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A B S T R A C T   

Reforested areas can act as important carbon (C) sinks. In China, extensive reforestation has been carried out in 
mountainous regions, with resulting C storage affected by forest age, forest type and environmental settings. 
Evaluations of forest C sequestration therefore require a detailed spatio-temporal analysis of C storage dynamics. 
Here, we used aboveground biomass (AGB) of trees as a proxy for overall forest C storage to investigate 
spatiotemporal patterns and changes in AGB of 136,988 individual trees distributed over 1399 permanent plots 
in the forests of Sichuan province, China. Mean AGB of young plantation forests increased more rapidly at 5.25 
± 1.15 Mg ha− 1 year− 1 than that of natural forest (2.56 ± 0.38 Mg ha− 1 year− 1). Forest stand age, tree species 
diversity and tree density were superior predictors of AGB when compared to environmental and climatic factors. 
Linear Mixed Effect models accounting for stand age showed significant AGB storage increases with increasing 
soil depth as well as with decreasing longitude and altitude. Stocks in plantation forests also increased with 
southerly exposition and decreasing slope steepness, while in natural forests, slope steepness showed positive 
correlations. Warming temperatures depressed AGB increases across all forests, while decreasing annual pre-
cipitation negatively affected AGB increases in natural forest, only. Our study highlights that, to sustain forest 
AGB gains into the future, management especially of forest plantations needs to promote species-rich, unevenly- 
aged, climate-adapted forests stands.   

1. Introduction 

Responding to widespread logging and degradation of forest eco-
systems across China in the last century (Yu et al., 2011), the country 
initiated a series of large-scale re-forestation and afforestation projects 
(Brandt et al., 2018; Tong et al., 2018). Accordingly, China now hosts 
the world’s largest area of plantation forest (Payn et al., 2015), covering 
~79.54 million ha and accounting for 36.45% of China’s forest area. In 
2018, China’s forest plantations contained a total estimated stock vol-
ume of wood of 3.39 billion m3 (Cui & Liu, 2020), with their C stocks 
increasing from 226.12 to 1536.56Tg C between 1977 and 2018 (Zhao 
et al., 2021). Concurrently, China is protecting its naturally regrowing 

secondary and remaining old-growth forests (Deng et al., 2017). 
Partially offsetting China’s anthropogenic CO2 emission (Tong et al., 
2020), these measures have created a significant temporary carbon (C) 
sink that is expected to increase further in the future (Deng et al., 2017). 

Recent studies assessing C stock dynamics in China under climate 
change and anthropogenic disturbances (Fang et al., 2018; Tang et al., 
2018) predict forest C storage to increase to 2.97Pg C in 2030 under the 
assumption of a stable forest area. Evaluating regional impacts of forest 
expansion on C storage, Wang et al. (2020) demonstrate that the 
terrestrial C sink in southwest China has generally been underestimated. 
Research investigating combined effects of recent forest expansion and C 
density changes (Fang et al., 2014a; Li et al., 2016; Tong et al., 2020) 

* Corresponding author at: Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, 
Chengdu 610068, China. 

E-mail address: liting@sicnu.edu.cn (T. Li).  

Contents lists available at ScienceDirect 

Ecological Indicators 

journal homepage: www.elsevier.com/locate/ecolind 

https://doi.org/10.1016/j.ecolind.2022.109289 
Received 31 May 2022; Received in revised form 3 August 2022; Accepted 5 August 2022   

mailto:liting@sicnu.edu.cn
www.sciencedirect.com/science/journal/1470160X
https://www.elsevier.com/locate/ecolind
https://doi.org/10.1016/j.ecolind.2022.109289
https://doi.org/10.1016/j.ecolind.2022.109289
https://doi.org/10.1016/j.ecolind.2022.109289
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ecological Indicators 142 (2022) 109289

2

furthermore highlight that recent expansions in forest area also play a 
major role in forest C stock increases. In line with its red line policies 
(Sang & Axmacher, 2016), the Chinese government is nonetheless 
strongly limiting any new conversions of arable land to forests, so that 
opportunities for future expansions of China’s forest area and associated 
C storage gains are rapidly disappearing. 

