the 

area of the shaft cross-section, αs the shear 

coefficient, Sm the shear modulus, E Young’s 

modulus, I the area moment of inertia of cross-

section, I0 the polar moment of inertia of cross-

section. 

The additional flexibility coefficients due to 

the coupling effect between the two cracks are  

calculated as per Eq. (15): 

2~1 c
2~1 c

2 c

i
ij

j

u
g

P





 (18) 

Here, based upon Eq. (7), 
2~1 c

iu  satisfy 

   
T T

2~1 c cp 1 c

1 6 1 6u u  T  (19) 

where 
1 c

iu  are the additional displacements 

at crack-1, expressed as: 
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1 c

1 c

1

1 c 4 2 2 2 2 c 1 c

1 1 14

4 2 2 2 c 1 c

1 2 26

2 2 2 2 2

1

6 5 2 3 2 2

1

2
(sin sin cos ) d

π

1
(4 sin 4 sin cos ) d

π

2 sin 2 sin 2 sin cos cos 21

π 8 sin 8 sin cos

s

A

s s s

A

A s s s

u F m F A P
E' R

x h F F m x h F A P
E' R

kR F kR F

E' R x w F x m w F

   

   

    

  

 

 

 
     





Ⅲ

Ⅲ

Ⅲ

Ⅲ c

1 c

1 c

1 c

c 1 c

3

2 2 c 1 c

1 2 46

5 2 2 3 2 c 1 c

1 56

4 2 2 2 c 1 c

1 2 66

d

1
(2 sin 2 sin 2 sin cos cos 2 ) d

π

2
(8 sin 8 cos sin ) d

π

1
(4 sin 4 sin cos ) d

π

s

A

s

A

s

A

A P

h F F m h F A P
E' R

w F m w F A P
E' R

h F F m h F A P
E' R



     

   

   

 

 


 









Ⅲ

Ⅲ

Ⅲ

 (20) 

1 c

1 c

1 c 2 2 4 2 2 2 2 2 2 2 4 2 2 c 1 c

2 2 28

2 2 2 2 2

2 c 1 c

38 2 5 2 3 2 2

1 2

2
(4 sin 4 sin cos sin ) d

π

4 sin 2 sin 4 sin cos cos 21
d

π 16 sin 16 sin cos

1

s s s

A

s s s

A s s s

u x h F m x h F k R F A P
E' R

x khR F x m khR F
A P

E' R hwx F F m hwx F

E'

    

    


  

  

 
     







Ⅲ Ⅱ

Ⅲ

Ⅲ

1 c

1 c

1 c

2 2 2 2 2

2 c 1 c

48 2 3 2

5 2 3 2 c 1 c

1 2 58

2 4 2 2 2 2 2 c

28

4 sin 2 sin 4 sin cos cos 2
d

π 4 sin

1
(16 sin 16 cos sin ) d

π

2
(4 sin 4 sin cos ) d

π

s s s

A

s s s

A

s s s

A

x h F x m h F
A P

R kwR F

x hw F F x m hw F A P
E' R

x h F x m h F A
E' R

    




   

   

 
   

 


 







Ⅲ

Ⅱ

Ⅲ

Ⅲ
1 c

6P

 (21) 

1 c

2 4 2 2 2 4 2 2 2 2 6 2

1 1

1 c 2 2 2 4 2 2 3 2 c 1 c

3 1 38

2 2 2

2 2

1 2

8

sin cos 2 16 sin
2

16 cos sin 8 sin 2 sin d
π

8 cos cos 2 sin

8 sin 2 sin 8 cos cos 2 sin1

π

s s

s s s

A

s

s s s

k R F m k R F x w F

u m x w F kx wR F A P
E' R

kx wR F

x hw F F x m hw F

E' R

  

    

  

    

  
 

   
 
 






Ⅲ

Ⅲ

Ⅲ

1 c

1 c

2

c 1 c

42 2 2 2 2

1 2

2 3 2 2 2 2

1 c 1 c

58 2 6 2 2 2 4 2

1

2 2

1 2

8

d
2 sin 2 2 cos 2

8 sin 2 sin 8 cos cos 2 sin1
d

π 32 sin 32 cos sin

4 sin 2 sin 41

π

A s

s

A s s s

A P
khR F F m khR F

kwR F m kwR F
A P

E' R x w F x m w F

khR F F m

E' R


 

    


  

 

 
    

 
     








