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Abstract

This paper proposes a last-mile logistics delivery system which makes use of multiple localised
storage depots and multi-modal delivery options. Multiple localised storage depots facilitate express
and instant delivery services. Multi-modal delivery allows for use of alternative green vehicle types
for performing deliveries where there may also be vehicle access restrictions. Additionally, when
demand density is sufficiently high and parcel sizes small, utilising alternative delivery modes, such
as electric cargo bike and porters, can be cost effective in their own right. The proposed model allows
for vehicles to rendezvous at kerbside locations (mobile satellites) where parcels can be transferred
between vehicles, a feature that is shown to reduce depot stem costs. For the purpose of generality
and the potential for higher quality solutions, no fixed echelon or hierarchical structure is placed
on the sequence of vehicles transporting any parcel, that is, the problem is one of variable-echelon.
The last-mile delivery system described in the paper gives rise to a multi-modal delivery problem
using a heterogeneous fleet of vehicles and with synchronisation constraints. The paper presents
a mathematical formulation of the problem and a heuristic algorithm. Computational results are
presented that validate the mathematical model and the heuristic on a set of benchmark instances,
some of which are based on the literature. The paper also describes a new set of benchmark instances
derived from real sales data in London, whose results demonstrate potential benefits from using the
proposed delivery concept.

Key words: Transportation; variable-echelon vehicle routing; mobile satellites; cargo bikes; open routes

1 Introduction

Online retail is accounting for an ever increasing portion of all retail sales. In the UK alone, the volume

of the parcel market reached 2.6 billion items in the 2018-19 financial year (Ofcom, 2019), with online

retail sales exhibiting roughly 1% a year increase over the last decade, accounting for 19% for all retail
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sales in January 2020, with a further sharp peak of 33% in May 2020 due to the Covid-19 pandemic

(Office of National Statistics, 2020). Online sales channels have led to increased competition with

retailers trying to increase their market share by offering lower prices and cheap fast delivery to the

customer’s doorstep Goldberg (2019). 20% of online retail sales consist of large white-goods, such as

fridges and washing machines often requiring 2 person delivery due to weight and installation, while

80% of online sales represent smaller parcels (Global Data, 2018).

With an ever-growing strain on existing logistics and transportation networks and increasing con-

cerns regarding pollution (noise and vehicle exhaust fumes) in densely populated urban areas, we are

presented with an opportunity to redesign last-mile logistics for the good of all parties. When demand

density is sufficiently high, hiring small storage spaces in areas close to points of demand can become

cost effective, since it reduces depot-to-delivery-zone stem costs, which occur when inventory is stored

in remote areas. Also, when demand density is sufficiently high and package sizes are small, it can be-

come cost effective to make use of smaller delivery vehicles, such as cargo bikes and porters (walkers),

which are also more environmentally friendly in comparison to larger delivery trucks. When the vehicle

fleet is highly diversified and some vehicles have limited carrying capacity or range, mobile satellites

(kerb side spaces) can be used for transferring parcels between delivery modes. In such a scenario,

vehicle tours need to be synchronised.

In this work we address a routing problem that arises within a logistics network composed of multiple

localised storage depots and a diverse fleet of vehicles responsible for delivering parcels to the customer

doorstep. Our aim is to develop a model for coordinating third party couriers, for performing regular

parcels deliveries. Delivery of an item may be made using a sequence of different transport modes.

No fixed or hierarchical structure is imposed upon the paths of parcels from storage depot to customer

doorstep; that is parcels can be transferred to and from any pair of vehicle types, instead the proposed

model determines the best paths for all parcels, hence we have a variable echelon structure. This work

also focuses on the case where vehicles follow open routes, where the start and end point of vehicle

tours are not predetermined but are to be decided as part of the design. A similar delivery system has

been trialled by Ford (2019), who developed proprietary software which identifies optimal places for

van drivers to pull over near multiple drop-off points, and where pedestrian and cycle couriers perform

the last leg of the delivery.

The contributions of this work are as follows:

• We introduce a multi-modal and a variable-echelon delivery system for last-mile delivery.

• We describe a mathematical programming formulation for the problem to obtain exact solutions.

• A scalable two-phase heuristic algorithm is proposed for instances that are not within the reach of

the mathematical programming formulation. The heuristic is validated by comparison with exact

and benchmark solutions.

• A series of computational experiments are presented which demonstrate the benefits of multi-

modal and variable echelon delivery and yield insights into the best fleet compositions when both

customer density and average parcels sizes are varied.

The remainder of this document is structured as follows. Section 2 reviews closely related literature.

Section 3 provides a problem description. Section 4 provides a mathematical formulation. Section 5
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presents a scalable heuristic algorithm. Section 6 presents the results to a series of experiments. Finally,

Section 7 summarises the main conclusions and outlines directions for future research.

2 Literature review

In this review we firstly explore existing last-mile delivery strategies. We then review the existing vehicle

routing and location-routing models most closely related to the problem considered in this work. This

section concludes with a review of the most promising solution methodologies.

2.1 Last-mile delivery strategies

One direction in last-mile delivery research is the use of environmentally friendly vehicles such as elec-

tric vehicles or porters (walkers). Allen et al. (2018) analyse data from delivery routes of two different

parcel carriers operating in London, with the aim of evaluating the potential benefits of utilising porters

in conjunction with truck deliveries. It was found that, on average, trucks spend 60% of the time station-

ary, while drivers make deliveries on foot, and that handing over parcels to porters, at relatively few drop

off points has the potential to reduce vehicle time by 55% while increasing vehicle utilisation. McLeod

et al. (2020) also analyse the potential benefits of utilising porters and cargo bikes alongside vans in

last-mile delivery. In their model vans remain responsible for the delivery of heavy and bulky items, as

well as returns. The remaining parcel deliveries are assigned to porter clusters, where a routing problem

is solved for each cluster. While also focusing on a London case study, they found that portering based

delivery models reduced costs, emissions, driving time and the time vehicles spend stationary kerbside.

Arnold et al. (2018) develop a simulation model for comparing three alternative last-mile delivery

models in the city of Antwerp, focusing on the trade-offs between costs to logistics service providers

(LSPs) and negative externalities such as congestion and tail pipe emissions. In comparison to the

traditional diesel powered truck delivery model, encouraging customers to opt to pick up parcels from

pick up points reduces LSP costs at the expense of increased congestion due to customers travelling to

pickup points (Liu et al. (2019), Kedia et al. (2020) and Lin et al. (2020) each consider the impacts of

the locations of collection delivery points (CDPs) on externalities in more detail). On the other hand,

making use of cargo bikes in conjunction with trucks for deliveries reduces negative externalities but

increases LSP costs.

Regarding the impact of the operating environment on the structure of network architecture and

delivery model Janjevic and Winkenbach (2020) provide a review covering both mature and emerging

markets. Janjevic and Winkenbach (2020) enumerate the variables which categorise different urban

last-mile delivery strategies. de Mello Bandeira et al. (2019) perform a systematic literature review to

identify the most promising vehicle types for improving last-mile delivery operations in urban areas.

They identified electric light delivery vehicles (eLDVs) and electric tricycles as strong candidates for

improving postal delivery operations in Rio de Janeiro across three “bottom-line” criteria: economic,

environmental and social.

Parcel lockers provide an alternative delivery option for customers and offer several benefits. For

example, customers may not be at home at the delivery time, so delivery failure can be avoided. Also,

multiple customer orders can be fulfilled with a single visit to a parcel locker station. Ballare and

Lin (2020) investigates combining parcel locker networks and crowd shipping as a last-mile delivery
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approach, a combination not yet field tested. The concept is that crowd shippers pick up packages, take

them to the parcel locker and sort them by zip code. Intra-zonal parcels are delivered within the same

service area using crowd shippers, while inter-zonal packages which are delivered to the target service

area using traditional trucks.

Another concept gaining ground in last mile delivery is that of horizontal cooperation between dif-

ferent last-mile carriers, whose depots or service areas overlap. Allen et al. (2017) introduce the concept

of a Freight Traffic Controller (FTC) who is a trusted third party who decides how carriers can cooperate,

in such a way that all carriers benefit proportionally to their contribution to a coalition. The approach

can also lead to environmental benefits. Our approach can be used to coordinate a range of third-party

couriers.

For a comprehensive review of last-mile delivery concepts see Boysen et al. (2021), who also provide

a compact notation for describing last-mile delivery concepts. A delivery concept is described by all the

possible sequences of storage locations, modes of transport and final handover method. In the delivery

concept proposed in this paper, the number of sequences is not explicitly bounded, described here as

multi-modal and variable-echelon.

2.2 Single and multi-echelon vehicle routing

Vidal et al. (2020) provide a recent review of the existing variants of the vehicle routing problem (VRP),

and focus on three main perspectives: i) objective functions, including costs, reliability and environ-

mental considerations; ii) integration with other combinatorial optimisation problems; and iii) increas-

ing model fidelity. They highlight routing integrated with districting, facility location, fleet composition

and inventory management. Dündar et al. (2021) provide a review on recent research on sustainable

urban routing, and focus on work which addresses: i) economic dimensions; ii) economic and environ-

mental dimensions; iii) economic and social dimensions; and iv) economic, environmental and social

dimensions.

