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Abstract 27 

The present paper explores the feasibility of topology optimization of stochastic dynamical systems in 28 

the framework of the probability density evolution method (PDEM). A new method is proposed for 29 

solving dynamic-reliability-based topology optimization (DRBTO) problems by combining the PDEM, 30 

the ground structure approach and the solid isotropic material with penalization (SIMP) model. In the 31 

investigated optimization problems, the first-passage probability is considered as an objective or 32 

constraint function. To obtain a clear layout of the optimized structure, the topology of the structure is 33 

described by the ground structure approach together with the SIMP model. The PDEM is employed as 34 

an efficient approach to assess the first-passage probability. For improved numerical efficiency, an 35 

approximate formulation of the first-passage probability based on the important representative points 36 

(IRPs) is implemented. On the basis of the approximate formulation of the first-passage probability, a 37 

relationship between the sensitivity of the first-passage probability and the transient response is obtained. 38 

The adjoint sensitivity analysis of the transient response is introduced to avoid extra numerical efforts. 39 

Then, by incorporating the first-passage probability and its sensitivity into the method of moving 40 

asymptotes (MMA), the investigated DRBTO problems are solved in an effective manner. The DRBTO 41 

of a braced frame structure is presented to demonstrate the availability and effectiveness of the proposed 42 

method. 43 

 44 

Keywords: first-passage probability, topology optimization, probability density evolution method, 45 

sensitivity analysis, braced frame structure 46 

1. Introduction 47 

Topology optimization is a powerful conceptual design methodology that can explore a complex design 48 

space to identify the set of most efficient structural configurations fulfilling prescribed requirements [1]. 49 

Extensive research on topology optimization has been carried out in the past few decades [2]. Besides, 50 

topology optimization has also been applied to a wide variety of structural systems, including continuum 51 

and discrete structures under static loads and dynamic excitations. For structures under dynamic 52 

excitations, topology optimization problems involving transient responses (e.g. peak values of dynamic 53 

responses) or vibration properties (e.g. natural frequencies) have also been investigated [3-5]. 54 

Despite the success of topology optimization, most of the research efforts in this field have focused 55 

on deterministic scenarios. Nonetheless, uncertainties in material properties and external excitations are 56 
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inevitable in real-world engineering structural systems, and they usually have a significant effect on 57 

structural responses [6]. Thus, it is of practical significance to consider uncertainties in topology 58 

optimization. In this regard, two different frameworks have been developed. The first one is robust 59 

topology optimization (RTO) which aims at minimizing the sensitivity of structural performance with 60 

respect to uncertainties [7]. In the RTO framework, the objective function is usually defined as a 61 

combination of the mean value and standard deviation of the structural response of interest [8, 9]. The 62 

second framework is reliability-based topology optimization (RBTO), where reliability measures are 63 

included as part of the objective or constraint functions [10, 11]. Although the two frameworks are both 64 

instructive, RBTO is suitable for handling uncertainties in a probabilistic manner. 65 

Under the framework of RBTO, a number of methods have been reported. In this regard, some of 66 

the traditional approaches for general reliability-based design optimization (RBDO), such as the double-67 

loop method [12], the KKT condition-based single-loop method [13] and the sequential optimization and 68 

reliability assessment method [14], have been successfully extended to RBTO in the context of static 69 

structural systems [10, 15, 16]. Noting that most of these methods are developed based on the first-order 70 

reliability method (FORM), the extension to RBTO under dynamic scenarios becomes troublesome due 71 

to the inherent limitations of FORM [17]. 72 

Dynamic excitations, such as earthquakes and winds, usually play a dominant role in the structural 73 

design phase. Thus, it is indispensable to consider RBTO of structures subjected to dynamic excitations. 74 

Hence, dynamic-reliability-based-topology optimization (DRBTO), as a subclass of RBTO, requires 75 

especial attention. The paramount difference between topology optimization and standard design 76 

optimization is that the number of design variables in topology optimization is usually large [1]. This 77 

feature hinders the application of methods for general dynamic-reliability-based design optimization 78 

(DRBDO) in topology optimization. It is noted that, for general DRBDO problems, the number of design 79 

variables is generally restricted to a small number [18]. On the other hand, the first-passage probability 80 

is a commonly used measure for dynamic reliability [19], and consequently, it is usually involved in 81 

DRBTO problems as a part of the objective or constraint functions. However, calculating the first-82 

passage probability has become a persistent challenge for more than half a century. A number of 83 

approaches, such as methods based on the out-crossing rates [20], methods which solve the backward 84 

Kolmogorov equation or the Chapman-Kolmogorov equation considering absorbing boundary conditions 85 

[21-23], have been developed to evaluate the first-passage probability of various dynamical systems. 86 

Nevertheless, difficulties still exist, especially for problems involving high-dimensional systems. This fact 87 

makes the solution of DRBTO problems quite challenging. 88 

Compared to RBTO under static loads, relatively few investigations have been reported in DRBTO. 89 
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In Xu et al. [24] and Hu et al. [25], first-passage probability measures were approximated in terms of the 90 

out-crossing rates of the responses of interest, which assumes a Poisson distribution for the out-crossing 91 

events [26]. Similarly, Chun et al. [27] employed FORM with the sequential compounding method to 92 

approximate the first-passage probability. These approaches have mostly focused on linear structural 93 

systems under stationary or nonstationary Gaussian excitation using ad-hoc procedures for reliability 94 

sensitivity assessment. In general, their accuracy is problem-dependent due to the approximate nature 95 

of the underlying reliability assessment techniques. On the other hand, Bobby et al. [28] implemented a 96 

sequential optimization approach. During each optimization cycle, reliability constraints are 97 

approximated in terms of equivalent threshold constraints using information from direct Monte Carlo 98 

simulation (MCS). Although the technique can handle linear structures subjected to general stochastic 99 

excitations, the associated computational efforts can be significant or even prohibitive for highly reliable 100 

systems. From the previous discussion, available techniques for DRBTO can address different types of 101 

problems with different levels of effectiveness. Thus, there is still room for further developments in this 102 

area, especially regarding the integration of efficient reliability and reliability sensitivity assessment 103 

techniques. 104 

As previously pointed out, the dynamic reliability analyses and the corresponding sensitivity analyses 105 

account for most of the computational efforts in DRBTO. Thus, an efficient dynamic reliability analysis 106 

is of particular importance. In this context, the probability density evolution method (PDEM) [19, 29], 107 

which has experienced promising developments in recent years, provides an alternative choice. In the 108 

present paper, the feasibility of solving DRBTO problems within the framework of the PDEM is explored. 109 

Specifically, a method for DRBTO is proposed by incorporating the PDEM with the solid isotropic 110 

material with penalization (SIMP) [30] model and the ground structure approach [31]. The DRBTO 111 

problem of braced frame structures is further investigated using the proposed method. The topology of 112 

braced frame structures is implemented using the ground structure approach and the SIMP models. The 113 

PDEM is adopted to assess the first-passage probability, and a strategy for approximate dynamic 114 

reliability analysis is introduced based on the concept of important representative points (IRPs) [32]. 115 

The sensitivity of the first-passage probability is derived such that a class of first-order optimizer, namely, 116 

the method of moving asymptotes (MMA) [33], can be adopted to solve the corresponding optimization 117 

problems. In addition, the adjoint sensitivity analysis of structural transient response is introduced to 118 

speed-up the design sensitivity analysis of the first-passage probability. 119 

The rest of the present paper is organized as follows: Section 2 presents the general formulation of 120 

DRBTO. The PDEM as a dynamic reliability analysis method is briefly outlined in Section 3. In addition, 121 

an approximate formulation of the first-passage probability is derived. The sensitivity analysis of the 122 
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first-passage probability is introduced in Section 4. In Section 5, some implementation aspects are 123 

discussed, and an overall procedure of the proposed method is provided. In Section 6, numerical examples 124 

are presented to verify the effectiveness of the proposed method. Some final remarks and future research 125 

efforts are provided in Section 7. 126 

2. Formulation of DRBTO Problem 127 

2.1. Topology Optimization Framework 128 

Topology optimization problems of truss or frame structures are usually formulated in terms of the 129 

ground structure method [31]. In this approach, a set of fixed nodes are first determined and the ground 130 

structure is given by a set of members which densely connect the fixed nodes. By allowing ground 131 

structure members to vanish, topology optimization tries to identify the remaining members in the final 132 

design.  133 

Generally, topology optimization of truss structures treats the section areas of ground structure 134 

members as design variables. By setting the section areas of some members to be zero, the topology of 135 

the structure is changed. In this formulation, the topology optimization problem is converted into a 136 

standard size optimization problem. Noting that the section areas of members can continuously vary in 137 

a given range, this formulation simultaneously optimizes the size and topology of a given truss structure 138 

