
Eur. Phys. J. Spec. Top.
https://doi.org/10.1140/epjs/s11734-022-00708-1

THE EUROPEAN
PHYSICAL JOURNAL
SPECIAL TOPICS

Review

Lattice studies of supersymmetric gauge theories
David Schaicha

Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL, UK

Received 16 August 2022 / Accepted 20 October 2022
© The Author(s) 2022

Abstract Supersymmetry plays prominent roles in the study of quantum field theory and in many proposals
for potential new physics beyond the standard model. Lattice field theory provides a non-perturbative
regularization suitable for strongly interacting systems. This invited review briefly summarizes significant
recent progress in lattice investigations of supersymmetric field theories, as well as some of the challenges
that remain to be overcome. I focus on progress in three areas: supersymmetric Yang–Mills (SYM) theories
in fewer than four space-time dimensions, as well as both minimal N = 1 SYM and maximal N = 4 SYM
in four dimensions. I also highlight superQCD and sign problems as prominent challenges that will be
important to address in future work.

1 Introduction

Supersymmetry plays several prominent roles in mod-
ern theoretical physics. It is a valuable tool to improve
our understanding of quantum field theory (QFT), an
ingredient in many new physics models, and even a
means to study quantum gravity via holographic dual-
ity. Lattice field theory provides a non-perturbative reg-
ularization for QFTs, which has had enormous suc-
cess as a means to analyze QCD and similar vector-
like gauge theories. It is therefore natural to explore
how lattice field theory can be applied to investigate
supersymmetric QFTs, especially in strongly coupled
regimes.

In this short review I briefly summarize the recent
progress and near-future prospects of lattice studies of
supersymmetric systems. This is an update and expan-
sion of Ref. [1], incorporating pedagogical material pre-
sented at the 2021 online program “Nonperturbative
and Numerical Approaches to Quantum Gravity, String
Theory and Holography”, run by the International Cen-
tre for Theoretical Sciences in Bengaluru. To connect
to the subject of holography featured by this Special
Topics issue, I focus on four-dimensional gauge theories
and their dimensional reductions to d < 4. (See Refs.
[2, 3] for reviews of theories without gauge invariance,
such as Wess–Zumino models and sigma models. More
recent work in this area includes Refs. [4–9].)

Lattice supersymmetry has been investigated for
more than four decades [10], and previously reviewed
by Refs. [1–3, 11–14], among others. Unfortunately,
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progress in this area has been slower than for QCD-like
theories, primarily because the lattice regularization
of QFTs breaks supersymmetry. This occurs in three
main ways. First, the super-Poincaré algebra includes
the anti-commutation relation

{
Qα, Qα̇

}
= 2σμ

αα̇Pμ

that connects the spinorial generators of supersymme-
try transformations, Qα and Qα̇, to the generator of
infinitesimal space-time translations, Pμ. Lattice reg-
ularization formulates the QFT of interest in a dis-
crete space-time where no such infinitesimal transla-
tions exist, implying broken supersymmetry.

Second, bosonic and fermionic fields are typically
discretized differently on the lattice. In the context
of supersymmetric gauge theories, standard discretiza-
tions associate the gauginos λα(n) with lattice sites
while the gauge connections are associated with links
Uμ(n) between nearest-neighbor sites. That is, under a
lattice gauge transformation λα(n) → G(n)λα(n)G†(n)
while Uμ(n) → G(n)Uμ(n)G†(n + aμ̂), where ‘a’ is
the lattice spacing. Away from the a → 0 continuum
limit, these differences prevent supersymmetry trans-
formations from correctly interchanging superpartners.
Although scalar fields also tend to be associated with
lattice sites, their discretization typically omits the fea-
tures (e.g., a Wilson term or staggering) required to
address the famous fermion doubling problem, result-
ing in a similar breaking of supersymmetry.

Finally, the Leibniz rule ∂[φη] = [∂φ]η + φ∂η plays
an important role in ensuring supersymmetry, but is
violated by standard lattice finite-difference operators
[10]. In discrete space-time, ‘no-go theorems’ presented
by Refs. [15, 16] establish that only non-local deriva-
tive and product operators can obey the Leibniz rule

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjs/s11734-022-00708-1&domain=pdf
http://orcid.org/0000-0002-9826-2951
mailto:david.schaich@liverpool.ac.uk


Eur. Phys. J. Spec. Top.

and hence fully preserve supersymmetry. This implies
a trade-off between locality and supersymmetry, which
continues to be explored for simple systems such as
supersymmetric quantum mechanics, where a lattice
field product operator obeying a ‘cyclic Leibniz rule’
suffices to preserve partial supersymmetry and estab-
lish non-renormalization [17–20]. A different non-local
‘star product’ is able to satisfy the Leibniz rule, but
in such a way that the lattice spacing no longer acts
as a regulator [21]. Even restricted to simple systems
without gauge invariance, and mostly in 0+1 dimen-
sions, these constructions already become very compli-
cated, and the remainder of this review will focus on
approaches that preserve locality at the expense of bro-
ken supersymmetry.

The breaking of supersymmetry in lattice calcula-
tions has the consequence that quantum effects gen-
erate supersymmetry-violating operators. Of particu-
lar concern are relevant supersymmetry-violating oper-
ators, for which counterterms have to be fine-tuned in
order to recover the supersymmetric QFT of interest in
the a → 0 continuum limit that corresponds to remov-
ing the UV cutoff a−1. Considering the case of four
space-time dimensions, many relevant operators can
appear for theories that involve scalar fields. Such the-
ories include supersymmetric QCD (superQCD) with
scalar squarks, as well as gauge theories with ‘N > 1’
extended supersymmetry, which include scalar fields
in the gauge supermultiplet. The mass terms of these
scalars introduce fine-tuning problems similar to that
of the standard model Higgs, and additional relevant
supersymmetry-violating operators can arise from the
fermion (quark and gaugino) mass terms, Yukawa cou-
plings, and quartic (four-scalar) terms. Careful count-
ing typically finds O(10) relevant operators for lattice
discretizations of supersymmetric theories with scalar
fields [11, 22, 23]. Simultaneously fine-tuning countert-
erms for all of these operators in numerical lattice cal-
culations appears impractical, to say the least.