Despite positive forest biomass responses to increasing atmospheric 
CO2 (Schimel, Stephens & Fisher, 2015), the source function at least of 
intact mature tropical forests has become saturated, or even shown de-
clines in recent years (Hubau et al., 2020; Koch, Brierley & Lewis, 2021). 
High productivity levels were observed both in plantation forests and in 
highly phytodiverse natural forests (Guo & Ren, 2014). Compared with 
primary and plantation forests, above-ground C stocks in secondary 
forests were generally lower, indicating a key role for plantations and 
primary forests in maintaining forest C storage (Brown et al., 2020; 
Poulsen et al., 2020). Overall, a sound understanding of AGB stocks and 
their recent dynamics in natural and plantation forests is indispensable 
to gain an understanding of current and future C storage patterns linked 
to China’s forests, and to estimate their climate change mitigation po-
tential (Tong et al., 2020). 

Numerous approaches can be used to quantify the dynamics of AGB 
stocks. Remote sensing and ecological models based on large-scale forest 
coverage are common, cost-effective approaches used to estimate and 
predict C stocks under different climate scenarios (Deng et al., 2017; 
Koch, Hubau, & Lewis, 2021, Tong et al., 2020; Tong et al., 2018). 
However, these approaches are problematic at regional and local scales 
especially in species-rich mountainous environments (Payn et al., 2015; 
Fang et al., 2018; Tang et al., 2018). Here, long-term field monitoring 
provides an essential alternative. Long-term monitoring also allows 
specific assessments of the individual impacts of key factors like forest 
age, tree diversity and spatial heterogeneity, on AGB stocks and 
dynamics. 

Tree species richness (Huang et al., 2018), local environmental 
conditions (soil moisture, evapotranspiration) (Ratcliffe et al., 2017), 
climate change (García-Palacios et al., 2018) and the forest stand 
structure (Ouyang et al., 2019) are widely considered important con-
tributors towards forest productivity, stability, and resulting biomass 
and C pools. All these factors have highly differential spatiotemporal 
effects on productivity and associated biomass changes in natural forest 
ecosystems (Qie et al., 2017; Ratcliffe et al., 2017; Trotsiuk et al., 2020). 
For example, the C sequestration capacity of natural forest decreased 
from southeastern to northwestern parts of Tibet province (Liu et al., 
2021). Therefore, to understand the regional-level C dynamics, it is 
necessary to study each case based on local survey data. 

In this study, we used aboveground biomass (AGB) of trees as a proxy 
for forest C storage, assessing AGB and its dynamics on 1399 permanent 
plots in the forested regions of Sichuan province based on four-decades 
long-term forest monitoring. We understand that AGB in this context 
only represents above-ground biomass of living trees. However, these 
different carbon stocks are strongly linked to overall above-ground 
biomass (Mokany et al., 2006). Also, compared with trees, shrubs and 
herbaceous plants located in the forest account for a much smaller 
proportion of the total forest biomass. Therefore, we regard AGB as a 
representative of forest C storage. We aimed to 1) quantify the change of 
mean annual AGB stocks separately for planted and naturally generated 
forests based on four decades of observation and to 2) identify envi-
ronmental, forest structure-related and climatic factors explaining the 
observed patterns. We contextualize our findings in view of their im-
plications for future forest management. 

2. Materials and methods 

2.1. Study area 

Our study area is located in the transition zone between the Qinghai- 
Tibet high plateau and the Sichuan basin (98̊39ʹE – 104̊24ʹE, 26̊12ʹN – 

34̊14ʹN) that falls into China’s subtropical evergreen broadleaf forest 
and warm temperate deciduous broadleaf forest regions (Sichuan 
Vegetation Cooperation Group, 1980). With regards to its biodiversity, 
the area is located on the western edge of the southwest China hotspot 
(Myers et al., 2000). Our study region mainly covers high-mountain 
areas dissected by deep valleys, spanning an altitudinal range from 
400 to 4460 m. The mean annual temperature at our study sites ranges 
from 0 ◦C to 16.87 ◦C, while the annual precipitation ranges from 200 to 
1,700 mm, with precipitation maxima occurring between April and 
October (Sichuan Vegetation Cooperation Group, 1980). Maximum 
annual mean temperatures range from 23.0 ◦C to 35 ◦C, and minimum 
annual mean temperatures from − 34.0 ◦C to − 0.8 ◦C. The area was 
historically forested, but suffered heavy deforestation from the 1950s. In 
recent decades, the forested area of Sichuan Province has nonetheless 
increased rapidly as a result of afforestation and natural forest restora-
tion projects, and forests now cover 40% of its total land area. By the end 
of 2019, Sichuan’s forest area amounted to 19.26 million ha, with 
plantations covering ~20% of that area (Cui & Liu, 2020). 