[1]. Another approach is to introduce independent binary design variables controlling the existence of 139 

the members. To avoid the difficulty of solving a large scale 0-1 integer programming problem, the design 140 

variables are relaxed to be continuous in the interval  0,1 . Then, intermediate values of the design 141 

variables are penalized, such that an approximate binary solution is obtained. In this context, the SIMP 142 

model [30], which has been generally used for topology optimization of continua, can also be used for 143 

problems involving frame or truss structures [25, 34, 35]. When the SIMP model is adopted in the 144 

topology optimization of frame or truss structures, the section sizes of the members remain constant, 145 

but only the existence states are switched. One of the advantages of this approach is that the optimized 146 

structures can be easily manufactured since the remaining members are of uniform section sizes [34].  147 

In the previous context, the design variables, interpreted as element densities, are penalized by a 148 

power function to avoid intermediate values. In particular, the elastic modulus of the -the  element is 149 

given by 150 

    min 0 mine
p

eE x E x E E    (1) 151 

where  0,1ex   is the design variable, i.e., density of the -the  element; minE  is a small positive value 152 

of the void element to circumvent singularity; 1p   denotes the penalization parameter; and 0E  is the 153 
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original elastic modulus of the material. Note that the physical material density remains constant. In 154 

this way, the stiffness and mass matrices of the -the  element (with element density ex ) are respectively 155 

given by 156 

    ,0 ,01e e e e e
px x   k k k  (2) 157 

    ,0 ,01e e e e ex x   m m m  (3) 158 

where ,0ek  and ,0em  are the original stiffness and mass matrices of the -the  element with full 159 

attributes, respectively; and min 0EE  . Accordingly, the sensitivity of ek  and em  with respect to 160 

ex  are given by 161 

 
 

  ,0
1 1e e

e
p

e
e

x
x

x
p 





k

k  (4) 162 

     ,01e
e e

e

x
x

 


m

m  (5) 163 

In the present implementation, the value of   is taken as 41 10 . 164 

The global stiffness matrix K  and the global mass matrix M  of the structure are obtained by 165 

assembling ek  and em  of all elements as in the standard finite element procedure. In addition, the 166 

Rayleigh damping matrix is considered as 0 1a a C M K , where 0a  and 1a  are the proportionality 167 

coefficients. 168 

2.2. First-Passage Probability 169 

Consider a linear stochastic dynamical system of m  degrees of freedom (DOFs): 170 

        ; ; ; , ;t  M x Y C x Y xfK x Y      (6) 171 

where  1 2 ,, , N   

T
  is the -N dimensional vector of random variables;  1 2 ,, , nxx xx 

T
 is the 172 

-n dimensional vector of design variables; M , C  and K  are the m m  global mass, damping and 173 

stiffness matrices of the system, respectively; Y , Y  and Y  are the m -dimensional displacement, 174 

velocity and acceleration response vectors, respectively; f  denotes the excitation vector; and t  is the 175 

time variable. For seismic excitations, the vector f  is defined by  176 

      , ; ; ,gt tu   x xf M  (7) 177 

where   is an m -dimensional influence vector, and gu  is the seismic ground acceleration. Note that, 178 

in  , only the entries corresponding to the DOFs in the direction of the ground motion are one, while 179 

the other entries are zero [36]. For the numerical solution of the equation of motion, the Newmark-b 180 

method with a constant time step size is employed. In particular, the constant average acceleration 181 

method which is unconditionally stable is used. In this setting, the time step size is denoted by h  and 182 

the discretized time series by 
T1 2, , , Nt t t , where T, , 1,2,it ih i N  

. 183 
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For stochastic dynamical systems, the first-passage probability is a common and practical measure 184 

of reliability [19]. Hence, DRBTO problems are formulated in terms of the first-passage probability in 185 

this work. 186 

In this framework, denote the structural response of interest by Z  which can be defined in terms of 187 

the displacement, velocity and acceleration vectors. Then, the normalized extreme value of Z  is defined 188 

as 189 

  
 

  ext th0,

, ;
; max

t T

Z t
Z

z


x
x


  (8) 190 

where  0,T  denotes the time interval of analysis; and thz  is the threshold of Z . The first-passage 191 

probability related to Z , for a given design x , is given by 192 

     F extPr ; 1P Z x x  (9) 193 

 194 

2.3. Optimization Problem Formulation 195 

In the present paper, two formulations of DRBTO problems are considered. In the first formulation, the 196 

first-passage probability is minimized under a constraint on material volume. Specifically, the problem 197 

is formulated as 198 

 

 

       
 

F

;

0,1 , 1

m

,2,

in

s.t.  

; ; , ;

,e

v

e n

P

t

x




 




x
x v
M x Y C x Y K x Y xf 



T

   
 (10) 199 

where x  is the vector of design variables (element densities);  FP x  denotes the first-passage 200 

probability function as defined in Section 2.2;  1 2 ,, , nvv vv 

T
 is the -n dimensional vector of element 201 

volumes in which ev  is the volume of the -the  element; v  denotes the maximum allowable material 202 

volume; and n  is the number of design variables. 203 

In the second formulation, the material volume is minimized while a constraint on the first-passage 204 

probability is included. In particular, the problem is given by 205 

 

 
 
       
 

th
F F

min

s.t.  

; ; ,

0,1 ,

;

1,2, ,

;

e e n

V

P P

t

x






 





x x v
x

M x Y C x Y K x xfY



 

T

   
 (11) 206 

where  V x  is the material volume function, and th
FP  is the allowable probability of failure. 207 
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3. Dynamic Reliability Analysis 208 

The PDEM together with the equivalent extreme value distribution [37] is employed for dynamic 209 

reliability analysis in the present paper. Thereby, for clarity, a brief introduction to the PDEM is first 210 

outlined in this section. Moreover, in order to further enhance the efficiency of dynamic reliability 211 

analysis, an approximate formulation of the first-passage probability is derived. 212 

3.1. PDEM-based Dynamic Reliability Analysis 213 

Consider a stochastic dynamical system governed by Eq.(6). If the system is well-posed, the solution of 214 

the system uniquely exists, and it depends on the design vector x , the random vector  , the time 215 

variable t , and the initial condition. Since the structural response of interest, i.e., Z , is a differentiable 216 

function of the solution of the stochastic dynamical system, it can also be uniquely determined.  217 

Noting that all random factors involved in the stochastic dynamical system are characterized by the 218 

random vector  , the  1 -N  dimensional augmented system  ,Z   is probability-preserved. Due to 219 

the principle of preservation of probability [38], the one-dimensional generalized density evolution 220 

equation (GDEE) which governs the evolution of the joint probability density function (PDF) of the 221 

augmented system takes the form 222 

 
 

 
 

,
, ,

0
, ; , ;

;Z Zp t p t
Z t

z

t

z

z

 
 

 
x x

x

  
  (12) 223 

where  1 2 ,, , N   

T
  is a realization of  , z  is a realization of Z ; and  , , ;Zp z t x   denotes the 224 

joint PDF of Z  and   at a given time t  and design x . The initial condition of Eq.(12) is 225 

      00;, ,Z tp t zz z p  x    (13) 226 

where 0z  is the initial value of Z ,     denotes Dirac’s delta function; and  p   is the joint PDF of 227 

the random vector  . Herein, 0z  is independent of both x  and  . For the theoretical aspects and 228 

the physical interpretation of the GDEE, readers can refer to Li and Chen [19]. 229 

The PDEM can serve as an efficient method to assess the first-passage probability when combined 230 

with the equivalent extreme value distribution strategy [37]. In this framework, a virtual stochastic 231 

process is defined as [33] 232 

    ext
5

, ; ; sin
2

W Z


 
   

  
x x   (14) 233 

where extZ  is the normalized extreme value of Z  defined in Eq.(8), and   is a virtual time variable. 234 

The form of the virtual stochastic process is not unique, and the basic guidelines for constructing a 235 

virtual stochastic process can be found in Li et al. [37] and Li and Chen [19]. In principle, the form of 236 
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the virtual stochastic process has a limited effect on the dynamic reliability. The present formulation 237 

considers the sine-type virtual stochastic process following Li et al. [37], since validation calculations 238 

indicate that a sine-type virtual stochastic process can usually lead to a precise first-passage probability 239 

estimate. 240 

Note that  ,W   forms a probability-preserved system. Similar to Eq.(12), the GDEE governing 241 

the evolution of the joint PDF of the augmented system  ,W   is written as 242 

 
 

 
 

;
, ,

0
, ; , ;

,W Wp w wp
W

w

 



 

 
 

x x
x

  
  (15) 243 

where      ext, ; 5 2 ; cos 5 2W Z   x x   , and  , , ;Wp w  x   is the joint PDF of W  and  . 244 