Ⅲ

Ⅲ

Ⅲ

Ⅲ

1 c

2 2

c 1 c

65 3 2 2

1 2

sin cos cos 2
d

16 sin 16 sin cos

s

A s s s

khR F
A P

x hw F F x m hw F

  


  

 
    


Ⅲ

Ⅲ

 (22) 
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1 c

1 c

1 c

1 c 2 2 2 2 2 2 2 4 2 c 1 c

4 2 48

3 2 2 c 1 c

1 2 58

2 2 2 2 2 c 1 c

2 68

2
( sin 2 cos 2 4 sin ) d

π

1
(8 sin 2 sin 8 cos cos 2 sin ) d

π

1
(4 sin 2 sin 4 sin cos cos 2 ) d

π

s

A

s

A

s

A

u h F m h F w F A P
E' R

hw F F m hw F A P
E' R

h F m h F A P
E' R

   

     

     

  

 


 







Ⅲ Ⅱ

Ⅲ

Ⅲ

 (23) 

1 c

1 c

1 c 2 6 2 2 2 4 2 c 1 c

5 1 58

5 2 3 2 c 1 c

1 2 68

2
(16 sin 16 cos sin ) d

π

1
(16 sin 16 cos sin ) d

π

s

A

s

A

u w F m w F A P
E' R

hw F F m hw F A P
E' R

   

   

 


 





Ⅲ

Ⅲ

 (24) 

1 c

1 c 2 4 2 2 2 2 2 c 1 c

6 2 68

2
(4 sin 4 sin cos ) d

π
s

A

u h F m h F A P
E' R

     Ⅲ  (25) 

 

where 6(1 ) / (7+6 )k v v   is the shaft cross-

sectional shape coefficient, R the shaft radius 

(equals D/2), θ the torsional angle of a crack 

relative to the shaft axis, A1 c the area of crack 

region at crack-1, 1 c

jP  the load at the crack-1 

cross-section along the j-th coordinate. α is the 

crack depth at any distance w from the center 

along the crack edge. '  is the total height of 

the strip with width dw, shown in Fig. 1(d). 

Here L( cos )sx x w   , 

2 2 22 sinh R w   , and 1F , 2F , IIF , IIIF  

are denoted as [28]:

 

 
3

1

0.752 2.02( / ) 0.37 1 sin(π / 2 )2 π
( / ) tan( )

π 2 cos(π / 2 )

h hh
F h

h h

 


 

  
  (26)

 
4

2

0.923 0.199 1 sin(π / 2 )2 π
( / ) tan( )

π 2 cos(π / 2 )

hh
F h

h h




 

 
  (27)

2 31.122 0.561( / ) 0.085( / ) 0.18( / )
( / )

1 ( / )

h h h
F h

h

  




  



Ⅱ  (28) 

2 π
( / ) tan( )

π 2

h
F h

h





Ⅲ  (29) 

 

From Eq. (5), 2 c

jP  can be expressed by 1 c

jP  

   
T T

2 c cp 1 c

1 6 1 6P P  T  (30) 

Substituting Eq. (30) into Eqs. (20)-(25), 

1 c

iu can be described by 2 c

jP , shown in 

Appendix A. 
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Consequently, the flexibility coefficients 

2~1 c

ijg  in Eq. (18) can be derived, given in 

Appendix B. And the flexibility matrix 2~1 c
G  

is denoted as

2~1 c 2~1 c 2~1 c 2~1 c 2~1 c 2~1 c

11 12 13 14 15 16

2~1 c 2~1 c 2~1 c 2~1 c 2~1 c 2~1 c

21 22 23 24 25 26

2~1 c 2~1 c 2~1 c 2~1 c 2~1 c 2~1 c

2~1 c 31 32 33 34 35 36

2~1 c 2~1 c 2~1 c 2~1 c 2~1 c 2~1 c

41 42 43 44 45 46

g g g g g g

g g g g g g

g g g g g g

g g g g g g

g

G

2~1 c 2~1 c 2~1 c 2~1 c 2~1 c 2~1 c

51 52 53 54 55 56

2~1 c 2~1 c 2~1 c 2~1 c 2~1 c 2~1 c

61 62 63 64 65 66

g g g g g

g g g g g g

 
 
 
 
 
 
 
 
  

 (31) 

 

The total flexibility matrix of the element 

containing crack-2 is calculated 

2 2 0 2 c 2~1 c

ceG = G + G + G  (32) 

Thus, the stiffness matrix of the element 

containing crack-2 can be described by the total  

flexibility matrix: 

2 2 1 T

ce ce( ) K = T G T  (33) 

where the transformation matrix T is given by 

Ref. [28]

T

1 0 0 0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0 0 0 0 1

l

l

 
 


 
  

  
 

 
 

 

T  (34) 

 

It is necessary to note that the crack 

orientation angle γ is negative in calculating the 

stiffness matrix 
1

ceK  of the element containing 

crack-1 (γ is negative in clockwise and positive 

in counter-clockwise directions). 