Examples of single-echelon last-mile delivery routing problems include Martinez-Sykora et al. (2020)

and Bayliss et al. (2020a). Martinez-Sykora et al. (2020) develop an optimisation model for last-mile

delivery in London using a combination of walking and driving. Performing sequences of deliveries on

foot, within a vehicle route, can be helpful in densely populated areas where kerbside parking space is

hard to find. When retail store deliveries and online customer parcel deliveries are integrated within the

same routes, thereby increasing vehicle utilisation, we get the omni-channel vehicle routing problem

(Bayliss et al., 2020a). The model proposed here allows for the use of vans and porters, as well as the

use of intermediate storage facilities within vehicle routes.

Vehicle routing problems are increasingly defined in terms of the number of echelons they consist

of. In general, multi-echelon models (Quetschlich et al., 2021) represent attempts to integrate usually

disparate planning problems, in order to gain efficiencies through coordination between adjacent eche-

lons. In the current context, a single-echelon is one phase in a possibly multi-phased delivery process

and is characterised by a starting depot, where inventory is loaded into a delivery vehicle. The subse-

quent delivery locations may be final customers or intermediate facilities which are the start points for

deliveries made in a subsequent echelon. Crainic et al. (2009) first proposed a two-echelon city logistics

system, in which large polluting vehicles, are excluded from city centres, and deliver cargo to satellite

depots located on the city outskirts from which smaller “green” vehicles are employed to make deliveries
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within the densely populated urban areas.

Zhang et al. (2018) presents a simulation study comparing standard parcel delivery, a two-echelon

cargo bike distribution system and a pick-up point based delivery system. Based on a Wilmersdorf-

Berlin case study, they find that compared to a typical parcel vehicle approach, utilising cargo bikes to

perform deliveries starting from micro depots reduces the required number of parcel vehicles, increases

the number of items delivered per vehicle tour, while reducing vehicle miles and vehicle operating time.

Utilising parcel lockers reduces the number of vehicle tours, vehicle miles and time, while increasing

the number of items delivered per vehicle tour. See Cuda et al. (2015) and Sluijk et al. (2022) for surveys

on two-echelon routing problems.

In contrast to existing works, which propose two-echelon delivery systems, our model diverges from

this approach. Instead, our model focusses on the case where all vehicle types can possibly be acceptable

for delivering parcels within urban areas and transferring parcels to different vehicles. Our model al-

lows multi-modal delivery routes via the use of mobile satellites and micro-hubs as locations for parcels

transfers between vehicles, and places no-hierarchical constraints on the flow directions of parcels be-

tween different vehicle types. Instead, it allows the optimisation process to discover the best delivery

structure, based on the fundamental characteristics of the vehicle fleet and physical characteristics of the

problem instance. The resulting routing solutions may then exhibit, for example, a mix of single, two

and three-echelon routes.

2.3 Multi-echelon location-routing

When the start points of next-echelon routes are not predetermined, we have a multi-echelon location-

routing problem. In the current problem, the locations of any vehicle rendezvous are decision variables.

The vast majority of existing multi-echelon location-routing models are strict two-echelon models, e.g.

(Cao et al., 2021; Yu et al., 2020; Pichka et al., 2018). Specifically, Cao et al. (2021) consider the

two-echelon location-routing problem for a biomass logistics system, where biomass must be collected

and processed at intermediate facilities, before being transported to the main biomass refinery. Yu et al.

(2020) considers the two-echelon open location-routing problem for urban delivery. The first echelon

consists of trunk routes from the main depot to loading-unloading zones, like mobile satellites. In the

second echelon, delivery routes are not required to return to the start point, and are therefore open routes.

Similarly, Pichka et al. (2018) consider a two-echelon open location-routing problem in which deliveries

in both echelons utilise third party logistics providers.

Other authors consider the location-routing problem from a strategic perspective and focus on decid-

ing where facilities should be located, while only approximating route costs, since this vastly increases

the sizes of problem that can be solved. Janjevic et al. (2021) consider a three echelon last mile delivery

network, where echelons represent different delivery speeds, instant, express and same day.

In the cases of Yu et al. (2020) and Pichka et al. (2018) first and second echelon tasks are distinct

and separate. Anderluh et al. (2021) consider a case where there is some overlap. Anderluh et al.

(2021) consider a two-echelon vehicle routing problem with vehicle synchronisation. Customers are

assigned to one of three areas in a city: i) outer city, where deliveries are made by first echelon vehicles;

ii) inner city, where deliveries are made by second echelon delivery vehicles; or iii) grey zone, where

deliveries can be made by either first or second echelon delivery vehicles. The grey zone also contains

satellite locations for parcel transhipments from first echelon vehicles to second echelon vehicles. While
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Anderluh et al. (2021) represents the closest existing model to that proposed here, Anderluh et al. (2021)

still focus on two-echelons of vehicle routing problems, while also considering multiple objectives,

namely minimisation of cost, greenhouse gas emissions and noise pollution.

When parcel transhipments between vehicle’s are allowed enroute, vehicle routes must be synchro-

nised. Drexl (2012) provides a classification and review of VRPs with multiple synchronisation con-

straints. As an archetypal example, the VRP with trailers and transhipments (VRPTT) is used to define

all types of synchronisation. The main types of synchronisation are: i) task synchronisation (which

vehicle performs each task); ii) operation synchronisation (when both the task and support vehicles are

required to be present for transhipment operations); iii) Movement synchronisation (the availability of a

cab to tow a trailer); iv) load synchronisation (the requirement that transhipment operations are required

to be capacity feasible for both vehicles); and v) resource synchronisation (when vehicles use the same

resources).

2.4 Solution methodologies

The complexity of the city-logistics delivery systems considered in the previous sections, and the scale of

real world problem instances, necessitates heuristic solution methodologies, which sacrifice guarantees

of optimality in return for faster solution times. While some authors propose genetic algorithms, such as

Zhou et al. (2018), who consider a multi-depot two-echelon vehicle routing problem with customer de-

livery options, the vast majority turn to local search based solution methodologies (Dündar et al., 2021).

Cao et al. (2021) (Section 2.3) develop a hybrid heuristic combining variable neighbourhood search

(VNS) and tabu search (TS). To validate their approach, experimental results show that the heuristic per-

forms well compared to an exact solver in small instances. McLeod et al. (2020) (Section 2.1) employ a

2-opt local neighbourhood based local search approach. While local search provides a search intensifi-

cation mechanism, an extension of local search is large neighbourhood search, which introduce destroy

and repair operators, with the aim of providing a diversification mechanism into the search. Enthoven

et al. (2020), Hemmelmayr et al. (2012), Grangier et al. (2016), Anderluh et al. (2021) and Li et al.

(2020) each develop large neighbourhood search approaches for two-echelon vehicle routing problems.

Similar to the body of literature reviewed above, this paper also proposes a heuristic solution method-

ology that includes local search. Both 2-opt and cut-and-insert search neighbourhoods are used in this

work, applied within a VNS framework (See Section 5.2), particularly as Sluijk et al. (2022) point out

that 2-opt has been successfully applied in 15 out of 23 recent 2E-VRP heuristics, while the cut-and-

insert neighbourhood has been successfully applied in 19 out 23 recent 2E-VRP heuristics. Yu et al.

(2020) and Pichka et al. (2018) (Section 2.3) both develop simulated annealing algorithms, which pro-

vide a mechanism to escape local optima, in which worse neighbouring solutions have a probability of

being accepted as the new current solution. In this work, we use a biased-randomised (Bayliss et al.,

2020b) constructive heuristic, which provides the initial solution for the local search phase, and as such

embeds diversification in the construction phase of the algorithm.

3 Problem description

Demand is generated by customers who each require delivery of a set of parcels of arbitrary sizes and

weights which may originate at different storage depots. A fleet of vehicles consisting of vans, cargo
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Figure 1: Example of a multi-modal delivery plan making use of mobile satellite location for a vehicle
rendezvous.

bikes and porters (walkers) are available for making deliveries. Each vehicle type has their own maxi-

mum capacity (volume), maximum weight, drop times, maximum tour length, maximum tour duration

and travel speed. Although we focus on three vehicle types in this paper, the model extends to several

vehicle types in a straightforward way. Tours can begin at any depot or kerbside handover point (mobile

satellite) with no storage capacity of its own, where parcels can be transferred between vehicles that are

simultaneously present. Tours can end anywhere, i.e., open-routes, which reflects the use of third-party

couriers. Returns can be modelled by treating return customers as small depots and the corresponding

return depot as a customer.