Accordingly, the initial condition of Eq.(15) is 245 

      0,, ;Wp w pw   x    (16) 246 

Since  , ;W  x  is identical to  ext ;Z x  when 1  , the joint PDF of extZ  and  , namely, 247 

extZp  , is given by 248 

    
ext 1; , ;, ,Z Wp pz w z   x x    (17) 249 

where z  is a realization of extZ . 250 

By solving Eq.(15),  , , ;Wp w  x   and thereby  
ext

;,Zp z x   are obtained. Integrating  
ext

;,Zp z x   251 

over the probability space of  , i.e.,  , yields the PDF of extZ : 252 

    
ext ext

; d;,Z Zp z p z


 x x


    (18) 253 

Finally, the first-passage probability, i.e., the probability of failure, is given by a one-dimensional integral 254 

of  
ext

;Zp z x  over the failure interval of extZ , that is 255 

    
extF ext

1
; dZP p z z


 x x  (19) 256 

For most practical systems, the closed-form solution of the GDEE is not available. Thus, the GDEE 257 

is usually solved by numerical methods. For completeness, a general solution procedure for the PDEM-258 

based dynamic reliability analysis is outlined in Appendix I. 259 

3.2. Dynamic Reliability Analysis at Perturbed Designs 260 

Although the PDEM-based method is efficient, the repeated dynamic reliability assessments involved in 261 

the optimization process still account for a large amount of computational efforts. Thus, an approximate 262 

formulation of the first-passage probability based on information obtained from the PDEM results is 263 

implemented in this work. 264 

 265 
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 266 

Fig. 1. Representative regions and points in a 2D probability space 267 

 268 

In the implementation of the PDEM-based dynamic reliability analysis, the probability space   is 269 

first discretized into a series of representative regions which are specified by Voronoi cells [39]. Denote 270 

the representative regions by R, 1, , ,2qV Nq  
, where RN  is the number of representative regions. In 271 

the -q th representative region, i.e., qV , a representative point is selected and denoted by q . The 272 

assigned probability of q , namely, qP , is defined as the integral of  p   over qV  (see Appendix I). 273 

Fig. 1 schematically shows the representative regions and points in a 2D probability space.  274 

Noting that the representative regions,   R

1

N

q q
V  , form a partition of the probability space, the first-275 

passage probability specified by Eq.(9) can be rewritten as 276 

     
R

F ext
1

Pr ; 1
N

q
q

VP Z


   xx    (20) 277 

where 278 

       
ext1

extPr ; 1 d;Z
q

qZ p z zV


    xx   (21) 279 

in which    
ext

;Z
qp z x  is the solution of the GDEE associated with the -q th representative region when 280 

1   at a given design x  (see Appendix I). 281 

Similarly, the first-passage probability at a perturbed design is cast as 282 

     
R

F ext
1

Pr ; 1
N

q
qP VZ



   x x     (22) 283 

where   is a small perturbation of the design vector. Denote the increment of extZ  induced by the 284 

perturbation of the design vector by  , ,D x  , that is, 285 

      ext ext, ;, ;D Z Z  x xx      (23) 286 

Substituting Eq.(23) into Eq.(22) yields an equivalent formulation of the first-passage probability at 287 

x  : 288 
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       
R

F xt
1

e , ,Pr ; 1 q

N

q

P Z VD


     xx x      (24) 289 

If a sufficient number of representative points are adopted in the numerical solution of the PDEM, 290 

the volume of each representative region will be relatively small. Accordingly, the assigned probability 291 

associated with a representative point will also be small. Thus, it is reasonable to ignore the variation of 292 

 , ,D x   in a representative region. As a result, one can replace  , ,D x   by the increment of 293 

extZ  at the associated representative point at the expense of a small error [32], that is, 294 

    ,, , , ,q qD DV  x x      (25) 295 

By introducing Eq.(25) into Eq.(24), an estimate of the first-passage probability at the perturbed design 296 

is obtained: 297 

        
R

F e t
1

xPr ,; ,1 q q
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q

P Z D V


    xxx       (26) 298 

where   FP x   is an estimate of  FP x  . 299 

On the other hand, note that 300 

         
  ext1

ext ,P ;r ; 1 d,
q

q
q q

D ZZ D p z zV



    xx x     (27) 301 

where    , ,q
qD D x  . By substituting Eq.(27) into Eq.(26), the estimate of the first-passage 302 

probability at the perturbed design is reformulated in the form: 303 

       
 

R

ext1
F

1

d;
q
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q

D
q

ZP p z z
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 x x  (28) 304 

By combining Eqs.(20), (21) and (28),  F̂P x   is further recast as 305 

         
 

R

ext

1

1
F F

1

; d
q Z

N
q
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



  x x x  (29) 306 

Validation calculations indicate that Eq.(29) can provide an approximation to the first-passage 307 

probability with high accuracy [32]. Although    
ext

R,  1, ,2; ,q
Zp Nz q x   have been already obtained in 308 

the PDEM-based dynamic reliability analysis at x , the increments,  
R,  1, , ,2qD Nq  

, remain to be 309 

determined. Thus, the number of structural analyses involved in Eq.(28) or (29) is still RN . Therefore, 310 

the same number of structural dynamic analyses are involved in the full and approximate dynamic 311 

reliability assessments. 312 

3.3. Important Representative Points 313 

To reduce the number of structural analyses in the approximate dynamic reliability assessment, the 314 

concepts of important representative regions (IRRs) and important representative points (IRPs) [32] are 315 

introduced. 316 
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In the context of the PDEM, the representative points are highly scattered in the probability space 317 

to reduce the discrepancy of the point set and consequently the numerical error in a global sense [40]. 318 

Nevertheless, only the representative points/regions which are adjacent to the limit state surface in the 319 

probability space have relatively large influence on the first-passage probability [41]. Specifically, for a 320 

representative point/region that is far from the limit state surface, the value of    
ext

;Z
qp z x  is generally 321 

small around 1z  . Since  qD  is also small when a small perturbation   is considered, for a 322 

representative point/region which is far from the limit state surface, the value of the integral of    
ext

;Z
qp z x  323 

over   1 ,1qD  will be negligible. This feature allows to consider only a subset of the representative 324 

points/regions when evaluating Eq. (28) or (29). 325 

Clearly, the greater is the value of    
ext

;Z
qp z x  at 1z  , the greater impact q  and qV  have on 326 

  FP x  . For numerical implementation, a screening parameter   is first introduced. Based on this 327 

parameter, if the inequality 328 

    
ext

1;Z
qp z  x  (30) 329 

holds, the corresponding representative point, q , and representative region, qV , are selected as IRP 330 

and IRR, respectively. The sets of IRPs and IRRs are denoted by   IRIR
1r

N

r  and   IRIR
1r

N

rV  , respectively. 331 

Besides, the assigned probabilities of the IRPs are denoted by   IRIR
1r

N

rP  . Clearly, if the value of   332 

increases, the number of IRPs will decrease, and when the screening parameter equals to 0, all 333 

representative points will be included in the set of IRPs, that is, IR RN N . 334 

If only the IRPs and IRRs are considered in Eq.(29), the approximate first-passage probability 335 

  FP x   is given by 336 

         
  ext

IR

1

F F
1

; d
q Z

q I

q

D
P P p z z




    x x x  (31) 337 

where RPI  is the set of indexes of the important representative points. Thus, the parameter   controls 338 

the accuracy of the estimate and the associated computational efforts. Some practical guidelines for 339 

selecting the parameter eta are discussed in Section 5.1. 340 

4. Sensitivity Analysis of First-Passage Probability 341 

4.1. Approximate Sensitivity Estimation Based on IRPs 342 

In order to solve the DRBTO problem with a first-order optimizer, the gradients of the objective and 343 

constraint functions are required. In general, the evaluation of first-order derivatives of reliability 344 

measures in the context of stochastic structural systems represents a challenging task from the numerical 345 
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viewpoint. In this section, the sensitivity of the first-passage probability with respect to the design 346 

variables is derived based on the approximation formulated in Eq.(31). 347 

By introducing a perturbation  1 2 ,, , n   
T
 to the design vector, the sensitivity of the first-348 

passage probability with respect to the -e th design variable at x  is rewritten as 349 
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 (32) 350 

Replacing Eq.(31) into Eq.(32) yields an estimate of the sensitivity: 351 
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 (33) 352 

Next, define an auxiliary function: 353 

        
ext

d;q
Z

b
q b p z z


  x  (34) 354 

then 355 

    
 
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ext
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Since    1q  is a constant, differentiating Eq.(35) with respect to e  at 0  yields 357 
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 (36) 358 

where  qD  is equal to  , ,qD x  . From Eqs. (23) and (25), it is noted that if  0 ,  qD  is also 359 

zero. Thus, Eq.(36) is reformulated as 360 
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By combining Eq.(33) and Eq.(37), the estimate of the sensitivity of the first-passage probability is 362 

obtained: 363 
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4.2. Sensitivity Evaluation of Extreme Response Function 365 