As the province with the fourth largest total forest cover and the third 
highest carbon density (Cui & Liu, 2020), Sichuan plays a crucial role for 
China’s national forest cover and the associated C storage. The prov-
ince’s natural forests are conserved under the ‘Natural Forest Protection 
Project’ and mostly distributed in alpine valleys, where naturally 
regenerating forests are characteristically highly biodiverse (State Forest 
Administration, 2012). In contrast, the province’s forest plantations, 
mainly created under the ‘Grain for Green’ programme, are character-
ized by a much lower diversity and more homogenous age structure 
(State Forest Administration, 2012). 

Forests in our study region are composed of coniferous, mixed 
coniferous and broad-leaved, and mixed evergreen and deciduous 
broadleaved forests. Dominant native species accounting for >1% of 
tree biomass across all censuses and plots belong to the conifer genera 
Abies, Picea, Pinus, Sabina and Tsuga, and to the broadleaved genera 
Acer, Betula, Davidia, Populus and Tilia. Non-native evergreen species 
forming noteworthy components of the forests are Pinus elliottii, P. taeda, 
Cryptomeria japonica, Eucalyptus globulus and further Eucalyptus spp. 

2.2. Forest inventory 

Permanent and temporary sampling plots have been regularly 
monitored by the Sichuan provincial government since the 1960s. 
Nonetheless, data from some sampling plots was only estimated in the 
1960s, with no forest resource surveys carried out between 1979 and 
1988, either. Since then, forest resource surveys were conducted every 
five years. For this study, we therefore used forest inventory data from 
the eight distinct survey instances where reliable data was available: 
1979, 1988, 1992, 1997, 2002, 2007, 2012 and 2017. Each inventory 
consisted of records from a combination of permanent and temporary 
plots distributed evenly across western Sichuan province. Each survey 
plot measured 0.10 ha (31.62 m*31.62 m) prior to 2002, when the size 
was reduced to 0.067 ha (25.84 m × 25.84 m). Sample plots were 
established along a stable N-S, E-W grid system, with distances of 4 or 8 
km between neighboring plots in both a N-S and E-W direction. The 
forest inventory plots encompass both naturally regenerated and plan-
ted forests across different successional stages, from stand initiation to 
mature forests (stand age >100 years, Liu et al., 2014). To ensure data 
comparability, we decided to exclude bamboo-dominated vegetation. 

We then selected permanent plots for our study based on the 
following criteria: 1) known origin of forest and no occurrence of 
additional management like re-planting to replace dead trees or logging; 
2) represented in at least two census dates; 3) no obvious measurement 
errors or missing data, and 4) available estimate of the overall stand age. 
A total of 1399 permanent plots that were also unaffected from any 
natural disasters linked to fire or pest mass-outbreaks, were selected for 
analyses. Of these, 1,248 plots were classified as ‘natural forest’, with 
their vegetation differing greatly in age, diversity and structure. The 
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remaining 151 plots represented the region’s ‘plantation’ forests (Fig. 1, 
see Appendix S1 and S2, Table S1 and S2). 

The oldest planted forests in the study area were established in the 
1960s, but most forest plantations were much younger, only becoming 
established between 1999 and 2014 (State Forest Administration, 
1999–2014, Fig. S1). Most of these forest plantations are now ~20 years 
old, while their tallest trees already reach heights >45 m. The historical 
land use at reforested sites included agricultural land, “wasteland” and 
clear-felled plantation forests. 