We make the following assumptions on the operational aspects of the problem. First, parcel deliver-

ies to customers must be made within hard time windows specific to and as specified by each customer,

and cannot be split. Deliveries can be made either: (i) directly, from a depot to a customer using one

mode of transport or (ii) using multi-modal transport, where parcels can be transferred from one vehicle

to another en route. Like the use of mobile satellite locations as rendezvous locations, parcels can be

transferred from one vehicle to another by dropping it off at a depot, where it can be picked up at a later

time by another vehicle, this latter type of vehicle rendezvous has the advantage that both vehicles need

not be present at exactly the same time. Conversely, mobile satellite type vehicle rendezvous’ have the

advantage that there are a greater number of potential locations where the vehicle rendezvous can take

place. Both types of rendezvous introduce additional vehicle synchronisation constraints into the vehi-

cle routing problem. No constraint is placed on the number of vehicles that can simultaneously transfer

parcels. Figure 1 illustrates an example delivery plan which makes use of a mobile satellite location

where parcels are transferred from a van to a cargo bike.

Routes incur travel costs dependent upon tour length (fuel) and duration (wages), and each vehicle

used invokes a fixed cost. The objective is to plan a set of van, cargo bike and porter routes which are

feasible and transport all parcels to the required locations, at a minimum total cost.

Figure 2 illustrates a step-by-step solution to the considered problem on an example instance where

there are 5 customers, each demanding a parcel, all of the same size and weight. There are three vehicles

available for performing the deliveries. Vehicle 1 has a maximum range of 3 units of distance, and space

for five parcels. Vehicle 2 has a maximum range of 1.5 and space for 1 parcel. Vehicle 3 has a maximum

range of 0.25 units of distance and space for 1 parcel.
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5. Vehicle 1 transfers another parcel
to vehicle 2, then both vehicles visit
their final customers.

2. Vehicle 1 transfers one parcel to
vehicle 2 and then travels to another
customer, while vehicle 2 travels to
another mobile satellite.

1. Vehicle 1 travels to mobile satellite
with 5 parcels.

4. Vehicle 1 travels to mobile satellite
to meet with vehicle 2 which is
already there.

3. Vehicle 1 visits another customer.
Vehicle 2 transfers a parcel to vehicle
3, who then visits customer. Vehicle 2 then
travels to a mobile satellite.

Figure 2: Example solution involving vehicle synchronisation and three vehicle types.

The optimal solution shown in Figure 2 requires vehicle 1 to pick up all five parcels from the storage

depot indicated by the circle. During vehicle 1’s tour it must visit three customers and meet with vehicle

2 twice, which visits one customer and transfers a parcel to vehicle 3, who then makes one delivery. The

example demonstrates a scenario where the model accounts for synchronisation, which is required for

vehicle rendezvous at mobile satellites.

4 Mathematical formulation

The routing problem is defined on a graph G′ = (N′,A′) where N′ is the set including the set C of nodes

that correspond to customer locations and set D of depots from where parcels are delivered. The graph

has a set A′ of arcs along which vehicles can travel between pairs of nodes as dictated by the real topology

of the network. By defining a set T of time intervals over which the problem is to be solved, we convert

G′ into a time-space network G = (N,A), where N is the set of nodes formed by replicating each node

in set N′ for each time slot in set T . We then define the new arc set A by replicating each arc (i, j) ∈ A′

such that (v, t, i, j) ∈ A represents a vehicle, v ∈ V , setting off from a node, i ∈ N, towards a another

node, j ∈ N, at a particular time, t ∈ T . The set of arcs Avt , denotes the subset of all arcs A that vehicle v

can traverse at time t, which allows for the possibility that not all arcs are available to all vehicles at all

times, for instance, some arcs may not be available to large trucks due to vehicle restrictions. The full

notation used for the model is presented in Table 1. We now present the model for the problem.
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Table 1: Summary of the notation

Sets
D : The set of depots.
K : The set product types.
C : The set of customers.
M : The set of available mobile satellites.
V : The set of vans.
B : The set of cargo bikes.
P : The set of porters.
R : The set of customer nodes with return requests.
T : The set of time intervals in the space time graph formulation.
Oi : The set of vehicle types that can visit customer i.
Nv : The set of nodes that vehicle v can visit.
N j∗

v : The set of nodes vehicle can visit immediately after node j.
N∗ j

v : The set of nodes vehicle can visit immediately before node j.
A : The set of arcs.
Avt : The set of arcs which begin at time t of vehicle v.

Parameters
τi jv : The travel time between node i and j for vehicle v.
ci jv : The travel cost for traversing the arc between node i and j for vehicle v.
di j : The distance between node i and j.
θv : Cost per unit time of vehicle v.
σv : Cost per unit distance of vehicle v.
δ : The time required by a vehicle to make a delivery or transfer parcels to another vehicle,

referred to as drop time.
ev : Dummy end node for vehicle v, which a distance of 0 from all nodes.
Lv : The maximum feasible duration of any route for vehicle v.
Rv : The maximum range (or mileage) of vehicle v.
av : The maximum volume that can be carried by vehicle v at any one time.
φv : The maximum weight carried by vehicle v.
Hv : Fixed cost of vehicle v.
qik : Stock of product type k available at depot i.
hi : Capacity of depot i.
fik : Demand of node i for product type k.
nk : Volume of storage space consumed by one unit of product type k.
mk : Weight of one unit of product type k.
αi : Start time of customer i’s delivery time window.
βi : End time of customer i’s delivery time window.
ε : Small valued constant weight for symmetrical solution suppressing terms in the objective

function.
Decision variables

xvti j : Binary variable which takes a value of 1 if the edge joining nodes i to j is traversed begin-
ning at time t in the route of vehicle v

γvit : Binary variable which takes a value of 1 if vehicle v starts their tour from node i at time t.
zv : Binary variable which takes a value of 1 if vehicle v is assigned to a route.
uvtik : Continuous variable indicating the amount of product type k picked up by vehicle v at time

t from node i ∈ N \C.
wvtik : Continuous variable indicating the amount of product type k dropped off by vehicle v at

time t at node i.
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minimise ∑
v∈V∪B∪P

∑
t∈T

∑
(i, j)∈Avt

xvti jci jv+ ∑
v∈V∪B∪P

Hvzv+ε

(
∑

v∈V∪B∪P
∑

i∈Nv

∑
t∈T

tγvit + ∑
v∈V∪B∪P

∑
t∈T

∑
i∈Nv

∑
k∈K

(uvtik +wvtik)

)
,

(1)

γv jt + ∑
i∈N∗ j

v |(t−τi jv)≥0

xv(t−τi jv)i j− ∑
l∈N j∗

v

xvt jl = 0, ∀v ∈V ∪B∪P, ∀t ∈ T, ∀ j ∈ D∪M \{ev}, (2)

∑
i∈N∗ j

v |(t−τi jv)≥0

xv(t−τi jv)i j− ∑
l∈N j∗

v

xvt jl = 0, ∀v ∈V ∪B∪P, ∀t ∈ T, ∀ j ∈ Nv \{ev∪D∪M}, (3)

∑
t∈T

∑
i∈Nv

γvit ≤ zv, ∀v ∈V ∪B∪P, (4)

∑
t∈T

∑
(i, j)∈Avt

xvti j ≤ Gzv, ∀v ∈V ∪B∪P, (5)

∑
t∈T

∑
i∈Nv

γvit ≤ 1− ∑
(i, j)∈Av0

xv0i j, ∀v ∈V ∪B∪P, (6)

∑
t∈T

∑
i∈Nv\{ev}

xvtiev = zv, ∀v ∈V ∪B∪P, (7)

∑
v∈O j

∑
t∈T |α j≤t≤β j

∑
i∈N j∗

v \{ j}

xvt ji = 1, ∀ j ∈C, (8)

∑
v∈O j

∑
i∈N∗ j

j

∑
t∈T |α j≤t+τi j≤β j

xvti j = 1, ∀ j ∈C, (9)

∑
t∈T

∑
(i, j)∈Avt

τi jvxvti j ≤ Lv, ∀v ∈V ∪B∪P, (10)

∑
t∈T

∑
(i, j)∈Avt

di jxvti j ≤ Rv, ∀v ∈V ∪B∪P, (11)

uvtik ≤ H ∑
j∈Ni∗

v \{ev}
xvti j, ∀t ∈ T, ∀v ∈V ∪B∪P, ∀i ∈ Nv \{ev}, ∀k ∈ K, (12)

wvtik ≤ H ∑
j∈Ni∗

v

xvti j, ∀t ∈ T, ∀v ∈V ∪B∪P, ∀i ∈ Nv \{ev}, ∀k ∈ K, (13)

∑
i∈Nv

t

∑
l=1

(uvlik−wvlik)≥ 0, ∀v ∈V ∪B∪P, ∀t ∈ T, ∀k ∈ K, (14)

∑
k∈K

∑
i∈Nv

t

∑
l=1

nk (uvlik−wvlik)≤ av, ∀v ∈V ∪B∪P, ∀t ∈ T, (15)

∑
k∈K

∑
i∈Nv

t

∑
l=1

mk (uvlik−wvlik)≤ φv, ∀v ∈V ∪B∪P, ∀t ∈ T, (16)