In order to make lattice supersymmetry practical, the
amount of fine-tuning needs to be reduced. The follow-
ing three sections briefly review three different ways
to achieve this for lattice studies of supersymmetric
Yang–Mills (SYM) theories. First, the next section dis-
cusses dimensional reductions of SYM theories to fewer
than four space-time dimensions, which has been the
focus of a great deal of recent work. Returning to four
dimensions, Sect. 3 considers the special case of mini-
mal (N = 1) SYM, which is significantly simplified by
the absence of scalar fields. Maximal (N = 4) SYM is
another special case in four dimensions, for which fine-
tuning can be vastly reduced by preserving a closed sub-
algebra of the supersymmetries, as discussed in Sect. 4.
We conclude in Sect. 5 by highlighting some promi-
nent challenges to be faced by future lattice studies of
supersymmetric QFTs, including superQCD and sign
problems that can arise in several contexts.

2 Dimensionally reduced SYM theories

Working in a smaller number of space-time dimen-
sions, d < 4, can make numerical analyses much
more tractable. In addition to the smaller number of
degrees of freedom corresponding to Ld lattices, lower-
dimensional theories tend to be super-renormalizable
and in many cases a one-loop counterterm calculation
suffices to restore supersymmetry in the continuum
limit [24–26]. Focusing here on dimensional reductions
of SYM theories, we will label systems by the number
Q of supersymmetry generators, or ‘supercharges’, that
they have. Starting in four dimensions, N = 1, 2 or 4
SYM corresponds to Q = 4, 8 or 16, respectively. These
theories can also be considered dimensional reductions
of minimal SYM in respectively D∗ = 4, 6 or 10
dimensions. For d ≤ 4, these theories involve a d -
component gauge field, fermionic fields with Q total
components, and D∗ − d real scalar fields. All fields are
massless and transform in the adjoint representation
of the gauge group, here taken to be either SU(N ) or
U(N) = SU(N) ⊗ U(1).

2.1 0 + 1 Dimensions

Dimensional reduction all the way to (0+1)-
dimensional ‘SYM quantum mechanics’ (QM) has
been the subject of many numerical studies over the
past fifteen years, starting with Refs. [27, 28] investi-
gating the Q = 4 case and also including Refs [29–53].
These SYM QM systems consist of balanced collections
of interacting bosonic and fermionic N ×N matrices
evolving in (euclidean) time at a single spatial point.
They are simple enough that lattice regularization
may not even be required to analyze them—Refs. [27,
29–31, 33, 36, 37] instead employ a gauge-fixed Monte
Carlo approach with a hard momentum cutoff, Ref.
[9] exactly diagonalizes truncated hamiltonians, and
Refs. [7, 8, 50, 54, 55] explore prospects for quantum
computing. Another aspect of this simplicity is the
proposal that Q = 16 SYM QM can be ‘ungauged’ to
produce a scalar–fermion system with SU(N ) global
symmetry, with both the gauged and ungauged models
flowing to the same theory in the IR [48, 53, 56].

Even though SYM QM systems are much simpler to
study on the lattice than their four-dimensional SYM
counterparts, they remain computationally non-trivial.
Let’s consider this in the context of the maximally
supersymmetric Q = 16 case, which has attracted par-
ticular interest due to its connections to string the-
ory [57]—especially the conjecture by Ref. [58] that
the large-N limit of this system describes the strong-
coupling (‘M-theory’) limit of type-IIA string theory
in light-front coordinates. Another contribution to this
Special Topics issue will review this subject in more
detail, and earlier reviews from string theory perspec-
tives include Refs. [59, 60]. At finite temperature, this
holographic conjecture relates the bosonic action of the
deconfined SYM QM system to the internal energy
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of a dual compactified black hole geometry in eleven-
dimensional M-theory.

This quantity is straightforward to compute through
numerical Monte Carlo analyses [29, 31, 32, 34, 37,
41, 42, 44, 45], with Ref. [45] representing the state
of the art that improves upon earlier results by carry-
ing out controlled extrapolations to the large-N contin-
uum limit. In addition to the role of large N in holog-
raphy, the absence of any spatial volume means that
in these studies the thermodynamic limit itself cor-
responds to extrapolating N → ∞. These controlled
extrapolations enable more robust comparisons to dual
gravitational predictions, with numerical results con-
vincingly approaching the leading-order gravitational
prediction from classical supergravity at low temper-
atures, providing non-perturbative first-principles evi-
dence that the holographic duality conjecture is cor-
rect. In addition, deviations between the lattice results
and leading-order supergravity at higher temperatures
can be considered a prediction of higher-order quan-
tum gravitational effects that are enormously difficult
to calculate analytically.

The main computational challenge of these SYM QM
investigations comes from the large numbers of colors N
and lattice sizes L that are needed to control the large-N
continuum extrapolations. In this context, with a fixed
dimensionless temperature T̂ ≡ T/λ1/3, the continuum
limit corresponds to L → ∞. Here the ·̂ decoration
highlights dimensionless ratios that can be considered
consistently in both the lattice and continuum theo-
ries—note the ’t Hooft coupling λ = g2

YMN has dimen-
sion [λ] = 4 − d in d dimensions. Ref. [45] employs
16 ≤ N ≤ 32 and lattice sizes up to L = 64, with
the O(

N3
)

cost scaling of matrix–matrix multiplication
dominating over the ∼ L5d/4 cost scaling of the rational
hybrid Monte Carlo (RHMC) algorithm, and requiring
large-scale supercomputing.

Large values of N are also motivated by a thermal
instability associated with the non-compact quantum
moduli space of Q = 16 SYM QM [34]. At low tem-
peratures the system is able to run away along these
flat directions, which is interpreted holographically as
D0-brane radiation from the dual black hole. A formal
solution is to stabilize the desired vacuum by adding a
supersymmetry-breaking scalar potential to the lattice
action, which then needs to be removed in the course of
extrapolating to the continuum limit [34, 61]. To avoid
this complication, Ref. [45] argues that in practice it can
be possible to carry out Monte Carlo sampling around
a metastable vacuum so long as N is large enough to
reduce the tunneling rate to the true run-away vacuum.
The necessary value of N increases as the temperature
decreases.