Generally, for a multi-crack rotor system 

(the number of cracks is over 1), the stiffness 

matrix of any p-th crack element can be given 

1 T

ce ce( )p p 
K = T G T  (35) 

And the flexibility matrix of the p-th crack  

element ce

p
G  is derived as 

~  c 0  c
ce

1,

n
pp p

q q p

p q

 
G = G +G + G  (36) 

where q denotes the q-th crack element, n is the 

number of cracks (p, q ≤ n). 
 0p

G  is the 

flexibility matrix of the uncracked element, 

 cp
G  is the additional flexibility matrix at 

crack-p, and 
~  cp q

G  is the additional 

flexibility matrix due to crack-q at crack-p.
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Fig. 2  Flowchart of Newmark method for solving system dynamic responses 

 

The flowchart of the Newmark method for 

solving the dynamic responses of the coupled 

multi-crack rotor is shown in Fig. 2. When t = 

0 (Initially, the cracks are assumed to close 

completely), the initial mass matrix M, Rayleigh 

damping matrix D, gyroscopic matrix Dg, 

stiffness matrix K and load vector F are 

calculated from an uncracked rotor. The initial 

responses �̈�, �̇�, q also correspond to that of 

the uncracked rotor. Then the cracks begin to 

breathe, meanwhile the Newmark method is 

used to evaluate and update the values of K, D and 

F in the equation of motion. Based on the above 

updated K, D and F, the system responses in 

Initial calculation of M, D, Dg, K, F in Eq. (1)

Start

t = 0

Beginning of crack breathing

Evaluating load vectors F
1 c

, F
2 c

 on crack cross-sections [ Eqs.(3)-(5) ]

Inputing integration constants (BN, RN) and iterative step (Δt) of Newmark method

Calculating stress intensity factors along crack edges in Eq. (14)

Estimating stiffness matrix [ Eq.(33) ]

t = t + Δt

Updating K, D, F in Eq. (1)

Estimating responses in equation of motion [ Eq. (1) ]

Convergence check ?

Yes

No

End

 Iteration completed ?

No

Yes

Solving initial vectors   ,   , q based on Eq. (1)q q
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each iteration step are calculated until the 

iteration is completed. Noting that the 

displacement response q at crack-2 obtained 

from Eq. (1) is equal to the total displacement 

vector 
2

q̂  in Eq. (9), where the displacement 

components 
2 0

q , 
2 c

q  and 
2~1 c

q  are not 

computed separately, and the same is true for crack-1. 

The loads on crack cross-sections and the 

stiffness of cracked elements will change with 

crack breathing. When forces at the cross-

section of crack-1 begin to change, the 

corresponding coupling forces acting on the 

cross-section of crack-2 also change to achieve 

the force equilibrium of rotor systems, 

described in Eq. (5). This interaction between 

the two cracks will increase the displacement 

and flexibility of the cracked element, found in 

Eqs. (7) and (18). Therefore, the additional 

flexibility matrix G2 c due to the crack-2 [15, 

27] and the additional flexibility matrix G2~1 c 

(Eq. (31)) caused by the coupling effect 

between cracks are both considered into the 

proposed coupled multi-crack rotor model. 

Compared with the uncoupled multi-crack 

rotor model ignoring the interaction between 

cracks (i.e. G2~1 c = 0) [15, 27], it can be seen 

from Eqs. (32)-(33) that the coupling effect 

between cracks in the coupled multi-crack rotor 

model under complex excitations further 

increases the systemic flexibility and alters the 

systemic time-varying stiffness and Rayleigh 

damping in Eq. (1). The variation of these 

physical properties of cracked rotor system will 

further change the systemic eigenmodes and 

eigenfrequencies, and aggravate the 

complexity of nonlinear vibration responses of 

cracked rotors. 