∑
t∈T

∑
i∈Nv

(uvtik−wvtik) = 0, ∀v ∈V ∪B∪P, ∀k ∈ K, (17)

∑
v∈V∪B∪P

uvtik = ∑
v∈V∪B

wvtik, ∀i ∈M, ∀k ∈ K, ∀t ∈ T, (18)

∑
v∈V∪B∪P

uvtik ≤
t−1

∑
l=1

∑
v∈V∪B∪P

wvlik−
t−1

∑
l=1

∑
v∈V∪B∪P

uvlik +qik, ∀t ∈ T, ∀i ∈ D, ∀k ∈ K, (19)
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∑
v∈V∪B∪P

∑
k∈K

nk (wvtik−uvtik)≤ hi−∑
k∈K

nkqik, ∀i ∈ D, ∀t ∈ T, (20)

∑
v∈Oi

∑
t∈T

wvtik = fik, ∀i ∈C, ∀k ∈ K, (21)

xvti j ∈ {0,1} , ∀v ∈V ∪B∪P, ∀t ∈ T, ∀(i, j) ∈ Avt , (22)

zv ∈ {0,1} , ∀v ∈V ∪B∪P, (23)

γvit ∈ {0,1} , ∀v ∈V ∪B∪P, ∀i ∈ D∪M, ∀t ∈ T, (24)

uvtik,wvtik ∈ R+, ∀v ∈V ∪B∪P, ∀t ∈ T, ∀i ∈ D∪M∪C, ∀k ∈ K. (25)

The objective (1) is to minimise the solution cost, which is a sum of travel costs and vehicle fixed

costs. Travel costs are assumed to be proportional to travel time (driver wages) and distance (fuel costs).

The cost of vehicle v traversing arc (i j) is expressed as ci jv = σvdi j + θvτi jv. The ε weighted term of

the objective function plays a similar role to a symmetry breaking constraint and is designed to reduce

solution times. The value of ε is set as small as necessary to avoid changing the optimal solution

from that when ε = 0. This term suppresses the symmetrical solutions characterised by cases where

uvtik > 0 and wvtik > 0, i.e., where the same product type is simultaneously dropped off and picked

up by a vehicle at a given time and location. This term also suppresses symmetrical solutions where

vehicles can feasibly wait, unnecessarily, at any time during their tour. That is, all required travelling is

performed at the earliest opportunity. The value of ε needs to account for the upper bound of the terms

in parentheses and the smallest non-zero difference in solution costs between two feasible solutions. If

the value of epsilon is set too high, the model may characterise a higher cost solution, compared to the

solution where ε = 0, one which involves fewer vehicles starting at a time t > 0 (due to the first term in

parentheses), and involving fewer vehicle rendezvous (due to the second term in parentheses).

Constraint (2) specifies that non-depot nodes visited by vehicle v are immediately exited. This

constraint is convenient to report first because arc variables not included in consistent instances of this

constraint are ruled out from inclusion in any of the subsequent constraints. Consistent instances of

this constraint have at least one arc variable in two of the three terms. One example of an inconsistent

instance of this constraint occurs for vans when t = 0 when it is not possible for a vehicle to enter and

then exit a customer node because vehicle routes cannot leave a previous node before time t = 0. In

general, if no arc leads to node j at time t then no arc can leave node j at time t. Constraint (2) allows

for vehicles who start their tours at t > 0. Constraint (2) introduces a binary variable γv jt to indicate

that vehicle v starts their tour at node j at time t. Constraint (2) forces γv jt to take values of 0 or 1,

(note that γv jt can be set as continuous variables when the model is solved using a linear programming

based solver, because this constraint forces it to a value of 0 or 1 due to the other binary variables in the

constraint). Arc traversal times τi jv include any service time required before leaving node i. Constraint

(3) plays the same role as Constraint (2) for nodes that can be visited by vehicle v, not including depots

or mobile satellites. Constraint (4) specifies that a vehicle can start a tour at most once. Constraint

(5) specifies that a vehicle is used if it traverses at least one arc, which invokes a fixed cost for using
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that vehicle in the objective function. In this constraint, G is a sufficiently large number at least as

great as the largest number of arcs in a single vehicle’s tour, otherwise the model is not valid in all

situations. Constraint (6) specifies that if a vehicle starts their tour at time zero, the γv jt variables for that

vehicle are all zero. Without this constraint a vehicle can start another (infeasible) route after entering

the dummy end node at the end of its first tour. Constraint (7) specifies that vehicles, if used, must enter

their dummy end node once, at no travel cost (tieb = 0, ∀i ∈ Nb), thus terminating the vehicle’s open

tour. Constraint (8) specifies that customer nodes are exited exactly once by one vehicle. O j denotes

the set of allowable vehicles for visiting customer j, this approach accounts for customers who reside

in locations with vehicle restrictions. It can also model cases where customers request delivery by a

specific vehicle type. N j∗
v denotes the set of nodes that vehicle v can visit after visiting node j. This

constraint allows vehicles to wait at a customer node, which may be required for satisfying customer

delivery time windows. Constraints 7 and 8 ensure that each vehicle is assigned to most one tour.

Constraint (9) specifies that each customer must be visited once within their delivery time window. This

constraint is required to prevents deliveries being made at unacceptable times of the day, since tours

starting at vehicle rendezvous can begin at any time. Constraint (9) can also be used to model narrow

customer specific time windows. Constraint (10) specifies that no vehicle tours exceed the maximum

tour duration. Constraint (10) requires that arc traversal variables (xvti j) are 0 after the ends of routes.

Constraint (11) specifies that no vehicle routes exceed the maximum range of the vehicle. Constraint (12)

specifies that a vehicle cannot pick up stock from a node it does not visit, where H is a sufficiently large

number, in this case, at least greater than the sum of all demands over all nodes. Constraint (13) specifies

that a vehicle cannot drop off stock to a node it does not visit. Constraints (12) and (13) require that

vehicles are present simultaneously at mobile satellite rendezvous, thereby enforcing synchronisation.

Constraint (14) specifies that the amount of stock carried a vehicle is never negative. Constraint (15)

specifies that the volume of stock carried by a vehicle never exceeds its capacity. This constraint also

ensures that the total amount of stock delivered never exceeds the total amount of stock picked up at

any stage of any route. Constraint (16) specifies that the weight of stock carried by a vehicle never

exceeds its maximum carrying capacity. Constraint (17) specifies that all vehicles end their tours empty.

Constraint (18) specifies that the amount of stock picked up by vehicles at a mobile satellite equals

the amount of stock dropped off by other vehicles that visit that mobile satellite. This means that the

model covers one-to-one, many-to-one and one-to-many types of vehicle rendezvous. Constraint (19)

specifies that the total amount of stock picked up from a depot can at no time exceed the amount of stock

stored at that depot plus the amounts of stock dropped off at that depot previously, minus the amount

of stock picked up from that depot previously. This constraint models the use of depots as locations

where stock can be delivered to a depot, stored temporarily, and then picked up by a different vehicle,

all in the same day. Constraint (20) specifies that the amount of inventory at a depot never exceeds the

depot’s capacity. Constraint (21) specifies that the amount of stock delivered to customers equal their

demands. Constraints (22), (23), (24) and (25) impose domain restrictions on the variables concerning

arc traversal, vehicle use, route start time-location and parcel transfer amounts respectively.

4.1 Valid inequalities

Constraints (26), (27) and (28) are symmetry breaking constraints, for vans, cargo bikes and porters

respectively, and ensure that vehicles are used in ascending numerical order. Symmetry breaking con-
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straints are designed to help reduce the time required by MIP solvers to prove the optimality of solutions.

zv ≥ zv+1, ∀v ∈ {1,2, . . . , |V |−1} , (26)

zb ≥ zb+1, ∀b ∈ {1,2, . . . , |B|−1} , (27)

zp ≥ zp+1, ∀p ∈ {1,2, . . . , |P|−1} . (28)

Constraint (29) bounds, above and below, the numbers of units of each product type dropped off and

picked up at depots and mobile satellites. They are non-negative and less than the maximum number

of units of each product type that fit in a vehicle according to the maximum capacity and weight of

the vehicle. These constraints are similar to those that were found to improve lower bounds calculated

for capacitated vehicle routing problems in Letchford and Salazar-González (2015). Constraint (30)

specifies that the amount of each product type delivered to a customer never exceeds the amount they

have demanded.

0≤ wvtik, uvtik ≤min
(

av

nk
,

φv

mk

)
, ∀v ∈V ∪B∪P, ∀i ∈ D∪M, ∀k ∈ K, ∀t ∈ T, (29)

0≤ wvtik ≤ fik, ∀v ∈V ∪B∪P, ∀i ∈C, ∀k ∈ K, ∀t ∈ T. (30)

Constraints (31) and (32) are strengthened version of constraints (15) and (16), since the right hand

side is multiplied by the vehicle use variable zv. In Section 6.3.1 we examine the impact that the valid

inequalities presented in this section have on solution times.