An alternative is to consider a deformation of Q = 16
SYM QM introduced by Berenstein, Maldacena and
Nastase (BMN) [62], which lifts the flat directions men-
tioned above while preserving all 16 supercharges. This
deformation serves as a supersymmetric regulator that
doesn’t need to be removed in the continuum limit. It
introduces non-zero masses for the 9 scalars and 16

fermions of the theory, explicitly breaking the SO(9)
global symmetry associated with the compactified spa-
tial dimensions of d = 10 minimal SYM, SO(9) →
SO(6)×SO(3). The deformation depends on a dimen-
sionful mass parameter μ, which can be combined with
the ’t Hooft coupling to define a dimensionless coupling
ĝ ≡ λ/μ3 (not to be confused with the dimensionful
Yang–Mills gauge coupling g2

YM = λ/N).
This BMN model has been studied numerically by

Refs. [35, 38, 49–53], with particular focus on its finite-
temperature confinement transition. The critical tem-
perature T̂c of this transition can be predicted both by
perturbative calculations in the weak-coupling regime
ĝ � 1 [63–65] as well as by dual supergravity calcu-
lations for strong couplings ĝ → ∞ with N → ∞
and T̂ � 1 [66]. The goals of ongoing lattice calcu-
lations include both reproducing these limits as well
as non-perturbatively connecting them by mapping out
the intermediate regime where perturbative and holo-
graphic approaches are unreliable. Good progress has
been made by Refs. [49, 51, 52], considering different
lattice discretizations, numbers of colors N , lattice sizes
L, and couplings ĝ that span several orders of magni-
tude.

2.2 1 + 1 Dimensions

Moving from (0+1)-dimensional quantum mechanics to
QFTs in two dimensions introduces many additional
phenomena to explore, while remaining significantly
more tractable than numerical studies in four dimen-
sions. Research on supersymmetric lattice gauge the-
ories in 2 ≤ d ≤ 4 dimensions features both concep-
tual work constructing clever lattice formulations that
minimize fine-tuning in principle, as well as numeri-
cal work that exploits these constructions to carry out
practical calculations. The most widely applied refor-
mulations are based on approaches known as topologi-
cal twisting [67–69] and orbifolded dimensional decon-
struction [70–73], which are thoroughly reviewed by
Ref. [2]. While the concepts and terminology of these
approaches differ, in the end they actually produce
equivalent constructions [74, 75].

Here we will only briefly summarize the twisting
approach. Restricting our considerations to flat space-
time, twisting is just a change of variables that orga-
nizes linear combinations of the supercharges into com-
pletely antisymmetric p-forms Q, Qμ, Qμν , etc., with
the feature that any twisted-scalar supercharge is nilpo-
tent, Q2 = 0. This is only possible if there are at least
2d supercharges in d dimensions, and provides at most
	Q/2d
 nilpotent Q. The p-forms transform with inte-
ger ‘spin’ under the so-called twisted rotation group
SO(d)tw ≡ diag [SO(d)euc ⊗ SO(d)R], where SO(d)euc
is the Wick-rotated Lorentz group and SO(d)R comes
from the global R-symmetry. This procedure clearly
provides a closed supersymmetry subalgebra {Q,Q} =
0 that can be preserved at non-zero lattice spacing, and
ultimately leads to a Q-invariant lattice action with no
need of the Leibniz rule.
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Consistently with the discussion in Sect. 1, the other
twisted supercharges Qμ, Qμν , · · ·, are all broken by
the lattice discretization. However, the preservation of
a subset of the supersymmetries and a closed subalge-
bra of the full super-Poincaré algebra vastly reduces the
fine-tuning required to recover the other, broken super-
symmetries in the continuum limit. We will comment on
this in more detail for four-dimensional N = 4 SYM in
Sect. 4, but it is useful here to consider an analogy with
the more basic Poincaré symmetries of translations and
rotations. While these continuous symmetries are also
broken in discrete lattice space-times, since the early
days of lattice field theory it has been appreciated that
the discrete symmetries preserved by (e.g.) hypercu-
bic lattices guarantee their recovery in the continuum
limit, with no need for fine-tuning. In a similar way, the
preserved twisted-scalar supersymmetries Q guarantee
the recovery of the full set of supersymmetries in the
continuum limit, with little to no fine-tuning.

For some theories there are multiple, inequivalent
ways that twisted lattice systems can be constructed.
One approach [74, 76–78] combines the gauge and scalar
fields into a complexified gauge field. This results in
U(N) = SU(N) ⊗ U(1) gauge invariance and non-
compact lattice gauge links

{U ,U}
with a flat measure.

Although the U(1) sector decouples in the continuum,
at non-zero lattice spacing it can introduce unwanted
artifacts, especially at strong couplings. Refs. [78–81]
explore various ways these artifacts could be suppressed
for four-dimensional N = 4 SYM, which we will revisit
in Sect. 4. Numerical studies using this formulation
for Q = 16 SYM in two dimensions include Refs. [79,
82–84].

A different approach [67, 68, 85–89] works with com-
pact gauge links and gauge group SU(N ), at the cost of
imposing an admissibility condition to resolve a huge
degeneracy of vacua. While Ref. [90] proposes formu-
lations of Q = 4 and Q = 8 SYM in two dimensions
that avoid the need to impose admissibility conditions,
this issue becomes more problematic in higher dimen-
sions [2, 91]. Numerical studies using this formulation in
two dimensions include Refs. [61, 92–100] investigating
Q = 4 SYM and Refs. [101, 102] investigating Q = 16
SYM.