 

3 Dynamics analysis 

The simulated vibration responses of a coupled 

multi-crack rotor model with different crack 

orientation angles, unbalance orientation 

angles (i.e. the relative angle between the 

eccentricity of discs and the crack-1 direction 

ξ1), and crack depths are determined under 

torsional and unbalance excitations. The 

stiffness variation, vertical responses and orbits 

at the 21st node (at disc 1) are analysed and 

compared with the results of the uncoupled 

multi-crack rotor model in Refs. [15, 27]. In 

order to obtain obvious crack fault 

characteristics, the systemic rotating speeds are 

1/3Ω0 and 1/2Ω0 [31, 32] (Ω0 is the first critical 

speed of an uncracked rotor model). The two 

transverse breathing cracks (crack-1 and crack-

2) are located in the 26th and 36th elements 

with a same depth of 0.2D (D is the shaft 

diameter). In the following text, the coupled 

multi-crack rotor model is referred to as the 

coupled rotor, and the uncoupled multi-crack 

rotor model is named the uncoupled rotor. 

Noting that only the 1X component exists in the 

frequency spectrum of an uncracked rotor 

model on account of the systemic stiffness 

remains unchanged during rotation [28].
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 (I) γ = 0 rad (II) γ = π/2 rad (III) γ = π rad 

 

 (a) (d) (g) 

 

 (b) (e) (h) 

 

 (c) (f) (i) 

Fig. 3  Stiffness variations with rotation angles under 1/2Ω0, I γ = 0 rad: a direct stiffness in ξ direction, b direct stiffness 

in η direction, c cross-coupled stiffness; II γ = π/2 rad: d direct stiffness in ξ direction, e direct stiffness in η direction, f 

cross-coupled stiffness; III γ = π rad: g direct stiffness in ξ direction, h direct stiffness in η direction, i cross-coupled 

stiffness.  coupled rotor,  uncoupled rotor 

 

3.1 Stiffness variation with rotation 

angles 

Figure 3 describes the variations of direct 

stiffness (Kξ and Kη) and cross-coupled 

stiffness (Kξη) with rotation angles of the 

coupled and uncoupled rotors under 1/2Ω0, 

with an assumption of crack-1 is fully closed 

when the rotation angle θ = 0 and fully open as 

θ = π rad. 

When the crack orientation angle γ is 0, Kξ 

and Kη in Figs. 3(a)-(b) indicate that the two 

cracks start to open as θ is about π/4 rad, stay 

fully open in the range of θ = 3π/4 - 5π/4 rad, 

and then turn to close. Kξη reaches a maximum 

and a minimum value when θ is approximately 



15 

π/2 rad and 3π/2 rad, and it is 0 in the remaining 

state, shown in Fig. 3(c). The two cracks remain 

open or closed simultaneously, so there is only 

a single crack breathing phenomenon in one 

rotation cycle, which is in accordance with the 

results of a two-crack Jeffcott rotor in Ref. [18]. 

Moreover, the stiffness variation with rotation 

angles of the coupled and uncoupled rotors 

shows that the systemic stiffness of coupled 

rotor decreases and increases dramatically 

while θ = π/4 - 3π/4 rad and θ = 5π/4 - 7π/4 rad, 

respectively, because of the coupling effect 

between cracks. 

As γ changes to π/2 rad, the direct stiffness 

Kξ and Kη of the coupled rotor achieve a 

minimum value at θ = 3π/4 rad because the two 

cracks are fully open, shown in Figs. 3(d)-(e). 

Kξ and Kη begin to increase gradually, and then 

reach a local minimum at θ = 5π/4 rad, because 

crack-1 closes completely and crack-2 opens 

fully at this angle. From Fig. 3(f), Kξη of the 

coupled rotor reaches a maximum value as θ 

equals approximately π rad and a minimum 

value as θ is about 2π rad. For the uncoupled 

rotor, the variations of Kξ and Kη are similar as 

those at γ = 0, while its Kξη remains zero in a 

rotation period. 

When the two cracks are opposite to each 

other with γ = π rad, the breathing of two cracks 

is always in the opposite trend, which is why 

there are two similar changes in direct and 

cross-coupled stiffness of the coupled rotor 

during one rotation cycle in Figs. 3(g)-(i). It is 

impossible for the two opposite cracks to be 

fully open or closed at the same time, inducing 

slight changes of Kξ and Kη for the coupled 

rotor. The stiffness variations of the uncoupled 

rotor resemble those when γ = 0, which cannot 

reflect the actual breathing of the two cracks at 

γ = π rad. 