Note that Eq.(38) involves the partial derivative of the normalized extreme value of the structural 366 

response. For numerical implementation, the normalized extreme value function in Eq.(8) can be replaced 367 

by a differentiable approximation, such as the normalized structural response at the peak time [42] or 368 

an aggregation function of the normalized structural response [5, 43]. In the present work, the 369 

nondifferentiable property of the normalized extreme value function is circumvented by using a class of 370 
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aggregation function. In particular, the p -norm function 371 
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is employed for sensitivity purposes, where extZ  is a smooth approximation of extZ ; TN  is the number 373 

of time steps in the structural dynamic analysis; jt  denotes the -j th discrete time instant, i.e., jt jh ; 374 

and   is the aggregation parameter. Note that the p -norm function is exactly the normalized extreme 375 

value function when    . To capture the extreme value of the structural response of interest, and 376 

avoid its nondifferentiability, an appropriate aggregation parameter value is selected. In particular, the 377 

aggregation parameter is set as 16 in the present implementation [43]. 378 

Note that the PDEM-based dynamic reliability analysis do not require the extreme value function 379 

to be differentiable. Therefore, the p -norm function is used instead of the extreme value function for 380 

the purpose of sensitivity analysis. Furthermore, the exact extreme value function is also used in the 381 

approximate reliability analysis as presented in Section 3.3. In other words, using the p -norm function 382 

instead of the extreme value function do not introduce errors into the reliability objective function or 383 

the reliability constraint function.  384 

The sensitivity analysis of structural responses is a crucial subject in the field of structural 385 

optimization. Therefore, a large number of researches have been carried out for response sensitivity 386 

analysis. In this regard, the finite different method (FDM), the direct differentiation method (DDM) [44, 387 

45], the adjoint method [46] and the semi-analytical method [47] have been developed to calculate the 388 

sensitivity of static and transient responses of linear and nonlinear systems. In this work, an adjoint 389 

method is employed to compute the partial derivative of Eq.(39). A detailed description of the adjoint 390 

method, which is based on a discretized formulation of the Newmark-b method, is provided in Appendix 391 

II. It is noted that the adjoint method is more efficient than the FDM and the DDM for sensitivity 392 

analysis, especially when a large number of design variables are considered. Therefore, the adjoint method 393 

is particularly favorable in topology optimization. 394 

In Section 4.1, no restraints have been imposed on the type of the structures. In other words, the 395 

sensitivity estimate given by Eq. (38) can be used for both linear and nonlinear structures. Since the 396 

present work focuses on the topology optimization of linear structures, the adjoint method described in 397 

Appendix II is used only for linear systems. By introducing other methods for transient response 398 

sensitivity analysis of nonlinear systems, the proposed method can be extended to topology optimization 399 

of nonlinear structures. 400 
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5. Implementation Aspects 401 

5.1. Reliability and Sensitivity Analysis 402 

Regarding the accuracy of the reliability estimates, an upper bound of the error in the context of the 403 

PDEM has been provided in [40, 48]. This upper bound is given by the product of the discrepancy of 404 

the representative point set and the total variation of the function that characterizes the system. Noting 405 

that the total variation is an essential feature of the system, it cannot be changed. Therefore, the 406 

accuracy of the PDEM-based reliability analysis can be improved by reducing the discrepancy of the 407 

point set. The discrepancy of the representative point set is controlled by the number of representative 408 

points and the way how representative points are selected. 409 

Thus, it is clear that the number of representative points, RN , is a pivotal parameter in the PDEM-410 

based dynamic reliability analysis. In fact, a number of factors, such as the dimensionality of the random 411 

vector  , the required accuracy of the reliability assessment, etc., have effect on the value of RN . In 412 

general, a larger RN  will result in a lower discrepancy of the point set, and accordingly, a higher 413 

accuracy in the first-passage probability estimation. Note that a larger RN  will help to reduce the error 414 

in Eq.(25), which will also make the approximate first-passage probability in Eq.(31) and the 415 

approximate sensitivity in Eq.(37) more accurate. Nevertheless, more deterministic structural analyses 416 

have to be performed if a larger RN  is considered. In other words, RN  is determined by a trade-off 417 

between the numerical accuracy and the computational efforts. In the present implementation, an 418 

appropriate value of RN  is obtained by the GF-discrepancy minimization-based technique [49]. On the 419 

other hand, the presentative points are selected by a GF-discrepancy minimization-based approach as 420 

well (See Appendix I). These techniques are employed in the present work to ensure the accuracy of the 421 

PDEM-based reliability analysis. 422 

In the context of dynamic reliability analysis (see Section 3.2) and sensitivity analysis (see Section 423 

4), there are two approximations involved. The first one comes from Eq.(25), and it is controlled by the 424 

number of representative points. The second approximation is introduced by Eq.(30) where   is a 425 

crucial factor. Obviously, if 0  , Eq.(31) will be identical to Eq.(29). In this case, there will be no 426 

reduction in computational efforts. On the other hand, a large value of   will lead to a nonnegligible 427 

error. Numerical experience indicates that setting   equal to a small positive value, e.g., 0.001  , 428 

provides a reasonable tradeoff between accuracy and computational efforts, as shown in the numerical 429 

examples (see Section 6). It is noted that the strategy for selecting the IRP suggested in [32] can also be 430 

adopted in the proposed method. Based on this strategy, the IRPs are identified such that they account 431 
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for a given percentage of the probability of failure. For details on this strategy, the reader can refer to 432 

[32].  433 

Finally, it is noted that in principle, the out-crossing event-based method can also be used to estimate 434 

the first passage probability. However, since the transient responses of interest are not necessarily 435 

Gaussian for the type of problems under consideration, estimating the out-crossing rate is quite difficult. 436 

Therefore, this method is not suitable in the context of this work. 437 

5.2. Optimization Procedure 438 

Once the first-passage probability and its sensitivity are obtained, the DRBTO problems shown in 439 

Eqs.(10) and (11) can be solved by employing a first-order optimizer. In the present implementation, 440 

the method of moving asymptotes (MMA) [33] is adopted. 441 

 442 

 443 

Fig. 2. Flowchart of the proposed method 444 
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Perform a full PDEM-based dynamic reliability 
analysis to obtain P F(x ( k )), and set L = 0.

Start

Identify the IRPs by Eq.(30)

Estimate the approximate sensitivity by Eq.(38)

Generate a updated design vector x ( k + 1 ) by the MMA optimizer

L≤N A and Eq.(40) is 
satisfied?Yes

Approximate the first-passage 
probability P F(x ( k + 1 )) by Eq.(31)

No

Assess the first-passage probability 
P F(x ( k + 1 )) by a full PDEM-based 

dynamic reliability analysis

k = k+1

Optimization converge?

No

Yes

End

L = L+1 L = 0

p < 5 ?

No

Yes

p = p+1

Input an initial design x ( 0 ). Set k = 0 and p = 1.
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During the optimization process, the first-passage probability has to be repetitively assessed. 446 

Therefore, the approximate dynamic reliability is employed to reduce the computation costs. Since the 447 

approximate formulation of the first-passage probability at x   in Eq.(31) relies on the exact first-448 

passage probability  FP x , a heuristic strategy to switch between the full PDEM-based dynamic 449 

reliability assessment and the approximate dynamic reliability analysis is implemented. Assume that 450 

  F
kP x  is calculated by a full PDEM-based dynamic reliability analysis where  kx  is the design vector 451 

at the -k th optimization iteration. If the design vector at the  1 -k  th iteration, i.e.,  1kx , satisfies 452 

 
   

 

1k k

k

 
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x x

x
  (40) 453 

where   is a small positive value and   denotes the 2-norm of a vector, then the approximate first-454 

passage probability    1
F

kP x  is used instead of the exact one. Besides, to avoid accumulative errors in 455 

the first-passage probability assessment, at most AN  successive approximate dynamic reliability 456 

analyses are allowed. In the present implementation, 0.05  and 5AN  . These values provide 457 

satisfactory results for the examples shown in Section 6. 458 

Generally, the optimization problem, in the context of topology optimization, is nonconvex. Thus, 459 

first-order optimizers usually converge to local optima. Moreover, the value of the penalization parameter 460 

also has an effect on the convexity of topology optimization problems. For example, it has been pointed 461 

out that topology optimization problem that minimize the compliance is convex if 1p   [50]. However, 462 

an increase of the penalization factor, which is necessary for obtaining a binary design, will make the 463 

optimization problem nonconvex [51]. Furthermore, a larger value of the penalty factor will result in 464 

problems with higher nonconvexity. In this regard, the continuation approach has been developed to 465 

make the optimization problem well-posed while achieving a binary design [52]. Although the 466 

continuation approach is heuristic, it is suggested that this approach is able to alleviate the nonconvexity 467 

of the problem and has higher probability to find a global optimum [53]. 468 

The consideration of the first-passage probability in either the objective or constraint function makes 469 

DRBTO problems even more complicated than standard topology optimization problems. Therefore, to 470 

improve the robustness and convergence of the optimization process, a continuation variation on the 471 

SIMP model [53] is considered. The optimization problem is first solved with the penalization parameter 472 