As for the BMN model discussed in Sect. 2.1, a promi-
nent physics target is to map out the non-perturbative
phase diagrams of two-dimensional SYM theories [79,
103, 104]. These systems are now formulated on an
rL×rβ torus, where rβ = 1/T̂ is the inverse dimension-
less temperature while rL = L

√
λ is the dimensionless

length of the spatial cycle. At high temperatures cor-
responding to small rβ , the fermions pick up a large
thermal mass, reducing the system to bosonic quantum
mechanics (BQM) in one dimension. This is illustrated
for Q = 16 SYM by the sketch in the left panel of Fig. 1,
which highlights the ‘spatial deconfinement’ transition
expected as rL decreases in the large-N limit. (The sys-
tem is always thermally deconfined.) In the BQM limit,
this transition appears to be first order—see Ref. [105]
and references therein.

A similar first-order transition is predicted by holog-
raphy in the large-N , low-temperature regime corre-
sponding to large rβ . Holographically, the large-rL spa-
tially confined phase is conjectured to be dual to a
homogeneous black string with a horizon wrapping
around the spatial cycle, while the small-rL spatially
deconfined phase corresponds to a localized black hole.
Challenging numerical supergravity calculations are
required to construct and analyze these dual black hole
and black string geometries [106].

The right panel of Fig. 1 presents lattice results for
the Q = 16 SYM spatial deconfinement transition from
Ref. [79], again aiming to reproduce the expected high-
and low-temperature limits while non-perturbatively
mapping out intermediate temperatures. To this end
the calculations vary rL with a fixed aspect ratio α =
rL/rβ = Ns/Nt defined by the Ns × Nt lattice size,
monitoring the spatial Wilson line Tr

[∏
xi

Ux(xi, t)
]

as the order parameter for this transition. As shown by
the dashed lines in the plot, larger aspect ratios (up
to α = 8 for a 32×4 lattice) probe the spatial decon-
finement transition at higher temperatures, matching
the BQM expectations quite well. As the aspect ratio
decreases (down to α = 3/2 for an 18×12 lattice), the
lower-temperature numerical results are consistent with
holography, albeit with rapidly increasing uncertainties.
At these low temperatures, a supersymmetry-breaking
scalar potential is added to the lattice action to lift flat
directions, and then extrapolated to zero, as discussed
in Sect. 2.1. Ref. [79] also calculates the internal ener-
gies of the dual black hole and black string, finding con-
sistency with holographic expectations in both phases,
again with large uncertainties. Although the work com-
pares multiple lattice volumes and SU(N ) gauge groups
up to N = 16, room for improvement remains in terms
of carrying out controlled extrapolations to the contin-
uum and thermodynamic (i.e., large-N ) limits. In par-
ticular, larger values of N should help to reduce uncer-
tainties and access even lower temperatures.

Beyond investigations of phase diagrams, two-
dimensional SYM theories also possess rich zero-
temperature dynamics that are important to explore
non-perturbatively. For example, Ref. [107] analyzes the
‘meson’ spectrum of the Q = 4 lattice theory, using
a straightforward Wilson-fermion discretization rather
than a twisted construction, and observing a massless
supermultiplet predicted by Refs. [108, 109]. This work
also checks for spontaneous supersymmetry breaking
(SSB), which Ref. [110] suggests might occur for this
theory. While SSB is also being explored for supersym-
metric QM in 0 + 1 dimensions [5–7, 111–113], this can
be a truly dynamical process in two dimensions [114,
115], rather than being determined by the superpoten-
tial. We will revisit SSB in the context of the sign prob-
lem in Sect. 5.2, for now simply noting that Ref. [107]
saw no evidence of SSB for Q = 4 SYM, consistent with
other lattice studies using twisted formulations [93, 94,
97, 116].
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Fig. 1 A sketch (left) of the expected phase diagram for two-dimensional Q = 16 SYM, compared to numerical results
(right), both adapted from Ref. [79]. The numerical calculations use a twisted formulation with gauge group SU(12) and
aspect ratios α = rL/rβ = Ns/Nt ranging from 8 to 3/2

2.3 2+1 Dimensions

Three-dimensional SYM remains a prominent frontier
for lattice studies, with many compelling physics tar-
gets and more modest computational costs compared
to d = 4. Supersymmetry-preserving twisted formula-
tions (discussed by Refs. [26, 117, 118]) are even more
important than in two dimensions, and are used by
all numerical calculations so far [119, 120]. Figure 2
presents some results from these works, investigating
the Q = 16 SYM bosonic action that holography relates
to the internal energy of the dual black brane geome-
try in supergravity. Here the calculations use L3 lattice
volumes corresponding to an aspect ratio α = 1, and
are kept within the spatially confined phase dual to a
homogeneous black D2-brane. The results in the left

panel of Fig. 2 approach the corresponding supergrav-
ity prediction for sufficiently low dimensionless temper-
atures. While these calculations consider gauge group
U(N ) with only a single N = 8, one notable advance
are the extrapolations to the continuum limit shown
in the right panel of Fig. 2, which were not attempted
in the d = 2 study that produced Fig. 1. As in lower
dimensions, with a fixed dimensionless temperature and
α = 1, the continuum limit corresponds to extrapolat-
ing L → ∞ while the thermodynamic limit would be
provided by extrapolating N → ∞.

Ongoing work is now building on these results to
explore the phase transition between this ‘D2 phase’
and the spatially deconfined ‘D0 phase’ dual to a local-
ized black hole geometry. This transition corresponds
to considering an rL ×rL ×rβ three-torus, with other
behavior possible if the two spatial cycles are allowed

Fig. 2 Bosonic action density for three-dimensional Q = 16 SYM with gauge group U(8) and L3 lattice volumes, from

Ref. [120]. Left: Results for L = 8, 12 and 16 vs. the dimensionless temperature ̂T , compared with the high-temperature

expectation ∝ ̂T 3 and the low-temperature dual-supergravity prediction ∝ ̂T 10/3. Right: Linear L2 → ∞ continuum
extrapolations for the six lowest temperatures
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to have different sizes [121]. Ref. [120] also presents ini-
tial investigations of Q = 8 SYM in three dimensions,
for which new code is being developed within the pub-
licly available SUSY LATTICE parallel software package
for twisted lattice supersymmetry [77, 122].