Figure 3 proves that the nonlinear stiffness 

variation of the coupled rotor model is different 

from that of the uncoupled rotor model due to 

the coupling effect between cracks in the 

coupled rotor model. The great differences 

between the stiffness variations of the two 

kinds of rotor models indicate that the coupled 

rotor model should be used to represent the 

inherent nonlinear dynamic behaviors of a 

multi-crack rotor system. 

3.2 Effects of crack orientation angles 

The variations of harmonic components and 

orbits with crack orientation angles (γ = 0, π/2, 

π rad) at the 21st node for the coupled and 

uncoupled rotors are investigated as unbalance 

orientation angle β = 0, shown in Figs. 4-5. 

Figure 4 indicates that the crack orientation 

angle seriously affects the harmonic 

component amplitudes, especially for the 

coupled rotor. Most of 1X amplitudes of the 

coupled rotor are larger than those of the 

uncoupled rotor. For super-harmonic 

components, the amplitudes of 2X (when γ = 0 

and π rad) and 3X (as γ = 0 and π/2 rad) of the 

coupled rotor are significantly greater than 

those of the uncoupled rotor. There is almost no 

2X when γ = π/2 rad and no 3X as γ = π rad for 
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 (a) (b) 

Fig. 4  Amplitude variations of harmonic components with crack orientation angles: a 1/3Ω0, b 1/2Ω0.  coupled rotor, 

 uncoupled rotor 

(I) 1/3Ω0 

 

 (a) (b) (c) 

(II) 1/2Ω0 

 

 (d) (e) (f) 

Fig. 5  Orbits with crack orientation angles, I 1/3Ω0: a γ = 0, b γ = π/2 rad, c γ = π rad; II 1/2Ω0: d γ = 0, e γ = π/2 rad, f γ 

= π rad.  coupled rotor,  uncoupled rotor 

 

the coupled rotor. When γ changes from 0 to π 

rad, both the 1X and 3X amplitudes of the 

coupled and uncoupled rotors decrease 

gradually, the 2X amplitudes decrease first and 

then increase for these two rotor models. This 

is because the two cracks change from 
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synchronous breathing to asynchronous 

breathing, and then to opposite breathing in one 

rotation cycle, demonstrating a good degree of 

agreement with the stiffness variations in 

previous section. 

 

 (I) 1/3Ω0 (II) 1/2Ω0 

  

 (a) (d) 

  

 (b) (e) 

  

 (c) (f) 

Fig. 6  Vertical responses with unbalance orientation angles, I 1/3Ω0: a β = 0, b β = π/2 rad, c β = π rad; II 1/2Ω0: d β = 

0, e β = π/2 rad, f β = π rad.  coupled rotor  uncoupled rotor 

1X

2X 3X

1X

2X
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 (a) (b) 

Fig. 7  Amplitude variations of harmonic components with unbalance orientation angles: a 1/3Ω0, b 1/2Ω0.  coupled 

rotor,  uncoupled rotor 

 

The orbit plots can intuitively reflect the 

systemic nonlinear characteristics, which are 

widely used for pathological detection in 

industrial and medical studies [19, 33-38]. 

Here, the rotor orbits with different crack 

orientation angles at 1/3Ω0 and 1/2Ω0 are 

depicted in Fig. 5. It is clear that most of axis 

orbits of the coupled rotor are slightly larger 

than those of the uncoupled rotor, resulting 

from the increased nonlinear flexibility by the 

coupling effect between cracks, in which the 

orbits of the coupled rotor with γ = 0 are well 

consistent with the results of a rotor with a 

crack of 1.6 mm depth in Ref. [39]. 

Furthermore, the shape and number of the 

concavities and inner loops can be used as 

important indicators of the presence of rotor 

cracks. 

3.3 Effects of unbalance orientation 

angles 

Figure 6 shows the vertical responses of the  

coupled and uncoupled rotors while unbalance 

orientation angle β = 0, π/2, π rad and γ = 0. It 

can be found that the displacements of the 

coupled rotor are larger than those of the 

uncoupled rotor in time domain responses. And 

the 2X and 3X amplitudes of the coupled rotor 

are nearly twice as those of the uncoupled rotor. 

Figure 7 shows the amplitude variations of 

harmonic components with unbalance 

orientation angle. The 1X amplitudes decrease 

gradually and the 2X and 3X amplitudes 

change slightly for the two rotor models with β 

changes from 0 to π rad. This is because the 

unbalance force mainly excites 1X component, 

and the increase in unbalance orientation angle 

suppresses the magnitude of 1X component 

[40]. Therefore, the super-harmonic 

components in the multi-crack rotor response 

are basically not affected by the unbalance 

orientation angle. 