∑
k∈K

∑
i∈Nv

t

∑
l=1

nk (uvlik−wvlik)≤ avzv, ∀v ∈V ∪B∪P, ∀t ∈ T, (31)

∑
k∈K

∑
i∈Nv

t

∑
l=1

mk (uvlik−wvlik)≤ φvzv, ∀v ∈V ∪B∪P, ∀t ∈ T. (32)

5 Heuristic solution approach

In this section a heuristic solution methodology is presented which is composed of two consecutive

phases, a constructive phase that uses biased randomisation, followed by an improvement phase using

local search. While time remains, this procedure is repeated and the algorithm generates more solutions,

always keeping track of the lowest cost solution generated overall. This schema is outlined in Algorithm

1.

5.1 Construction phase

The constructive heuristic is based on building a solution, one step at a time, where in each step, we find a

way modify the current solution such that another customer’s delivery is fulfilled in the routing solution,

and continues until all customer deliveries are fulfilled. The ways in which another delivery can be

included in the current solution, referred to as the set Decisions, are identified in a procedure outlined in

Section 5.1.1. Once the possible decisions have been identified, they are sorted in ascending cost order,
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Algorithm 1 Two-phase heuristic

1: Inputs: solutionDeadline, all parameter of Table 1.
2: while time < solutionDeadline do
3: //Generate empty solution.
4: if All customers served then
5: //Construction phase.
6: if Customers can be added using methods specified in Section 5.1.1 then
7: Select and implement decision using biased randomised criteria.
8: else
9: Cul-de-sac reached, start again from line 2.

10: end if
11: else
12: //Local search improvement phase.
13: while Local search neighbourhoods contain improved solutions do
14: if There are improving two-opt moves then
15: Implement best improving two-opt move.
16: else
17: if There are improving cut-and-insert moves. then
18: Implement best cut-and-insert move.
19: else
20: Update best overall solution, start again from line 2.
21: end if
22: end if
23: end while
24: end if
25: end while
26: Outputs: bestOverallSolution

and one is selected according to a geometric distribution (see Equation (30) in Bayliss et al. (2020b)) with

parameter β , a process often referred to as biased randomisation. Setting β = 1 makes the constructive

algorithm always choose the lowest cost decision, progressively lower values introduce more and more

randomness, thereby introducing diversification into the iterative procedure. If no feasible decisions are

available, the algorithm has effectively run into a cul-de-sac, whereby the solution cannot be feasibly

completed, at which point the algorithm starts a new iteration. If all deliveries have been included in a

routing solution, a local search improvement phase begins (Section 5.2).

5.1.1 Enumerating available decisions during the constructive heuristic phase

This section outlines a logical order in which different ways to insert a hitherto non-served customer

into a current partial solution, such “ways” are referred to as feasible decisions thereafter. Firstly, the

simplest ways are considered, and if no ways to include another delivery in the current solution are

identified, we consider the next simplest way to include another delivery in the current solution. That

is, the operations are applied in a hierarchical fashion, continuing only until a way to include another

delivery in the current solution has been identified. At this point, the constructive heuristic selects and

implements a feasible decision using the biased randomisation criteria. The logically ordered sequence

of operations, line 6 of Algorithm 1, are enumerated as follows:

1. Add a delivery to an already utilised vehicle’s route: This operation considers the possible ways of
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adding a delivery to the end of existing vehicle’s (open) route, or inserting a delivery somewhere

within the route of an existing vehicle. Within this procedure, we first seek the most efficient

option for each non-served customer considered, if that option is not feasible, all feasible options

are considered and added to the list of available decisions.

2. Change the type of an already utilised vehicle to enable another delivery: In this operation similar

options are considered to those in Operation 1, but where either the type of an existing vehicle is

changed to a different one, or where two existing vehicles swap routes.

3. Use an existing vehicle rendezvous to generate extra opportunities to make another delivery: This

operation considers including existing rendezvous locations in existing vehicle routes such that

new delivery opportunities are generated. To do this, we may start a new vehicle route from an

existing vehicle rendezvous because the remaining customers are out of range of the vehicles

already involved in the existing vehicle rendezvous. We may also include an existing rendezvous

in the route of a vehicle that starts their tour from a different depot from that of the vehicle already

involved in the existing rendezvous.

4. Change the type of an already utilised vehicle and use an existing vehicle rendezvous to gener-

ate extra delivery opportunities: This operation combines operations 2) and 3), seeing whether

converting or swapping already utilised vehicles and making use of existing vehicle rendezvous

creates new delivery opportunities.

5. Make another delivery using a new vehicle directly or in conjunction with an existing or new

vehicle rendezvous: If the constructive algorithm resorts to this operation, then another delivery

cannot be feasibly added to the current solution without introducing either a new vehicle, a new

vehicle rendezvous, or both. This operation considers the use of a new vehicle, starting its route

from an existing rendezvous location (including an origin depot), which will invoke an additional

fixed charge associated with the new vehicle. At this point we also consider any benefits of

creating new rendezvous opportunities, involving existing, converted or swapped vehicles, or new

vehicles.

6. Add new vehicle rendezvous in the hope that applying the above operations again yield a feasible

decision: Upon reaching this operation, we determine that visiting more customers must depend

on the creation of larger chains of vehicle rendezvous, as might be the case when a customer

resides at distances of multiple times the maximum range of a vehicle from the necessary origin

depot. In such a scenario, we consider creating new rendezvous opportunities, in the hope that

it will be possible to make another delivery in the next, or later, iterations of the constructive

heuristic. We give up adding new rendezvous if no required vehicle type is available, and no

vehicle can be swapped or converted to a required type, or if no rendezvous can be added whether

violating tour range or duration constraints.

The logic behind the ordering of operations is that later ones are generally redundant if earlier ones

return feasible decisions. For example, there is no need to swap vehicle types (Operation 3) without a

direct reason, there is no need to use new vehicles (Operation 5) if existing vehicles can be used, and

there is no need to arrange a new vehicle rendezvous (Operation 6) if we can make use of an existing

one. Later ones are generally also more expensive.
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5.2 Local search improvement phase

While the constructive heuristic provides diversification, a local search provides an intensification mech-

anism. The local search phase focuses on improving the route efficiency of sub-routes, which consist

of customer sequences without vehicle rendezvous in between, thereby leaving the logistic backbone of

the solution intact. The local search procedure uses two neighbourhood structures that have previously

been successfully applied to solve routing problems (Section 2.4): i) two-opt; and ii) cut-and-insert. A

swap neighbourhood, as a third neighbourhood, was found to offer no additional benefit.

The two-opt neighbourhood structure is designed to remove inefficient loops and crossovers within

individual vehicle routes. This can be achieved by reversing the order of a sub-sequence of customers

within a vehicle’s route. In the current problem, we discard two-opt moves which lead to: increased

travel time; vehicle range violation; or customer time window violation.

The cut-and-insert neighbourhood finds alternative positions in the same or a different vehicle’s

route, for example, move a customer from the ninth to the fourth position in a vehicle’s route. The

same constraint checks are performed as for two-opt moves, with the addition of a check to see that

vehicle weight or capacity constraints are not violated. If no improving cut-and-insert moves are found,

we resort to checking whether cutting-and-inserting sub-sequences of customers yields an improving

move. At this point, all customer sub-sequences, not interrupted by vehicle rendezvous, are considered

for cut-and-insert.

The two neighbourhoods are applied within a steepest ascent variable neighbourhood search frame-

work (Mladenović and Hansen, 1997). The two-opt neighbourhood is always checked before the cut-

and-insert neighbourhood. The logic behind the ordering of the two neighbourhoods is that solution

improving two-opt moves are non-invasive, only modifying part of a single vehicle’s route, in a way that

is generally always obviously beneficial. The best improving move, in the first neighbourhood with an

improving move, is implemented. Once an improving move has been implemented, a new iteration of

local search begins starting from the two-opt neighbourhood. If no improving moves are found in any

neighbourhood, one iteration of the overall algorithm has been completed and a check is performed to

see if a new best overall solution has been found. If time remains, a new iteration is initiated.

5.3 Heuristic solution representation

While the basic logic of the proposed solution methodology is fairly straightforward, the key to address-

ing the complexities of the considered problem lies in the design of the heuristic solution representation.

That is, finding the best way to store a solution, which facilitates efficient constraint checking and im-

plementation of potential solution modifications. For the considered problem, solutions can exhibit a

tree-like structure, which is due to the possibility of vehicles transferring parcels between one another at

rendezvous locations. Therefore, a solution for the considered problem is characterised by the paths fol-

lowed by all parcels from their origin depot to the customer location along sub-paths of vehicle routes.

In the simplest case, a parcel path will be a sub-path of a single vehicle’s path. In the most complex

cases, a parcel path will involve a sequence of vehicle sub-paths connected by vehicle rendezvous at

mobile satellites and depots.