3 Minimal N = 1 SYM in four dimensions

In Sect. 1 we emphasized that scalar fields are respon-
sible for most of the relevant supersymmetry-violating
operators that require fine-tuning in lattice calcula-
tions, including the scalar mass terms, Yukawa cou-
plings, and quartic operators. This implies that upon
reaching d = 4 dimensions, the most promising super-
symmetric gauge theory to consider would be N = 1
SYM, the only one with no scalar fields. N = 1 SYM
involves only the SU(N ) gauge field and its superpart-
ner gaugino—a massless Majorana fermion transform-
ing in the adjoint rep of SU(N ). The mass term for this
gaugino is the only relevant operator that may need
to be fine-tuned in order to obtain the correct contin-
uum limit [123, 124]. In fact, even this single fine-tuning
can be avoided by using overlap or domain-wall lattice
fermion formulations that obey the Ginsparg–Wilson
relation and preserve chiral symmetry at non-zero lat-
tice spacing. Even though the axial anomaly breaks
the classical U(1) R-symmetry of N = 1 SYM to its
Z2N subgroup, preserving this discrete global symme-
try still protects the gaugino mass from additive renor-
malization. The spontaneous breaking of Z2N → Z2 by
the formation of a gaugino condensate, 〈λλ〉 �= 0, is
also relatively straightforward to investigate with this
approach [125–128].

The downside to overlap and domain-wall fermions
is that they are computationally expensive, and after
Refs. [125–127] there has been very little work apply-
ing them to N = 1 SYM during the past decade
[128]. Instead, recent lattice research into this theory
has employed improved Wilson fermions, fine-tuning
the gaugino mass to recover both chiral symmetry
and supersymmetry in the continuum limit. For exam-
ple, the DESY–Münster–Regensburg–Jena Collabora-
tion made significant progress using clover-improved
Wilson fermions [129–138]. A second group is explor-
ing a SYM analogue of the twisted-mass fermion action
[139], with the aim of improving the formation of com-
posite supermultiplets at non-zero gaugino masses and
lattice spacings, and thereby gaining better control over
the chiral and continuum extrapolations.

With limited connections to holography, and a spa-
tial lattice volume to provide the thermodynamic limit,
there is little motivation for extremely large values
of N , and most work considers only gauge groups
SU(2) [129–131, 135, 138] and SU(3) [132–134, 136,
137, 139]. A long-term goal of these studies has been to
observe the composite states forming degenerate multi-
plets in the supersymmetric continuum chiral limit. One

such multiplet is expected to contain a scalar particle,
a pseudoscalar particle, and a fermionic ‘gluino–glue’
particle. Degeneracy in these channels, in the chi-
ral–continuum limit, was convincingly observed by Ref.
[136], overcoming numerical challenges that include
fermion-line-disconnected contributions to all physical
two-point functions, as well as mixing between glueballs
and meson-like singlet states.

An additional challenge is carrying out the chiral
extrapolations in the presence of an unprotected gaug-
ino mass. This is done by taking the m2

π → 0 limit
for an ‘adjoint pion’ defined in partially quenched chi-
ral perturbation theory [140], which is measured from
just the connected part of the correlator for the η′-
like ‘gluinoball’. Supersymmetric Ward identities pro-
vide an alternative means to determine the chiral limit
[133, 137]. At a non-zero lattice spacing, any differences
between these two determinations can be considered
a measure of the supersymmetry-breaking discretiza-
tion artifacts. Ref. [137] finds that these vanish ∝ a2,
as expected for clover-improved Wilson fermions, sup-
porting the restoration of susy in the chiral continuum
limit.

Of course, many other lattice N = 1 SYM investiga-
tions are valuable to carry out in addition to calcula-
tions of the gaugino condensate, composite spectrum,
and Ward identities. These include explorations of the
finite-temperature phase diagram, which features both
a chiral transition related to gaugino condensation as
well as a confinement transition related to spontaneous
center symmetry breaking. Refs. [129, 141] find that
these two transitions occur at roughly the same criti-
cal temperature, at least for gauge group SU(2), which
was not known a priori. In addition, Refs. [130, 134]
investigate the phase diagram on R

3×S1 with a small
radius for the compactified temporal direction, compar-
ing thermal and periodic boundary conditions (BCs)
for the gauginos. This work finds evidence that peri-
odic BCs allow the confined, chirally broken phase to
persist for weak couplings where analytic semi-classical
methods [142] may be reliable.

In these investigations, the gradient flow has helped
enable the precise measurement of the gaugino conden-
sate with clover-improved Wilson fermions. The gradi-
ent flow is also widely used to set the scale and extrap-
olate to the continuum limit in lattice studies of N = 1
SYM [129, 131–133, 135–137], including the recent Ref.
[143], which uses twisted Eguchi–Kawai volume reduc-
tion to study the theory on a ‘lattice’ that consists of
a single site. Another potential application of the gra-
dient flow is to define renormalized supercurrents and
help guide fine-tuning, by constructing a flow that is
consistent with supersymmetry in Wess–Zumino gauge
[144–146]. This complements the ongoing use of lattice
perturbation theory to analyze these supercurrents, and
other operators [147–149]. Finally, given the progress
in algorithms and computing hardware, it is also com-
pelling to continue exploring the use of overlap [128] or
domain-wall fermions to investigate N = 1 SYM.
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4 Maximal N = 4 SYM in four dimensions

N = 4 SYM, with Q = 16 supercharges in four dimen-
sions, turns out to be another special supersymmet-
ric gauge theory that is promising to consider on the
lattice. This is serendipitous, given the large role that
N = 4 SYM plays in theoretical physics thanks to its
many supersymmetries, large SU(4)R symmetry and
conformal symmetry—with additional simplifications
in the large-N planar limit. Among many other impor-
tant applications, it is the conformal field theory of the
original AdS/CFT holographic duality [150], and pro-
vided early insight into S-duality [151]. This provides
many compelling targets for non-perturbative lattice
investigations of N = 4 SYM to pursue, complementing
the many analytic approaches that have already been
brought to bear.