We used above ground biomass (AGB) of the forest trees as a measure 
of their cumulative productivity. AGB is integral to multiple ecosystem 
services like the provisioning of wood fiber and forest C storage (Choj-
nacky, Heath & Jenkins, 2014). Plot-level AGB (Mg ha− 1) was calculated 
by summing the biomass of all live trees >5 cm diameter at breast height 
(DBH), measured at a trunk height of 1.3 m, in each plot for each 
measurement. AGB of each live tree was estimated using the ‘scaling-up 
factor continuous function’ method (Fang et al., 2001) (see Appendix 
S1). We then calculated the AGB per unit area by adding the biomass for 
individual trees recorded on each sampling plot. Subsequently, we also 
calculated the annual net aboveground biomass change (δ AGB, Mg ha− 1 

year− 1) as the difference of aboveground biomass on a plot between two 
consecutive census dates, divided by the time between the census dates 
in years (Brienen et al., 2015). Where, due to measurement errors, 
potentially in combination with variations in water content of live tree 
trunks (Pastur et al., 2007), DBH for a given tree decreased between 
individual measurements (0.46 % of cases), we generally interpreted 
this pattern as a measurement error and corrected the smaller mea-
surement by interpolating DBH values from the previous and the sub-
sequent measurement (Phillips et al., 1998). Where data was only 
available for two survey periods, and we observed suspicious patterns 

like data gaps, decreases in values or unrealistically high increases in 
DBH, tree height or volume in the data when compared to previous 
surveys, the data was omitted from analysis. 

For the analysis, we then combined AGB data with data on forest 
structure, environmental settings and meteorological data. Forest 
structure data comprised trees density (individuals ha− 1), tree species 
richness, canopy cover (%) and mean stand age (years), while the data 
providing further environmental context included soil depth (cm depth 
of topsoil, measured to the underlying bedrock), slope (degree), aspect 
(degree), latitude (degree), longitude (degree) and altitude (m). Further 
soil data like soil pH, density or texture was excluded due to a lack of 
historical data. 

2.3. Climatic data 

The two meteorological datasets we included cover total annual 
precipitation and mean annual temperature (MAT). All climatic data 
were collected from 1979 to 2017 at 65 weather stations located within 
our study region. These data were obtained from the Chinese National 
Metrological Information Center/China Meteorological Administration 
(https://data.cma.cn). Based on data for each weather station and in-
terpolations to a spatial resolution of 1 km × 1 km, climatic factors of 
each plot were estimated using a Kriging interpolation method for the 
regionalizing of our variables at different scales, with further in-
terpolations conducted to adjust the temperature to the respective mean 
plot elevation (Piao et al., 2011). We used this approach to individually 
calculate the mean value of the mean annual temperature and annual 
precipitation between two consecutive censuses for each plot. 

Fig. 1. Distribution of the permanent sampling plots (≥2 censuses) in Sichuan province.  
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2.4. Data analysis 

We used Linear Mixed Effect models (LMEs) to investigate spatio-
temporal patterns and changes in the mean above-ground biomass 
(AGB) of the forest plots. Year was included as a fixed explanatory 
variable and “plot ID” as a random factor (Eq. (1)). The AGB was log- 
transformed, and a Gaussian error structure was applied in the 
models. Analyses were conducted separately for plantation and natural 
forests. To account for potential spatial dependencies in permanent 
sampling plots, we included a spatial autocorrelation variance factor 
(Dormann et al., 2007) in respective models: 

Log10
(
AGBi,j

)
= β0 + βi × Yeari,j + πi + ei,j (1)  

where Yeari,j represents the ith inventory census at the jth plot; βi are the 
coefficients to be estimated; πi is a random plot effect and eij represents 
the random error. 

Considering the important effect of stand age, we established the 
specific relationship between AGB and stand age. The formula was 
log10(AGB) – log(Stand.age + 1), separated into natural and planted 
forest. To obtain age-independent responses of AGB to environmental 
factors, we therefore controlled for the specific influence of forest age in 
the latter models. We also used LMEs to analyze the influence of forest 
structure, environmental and climatic factors on AGB stocks. These 
analyses were based on three different sets of models. Environmental 
models focused on specific plot characteristics and included the vari-
ables slope, soil depth, altitude, aspect, longitude and latitude as pre-
dictors. Forest stand structure models took account of the predictors tree 
species richness, density and canopy cover. Climate models that were 
only used to explore the impact of climate change on δ AGB exclusively 
included both MAT and annual precipitation as main predictors. A 
similar model structure was used in (Blundo et al., 2021). In the 
following section, we firstly present information on AGB stocks (Eqs. (2) 
and (3)), and then on the net temporal change of AGB (δ AGB, Eqs. (4) 
and (5)). In Eqs. (2) and (3), we additionally consider a temporal 
autocorrelation variance factor to account for general temporal trends in 
the data (Zuur et al., 2009). Similarly, to address potential issues asso-
ciated with spatial autocorrelation, we integrate a spatial autoregressive 
structure based on latitude and longitude (Dormann et al., 2007) in Eqs. 
(4) and (5). 