1p  . Then the penalization parameter is increased by one, and the optimization problem is solved 473 

again with the previous solution as the initial design. This strategy is repeated until the penalization 474 

parameter reaches 5p  . The corresponding flowchart of the proposed method is shown in Fig. 2. 475 

Finally, it is noted that in principle, the proposed method can be applied to problems where random 476 

excitations are modeled by stochastic processes involving thousands of random variables. Nevertheless, 477 
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the proposed method may loss its efficiency for this class of problems since the number of representative 478 

points will be large. A possible way to resolve this difficulty is to merge the proposed method into the 479 

framework of the globally-evolving-based generalized density evolution equation (GE-GDEE) [54], which 480 

is a new extension of the PDEM. This topic is a future research effort. 481 

6. Case Studies 482 

6.1. Structural Model 483 

The thirty-story five-bay braced frame structure borrowed from Zhu et al. [35] is adopted to illustrate 484 

the effectiveness of the proposed method. In particular, the topology optimization of the lateral bracing 485 

system is considered. The corresponding ground structure is shown in Fig. 3.  486 

The height of each floor is 4.572m and the width of each bay is 6.096m. Therefore, the total height 487 

and width of the structure is 137.160m and 30.480m, respectively. The structure is built with steel, so 488 

the density of the material is 37800kg m  . All columns and beams in the structure are assigned with 489 

identical section attributes. Specifically, the area of the column/beam section, BA , is 2 22.581 10 m , 490 

and the moment of inertia of the column/beam section, BI , is 3 411 0665 m.  . In addition, the section 491 

area of each brace, TA , is 2 22.581 10 m . The columns and the beams in the structure are modeled by 492 

2D Euler-Bernoulli beam elements, while the braces are modeled by 2D truss elements. Thus, the finite 493 

element model of the ground structure includes 186 nodes, 330 beam elements, 300 truss elements and 494 

a total of 540 DOFs. 495 

 496 

Fig. 3. Ground structure of the braced frame structure 497 

 498 

To consider uncertainties in material properties, the Young’s modulus of the structural members in 499 

floors 1~10, 11~20 and 21~30 are specified by three normally-distributed random variables, 1E , 2E  500 
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and 3E , respectively. Besides, nonstructural masses are also taken into account in the model. The 501 

additional masses in floors 1~10, 11~20 and 21~30 are characterized by three random variables, A1M , 502 

A2M  and A3M , respectively. These additional floor masses are considered by lumped masses uniformly 503 

distributed in the nodes of each floor, and they only influence the DOFs in the horizontal direction. The 504 

proportionality coefficients of the Rayleigh damping, i.e., 0a  and 1a , are set equal to 0.1641 and 0.0005, 505 

respectively. 506 

 507 

Table 1. Probabilistic characterization of the random variables 508 

Physical meaning Floor 
Random 

variable 

Distribution 

type 
Mean value 

Coefficient 

of variation 

Young’s Modulus 

(1011 Pa) 

1~10 E1 Normal 2.1 0.05 

11~20 E2 Normal 2.1 0.05 

21~30 E3 Normal 2.1 0.05 

Additional floor 

mass (104 kg) 

1~10 MA1 Normal 4.539 0.05 

11~20 MA2 Normal 4.539 0.05 

21~30 MA3 Normal 4.539 0.05 

Combination 

coefficient (m/s2) 

 A1 Normal 0.2g 0.10 

 A2 Normal 0.2g 0.10 

 509 

The braced frame structure is subjected to an earthquake excitation, which is modeled by a random 510 

combination of the normalized acceleration records of the El-Centro earthquake in the N-S and E-W 511 

directions: 512 

        1  2  1 E2,NS , W, ,g g gu A A t A u t A u t     (41) 513 

where  1A  and  2A  are the random combination coefficients; and ,NSgu  and ,EWgu  denote the 514 

normalized acceleration records of the El-Centro earthquake in the N-S and E-W directions, respectively.  515 

The probabilistic characterizations of all random variables involved in the structural and excitation 516 

model are shown in Table 1, in which 2g 9.807 m s  denotes the acceleration of gravity. Note that the 517 

random variables are assumed to be normally-distributed for the purpose of demonstrating the efficacy 518 

of the proposed method. Clearly, the Young’s Modulus and the additional floor mass should be positive 519 

from a physical point of view. Since the mean values of these random variables, which have small 520 

coefficients of variation, are far from zero, no truncation is necessary herein. For real-world engineering 521 

structures, the probabilistic characterization should be carefully determined such that physical 522 

constraints on structural parameters are satisfied. 523 
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6.2. Optimization of Outrigger Placement 524 

6.2.1. Problem formulation 525 

The core and outrigger structural system is a common structural configuration of high-rise buildings. 526 

The outriggers are horizontal structural components with large stiffness connecting the core and the 527 

outer columns to enhance the lateral stiffness [55]. Therefore, properly located outriggers can effectively 528 

reduce the horizontal deformation of a high-rise building. In this numerical example, the optimization of 529 

outrigger placement is considered. 530 

The columns and beams remain invariant throughout the optimization process, while only the layout 531 

of the braces is optimized. The structure is assumed to have an X-braced core by retaining all braces in 532 

the third bay. In order to achieve the outrigger feature, all braces in each floor, except for those in the 533 

mid bay, are linked to a single design variable. As a result, the optimization problem involves 30 design 534 

variables, and each design variable controls the existence of eight brace members. Specifically, if the -i535 

th design variable, ix , is equal to one, all brace members in the -i th floor exist and they form an 536 

outrigger. In this way, the number of outriggers is interpreted as “material volume”. Further, the 537 

constraint on the number of outriggers can be quantified by a volume constraint: 538 

 1 Onx vT  (42) 539 

where On  is the allowed number of outriggers; and 1v  is a 30-dimensional vector in which all elements 540 

are equal to one. The first-passage probability is defined in terms of the horizontal displacement of the 541 

rightmost node at the roof. If the horizontal displacement of interest exceeds the threshold, th 0.8mz  , 542 

the structure is assumed to be failed. The objective of the optimization is to minimize the first-passage 543 

probability of the structure under the constraint on the number of outriggers. Consequently, the 544 

optimization problem is formulated as in Eq.(10). 545 

Note that the roof displacement is selected herein only for the purpose of demonstration. Other 546 

structural responses can also be considered without any change in the method. 547 

Since the dynamic reliability analysis is the foundation of DRBTO, a reliability validation is first 548 

carried out. The probability of failure, i.e., first-passage probability, of the optimized structure with one 549 

outrigger is assessed by the PDEM and MCS. In MCS (reference value), the number of samples is set 550 

equal to 105. In the PDEM, the number of the representative points is taken equal to 700. When only 551 

one outrigger is placed in the 14-th floor, the results obtained by the two methods are shown in Fig. 4. 552 

Note that this case corresponds to the solution of the optimization problem when only one outrigger is 553 

allowed (see Section 6.2.3). It is seen from the figure that the first-passage probability assessed by the 554 

PDEM is quite accurate compared with the one obtained by MCS. However, the number of structural 555 



21 

dynamic analyses involved in the PDEM is much smaller, indicating that the PDEM is rather efficient 556 

in terms of the dynamic reliability analysis, as expected. 557 

 558 

 559 

Fig. 4. Validation of the dynamic reliability analysis (one outrigger) 560 

 561 

6.2.2. Sensitivity analysis 562 

To assess the accuracy of the reliability sensitivity analysis technique implemented in the proposed 563 

approach, the sensitivity results obtained by different methods are compared in Fig. 5. These results 564 

correspond to the optimized structure with one outrigger (see Fig. 6 (a) in Section 6.2.3). In the figure, 565 

the method combining the full PDEM and the finite difference method (FDM), named PDEM-FDM, is 566 

considered as a reference. In other words, the PDEM-FDM estimates the reliability sensitivity by 567 
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where   is a step length, and e  denotes a n -dimensional vector where all elements are zero except 569 

the e -th element which is equal to one. Note that both  FP x  and  F eP x +  are calculated by the 570 

full PDEM-based dynamic reliability analysis. Another reliability sensitivity analysis method, termed 571 

the PDEM-IRP-FDM and developed in [32], is adopted to compare the results with the proposed method. 572 

The PDEM-IRP-FDM also stems from Eq. (43) but employs the concept of IRP to enhance the efficiency. 573 

For numerical implementation, a screening parameter equal to 0.001 is selected, and the step length used 574 

in the finite difference method is set equal to 0.01. The closer the scatter points are to the diagonal 575 

(dashed line), the closer the sensitivity result is to the reference solution. It is observed that the 576 

sensitivity obtained by the proposed method is more accurate than the one obtained by the PDEM-IRP-577 

FDM for this case. 578 
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 580 

Fig. 5. Comparison of sensitivity analysis results obtained with different methods 581 

 582 

In the full PDEM, 700 representative points are considered as indicated before. As a result, the total 583 

number of structural dynamic analyses required by the reference sensitivity analysis is 21000. In the 584 