In reflection of this, a solution consists of the set utilisedVehicles of utilised vehicles, where each

vehicle has a route which is defined as an ordered sequence of edges denoted by edges. An edge defines a
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trip from one depot, mobile satellite or customer to another such location, and has an associated distance,

travel time and set of parcels carried. Each parcel also has a route defined by an ordered sequence

of edges denoted by parcelEdges, starting at an origin depot and ending at the associated customer’s

location. Edges also have an associated earliest departure time and a latest departure time, which together

define an edge’s slack time. Earliest departure times are based on assuming that all tasks are performed

as early as possible and depend on the start times of customer time windows. Conversely, latest departure

times are based on assuming that all tasks are performed as late as possible and are influenced by the

end times of customer time windows, as well as maximum duty shift durations. The difference between

the two is used to compute whether there is sufficient time for an additional customer to be inserted in a

particular position in a vehicle’s route. Earliest and latest departure times are also influenced by vehicle

rendezvous. For vehicle rendezvous that occur at mobile satellites, this gives rise to a concept referred

to here as parallel edges, whereby, the edges of vehicles leaving a mobile satellite vehicle rendezvous

location, are tied together, since the vehicles involved in a mobile satellite rendezvous must be present at

that location simultaneously. Sets of parallel edge must then have matching earliest and latest departure

times, i.e., the overlap region of their respective earliest and latest departure times. Every time a solution

is modified, using any of the methods outlined in Section 5.1.1, we recalculate the earliest and latest

departure times of all edges in the current solution. Two problem specific recursive procedures are

introduced for this task, a forwards pass, for calculating earliest departure times, and a backwards pass,

for calculating latest departure times. The forwards pass is so called because the recursive procedure

starts at the beginning of routes and cycles forwards through vehicle routes and parcel paths. The

backwards pass does the reverse.

Recursive functions are those which include themselves in their definition. For the case of a single

vehicle with no vehicle rendezvous or customer time windows, the recursive forwards pass procedure

for updating the earliest departure times of all edges in a vehicle’s tour, would be Algorithm 2, which

simply cycles through a vehicle tour, setting the earliest time it can begin to traverse each edge in its

tour, terminating when it reaches the end of the tour.

Algorithm 2 setEarliestDepartureTimeSimpleCase(edge,newEarliestDepartureTime)

1: edge.earliestDepartureTime = newEarliestDepartureTime
2: if edge.nextEdge exists then
3: setEarliestDepartureTimeSimpleCase(edge.nextEdge, newEarliestDepartureTime +

edge.time)
4: end if

In the present case, the forwards pass procedure is implemented by firstly setting the earliest de-

parture times of all edges to minus infinity, and then calling Algorithm 3 for each vehicle in the set

utilisedVehicles with the first edge of the vehicle’s route and 0 as the input arguments. Algorithm 3

sets the earliest departure time of an edge and then recursively calls itself telling the next edges, in ve-

hicle routes, what their earliest departure times are, while accounting for the edge travel time and the

customer time window associated with the current edge. Algorithm 3 has two main parts, lines 3 to 15

which update the earliest departure time of the current edge, while accounting for any parallel edges.

The earliest departure time of parallel edges are all set to the maximum earliest departure time of those

parallel edges, and recursive calls to Algorithm 3 are made for each of the parallel edges. Then, lines

17 to 24, which invokes calls of Algorithm 3 to edges that directly depend on the current edge, while
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Algorithm 3 setEarliestDepartureTime(edge,newEarliestDepartureTime)

1: Inputs: edge,newEarliestDepartureTime
2: if newEarliestDepartureTime > edge,earliestDepartureTime then
3: if edge is leaving a mobile satellite vehicle rendezvous then
4: //Find the set of edges parallel with edge (E).
5: E← getParallelEdges(edge)
6: //Set newEarliestDepartureTime to the maximum earliest departure time of the parallel edges.

7: newEarliestDepartureTime←max(p.earliestDepartureTime, ∀p ∈ E, newEarliestDepartureTime)

8: edge.earliestDepartureTime = newEarliestDepartureTime
9: //Recursive call of forwards pass for parallel edges.

10: for p ∈ E \{edge} do
11: setEarliestDepartureTime(p,newEarliestDepartureTime)
12: end for
13: else
14: edge.earliestDepartureTime = newEarliestDepartureTime
15: end if
16: //Account for travel time and the customer time window of parcels delivered by edge, before

moving on to edges that depend directly on edge.
17: newEarliestDepartureTime = newEarliestDepartureTime+ edge.time
18: newEarliestDepartureTime=max(newEarliestDepartureTime, edge.customer.timeWindowStartTime)

19: //Find the set of edges E that are the next edges of parcels carried by along edge, including that
of the current vehicle and those of parcels transferred to different vehicles.

20: E← nextEdges()
21: //Recursive call of forwards pass for next edges.
22: for e ∈ E do
23: setEarliestDepartureTime(e,newEarliestDepartureTime)
24: end for
25: end if
26: Outputs: no return value

accounting for the travel time and the time window start time of the customer at the end of the current

edge.

The backwards pass is performed after the forwards pass and is largely analogous barring a few

details. The backward pass is initiated by firstly setting the latest departure times of all edges to ∞, and

then calling a setLatestDepartureTime(edge,newLatestDepartureTime) algorithm, starting from the

last edge of each vehicle’s route, with the maximum end of duty shift time as the initial latest departure

time input. In contrast to Algorithm 3, the setLatestDepartureTime(edge,newlatestDepartureTime)

algorithm begins by updating the value of newLatestDepartureTime first, setting it the minimum of that

value and the end of the time window of the customer served by the edge, and then subtracting the edge

traversal time. Following this everything is the same as in Algorithm 3, except that max() operations are

replaced with min() (since a vehicle can’t visit a customer after the end of their time window or the latest

departure time of any parallel edge), EarliestDepartureTime replaced with LatestDepartureTime

and nextEdges replaced with previousEdges (since the backwards pass cycles backwards through vehi-

cle and parcel paths).
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For ensuring that potential solution modifications do not violate vehicle capacity constraints, val-

ues for slack (remaining capacity) weight and volume are maintained for each edge on each vehicle’s

route, as solutions are built. Every time the parcel paths, satisfying a customer’s order, are identified, a

check is performed in order to ascertain whether all of the parcels will simultaneously fit in the vehicles

transporting them without violating any capacity constraints, all the way from the origin depot(s) to the

customer’s location.

For each edge and rendezvous location, we maintain the set of all possible parcel paths connecting

them to origin depots. Some of those paths might feature in the current solution while others might not.

The set of possible parcel paths emanate from origin depots along the paths of vehicles that leave those

depots during their tour. Whenever a vehicle visits a rendezvous location, an opportunity for parcels to

be transferred between vehicles is created, in such cases, the possible parcels paths associated with the

vehicles arriving at the rendezvous location split and continue along the routes of each vehicle leaving

the rendezvous location.

When considering if a customer can be inserted between two locations joined by an edge, the set of

parcel paths associated with that edge are used to identify the parcel paths that can be used to satisfy the

customer’s demand. The capacity feasible parcel paths that cause the least delay are selected, and ties

are broken by selecting the paths involving the fewest vehicle rendezvous. Similarly, the set of possible

parcel paths associated with rendezvous locations are used to identify the parcel paths that can be used

to satisfy a customer’s demand in ways which rely on the creation of new vehicle rendezvous.

For parcel paths that are not currently employed in the current solution, their use may introduce new

parallel edges. As a result, it is necessary to perform forwards and backwards passes for the sets of

possible parcel paths, to ensure that their use will not lead a violation of time constraints, where their

use would lead to an edge with an earliest departure time in excess of their latest departure time.

When considering the creation of new vehicle rendezvous, it is vital to check that the move makes

temporal sense. For example, if the current solution already involves the use of a vehicle rendezvous,

then a temporal dependence exists between the edges of the involved vehicles. There are edges that

occur after the rendezvous and those that do not. To avoid moves that make no sense temporally (i.e.,

those that would imply time travel), we cannot arrange a new rendezvous that mixes edges from before

(after) any existing rendezvous with edges of another vehicle occurring after (before) that rendezvous.

Since any vehicle can rendezvous with any other vehicle. Temporal dependence between pairs of edges

may span any number of vehicle routes through sequences of vehicle rendezvous. Therefore, to avoid

temporally infeasible moves, it is necessary to store (in a list or otherwise), for each edge, which edges

depend on it temporally. To this end, whenever a new edge is added to a solution, we cycle back through

all of the parcel paths available to the new edge and add the new edge to those lists.

6 Computational results

The aim of this section is to computationally validate the mathematical model of Section 4 and to assess

the performance of the heuristic of Section 5. For the former, we use a set of 14 development instances

described in Section 6.1. The latter is done in two ways, namely (i) by comparing the performance of

the heuristic against existing methods for instances of the Open Routing Problem as a special case of the

problem described in this paper, and (ii) by evaluating the heuristic against the exact solutions provided
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by the mathematical model on small scale and real-world instances of the multi-modal and variable-

echelon problem, described in Sections 6.2 and 6.3.1, respectively. We then move on to solving larger-

scale instances of the problem and analyse the solutions in Sections 6.3.2 and 6.3.3. All experiments

were conducted on a laptop with a 2.80 GHz CPU and with 8Gb RAM. The heuristic was coded in Java.