The overall structure of the full models used can be written as: 

Log10
(
AGBi,j

)
= β0 + β1 × Slopei,j + β2 × Soil depthi,j + β3 × Altitudei,j + β4

× Aspectsi,j + β5 × Latitudei,j + β6 × Stand agei,j + πi + ei,j

(2)  

Log10
(
AGBi,j

)
= β0 + β1 × Treerichnessi,j + β2 × Trees densityi,j + β3

× Canopyi,j + β4 × Stand agei,j + πi + ei,j (3)  

δAGB = β0 + β1 × MAT+ β2 × Pre+ β3 × MEAN Age+ πi + ei (4)  

δAGB = β0 + β1 × MAT+ β2 × Pre+ β3 × Slope+ β4 × Soil depth+ β5

× Altitude+ β6 × Aspects+ β7 × Latitude+ β8

× MEAN Age+ πj + ej

(5) 

with models incorporating the predictor variables slope or inclina-
tion, soil depth, altitude, aspect, latitude, tree species richness/plot, tree 
density and canopy cover of all trees at the ith census period in jth plot, 
MAT represents the mean annual temperature for the period between 
the ith census year and the i + 1th census date, and Pre represents the 
mean annual precipitation between the period ith census and i + 1th 
census at the jth plot. Stand age represents the estimated mean age of the 
trees on the plot at census i, forest type differentiates between natural 
and planted forests, and MEAN_Age finally represents the mean age of 
the forest at the mid-point between census i and census i + 1. 

All predictor variables were standardized using z-transformations. 
We fitted models with each possible combination of predictor variables 
and used a dredge function to screen models automatically based on AIC 
(Akaike’s information criterion) values, focusing on averaged co-
efficients from models within δ AIC <4 units (Grueber et al., 2011). We 
have additionally used the BIC (Bayesian Information Criterion) and 
results are consistent with AIC criteria (Appendix Table S3). We there-
fore would like to keep the AIC results. After fitting each model, we 
looked at its residual diagram to establish whether the residuals of the 
model were evenly distributed (Chakrabarti and Ghosh, 2011). All 
analysis was conducted in R v4.0.2 (R Core Team, 2019). Package “nlme” 
(Pinheiro, 2020) were used for linear mixed models Package “spam” 
(Rousset & Courtiol, 2021) was used to calculate spatial autoregressive 
structure; “MuMIn” package was used for the model selection and 
averaging (Barton, 2020). Further information about the model out-
comes is presented in Appendix S1. 

3. Results 

3.1. Differences in forest structure, environmental factors and climate 
change between natural versus plantation forests 

Plots representing different forest types showed some systematic 
differences not only in key biological factors, but also in their mean 
environmental settings (Fig. 2, Table S2). Compared to natural forests, 
planted forests were on average younger, resulting in a smaller mean 
DBH and canopy height. Planted forests also commonly occupied loca-
tions at lower altitude in more southerly areas of the study region on less 
steep slopes that furthermore experienced higher levels of precipitation, 
resulting in overall more favorable growth conditions. In line with our 
expectations, planted forests also showed a significantly lower diversity 
in tree species (mean and standard error of planted forest: 1.65 ± 0.029; 
natural forest: 3.45 ± 0.012, P < 0.001, Fig. 2). 

3.2. Changes in AGB stocks 

During the study period (1979–2017), the mean value (with standard 
error SE) of AGB stocks for natural forest was 250 ± 2.40 Mg ha− 1, while 
plantation forests had slightly lower AGB stocks of 215 ± 7.62 Mg ha− 1. 
AGB stocks increased significantly for both plantation and natural for-
ests between 1979 and 2017. LME models show a mean AGB increase of 
5.25 Mg ha− 1 yr− 1 (95% CI: 5.18–5.32, t = 4.57, P < 0.001) in forest 
plantations and of 2.56 Mg ha− 1 yr− 1 (95% CI: 2.53–2.58, t = 6.78, P <
0.001) in natural forests. Reflecting their greater mean age, natural 
forests contained a higher mean total AGB, but this difference is 
currently rapidly diminishing (Fig. 3). 