Figure 8 shows the orbits when β = 0, π/2, π 

rad at the speed of 1/3Ω0 and 1/2Ω0. The orbits 
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(I) 1/3Ω0 

 

 (a) (b) (c) 

(II) 1/2Ω0 

 

 (d) (e) (f) 

Fig. 8  Orbits with unbalance orientation angles, I 1/3Ω0: a β = 0, b β = π/2 rad, c β = π rad; II 1/2Ω0: d β = 0, e β = π/2 

rad, f β = π rad.  coupled rotor,  uncoupled rotor 

 

of the coupled rotor are slightly bigger than 

those of the uncoupled rotor due to the 

increased flexibility induced by the coupling 

effect between cracks. 

It can be concluded that the complex 

morphological features of orbits of the coupled 

rotor can be confidently attributed to the severe 

nonlinear change of the systemic stiffness. The 

multi-crack coupling effect has a prominent 

influence on the rotor nonlinear dynamic 

characteristics, and cannot be neglected in the 

FE modelling of a multi-crack rotor. 

3.4 Effects of crack depths 

In this subsection, the effects of crack depths on 

the rotor dynamic characteristics are 

investigated with crack orientation angle γ = 0 

and unbalance orientation angle β = 0. The 

amplitudes of harmonic components in vertical 

response for the coupled and uncoupled rotors 

with seven different crack depth combinations 

at the speed of 1/3Ω0 and 1/2Ω0 are tabulated in 

Tables 2-3. To further illustrate the influences 

of crack depth, the super-harmonic amplitudes 

of the two multi-crack rotors are mapped in Fig. 

9, in which Fig. 9(b) is a partially enlarged view 
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Table 2  Harmonic amplitudes with crack depths at 1/3Ω0 

Case Crack depth Harmonic component 

1X 2X 3X 

crack-1 crack-2 coupled uncoupled coupled uncoupled coupled  uncoupled 

1 0.05D 0.05D 2.45×10-6 2.43×10-6 3.62×10-8 1.85×10-8 4.55×10-8 2.26×10-8 

2 0.05D 0.1D 2.55×10-6 2.50×10-6 1.07×10-7 7.30×10-8 1.22×10-7 7.79×10-8 

3 0.1D 0.1D 2.64×10-6 2.52×10-6 1.79×10-7 8.95×10-8 1.99×10-7 9.89×10-8 

4 0.1D 0.15D 2.83×10-6 2.67×10-6 3.09×10-7 1.90×10-7 3.32×10-7 1.95×10-7 

5 0.15D 0.15D 3.02×10-6 2.71×10-6 4.40×10-7 2.20×10-7 4.66×10-7 2.32×10-7 

6 0.15D 0.2D 3.32×10-6 2.95×10-6 6.27×10-7 3.63×10-7 6.12×10-7 3.36×10-7 

7 0.2D 0.2D 3.43×10-6 2.82×10-6 8.27×10-7 4.13×10-7 7.91×10-7 3.90×10-7 

Table 3  Harmonic amplitudes with crack depths at 1/2Ω0 

Case Crack depth Harmonic component 

1X 2X 

crack-1 crack-2 coupled uncoupled coupled uncoupled 

1 0.05D 0.05D 6.57×10-6 6.55×10-6 2.05×10-7 1.03×10-7 

2 0.05D 0.1D 6.69×10-6 6.64×10-6 6.08×10-7 3.93×10-7 

3 0.1D 0.1D 6.80×10-6 6.66×10-6 1.01×10-6 5.06×10-7 

4 0.1D 0.15D 7.03×10-6 6.84×10-6 1.78×10-6 1.05×10-6 

5 0.15D 0.15D 7.26×10-6 6.89×10-6 2.54×10-6 1.26×10-6 

6 0.15D 0.2D 7.63×10-6 7.18×10-6 3.64×10-6 2.04×10-6 

7 0.2D 0.2D 7.50×10-6 6.74×10-6 4.98×10-6 2.45×10-6 

of the first three cases in Fig. 9(a), and so is true 

for Figs. 9(c)-(d). 

It can be seen from Tables 2-3 and Fig. 9 that 

the response amplitudes increase with the 

increment of crack depth. The 1X amplitude of 

the coupled rotor is slightly larger than that of 

the uncoupled rotor at a same crack depth, 

while the 2X and 3X amplitudes of the coupled 

rotor are nearly twice as those of the uncoupled 

rotor. Therefore, the magnitudes of super-

harmonic components of the coupled rotor are 

more sensitive to the crack depth variation 

compared to those of the uncoupled rotor. 