6.1 Validation of the formulation and the heuristic

In this section, exact solutions for the mathematical model presented in Section 4 are compared with

heuristic solutions for a set of 14 small “development” instances, the optimal solutions of which are de-

picted in Figure 3. The instances were designed such that the optimal solutions were known in advance,

owing to their small size and tight constraints, enabling a validation of the mathematical formulation

and initial validation of the heuristic method. The 14 instances, labelled D1–14, gradually increase in

complexity by introducing more vehicle types and the need for vehicle rendezvous. Instances D1–4

feature a single vehicle type, instances D5–10 feature two vehicle types, and instances D11–14 feature

three vehicle types. Instances D1, D3, D6, D11 and D12 are instances where no vehicle rendezvous are

required. Instance D2 requires that a single vehicle picks up parcels from two different depots during

its delivery route. Instances D4, D7 and D8 each require single-vehicle to single-vehicle rendezvous at

depots or mobile satellites. Instance D9 requires that a single vehicle transfers parcels simultaneously to

two vehicles at a mobile satellite. Instance D10 requires two vehicles to rendezvous twice during their

routes, while instance D14 is the same with the need for an additional rendezvous in between. Instance

D13 requires that one vehicle transfers parcels to a second vehicle at a mobile satellite, who must then

transfer some parcels to a third vehicle at another mobile satellite.

D1 D2 D3 D4 D5

D6 D7 D8 D9 D10

D11 D12 D13 D14

demand nodes
warehouses
mobile satellites
vehicle 1 route
vehicle 2 route
vehicle 3 route

Figure 3: Optimal solutions to a set of “development” instances.

For instances D1–14, the mathematical model was solved to optimality using the commercial opti-
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miser CPLEX version 12.10, while the heuristic was implemented as a single threaded Java application

employing 1000 iterations. Table 2 shows that the heuristic was able to find the optimal solutions for all

of the development instances in similar amounts of time, thereby providing a validation of the mathe-

matical formulation and an initial validation of the consistency of the heuristic solution method.

Table 2: Performance of the mathematical model and the heuristic on the development instances

Solution time (s) Solution cost Vehicles
Instance Exact Heuristic Exact Heuristic used

D1 16.19 2.25 26.45 26.45 (2 0 0)
D2 1.67 1.86 15.32 15.32 (1 0 0)
D3 0.73 1.11 23.87 23.87 (2 0 0)
D4 2.04 1.16 24.47 24.47 (2 0 0)
D5 0.21 0.67 14.50 14.50 (1 1 0)
D6 0.24 0.65 14.50 14.50 (1 1 0)
D7 0.27 0.81 15.00 15.00 (1 1 0)
D8 0.30 1.19 15.00 15.00 (1 1 0)
D9 0.68 0.22 15.40 15.40 (1 2 0)
D10 1.06 0.33 21.00 21.00 (1 1 0)
D11 0.26 0.78 14.00 14.00 (1 1 1)
D12 0.28 0.84 15.00 15.00 (1 1 1)
D13 1.59 0.93 17.12 17.12 (1 1 1)
D14 29.26 0.51 22.50 22.50 (1 1 1)

6.2 Comparison with benchmark solutions for the open routing problem

In this section, we seek to validate the quality of the proposed heuristic by comparison with existing al-

gorithms. Due to a lack of benchmark instances and solutions for the proposed problem, in this section

we apply the proposed heuristic algorithm to benchmark problem instances for the open routing prob-

lem, which is a sub-problem of the problem introduced in this work. The open routing problem considers

a single vehicle type with range and capacity constraints, one depot and customers with known demands

for a single product type. The open routing problem instances and best known solutions (BKS) consid-

ered in the following can be found in Ruiz et al. (2019). In particular, we consider two sets of instances,

firstly a set of 14 instances (C1–14), originally published in Christofides (1979), featuring nodes with a

random spatial distribution, the best known solution are the result of 12 previous algorithms, as shown in

Ruiz et al. (2019). Secondly, a set of 8 instances (KO1–8), originally published in Golden et al. (1998),

featuring nodes arranged in circles centred upon a depot node, the best known solutions of which are

based on 2 previous algorithms, also shown in Ruiz et al. (2019). For these experiments, the heuristic

was implemented in a single thread mode, and the time limits was set to the same used to find the best

known solutions while allowing for processor speed. The instances, described in Table 3, are charac-

terised by the number n of customers, the capacity Q of a vehicle, the maximum tour duration Tmax for

each vehicle and service time s for each customer, shown under columns 2–4.

The solution cost column of Table 3 provides the costs of the solutions generated using the proposed

algorithm, while the BKS column provides the best known solutions from previous algorithms. The

main results provided by Table 3 are that the proposed algorithm provides solutions with an average

of 3.37% higher solution cost than best known solutions for the first set of benchmark instances and
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Table 3: Heuristic solution times for different numbers of customers and numbers of available vehicles
(with different ranges)

Vehicles Solution Solution
Instance n Q Tmax s used cost BKS %gap time (s) Iterations

C1 50 160 ∞ 0 5 434.56 412.96 5.23 18.71 4214
C2 75 140 ∞ 0 11 591.82 564.06 4.92 25.61 2648
C3 100 200 ∞ 0 8 658.17 639.26 2.96 136.24 4543
C4 150 200 ∞ 0 12 769.42 733.13 4.95 324.71 3695
C5 199 200 ∞ 0 17 921.56 869.00 6.05 835.71 5729
C6 50 160 200 0 6 415.56 412.96 0.63 17.91 4870
C7 75 140 160 0 11 577.44 567.59 1.74 31.27 3376
C8 100 200 230 0 8 661.11 644.63 2.56 114.84 4253
C9 150 200 200 0 12 778.40 743.51 4.69 372.11 4828
C10 199 200 200 0 17 945.29 873.89 8.17 1070.98 7101
C11 120 200 ∞ 0 7 710.01 676.40 4.97 498.77 13407
C12 100 200 ∞ 0 10 536.53 534.24 0.43 55.17 1737
C13 120 200 720 50 10 863.26 862.74 0.06 356.50 5121
C14 100 200 1040 90 11 554.09 554.67 –0.10 81.33 2635

Average 3.37
KO1 240 550 650 0 10 4662.06 4629.21 0.71 5095.82 14835
KO2 320 700 900 0 11 7606.28 7285.98 4.40 6200.96 6329
KO3 400 900 1200 0 12 10441.58 9837.78 6.14 6200.95 2723
KO4 480 1000 1600 0 12 13183.57 12431.50 6.05 6202.76 1352
KO5 200 900 1800 0 6 6177.15 6004.65 2.87 2454.98 8298
KO6 280 900 1500 0 8 8045.29 7731.21 4.06 6200.23 8229
KO7 360 900 1300 0 10 9619.41 9188.11 4.69 6200.49 3786
KO8 440 900 1200 0 12 10883.92 10488.50 3.77 6200.03 1938

Average 4.09

4.09% higher solution cost for the second set. Additionally, the proposed heuristic found 1 best known

solution, for instance C14. It is interesting to note that instances C13 and C14 are identical to instances

C11 and C12 respectively, except for the addition of maximum tour length constraints, and that our

algorithm found the same solutions for these respective instances, which was because the tour length

constraints were never the binding constraints, the capacity constraints were. We conclude that the

proposed heuristic can find reasonable solutions for a main sub-problem and attribute the non-negligible

%gap to the specialisation of the heuristic’s design for the considered problem.

6.3 Experiments with multi-modal variable-echelon problem instances

For the experiment results of Sections 6.3.1, 6.3.2 and 6.3.3, the customer demand details are based

on real sales data within London. A customer order comprises a delivery location and a set of parcels,

each of which has a size (scalar volume) and a weight. The average, minimum and maximum parcel

volumes were 5680cm3, 3cm3 and 226800cm3 respectively, while the average, minimum and maximum

parcel weights were 0.8kg, 0.001kg and 38kg respectively. The spatial characteristics of the instance

are depicted in Figure 4, where a depot located on the outskirts of London, and five mobile satellite

locations are distributed across the city. The vehicle characteristics are given in Table 4. The values

are in-line with those used by McLeod et al. (2020) in their London case study, and reflect the fact that
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larger vehicles have higher range, capacity and cost compared to smaller ones.

Customers
Mobile satellites
Depot

Figure 4: Node positions of instances based on real London sales data.