3.3. Influence on AGB stocks exerted by the main environmental factors 
and the parameters characterizing forest structure 

AGB stocks in natural forest increased significantly with greater soil 
depth (t = 7.27, 95% CI: 0.088–0.089, P < 0.0001), steepness of slope (t 
= 7.05, 95% CI: 0.079–0.080, P < 0.0001), as well as with decreasing 
longitude (t = − 3.71, 95% CI:− 0.049 – − 0.047, P = 0.0002) and alti-
tude(t = − 3.72, 95% CI:− 0.063 – − 0.061, P = 0.0002), in models 
controlling for stand age and spatial and temporal autocorrelations. In 
contrast, AGB stocks in plantation forests increased significantly with 
decreasing slope steepness (t = − 3.23, 95% CI:− 0.088 – − 0.085, P =
0.0012), as well as with increasingly southern exposition (t = − 2.56, 
95% CI:− 0.071 – − 0.068, P = 0.010) and, again, increasing altitude (t =
4.40, 95% CI:0.14–0.15, P < 0.0001) and longitude (t = 5.15, 95% 
CI:0.17–0.18, P < 0.0001). Overall, responses in planted forests were 
more heterogenous when compared to natural forests (Fig. 5a, 
Table S4). Both forest types showed similar responses to parameters 
characterizing forest structure, with AGB stocks increasing strongly with 
increasing tree density (natural forest: t = 74.23, 95% CI:0.745–0.748, 
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P < 0.0001; planted forest: t = 27.08, 95% CI:0.60–0.60, P < 0.0001) 
and species richness (natural forest: t = 12.29, 95% CI:0.094–0.095, P <
0.0001; planted forest: t = 7.12, 95%CI: 0.146–0.148, P < 0.0001), 
while canopy cover showed a significant positive link to AGB stocks in 
natural forests (t = − 3.68, 95% CI:− 0.031 – − 0.029, P = 0.0002), only 
(Fig. 5b, Table S5). Comparing standardized coefficient for forest 
structure and environmental factors, the models indicate a significantly 
stronger effect of the former when compared to the latter set of factors 
(Fig. 5, Tables S4 and S5). 

3.4. Climate change impacts on forest AGB dynamics 

Long-term climatic data (1979–2017) from the study region (Fig S2) 
shows a gradual decrease in mean precipitation at a rate of 0.74 mm/ 
year (t = − 10.85, P < 0.001) and an increase in mean annual temper-
atures of 0.038 ◦C/year (t = 25.27, P < 0.001) over the study period. 

Warming temperatures depressed AGB increases in both, natural 
(slope = − 0.15, t = − 8.29, 95% CI:− 0.148 – − 0.146P < 0.001) and 
planted forests (slope = − 0.15, t = − 2.74, P = 0.006) in LME models 
accounting for forest age and spatial autocorrelations (Fig. 6). 
Decreasing annual precipitation had an additional, negative effect on 
AGB increases (slope linking precipitation with δ AGB = 0.20, t = 11.46, 
95% CI: 0.197–0.199, P < 0.001) in natural forest, only, while no sig-
nificant links were observed between precipitation and planted forest 
δAGB (P = 0.14). 

When all environmental parameters were considered jointly in LME 
models while controlling for the influence of forest age, changes in AGB 
dynamics in plantation forest were positively linked to increases in 
altitude (t = 2.48, 95% CI:0.062–0.070, P = 0.013) and latitude (t =
2.49, 95% CI:0.063–0.072, P = 0.013), while they still showed a sig-
nificant negative link to MAT (t = 2.30, 95% CI: − 0.099 – − 0.095, P =
0.021). Changes in natural forest AGB dynamics in contrast appeared 
significantly linked to increases in precipitation (t = 12.63, 95% 
CI:0.247–0.249, P < 0.0001), soil depth (t = 2.55, 95% CI: 0.027–0.029, 
P = 0.011), longitude (t = − 4.23, 95% CI:− 0.0788 – − 0.0766, P <
0.0001) and latitude (t = 4.33, 95% CI:0.136–0.139, P < 0.0001), aspect 
(t = 2.30, 95% CI:0.023–0.024,P = 0.022), with MAT (t = − 3.35, 95% 
CI:− 0.077 – − 0.074, P = 0.00081) again exerting a significant negative 
effect on δ AGB (Table S6). 