Because N = 4 SYM features six massless real scalar
fields in addition to the gauge field and four mass-
less Majorana fermions, a naive lattice discretization
would be problematic. At least 8 fine-tunings would be
required if all the supersymmetries were broken [23].
Fortunately, N = 4 SYM is the only d = 4 theory with
Q = 2d large enough to apply the (equivalent) twisted
and orbifolded constructions introduced in Sect. 2.2.
This allows a single ‘twisted-scalar’ supercharge Q to
be preserved, dramatically improving the situation.

Twisted lattice N = 4 SYM [2, 72–75] combines the
bosonic fields into five-component complexified gauge
links

{Ua,Ua

}
. In order for these five links to sym-

metrically span four dimensions, the discretization of
space-time needs to employ the A∗

4 lattice, which fea-
tures a large S5 point-group symmetry. The twisted
p-form fermions η, ψa and χab are respectively iden-
tified with the sites, links and oriented plaquettes of
this A∗

4 lattice. A single fine-tuning of a marginal oper-
ator may be required to recover the continuum twisted
SO(4)tw from the discrete S5 symmetry. The combina-
tion of Q and SO(4)tw then ensures the restoration of
the 15 supersymmetries broken by the lattice discretiza-
tion [23, 152, 153]. Most numerical calculations so far
don’t explore this potential fine-tuning, instead fixing
the corresponding coefficient to its classical value.

As described in Sect. 2.2, this twisting procedure
results in U(N) = SU(N) ⊗ U(1) gauge invariance,
and numerical calculations need to regulate flat direc-
tions in both the SU(N ) and U(1) sectors. Simple
supersymmetry-breaking scalar potentials like those
used in lower dimensions (and removed in the course
of extrapolating to the continuum limit) only affect
the SU(N ) sector. Regulating the U(1) sector is more
challenging, in large part because the correspond-
ing artifacts appear much more severe. Initial stud-
ies [76] with a second supersymmetry-breaking poten-
tial—involving the determinant of the plaquette as the
simplest gauge-invariant quantity sensitive to the U(1)
sector—exhibited far larger discretization artifacts than
an improved action [78] that instead incorporates this
plaquette determinant into a Q-invariant modification

of the moduli equations. More recent work has aban-
doned the U(1) gauge invariance entirely [81], justified
by the decoupling of the U(1) sector in the continuum
limit. Despite the large U(1) effects indicating non-
decoupling in previous lattice studies, Ref. [81] was able
to observe apparently reasonable results out to unprece-
dentedly strong lattice ’t Hooft couplings λlat ≤ 30.
Moving forward, detailed comparisons with the gauge-
invariant improved action would be worthwhile to clar-
ify the role of discretization artifacts and gauge invari-
ance.

The publicly available SUSY LATTICE parallel soft-
ware package implements the improved action for N =
4 SYM [77, 122], and is currently being used to study a
wide range of interesting observables. For example, the
left plot in Fig. 3 considers the static potential V (r),
which is correctly seen to be coulombic at all accessible
’t Hooft couplings [76, 81, 154, 155]. By incorporating
tree-level improvement into the lattice analyses of the
static potential [155], and fitting the resulting data to
the Coulomb potential V (r) = A − C/r, we obtain the
results for the Coulomb coefficient C(λlat) shown in the
plot for several U(N ) gauge groups and lattice volumes.
With 2 ≤ N ≤ 4 and λlat ≤ 2, the lattice results are
consistent with the leading-order perturbative relation
C(λlat) ∝ λlat, which isn’t surprising given that higher-
order perturbative corrections are suppressed by powers
of λ

2π2 [156–158]. In the strong-coupling planar regime
λ → ∞ with λ � N , there is a famous holographic
prediction that C(λ) ∝ √

λ up to O
(

1√
λ

)
corrections

[159, 160], and more general analytic results have been
obtained in the N = ∞ planar limit [161]. Efforts are
underway to search for this behavior, by building on
Ref. [81] to access stronger couplings.

As a conformal field theory, N = 4 SYM is charac-
terized by its λ-dependent spectrum of scaling dimen-
sions, which are a more challenging target for lat-
tice calculations to predict. The right plot in Fig. 3
considers the analogue of the mass anomalous dimen-
sion, extracted from the eigenmode number of the lat-
tice N = 4 SYM fermion operator D [162]. Unlike
the Dirac operator of the QCD-like theories where
this approach was developed [163–165], the fermion
operator is skew-symmetric, ΨT DΨ = χabD(+)

[a ψb] +

ηD†(−)
a ψa + 1

2εabcdeχabD†(−)
c χde, and the correspond-

ing anomalous dimension γ∗(λ) = 0 for all couplings.
The eigenmode number ν(Ω2) counts the number of
D†D eigenmodes with eigenvalues |λk|2≤ Ω2, and scales
ν(Ω2) ∝ (

Ω2
)2/(1+γ∗). Stochastically constructing and

integrating a Chebyshev expansion of the spectral den-
sity [164, 165] produces numerical results for the eigen-
mode number. Fitting these results to a power-law
within windows

[
Ω2,Ω2 + 

]
of fixed length  pro-

vides a scale-dependent effective anomalous dimension
γeff(Ω2), which approaches γ∗(λ) = 0 in the IR limit
Ω2 → 0. Deviations from zero indicate the scale of lat-
tice artifacts related to the breaking of conformality by
the finite lattice volume and non-zero lattice spacing,
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Fig. 3 Results from ongoing four-dimensional lattice N = 4 SYM calculations. Left: The static potential Coulomb coeffi-
cient C(λlat) is consistent with leading-order perturbation theory (black dashed line) for λlat ≤ 2, comparing U(N ) gauge
groups with 2 ≤ N ≤ 4 and L3×Nt lattice volumes with L ≤ 16 and Nt ≤ 32. Right: A scale-dependent effective anomalous
dimension γeff(Ω2) approaches the expected γ∗(λ) = 0 in the IR limit Ω2 → 0. Considering 164 lattices for gauge group
U(2), discretization artifacts become more significant as the coupling λlat increases

which become more severe at the ’t Hooft coupling λlat

increases.
This experience with a trivially vanishing anomalous

dimension aids ongoing investigations of the non-trivial
scaling dimension ΔK(λ) = 2 + γK(λ) of the simplest
conformal primary operator of N = 4 SYM, the Kon-
ishi operator OK =