The weak super-harmonic components 

induced by early cracks are easily submerged 

in system responses, which brings significant 

challenges to dynamic analysis and fault 

diagnosis of rotor systems. For the small crack 

depths in the first three cases, it can be found 

from Tables 2-3 and Figs. 9(b) and (d) that the 

amplitudes of most of 2X and 3X components 

of the coupled rotor are nearly twice as those of 

the uncoupled rotor, which clearly shows that 

the prominent super-harmonic components in 

dynamic responses of the coupled rotor can 

represent the faint fault features of slight crack. 
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 (I) 1/3Ω0 (II) 1/2Ω0 

  

 (a) (c) 

  

 (b) (d) 

Fig. 9  Super-harmonic amplitudes with crack depths, I 1/3Ω0: a seven cases, b partially enlarged view of first three 

cases; II 1/2Ω0: c seven cases, d partially enlarged view of first three cases.  coupled rotor,  uncoupled rotor 

 

Therefore, the coupled rotor model provides a 

promising application for early crack detection 

of cracked rotor systems. 

 

4 Experimental investigation 

The orbit shapes of the coupled rotor model at 

1/2Ω0 in Figs. 5 and 8 are consistent with the 

results of a Jeffcott rotor with two cracks in 

Ref. [18]. In order to further validate the 

proposed model, the vibration signals with 

different crack orientation angles and 

unbalance orientation angles are collected on 

an experimental bench. The sampling 

frequency is 5000 Hz, the measuring points are 

located at the 21st and 31st nodes of the rotating 

shaft, and the rotational speeds are 1/3Ω’
0 and 

1/2Ω’
0 (Ω’

0 is the first critical speed of the 

experimental bench, Ω’
0 = 3296 rpm). For an 

uncracked rotor, all experimental orbits in the 
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1/3 and 1/2 subcritical speed zones are of an 

approximate ellipse shape [41]. 

4.1 Experimental setup 

The experimental bench includes six parts: a 

servo motor, three two-crack shafts with 

different crack orientation angles, two discs, 

two ball bearings, a flexible coupling, and four 

eddy current displacement sensors, as shown in 

Fig. 10. The length and diameter of shafts are 

0.6 m and 0.01 m, respectively. Two slits with 

a same depth of 0.002 m are obtained by wire 

cutting to simulate the breathing cracks, which 

are located at 0.25 m and 0.35 m away from the 

left end of shafts. The eddy current 

displacement sensors at the same measuring 

points are perpendicular to each other on a 

sensor frame. The parameters of the 

experimental bench components are displayed 

in Table 4. 

4.2 Results and discussions 

Figure 11 illustrates the experimental orbits 

when crack orientation angle γ = 0, π/2, π rad 

and unbalance orientation angle β = 0. Figure 

11(a) shows that the orbit includes two 

concavities, agreeing with the orbit of a rotor 

with a crack of 3.2 mm depth in Ref. [41]. The 

orbit in Fig. 11(b) has two inner loops, while 

the ones in Figs. 11(c)-(d) and (f) contain only 

an inner loop, the one in Fig. 11(e) looks like 

an ellipse. The morphological features of orbits 

with different crack orientation angles agree 

well with the simulated results of the coupled 

rotor model in Fig. 5. 

 

 

Fig. 10  Description of experimental bench: ① bearing, ② eddy current displacement sensor, ③ multi-crack shaft, 

④ disc, ⑤ flexible coupling, ⑥ servo motor 

Table 4  Parameters of experimental bench 

Part Type Quantity 

Servo motor SIEMENSE G90A IP55 1 

Multi-crack shaft 40Cr 3 

Disc 45# steel 2 

Bearing SKF-6300 2 

Flexible coupling LM-45-10-24 1 

Eddy current displacement sensor ZA21-0803 4 

1 2 3 4 5 6
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(I) 1/3Ω’
0 

 

 (a) (b) (c) 

(II) 1/2Ω’
0 

 

 (d) (e) (f) 

Fig. 11  Experimental orbits with crack orientation angles, I 1/3Ω’
0: a γ = 0, b γ = π/2 rad, c γ = π rad; II 1/2Ω’

0: d γ = 0, 

e γ = π/2 rad, f γ = π rad 

(I) 1/3Ω’
0 

 

 (a) (b) (c) 