4. Discussion 

4.1. AGB stocks in Sichuan’s plantation and natural forests 

Assessing the biomass changes of over 1000 permanent plots in the 
forests of Sichuan province, China, between 1979 and 2017, our results 
indicate a significant increase in C stocks stored in both investigated 
forest types. This result clearly confirms the function of these forest as a 
C sink (Tong et al., 2020), and the values we observed exceed the 
average C stocks for China across all climate zones from 2007 to 2013, 
reported by Guo and Ren (2014; natural forest: 169 Mg ha− 1, planted 
forest: 142 Mg ha− 1). Our observation of AGB in ‘plantation’ forests 
increasing at twice the rate than in ‘natural’ forests again differs from 

Fig. 2. Comparison of standardized explanatory parameter differences in forest above-ground biomass (AGB) between natural and plantation forests (t-tests, scaled 
by average values from intact forest plots), analyzed using bias-corrected 95% bootstrap confidence intervals. 

Fig. 3. Trends of AGB stocks over the last four decades. The lines and shaded 
areas represent estimates and 95% confidence intervals for the coefficients 
based on the LME models, respectively. 

T. Li et al.                                                                                                                                                                                                                                        



Ecological Indicators 142 (2022) 109289

6

Guo & Ren (2014)’s findings, who reported less strongly diverging 
productivity levels (17.5 ± 3.6 Mg ha− 1 year− 1 and 10.2 ± 4.3 Mg ha− 1 

year− 1, respectively) for the period 2007 to 2013. Our results align with 
Zhao et al. (2019)’s observations that biomass C stock increases are 
particularly pronounced in southwestern regions. Overall, our results 
suggest that forest carbon storage increases over time, but productivity 
declines, with distinct variations in biomass C stock dynamics between 
forest types. Forest C storage and productivity is therefore both time- 
sensitive and forest type-specific, while being further modified by for-
est management, structure, geography and climatic conditions. A 
number of potential reasons can explain these highly complex patterns. 

One key potential driver is the significant differences in mean envi-
ronmental settings of natural and plantation forests types that were 
linked to differences both in AGB stocks and their dynamism. With some 
exceptions, forest plantations are planted at significantly lower eleva-
tion, latitude, and at areas with deeper soils on more south-exposed 
slopes, when compared to natural forests. In turn, planted trees will 
therefore experience better growth conditions than natural forests, 
resulting in their enhanced biomass accumulation when grown within 
the same broader climatic region (Schulze et al., 2014; Waring et al., 
2008). A southerly exposition and a gentler slope angle in the dense, 
evenly aged, relatively homogenous plantation forest stands also results 
in a relatively homogenous in-stand temperature regime as a further 
positive growth determinant. As expected, AGB stocks were positively 
linked to deep soils across forest types – with such soils providing 

Fig. 4. AGB (log-transformed) in relation to stand age for plantations and 
natural forests. The lines and shaded areas represent estimates and their 95% 
confidence intervals, respectively, highlighting the strong increase in AGB in 
young forests, plateauing for both forest types at an age of ~50 years (Fig. 4). 
Stand age and AGB in natural (P < 0.0001, t = 43.93, 95%CI: 0.15–0.16, R2 =

21.15%) and planted forests (P < 0.0001, t = 49.65, 95%CI: 0.16–0.17, R2 

= 23.24%). 

Fig. 5. Standardized effect sizes based on conditional average models (LME, 
δAIC <4) for AGB stocks for both, planted and natural forests, in models ac-
counting for stand age and temporal autocorrelation, focused on standardized 
coefficients of forest structure (a) and environmental factors (b). For each 
variable in the models, main symbols represent the standardized mean effect 
size and lines represent standard error. Missing predictors relate to the 
respective factors not being selected during the model selection procedure. We 
also calculated the full model, which has similar results to the final model. 

Fig. 6. Standardized effect sizes for the conditional average models (LME, δ 
AIC <4) for δ AGB in planted and natural forests that accounted for mean forest 
age and spatial autocorrelation. For each variable in the model, main symbols 
represent the standardized effect size and lines represent standard error. 
Missing predictors in certain forest types means the relative factors were not 
selected during the model selection procedure. We also provided the full model, 
which has similar results in the final model. 
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enhanced access to plant-available nutrients that again benefit tree 
growth potential. 