PDEM-IRP-FDM, the number of considered IRPs is 35, and the resulting number of structural analyses 585 

involved in the sensitivity analysis is 1050. The number of IRPs identified in the proposed sensitivity 586 

analysis is 29. Therefore, only 29 adjoint problems (see Appendix II) are solved in the proposed sensitivity 587 

analysis. Note that the computational effort involved in solving the adjoint problem is similar to the one 588 

involved in a structural dynamic analysis. Thus, the proposed sensitivity analysis can accurately estimate 589 

the sensitivity of the first-passage probability with much lower computational costs than both the 590 

PDEM-FDM and the PDEM-IRP-FDM. 591 

Although both the proposed method and the PDEM-IRP-FDM method are based on the concept of 592 

IRP, there are some differences in the criteria for sieving the IRPs. In fact, the PDEM-IRP-FDM is 593 

developed for general DRBDO problems where the structural analysis is treated as a black box. Therefore, 594 

the PDEM-IRP-FDM is based on a finite difference approximation to estimate the sensitivity of the 595 

first-passage probability [32]. On the contrary, the proposed method is developed on the basis of the 596 

adjoint method for transient response sensitivity analysis. These features lead to different criteria for 597 

selecting the IRPs and the resulting numbers of IRPs in the proposed method and the PDEM-IRP-FDM 598 

method. Besides, in order to obtain a stable estimate of the sensitivity of the first-passage probability, 599 

especially for nonlinear systems, a relatively large step length is required for the FDM in the PDEM-600 

IRP-FDM. This feature of the PDEM-IRP-FDM can result in extra numerical errors in sensitivity 601 

evaluation, while the proposed method avoids this issue. Therefore, the proposed method presents higher 602 

accuracy than the PDEM-IRP-FDM. For a detailed description of the PDEM-IRP-FDM, the readers 603 

can refer to [32]. 604 
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6.2.3. Optimization results 605 

For illustration purposes, the reliability maximization problem is solved by the proposed method 606 

with different numbers of outriggers. For all cases, the full design, i.e., the design in which all design 607 

variables are equal to one, is used as the initial design. The optimized structures are shown in Fig. 6. 608 

When only a single outrigger is allowed, the outrigger is located in the 14-th floor, as shown in Fig. 6 609 

(a). When two outriggers are considered, they are located in the 11-th and 15-th floors, respectively (see 610 

Fig. 6 (b)). As shown in Fig. 6 (c), the optimal locations include the 6-th, the 10-th and the 17-th floors 611 

if the permitted number of outriggers is three. The corresponding probabilities of failure of the three 612 

cases are 0.021, 0.013 and 0.005, respectively. Clearly, the probability of failure decreases when more 613 

outriggers are allowed, which is reasonable from a structural point of view. 614 

 615 

   

(a) One outrigger (b) Two outriggers (c) Three outriggers 

Fig. 6. Optimized structures with different numbers of outriggers 616 

 617 

As stated in Section 5.2, the optimization problem is repeatedly solved with different values of the 618 

penalization parameter p . Fig. 7 shows the values of the design variables obtained for different values 619 

of p , when a single outrigger is allowed. Three different initial designs are considered. Initial design 1 620 

is the full design, where all design variables equals to one. In Initial designs 2 and 3, all design variables 621 

are set equal to a random number between zero and one, where a uniform distribution is assumed. It is 622 

observed that all cases converge to the same design. For all cases, when 1p  , almost all design variables 623 

attain relatively small values. As the value of p  increases, the number of nonzero design variables 624 

decreases. When 4p  , there is only one nonzero design variable, namely, 14x , and the value of this 625 

design variable is identical to one, and therefore a binary design scheme is achieved. In fact, the 626 

optimization process converges at the stage when 4p  .  627 
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 628 

   

(a) Initial design 1 (b) Initial design 2 (c) Initial design 3 

Fig. 7. Design variable values obtained after different optimization stages (one outrigger) 629 

 630 

To get more insight into the proposed method, the outrigger placement optimization problem with 631 

one outrigger is also solved by the proposed method without the approximate dynamic reliability analysis 632 

introduced in Section 3.2 by setting . The iteration histories in terms of the value of the objective 633 

function, i.e., probability of failure, given by the proposed method without and with the approximate 634 

reliability analysis are presented in Fig. 8(a) and Fig. 8(b), respectively. While both cases converge to 635 

the same result, there are some differences between the iteration histories. It is seen that the optimization 636 

process without the approximate reliability analysis converges in less iterations. However, a full PDEM-637 

based dynamic reliability analysis has to be carried out in each iteration, leading to about 150 full 638 

PDEM-based dynamic reliability analyses during the optimization process. Although more iterations are 639 

involved in the optimization process with approximate reliability analyses, only 39 full PDEM-based 640 

dynamic reliability analyses are conducted. Note that an approximate reliability assessment requires 641 

much less structural analyses than an exact one. Therefore, the approximate formulation outlined in 642 

Section 3.2 can reduce the computational efforts involved in the reliability analyses during the 643 

optimization process in a clear manner. 644 

It is observed that jumps of the probability of failure values occur in Fig. 8 as the value of p  is 645 

increased. The reason lies in the fact that, when the value of p  is increased, the stiffness matrix of the 646 

structure controlled by intermediate design variables also changes drastically. During the initial stages 647 

of the optimization process, a number of design variables have intermediate values (see Fig. 7). As a 648 

result, the magnitude of the probability of failure jump is large. On the contrary, the values of the design 649 

variables approach zero or one during the last optimization stages. Thus, the magnitude of the jumps 650 
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become small or even negligible. Similar interpretations of this phenomenon can also be found in [35]. 651 

To verify the optimization results obtained by the proposed method, the problem is solved graphically 652 

for the case when only one outrigger is considered. By placing the outrigger in each floor and then 653 

evaluating the objective function, Fig. 9 shows the values of the objective function associated with all 654 

feasible designs. It is observed that, when the outrigger is placed in the 14-floor, the objective function 655 

achieves its minimum. The result is consistent with the one obtained by the proposed method. Similar 656 

results are obtained when more outriggers are allowed. Since the outrigger placement optimization 657 

problem is constructed by the ground structure approach with the SIMP model, the real design space of 658 

this problem is a 30-dimensional hypercube. Thereby, the 30 designs presented in Fig. 9 is a set of vertex 659 

points in the real design space. Thus, Fig. 9 does not present the whole objective function space 660 

considered in the topology optimization problem, and therefore Fig. 9 cannot be used to assert the 661 

convexity of the optimization problem. Note that in general, verifying the convexity of a function in a 662 

high-dimensional space is a nontrivial task. 663 

 664 

  

(a) Without approximate reliability analysis (b) With approximate reliability analysis 

Fig. 8. Iteration history in terms of the value of the objective function (one outrigger) 665 

 666 

  667 

Fig. 9. Validation of the optimization result (one outrigger) 668 

 669 

Finally, the number of IRPs identified by the proposed method in each optimization iteration is 670 

presented in Fig. 10, when two outriggers are allowed in the structure. It is seen that the number of 671 

IRPs is no more than 40 throughout the optimization process. Thereby, no more than 40 structural 672 
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dynamic analyses (or adjoint analyses) are involved in the approximate dynamic reliability (or a 673 

sensitivity analysis of the first-passage probability). In fact, the maximum number of IRPs in the three 674 

cases considered in this section is less than 50. Noting that a full PDEM-based dynamic reliability 675 

analysis involves 700 structural analyses, the proposed method can considerably improve the efficiency 676 

of the solution of the previous DRBTO problem. 677 

 678 

 679 

Fig. 10. Iteration history in terms of the number of IRPs (two outriggers) 680 

 681 

As mentioned above, the value of   is determined empirically. The numerical results in this section 682 

show that 0.001   can provide a good trade-off between the computational costs and the numerical 683 

errors. To get more insight into the effect of  , the number of IRPs for different values of   is presented 684 

in Fig. 11. The results correspond the optimized structure with two outriggers. It is observed that, when 685 

the value of   is between 41 10  and 31 10 , the number of IRPs fluctuates within a narrow range. 686 

This result suggests that 0.001   is a reasonable choice for the proposed method. 687 

 688 

 689 

Fig. 11. Number of IRPs for different values of   (two outriggers) 690 

 691 

6.3. Free-Form Topology Optimization of Braced System 692 

In the second numerical example, a free-form topology optimization of the braced system is considered. 693 
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on the horizontal direction, no other restriction is imposed on the form of the braced system. Thus, the 696 

number of design variables is 150, and each design variable controls the state of two brace components 697 

which are symmetrically distributed. As a result, the material volume measured by the number of braces 698 

is 2x vT , in which 2v  is a 150-dimensional vector, of which each entry is equal to two. 699 