∑
I Tr

[
ΦIΦI

]
, where ΦI are the

six real scalar fields of the theory. As for the static
potential Coulomb coefficient, there are predictions for
the Konishi scaling dimension from weak-coupling per-
turbation theory [166–168], from holography at strong
couplings λ → ∞ with λ � N [169], and for all cou-
plings in the N = ∞ planar limit [170]. In addition, due
to the conjectured S-duality of the theory, which pre-
dicts an invariant spectrum of anomalous dimensions
under the interchange 4πN

λ ←→ λ
4πN , the perturbative

results are also relevant in the alternate strong-coupling
regime λ � N [171]. Finally, the superconformal boot-
strap program has been applied to analyze the Kon-
ishi anomalous dimension, with initial bounds on the
maximum value γK could reach across all λ [172, 173]
recently being generalized to λ-dependent constraints
[174].1 Preliminary lattice results with λlat ≤ 3 in Ref.
[1], obtained from Monte Carlo renormalization group
(MCRG) stability matrix analyses, again appear con-
sistent with perturbation theory.

Numerical lattice analyses of N = 4 SYM clearly
remain in their early stages, with many opportunities
for both technical improvements as well as generaliza-
tions to other interesting targets. A great deal of effort
is currently focused is on accessing stronger ’t Hooft

1Bootstrap results are also available for other supercon-
formal systems including four-dimensional N = 2 gauge the-
ories and three-dimensional gauge theories—see Refs. [175,
176] and references therein.

couplings, both to make more direct contact with holo-
graphic predictions and also to investigate the behav-
ior of the system around the S-dual point λsd = 4πN .
We will revisit this issue in Sect. 5.2. Another direction
proposed by Ref. [177] is to adjust the scalar potential
so as to study the theory on the Coulomb branch of
the moduli space, where its U(N ) gauge invariance is
higgsed to U(1)N . In this context S-duality relates the
masses of the U(1)-charged elementary ‘W bosons’ and
the magnetically charged topological ’t Hooft–Polyakov
monopoles [151], each of which may be accessible from
lattice calculations with either C-periodic or twisted
BCs, for values of λlat that have already been studied
successfully. The behavior of lattice N = 4 SYM at non-
zero temperatures will also be interesting to explore. In
particular, there is motivation [14] to study the free
energy, with the aim of using non-perturbative lattice
calculations to connect the weak-coupling perturbative
prediction [178] and the strong-coupling holographic
calculation [169], which differ by a famous factor of 3

4 .

5 Challenges for the future

While the recent progress in the three areas discussed
above is substantial, many compelling directions remain
for further research, ranging from improving large-N
continuum extrapolations in lower dimensions, to revis-
iting N = 1 SYM with Ginsparg–Wilson fermions, and
pursuing stronger ’t Hooft couplings in N = 4 SYM cal-
culations. There are also many other aspects of super-
symmetric gauge theories that have proven more chal-
lenging to tackle on the lattice. In this section we’ll
conclude this brief review by commenting on two par-
ticular challenges — lattice analyses of superQCD and
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the possibility of sign problems in supersymmetric lat-
tice systems.

5.1 Supersymmetric QCD

Considering first N = 1 theories in four dimensions,
the generalization from SYM to superQCD involves
adding ‘matter’ multiplets — ‘quarks’ and ‘squarks’,
which could in principle transform in any representation
of the gauge group. This generalization would enable
investigations of many important phenomena, includ-
ing (metastable) dynamical supersymmetry breaking,
conjectured electric–magnetic dualities and RG flows to
known conformal IR fixed points. Of course, the pres-
ence of the scalar squarks implies many more relevant
supersymmetry-violating operators, making the neces-
sary fine-tuning far more challenging. Even exploiting
the continuum-like symmetries preserved by overlap or
domain-wall fermions, Ref. [11] counts O(10) opera-
tors to be fine-tuned, depending on the gauge group
and matter content. The simplifications offered by the
Ginsparg–Wilson relation appear particularly crucial in
the context of superQCD. In particular, Refs. [11, 22]
argue that this good control over the fermions might
allow the scalar masses, Yukawas and quartic cou-
plings to be fine-tuned “offline” through multicanonical
reweighting, significantly reducing computational costs.

While the recent overlap investigation of N = 1 SYM
in Ref. [128] provides a starting point for generaliza-
tion to superQCD, most recent lattice explorations use
Wilson fermions and are confronted with the full fine-
tuning challenge. One tactic is to proceed by using lat-
tice perturbation theory to guide numerical calculations
[147–149, 179–181]. There is also an initial investigation
of a superQCD gradient flow that is consistent with
supersymmetry in Wess–Zumino gauge [182]. Another
approach is to omit the scalar fields at first, and initially
study gauge–fermion theories including both adjoint
gauginos and fundamental quarks [183, 184]. A sim-
ilar strategy is also being applied to N = 2 SYM,
using overlap fermions [185]. These scalar-less studies
also provide useful connections to investigations of near-
conformal composite Higgs models, recently reviewed
by Refs. [186, 187]. All of these studies in four dimen-
sions remain in their early stages.

As an alternative, following the logic of Sect. 2, it
can prove advantageous to investigate superQCD in the
simpler setting of fewer than four space-time dimen-
sions. Going all the way down to 0+1 dimensions, for
example, Refs. [188–190] consider the Berkooz–Douglas
matrix model [191], which adds Nf fundamental multi-
plets to Q = 16 SYM QM in such a way as to preserve
half of the supercharges in the continuum. In d = 2
and d = 3 dimensions, most effort so far has focused on
constructing clever lattice formulations of superQCD
[192–198].