Forest plantations are also generally dominated by few, fast-growing 
tree species planted in a uniform stand-age structure (Guo & Ren, 2014), 
and, in the case of our study area, the plantation forests are generally 
young (17.42 ± 11.31 year). Observed faster AGB accumulations in 
plantation forests when compared to natural forests might therefore 
relate to the gradual degradation of annual AGB increases for all forest 
types as they approach a stand age of ~50 years (see Fig. 4). This trend 
also indicates that the forest type-specific differences in AGB accumu-
lation are likely to narrow significantly as plantation forests mature 
(Brown et al., 2020). The observed marked decline in productivity rates 
for older plantations does indeed indicate that most plantation forests 
might be approaching their saturation storage capacity already within 
two to three decades. That outlook differs distinctly from previous 
studies that reported a continuous increase of plantation forest C storage 
(Fang et al., 2014b). 

One factor that appears to hamper AGB increases in plantation for-
ests when compared to natural forests is forest tree diversity (see 
Table S2, Fig. 2 and Fig. 5b). In addition to tree density and stand age, 
our results reflect an important positive influence of tree species richness 
on AGB stocks in species-poor plantations. In contrast, the tree diversity 
on natural forest plots with their generally much greater species richness 
appears to represent a state where diversity-related differences in AGB 
stocks are more subtle, resulting in diversity differences exerting a much 
weaker overall influence on these stocks (Guo & Ren, 2014). The overall 
results are indicative of community-specific physiological growth pat-
terns that can be linked to specific selection effects and mechanisms of 
niche complementarity (Hisano et al., 2019) in the natural forest stands, 
which can also explain the great variance in the richness response 
amongst natural forest plots. In plantation forests, however, an increase 
in tree diversity appears to generate general positive biomass accumu-
lation responses that can similarly be related to mechanisms of niche 
complementarity, but in this instance creating a more predictable, 
positive impact (Ouyang et al., 2019). 

4.2. Climate change implications for forest biomass 

While the general increase in atmospheric CO2 can be assumed to 
positively influence AGB stocks (Fang et al., 2014b), the AGB stock in-
creases observed in our study area appear strongly dictated by forest 
restoration and recovery – and by the strong positive growth trajectory 
underlying the young planted and naturally regenerating forest stands. 
Our results indicate that warming and drought negatively affected these 
strong positive growth trajectories. In this context, the more mature 
natural forests appear more sensitive and vulnerable to the current cli-
matic change-associated trends of increasing temperature and 
decreasing precipitation (Chen & Luo, 2015) than the young planted 
forests whose C dynamics are chiefly affected by the increasing tem-
perature, but not by the changes in precipitation. 

The combination of decreasing precipitation and increasing tem-
perature is well-established to negatively impact biomass increases in 
natural forest ecosystems (Walden et al., 2019). Nevertheless, links be-
tween rainfall and total productivity are highly temperature-dependent, 
where at least at tropical mountain rainforest sites experiencing low 
temperatures (16 ◦C), increasing rainfall exerted a negative effect on 
productivity (Taylor et al., 2017). In the subtropical/temperate natural 
forests in our study area, both decreasing precipitation and increasing 
temperature – that can already individually cause water shortages in the 
vegetation through decreasing surface and ground water resources and 
increased evapotranspiration, respectively – appear to combine in 
creating a detrimental impact on the AGB increases observed in the 
natural forests. 

5. Conclusions 

Our study implies that recent increases in forest C storage were 
largely linked to the young plantation forests, with this rapid increase 
diminishing as these forests age. To enhance the long-term C storage 
specifically in plantation forests, increasing their tree diversity, for 
example by targeted enrichment planting, could yield two-fold benefits. 
Apart from the enhanced tree diversity itself that we have shown to 
positively impact AGB dynamics, this strategy would also lower and 
heterogenize the forest age structure (Himes and Puettmann, 2020). 
With climate change already negatively impacting C storage in natural 
forests, we believe their strict future protection could similarly be 
accompanied by targeted enrichment planting in these forests, too. The 
long-term target for all regional forests should be a state where well 
climate-adapted long-lived late-succession tree species, which 
commonly store large amounts of C in their trunks (Smith and Knapp, 
2003), dominate the canopy. 
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