The first-passage probability is defined in terms of the horizontal displacement of the rightmost node 700 

at the roof. If such displacement exceeds a prescribed threshold, thz , the structure is assumed to be 701 

failed. In what follows, the two types of DRBTO problems presented in Section 2.3 are solved by the 702 

proposed method to evaluate its capabilities. In both cases, the number of representative points in a full 703 

PDEM-based reliability analysis is 700, and the screening parameter is equal to 0.001. 704 

6.3.1. First-passage probability minimization problem 705 

The first-passage probability is considered as the objective function and the material volume function is 706 

considered as the constraint function, as shown in Eq.(10). In all cases considered in this section, the 707 

design variables are set equal to one at the initial design. 708 

 709 

  

(a) 20v   (b) 30v   

Fig. 12. Optimized structure with different numbers of braces when zth = 0.8m (First-passage 710 

probability minimization problem) 711 

 712 

The problem is solved by the proposed method with different values of the displacement threshold, 713 

thz , and the maximum allowable material volume, v . Fig. 12 shows the optimized structure for a 714 

threshold th 0.8mz   with allowed number of braces equal to 20 and 30. The first-passage probabilities 715 

of the optimized structures are 0.016 and 0.001, respectively. Clearly, the first-passage probability is 716 

smaller when more braces are included in the final design, which is consistent from a structural design 717 

point of view. Furthermore, it is noted that the brace layouts at the bottom sections of the two optimized 718 
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structures show close affinity, while differences of the brace layouts are mainly observed at the middle 719 

sections of the two optimized structures. In addition, no braces are left at the top sections of both final 720 

designs. Thus, the braces at the bottom section of the frame structure are more significant in reducing 721 

the first-passage probability of the structure, which is anticipated. 722 

 723 

  

(a) 30v   (b) 50v   

Fig. 13. Optimized structure with different numbers of braces when zth = 0.6m (First-passage 724 

probability minimization problem) 725 

 726 

Similarly to the previous figure, Fig. 13 shows the corresponding optimized structures for a threshold 727 

value th 0.6mz   and maximum allowed material 30v   and 50v  . The optimization results are 728 

shown in (a) and (b), respectively. The first-passage probabilities associated with the optimized 729 

structures are 0.047 and 0.011, respectively. It is noted that, when the number of braces increases, the 730 

probability of failure, i.e., the first-passage probability, decreases. Besides, the braces at the bottom 731 

sections of the two optimized structures also show highly similar layouts, and in the case when 50v  , 732 

more braces are placed at the middle and top sections of the structure. In addition, when the number of 733 

braces is 30, the probability of failure of the optimized structure with th 0.6mz   is larger than the 734 

probability of failure associated with case in which th 0.8mz  , as expected. These features illustrate 735 

the consistency of the optimization results to some extent.  736 

It is interesting to note that the probability of failure of the ground structure, i.e., the structure with 737 

all possible braces (300 braces), is 0.004 for a displacement threshold equal to 0.8m. This value is larger 738 

than the probability of failure of the structure shown in Fig. 12 (b), where only 30 braces are involved. 739 

This result reveals the fact that more unoptimized braces does not necessarily result in lower probability 740 

of failure. Clearly, the optimized structure can achieve higher reliability with less material consumption. 741 
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Therefore, the significance of performing DRBTO in the design of stochastic dynamical systems is 742 

evident. 743 

 744 

 745 

Fig. 14. Iteration history in terms of the measure of discreteness (First-passage probability 746 

minimization problem, th  0.8mz   and 30v  ) 747 

 748 

To quantify the extent to which the different designs obtained during the optimization process are 749 

binary, a measure of discreteness is defined as [56] 750 
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For a real binary design, the measure of discreteness is zero. For a design with lowest discreteness, i.e., 752 

the design in which all design variables are equal to 0.5, the measure of discreteness is one. The 753 

corresponding measure of all other cases is between zero and one. Evidently, the lower the value of the 754 

measure of discreteness is, the closer the design is to a binary design. Fig. 14 shows the iteration history 755 

in terms of the measure of discreteness for the case with displacement threshold th 0.8mz   and the 756 

allowable material volume 30v  . Since a binary design, namely, the design corresponding to the 757 

ground structure, is adopted as the initial design, the measure of discreteness at the initial step is zero. 758 

The measure of discreteness keeps increasing during the stage with 1p  , which indicates that the 759 

optimization without penalty results in designs with a number of intermediate design variable values. 760 

By increasing the intensity of penalty, the measure is driven to a low level. At the last stage of the 761 

optimization process, the measure of discreteness is close to zero. Therefore, the optimization leads to a 762 

near-binary solution. 763 

6.3.2. Material volume minimization problem 764 

The material volume in terms of the number of braces is minimized subject to a constraint on the 765 

first-passage probability, as shown in Eq. (11). 766 

The example is solved by the proposed method for two different displacement thresholds, namely, 767 
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th 0.8mz   and th 0.6mz  . The full design is used as initial design for the two cases. The allowable 768 

probability of failure, th
FP , is set as 0.01 in both the cases. The optimized structures are shown in Fig. 769 

15. The number of brace members is 24 and 54 for threshold levels 0.8m and 0.6m, respectively. 770 

Note that more braces are located in the bottom section of the structure as expected. Besides, no 771 

braces are placed at the top section of the structure as well. Compared with the structure obtained with 772 

th 0.8mz  , more brace members are necessary for the case with th 0.6mz  . This is reasonable from 773 

the engineering viewpoint, since stricter performance requirements are imposed in the latter case. 774 

Fig. 16 shows the iteration history in terms of the probability of failure with displacement threshold 775 

th 0.8mz  . It is seen that the optimization process converges when the penalization parameter p776 

reaches 3 and that the probability of failure converges to 0.01. Thus, the constraint on the probability 777 

of failure is active at the final design. 778 

 779 

  

(a) zth = 0.8m (b) zth = 0.6m 

Fig. 15. Optimized structures for different displacement thresholds (Material volume minimization 780 

problem) 781 

 782 

 783 

Fig. 16. Iteration history in terms of the probability of failure (Material volume minimization problem, 784 

zth = 0.8m) 785 
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The number of brace members involved in the optimized structures and the corresponding 787 

probabilities of failure of all cases considered in Section 6.3 are listed in Table 2. The structures shown 788 

in Fig. 12 (a) and Fig. 12 (b) are obtained by solving the first-passage probability minimization problem, 789 

while the structures shown in Fig. 15 (a) are generated by solving the material volume minimization 790 

problem. Although the three structures are obtained by solving different optimization problems, the 791 

relationship between the number of braces and the probability of failure of the optimized structures 792 

follows a consistent trend. In particular, the number of remained braces in the structure obtained by 793 

minimizing the material volume is between the ones obtained in the two optimized structures which 794 

minimize the first-passage probability. Accordingly, the probability of failure of the structure in Fig. 15 795 

(a) is also between the probabilities of failure of the two structures shown in Fig. 12. Similar trend can 796 

be observed in the three cases when th 0.6mz   is considered. Then, the optimization results obtained 797 

by the proposed method are reasonable from a qualitative point of view. 798 

 799 

Table 2. Information of optimized structures for different cases 800 

Optimized 

structure 

Displacement 

threshold 

Number of 

braces 

Probability of 

failure 

Fig. 12 (a) 

0.8m 

20 0.016 

Fig. 15 (a) 24 0.010 

Fig. 12 (b) 30 0.001 

Fig. 13 (a) 

0.6m 

30 0.047 

Fig. 13 (b) 50 0.011 

Fig. 15 (b) 54 0.010 

 801 

Finally, the effect of uncertainties on the reliability of the final designs is investigated. If all random 802 

variables are set equal to their mean values, the extreme value of the displacement of interest without 803 

braces is 0.39m. This value is lower than the two displacement thresholds considered in the present 804 

example. Thus, the frame structure without braces satisfies the displacement constraint under 805 

deterministic configurations. In other words, if no uncertainties are taken into account, no braces are 806 

necessary in the structure generated by topology optimization. However, the probabilities of failure of 807 

the frame structure without braces for th 0.8mz   and th 0.6mz   are 0.089 and 0.201, respectively. 808 

Clearly, the probability of failure of the structure obtained by deterministic topology optimization is 809 

unacceptably high. Therefore, the consideration of uncertainties in topology optimization is of great 810 

significance for ensuring the safety of the optimized structure. 811 
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7. Concluding Remarks 812 

In the present paper, a method for dynamic-reliability-based topology optimization (DRBTO) is 813 

proposed. Both the first-passage probability minimization problem under material volume constraint 814 

and the material volume minimization problem under a single first-passage probability constraint are 815 

considered. To solve the DRBTO problems, the probability density evolution method (PDEM) is adopted 816 

to assess the first-passage probability. In addition, an approximate formulation of the first-passage 817 

probability at perturbed designs based on the important representative points (IRPs) is derived to 818 

enhance the efficiency of the repeated dynamic reliability analyses. The binary design variables are 819 

treated by the SIMP model. The sensitivity of the first-passage probability with respect to the design 820 

variables is estimated with the aid of the adjoint method and the approximate formulation of the first-821 

passage probability. With the obtained first-passage probability and its sensitivity, the DRBTO problems 822 

are solved by the MMA optimizer. Finally, the effectiveness of the proposed method is illustrated by 823 

different DRBTO problems involving a braced frame structure. Some final remarks include: 824 