(II) 1/2Ω’
0 

 

 (d) (e) (f) 

Fig. 12  Experimental orbits with unbalance orientation angles, I 1/3Ω’
0: a β = 0, b β = π/2 rad, c β = π rad; II 1/2Ω’

0: d 

β = 0, e β = π/2 rad, f β = π rad 
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Figure 12 displays the orbits when β = 0, π/2, 

π rad and γ = 0. The orbit of Fig. 12(b) contains 

a concavity and an inner loop, and the one in 

Fig. 12(c) has two inner loops of different sizes, 

coinciding with the results of the coupled rotor 

model in Figs. 8(b)-(c). It can also be seen from 

Figs. 12(d)-(f) and Figs. 8(d)-(f) that the shape 

and phase change of the experimental and 

simulated orbits are similar. 

Several rotor vibration responses with β = 0, 

π/2, π rad and γ = 0 at the speed of 1/2Ω’
0 are 

shown in Fig. 13. It can be seen that the ratios 

of the super-harmonic amplitudes to the 

fundamental harmonic amplitudes are in good 

agreement with those of the coupled rotor 

model in Figs. 6(d)-(f). These obvious super-

harmonic amplitudes can be extracted as the 

feature for crack diagnosis of rotors, even for 

early-stage crack detection. 

The experimental morphological features of 

rotor orbits (Figs. 11-12) are generally 

consistent with the simulated ones of the 

coupled rotor model in Figs. 5 and 8. The 

relative proportions of harmonic amplitudes are 

also in accordance with those of the coupled 

rotor model. The excellent agreement between 

the theoretical and experimental findings 

demonstrates the correctness of the coupled 

multi-crack rotor model, which also proves that 

the coupling effect between cracks is really 

existent and cannot be ignored in actual rotors. 

It is worth noting that there is a π/2-rad 

phase difference between the simulated orbits 

and experimental ones, which is attributed to  

 

(a) 

 

(b) 

 

(c) 

Fig. 13  Experimental responses with γ = 0 at 1/2Ω’
0: a 

β = 0, b β = π/2 rad, c β = π rad 

 

the relative angle of two eddy current 

displacement sensors is less than π/2 rad 

resulted from the machining error of the sensor 

frames [42]. Additionally, there are some 

undesirable small disturbances in experimental 

orbits and spectrums due to the rotation speed 

fluctuation of servo motor and measurement 

noise. 
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5 Conclusions 

This paper proposes a coupled multi-crack 

rotor model by considering the coupling effect 

between cracks under complex excitations as 

additional flexibility. The rotor dynamic 

responses with different crack orientation 

angles, unbalance orientation angles and crack 

depths are analysed at 1/3 and 1/2 subcritical 

speeds. The specific conclusions are 

summarised as follows: 

(1) The proposed coupled multi-crack rotor 

model gives a detailed description of the 

coupling mechanism between cracks 

under complex excitations including 

bending moments, torques and so on. 

(2) Compared with the uncoupled rotor model 

ignoring the interaction between cracks, 

the coupled rotor model can more 

accurately represent the inherent 

complicated nonlinear dynamic 

characteristics of actual cracked rotors. 

(3) The majority of the vibration responses 

(including the orbits) of the coupled rotor 

model are larger than those of the 

uncoupled rotor model due to the 

increased nonlinear flexibility caused by 

the coupling effect between cracks. The 

magnitudes of most of 2X and 3X 

components of the coupled rotor are nearly 

twice as those of the uncoupled rotor. The 

prominent super-harmonic components 

and morphological characteristics of orbits 

can be used for early crack detection and 

crack parameter identification in rotors. 

(4) The good consistency between the 

experimental and simulated results 

confirms the correctness and feasibility of 

the developed coupled rotor model for the 

crack detection in practice. 

This work is of great significance to the 

dynamic characteristics research and early 

crack detection for multi-crack rotor systems in 

practical engineering, which is expected to be 

helpful for the quantitative identification of 

multi-crack parameters in rotors. Moreover, 

based on the above theoretical research and 

experimental bench, this study can provide a 

large amount of data in various working 

conditions for applications of the signal-based 

and artificial intelligence-based methods in 

rotor fault diagnosis. However, this paper only 

analyses the nonlinear dynamic behavior of 

rotor systems at stable subcritical speeds, 

without considering the effects of speed 

variations (especially under start-up and shut-

down conditions) and the noise interference, 

which will be the focus and challenge of future 

work. 
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And it can be obtained that 
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