Existing numerical calculations [199], and work in
progress [120], employ a quiver construction of Q = 4
superQCD in two dimensions [192, 193], based on the
twisted formulation introduced in Sect. 2.2. Starting

from Q = 8 SYM in three dimensions, the system is
reduced to have only two slices in the third direction.
The twisted formulation is then generalized to have dif-
ferent gauge groups U(N) and U(F ) on each of these
two-dimensional slices. Decoupling the U(F ) slice then
produces a two-dimensional U(N ) theory with F mass-
less fundamental matter multiplets and Q = 4 super-
symmetries, one of which is preserved at non-zero lat-
tice spacing. This same approach can be applied to con-
struct Q = 8 superQCD in two and three dimensions
[196, 197], and may be generalizable to higher represen-
tations [198]. The main numerical result so far has been
to compare U(2) superQCD with F = 3 against U(3)
superQCD with F = 2, observing dynamical supersym-
metry breaking when N > F and confirming that the
resulting goldstino is consistent with masslessness in the
infinite-volume limit [199].

5.2 Sign problems

Another challenge confronting some supersymmetric
lattice field theories is the possibility of sign prob-
lems, at least in certain regimes. Ref. [200] provides
a brief general introduction to sign problems. Here
we will return to focusing on SYM, which involves
only Majorana fermions, and hence the pfaffian of the
fermion operator D , which can fluctuate in sign even
when the determinant would be positive. Separating a
generic complex pfaffian into its magnitude and phase,
pf D = | pf D|eiα, the results presented in Sect. 4 all

come from ‘phase-quenched’ RHMC calculations that
use only | pf D| to carry out importance sampling. The
resulting phase-quenched observables 〈O〉pq then need
to be reweighted, 〈O〉 = 〈O〉pq/

〈
eiα

〉
pq

, with a sign
problem appearing when

〈
eiα

〉
pq

= Z/Zpq vanishes
within statistical uncertainties. In particular, in lattice
calculations employing fully periodic BCs, the parti-
tion function Z is the Witten index and must vanish
for any theory that can exhibit spontaneous supersym-
metry breaking [201], implying a severe sign problem.

For lattice N = 1 SYM, clover-improved Wilson
fermions produce a real pfaffian whose sign can be com-
puted efficiently [202]. Ref. [132] reports that

〈
eiα

〉
pq

≈
1 in these studies, improving as the lattice spacing
decreases. The twisted-mass approach to N = 1 SYM
allows the pfaffian to be complex. While Ref. [139]
finds

〈
eiα

〉
pq

≈ cos(α) > 0.965 for 163 × 32 lattices
(extrapolating from smaller volumes), it also reports
that

〈
eiα

〉
pq

decreases exponentially in the lattice vol-
ume V , as expected [200]. This work has to extrapo-
late from smaller volumes because it directly evaluates
the pfaffian, which can be extremely expensive, with
computational costs scaling ∝ N3

Ψ, where NΨ ∝ N2V
is the number of fermionic degrees of freedom in the
lattice system. Such direct evaluations are more com-
mon in lower dimensions, where all works so far observe
well-behaved

〈
eiα

〉
pq

→ 1 in the fixed-T̂ continuum
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Fig. 4 Results for the pfaffian phase
〈

Re
(

eiα
)〉

pq
≈ 〈

eiα
〉

pq
from four-dimensional lattice N = 4 SYM calculations

using the gauge-invariant improved action [153, 203]. Left: For a fixed ’t Hooft coupling λlat = 0.5, only per-mille-level
fluctuations are observed for U(N ) gauge groups with N = 2, 3 and 4, up to the largest accessible volumes. Right: For a
fixed 44 lattice volume, the U(2) phase fluctuations increase significantly for stronger couplings, which obstructs studies of
λlat � 4 with this lattice action

limit [34, 42, 52, 84, 98, 99, 107, 116, 120]. Lower-
dimensional systems can also be used as testbeds for
different algorithmic approaches, such as the complex
Langevin method used to explore spontaneous super-
symmetry breaking in Ref. [5].

Turning to lattice N = 4 SYM in four dimensions,
Fig. 4 presents results for the pfaffian phase using
the gauge-invariant improved action [153, 203]. Despite
implementing a parallelized pfaffian computation in
SUSY LATTICE, only small N and small lattice volumes
are computationally accessible, with each U(2) 44 pfaf-
fian measurement requiring approximately 50 hours on
16 cores. In the left plot, only small per-mille-level
phase fluctuations are observed on all accessible vol-
umes with fixed ’t Hooft coupling λlat = 0.5. In partic-
ular, the expected exponential suppression of

〈
eiα

〉
pq

with the lattice volume is not visible, which is encour-
aging if not yet fully understood. However, the right
plot shows that

〈
eiα

〉
pq

decreases rapidly as the ’t Hooft
coupling increases, obstructing studies of λlat � 4 with
this lattice action. For gauge group U(2), Ref. [81]
presents mixed-action evidence that sacrificing gauge
invariance may improve control over pfaffian phase fluc-
tuations at much stronger couplings λlat ∼ O(10), rais-
ing the possibility of more directly probing holography
and S-duality.

5.3 Final remarks

Non-perturbative lattice investigations of supersym-
metric QFTs are important and challenging, making
this an area that should attract even more attention
in the near future. It is encouraging that there has
been so much recent progress in lattice studies of four-
dimensional N = 1 SYM and N = 4 SYM, along
with their dimensional reductions to d < 4, where the
consequences of supersymmetry breaking due to the
discrete lattice space-time can be kept under control.
There have also been advances in other areas of lattice

supersymmetry that this brief review omits, in partic-
ular lattice studies of theories without gauge invari-
ance, such as Wess–Zumino models and sigma mod-
els [4–8, 111–115, 204–207], as well as lattice investi-
gations of the Green–Schwarz superstring worldsheet
sigma model [208–211]. While supersymmetric QCD
and sign problems present challenges that may be diffi-
cult to overcome, the overall prospects of lattice super-
symmetry are bright, with many compelling opportu-
nities for future work.
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