(1) The PDEM is a foundation of the proposed method. The PDEM can be employed to assess the first-825 

passage probability of linear or nonlinear stochastic systems under stationary or nonstationary 826 

excitations. Due to the generality of the PDEM, the proposed method has the potential of solving 827 

DRBTO problems of a number of stochastic dynamical systems in an efficient manner. 828 

(2) Two different formulations of the DRBTO problem are considered in the present paper. The first 829 

one minimizes the probability of failure and the second one minimizes the material volume under 830 

the constraint on the probability of failure. Noting that the proposed method follows a standard 831 

optimization procedure, the optimization problem of both formulations can be solved in a similar 832 

manner. 833 

(3) By introducing the concept of IRPs, an approximate formulation of the first-passage probability 834 

based on the PDEM is obtained. The approximate formulation can help to alleviate the 835 

computational efforts in the context of DRBTO without compromising the accuracy of the results. 836 

(4) A relationship between the sensitivity of the first-passage probability and the transient response is 837 

enabled by virtue of the approximate failure probability formulation. By integrating the adjoint 838 

sensitivity analysis of transient responses, the sensitivities of the first-passage probability with 839 

respect to the design variables can be efficiently estimated. This allows the implementation of a first-840 

order optimizer with reduced computational costs. 841 

(5) The results of the example problems indicate that the proposed method represents a practical and 842 

useful numerical tool for the solution of a class of optimization problems. 843 
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 844 

Future research efforts include the consideration of more complex stochastic excitation models, for 845 

example, models characterized by thousands of random variables, and the application of the proposed 846 

method to structures with nonlinearity. The extension of the proposed method to the topology 847 

optimization of continuum structures represents another potential research direction. 848 
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Appendix I: Procedure of the PDEM-based dynamic reliability analysis 856 

A general and brief numerical procedure for the PDEM-based dynamic reliability analysis is summarized 857 

as follows: 858 

Step I.1: The probability space   is partitioned, and a set of representative points are selected [39]. 859 

The representative point set is selected by a GF-discrepancy minimization-based approach [40, 860 

48]. The number of the representative points is also determined with the aid of the GF-861 

discrepancy [49]. Denote the representative point set by   R

1q

N

q , in which  1 2, ,,q N   

T
  862 

is the -q th representative point, and RN  is the total number of representative points. The 863 

assigned probability of q  is defined as 864 

  d
q

q
V

P p      (45) 865 

where qV  is the representative region of q  and it is characterized by a Voronoi cell. For more 866 

details about the GF-discrepancy and the point selection strategy, readers can refer to Chen 867 

and Chan [40]. 868 

Step I.2: Carry out the deterministic structural analysis at each representative point, namely, 869 

R, 1 2 ,, ,q q N     by the Newmark-b method. The structural response of interest, 870 

 , ;qZ t x , and consequently its normalized extreme value  ext ;qZ x , are obtained. Then, the 871 

virtual stochastic process at each representative point,  , ;qW  x , and its velocity process, 872 
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 , ;qW  x  , are generated as indicated in Eq.(14). 873 

Step I.3: For R1,2, ,Nq  
, substitute  , ;qW  x  with  , ;W  x  in the GDEE, i.e., Eq.(15), and a 874 

set of discretized GDEE are obtained: 875 
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  (46) 876 

where      ,, ; d, ;
q

W
V

q
W wp w p  x x   . Subsequently, the partial differential equations are 877 

solved by a finite difference method with total variation diminishing (TVD) scheme with the 878 

discretized initial condition      
0

, ;q
qWp w w P





 x . For a detailed numerical scheme of the 879 

finite difference method, the readers are referred to Li and Chen [19]. 880 

Step I.4: Assess the PDF of the normalized extreme value of the structural response of interest by 881 

synthesizing the solutions of the GDEE at all representative points. In fact, the integral in 882 

Eq.(18) is calculated in the manner of summation: 883 

      
R

ext ext
1

;;
N

q
Z Z

qp z p z


 xx  (47) 884 

where        
ext

; , 1;q q
WZp pz w z  x x , according to Eq.(17). 885 

Step I.5: Finally, evaluating the one-dimensional integral in Eq.(19) by a numerical scheme, for instance, 886 

the trapezoidal rule, yields the first-passage probability. 887 

Appendix II: Adjoint method for sensitivity analysis of structural response 888 

The adjoint method is widely adopted in topology optimization, especially when structural analyses are 889 

time consuming. There are two different adjoint approaches for sensitivity analysis of dynamical 890 

structural systems [46], namely, the “differentiate-then-discretize” approach and “discretize-then-891 

differentiate” approach. In this contribution, the “discretize-then-differentiate” approach [3, 57] is 892 

utilized. 893 

Consider the dynamical system at a given representative point q : 894 

        ; ; ; , ;q q q q t  M x Y C x Y K x Y f x      (48) 895 

of which the initial condition is 896 

    
.

, 0; ;  , 0;q qt t   Y 0Yx 0 x   (49) 897 

As previously pointed out, the Newmark-b method is used to solve the equation of motion. A discretized 898 

recurrence formula of the Newmark-b method is cast as [58] 899 

    2 2 2
1 1 1 10.5 0.52j j j j j jh h h             R PY f QYf f Y  (50) 900 
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where h  is a constant time step size;   and   are two parameters in the Newmark-b method; 1jY , 901 

jY  and 1jY  are the -m dimensional displacement vectors at time instants  1 1jt j h   , jt jh  902 

and  1 1jt j h   , respectively; 1jf , jf , and 1jf  are the load vectors at time instants 1jt  , jt  and 903 

1jt  ; and the coefficient matrices, R , P  and Q , are respectively defined as 904 

 2h h   C KR M  (51) 905 

     22 1 2 0 5 2.h h       P M C K  (52) 906 

     20.51 h h       Q M C K  (53) 907 

As mentioned previously in Section 2.2, a special case of the Newmark-b method, the constant average 908 

acceleration method is adopted. In other words,   and   are set equal to 0.5 and 0.25, respectively. 909 

Differentiating Eq.(50) with respect to design variable ex  yields 910 
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where 912 
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 (57) 915 

As indicated in Section 2.2, the structural response of interest, Z , is a differentiable function of the 916 

displacement vector. Therefore, the sensitivity of the -p norm function in Eq.(39) with respect to design 917 

variable ex  is 918 
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 (58) 919 

in which  , ;qj jZ Z t x . If Z  is the displacement of the -s th DOF, i.e., ,jj sZ Y , where ,j sY  is the 920 

-s th element of jY , Eq.(58) is reduced to 921 
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where se  is the -s th standard basis vector in an -m dimensional Euclidean space, whose all components 923 

are zero except the s -th component which is equal to one. By multiplying Eq.(54) by an -m dimensional 924 

adjoint vector 
T 1N j   for T1,2, ,Nj  

 and adding them to the right side of Eq.(59), the sensitivity 925 

is equivalently expressed as 926 
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where 928 
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Noting that the initial condition in Eq.(49) is independent of the design vector, then 0 ex Y 0 . In 930 

Eq.(60), 1Y  and its gradient with respect to ex  are also required. In fact, 1Y  is computed by a 931 

central difference scheme using 0Y  and 0Y  [3, 57]. Due to the initial condition given in Eq.(49), both, 932 

1Y  and 1 ex Y  are zero vectors. In addition, both, 0 ex f  and 1 ex f  are zero vectors as well. 933 

When the structure is subjected to earthquake excitations, the load vector is also a function of x . 934 

According to Eq.(7), the partial derivative of the load vector is given by 935 
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To eliminate j ex Y , T1,2, ,Nj  
 from Eq.(60), the adjoint problem is derived as follows: 937 
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 (63) 938 

By solving Eq.(63), the adjoint vectors, j , T1,2, ,Nj  
, are obtained. Substituting j , 939 

T1,2, ,Nj  
, into Eq.(60) gives the sensitivity: 940 
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It is noted that Eq.(63) consists of TN  systems of linear equations, and the size of each system is 942 

equal to the number of DOFs of the considered stochastic dynamical system, i.e., m . Therefore, the 943 

numerical cost for solving Eq.(63) is identical to the one associated with the solution of the equation of 944 

motion, Eq. (6), at a given realization of the random vector. In the adjoint method, Eq.(63) is solved 945 

once, while the FDM and the DDM need to solve the equation of motion n  times. Noting that the 946 

number of design variables, i.e., n , is usually large in topology optimization, the adjoint method adopted 947 

herein is much more efficient than the FDM and the DDM. Thereby, the adjoint method is particularly 948 

suitable for topology optimization problems. 949 
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