Table 4: Vehicle characteristics

Vehicle type Van (type 1) Cargo bike (type 2) Porter (type 3)
Range (miles) 300 50 15

Maximum durations (hours) 8 8 8
Capacity (m3) 12 1 0.35

Maximum weight (Kilograms) 1000 100 50
Average speed (miles per hour) 7.5 5 2.5

vehicle fixed costs (£) 28.9 15 5
Time variable costs (wages) (£ per hour) 15 12 10
Distance variable cost (fuel) (£ per mile) 0.15 0.05 0.01

Customer service time (minutes) 3 2 1
depot service time (minutes) 5 5 5

Mobile satellite service time (minutes) 5 5 5

6.3.1 Comparison of heuristic with exact solutions for small instances

In this section, we compare the quality of the heuristic against the solutions obtained by the mathematical

programming formulation of the problem. The aim in this section is to determine the limits of the exact

approach and to provide further validation of the heuristic method. For this purpose, twenty problem

instances are considered, where the number of customers is increased from 1 to 20 and are labelled E1–

E20. In each instance, the customers are selected at random from the sales data described in Section 6.3.

The solver was CPLEX implemented in parallel mode with up to 8 threads and was given a maximum

solution time of 3600 seconds. The results are presented in Table 5.
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Table 5: Vehicle use and costs as the spatial density of customers is increased.

Number of Solution time (s) Solution cost % gap
Instance customers Exact Heuristic Exact Heuristic MIP optimality Heuristic

E1 1 0.34 0.64 46.31 46.31 0 0
E2 2 0.31 0.46 63.28 63.28 0 0
E3 3 0.46 0.47 80.67 80.67 0 0
E4 4 1.73 0.42 81.20 81.20 0 0
E5 5 2.41 0.45 89.50 89.50 0 0
E6 6 8.90 0.42 103.30 103.30 0 0
E7 7 22.75 0.44 103.78 103.78 0 0
E8 8 76.52 0.48 104.32 104.32 0 0
E9 9 192.90 0.50 115.90 115.90 0 0
E10 10 814.16 0.55 125.71 125.71 0 0
E11 11 1734.19 0.60 129.30 129.30 0 0
E12 12 3611.06 0.56 134.47 131.94 15.74 –1.88
E13 13 3614.16 0.80 133.08 133.08 22.99 0
E14 14 3619.44 0.64 138.95 138.90 21.46 –0.04
E15 15 3626.44 0.66 139.70 139.65 21.44 –0.04
E16 16 3634.50 0.76 160.45 140.69 36.23 –12.31
E17 17 3646.61 0.83 153.76 142.97 32.44 –7.01
E18 18 3658.70 0.83 182.98 158.50 35.14 –13.38
E19 19 3674.68 0.83 504.31 160.78 75.49 –68.12
E20 20 3697.36 1.04 537.30 161.53 77.95 –69.94

Table 5 shows that when the number of customers is between 1 and 11, the exact approach is able

to provably find the optimal solutions, as indicated by the MIP optimality gap values. In those cases,

the heuristic was able to find the optimal solutions as well, as indicated by the heuristic gap values. For

instance E13, the heuristic yielded the same solution value as the MIP, where the latter terminated with

a gap of 22.99% after an hour of computation. Relaxing the time limit for this instance established that

the reported value is indeed optimal, but the solution time was nearly 4 hours. The heuristic solution

times only exceeded 1 second for instance E20, which highlights the huge scalability advantage of the

heuristic approach.

The exact approach scalability issues can be attributed to the large number of variables and con-

straints of the proposed mathematical model. For reasons of tractability reasons, a very coarse discreti-

sation of time was used for instances E1–20 in order to avoid an excessive number of arc variables.

Regarding the valid inequalities presented in Section 4.1, it was found that adding symmetry break-

ing constraints (26), (27) and (28) had the effect of reducing solutions times by 8% on average, however

the average solution costs, for instances that could not be solved in an hour, were 17% higher on aver-

age. Similar results occurred when the strengthened constraints (31) and (32) were included, there was

a 2% reduction in solution times and a 5% increase in solution costs on average. Also, when the bound

constraints (29) and (30) were included, there was a 3% reduction in solution times and a 5% increase

in solution costs on average. An explanation for this result is that Constraints (15) and (16) alone are

tighter constraints than Constraint (29), while Constraint (21) is tighter than Constraint (30). Overall,

the expense of adding additional constraints outweighs the benefit. It is also worth noting that CPLEX

has built in facilities for detecting symmetries in the branch and bound tree, as well as for removing
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unnecessary constraints and variables from a MIP model.

6.3.2 Multi-modal variable echelon instances based on sales data in London

Three main types of scenarios are considered, which differ in the way that vehicles can be used to make

deliveries. For each of the three types of scenarios there are six problem instances, which differ in the

number of customer orders that must be fulfilled. The number of customers considered are 49, 95, 181,

340, 602 and 985 (corresponding to samples of 50, 100, 200, 400, 800 and 1600 individual parcels

respectively) and the same sets of customers are considered in the respective instances in each of the

three scenarios considered. The three types of scenarios are as follows:

1. Just vans are allowed to make deliveries and no rendezvous are allowed at mobile satellite loca-

tions. The instances in this set are labelled S1-6 respectively.

2. Vans, cargo bikes and porters are allowed to make deliveries, but no rendezvous are allowed at

mobile satellite locations. The instances in this set are labelled M1-6 respectively.

3. Vans, cargo bikes and porters are allowed to make deliveries, and rendezvous are allowed at mobile

satellite locations. The instances in this set are labelled MM1-6 respectively.

The aim behind the design of this set of instances is two-fold: i) to demonstrate the potential benefits

of deploying multi-modal and variable-echelon delivery systems under realistic scenarios; and ii) to

provide an initial set of benchmark instances for the defined routing problem. The customer delivery

time windows represent typical delivery hours of the day.

Table 6: Three scenario experiment results

Solution Solution Vehicles Total Van Cargo bike
Customers Instance cost (£) time (s) used miles miles miles Iterations

49 S1 264.72 6.39 (2) 77.98 77.98 0 4000
M1 253.52 6.07 (1 1 0) 78.00 44.92 33.08 4000

MM1 241.23 14.57 (1 1 0) 72.82 41.92 30.90 4000
95 S2 407.37 37.86 (3) 114.26 114.26 0 4000

M2 394.24 39.33 (2 1 0) 115.78 83.57 32.21 4000
MM2 380.45 87.58 (2 1 0) 108.96 76.83 32.13 4000

181 S3 659.34 264.73 (5) 173.42 173.42 0 4000
M3 629.48 274.04 (3 2 0) 174.15 122.76 51.38 4000

MM3 610.02 515.54 (3 2 0) 164.81 99.18 65.63 4000
340 S4 985.01 2678.42 (7) 241.38 241.38 0 4000

M4 943.20 2760.22 (5 2 0) 245.43 190.03 55.40 4000
MM4 898.51 4207.03 (5 2 0) 223.78 165.20 58.58 4000

602 S5 1521.38 7210.12 (11) 343.37 343.37 0 1212
M5 1462.14 7201.60 (8 3 0) 352.23 275.71 76.52 1141

MM5 1342.28 7219.09 (7 3 0) 308.27 225.78 82.49 920
985 S6 2196.14 7287.29 (15) 467.51 467.51 0 203

M6 2014.31 7232.74 (9 7 0) 463.36 287.41 175.95 188
MM6 1916.97 7292.63 (10 5 0) 412.48 290.02 122.46 158
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Figure 5: Solution costs (top) and van miles (bottom) for instances S1-6, M1-6 and MM1-6.

Figure 6: Vehicle route solutions for instances involving 49 (top) and 95 (bottom) customers.
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Figure 7: Vehicle route solutions for instances involving 181 (top) and 340 (bottom) customers.

Figure 8: Vehicle route solutions for instances involving 602 (top) and 985 (bottom) customers.
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To allow for larger instance sizes and more meaningful results, the 10-minute time limit was replaced

with a 2 hour time limit. 4 threads were run in parallel, and the total number of iterations was limited

to 4000. Table 6 provides solution costs, solution times, the numbers of vehicles of each type used in

each solution, total miles, van miles and cargo bike miles and the number of iterations completed before

the algorithm’s termination criteria were met. The results show that for each problem size, scenario 3,

i.e., allowing multiple vehicle types and the use of vehicle rendezvous at mobile satellites, leads to the

lowest solution costs. Similarly, scenario 2, always provides lower cost solutions than scenario 1, thus

highlighting the potential benefits of utilising smaller vehicles with lower fixed and variable costs. These

results can be seen clearly in Figure 5 (top). Table 6 shows how the relative savings, between the three

scenarios, were made. Scenarios 2 and 3 both exploits vehicle types with lower fixed and variable costs,

and as a result reduces van miles, as emphasised by Figure5 (bottom), and therefore tailpipe emissions.

Scenario 3 can also significantly reduce the total distance that must be travelled, which can be attributed

to reduced depot stem costs. The numbers of vehicle rendezvous, for instances MM1-MM6, is 1, 2, 3,

5, 8 and 11 respectively. Figures 6, 7 and 8 provide solution diagrams which illustrate these points.

Solution times increase with problem size. In instances where the number of customers was 602

and 985, the 2-hour time termination criterion came into play. Whilst we allow the heuristic to run for a

long time, our computational investigation indicated that it is able to identify fairly good solutions even

within the first few iterations, with the remaining iterations showing diminishing returns. For example,

for instance MM3, a solution within 0.86% of the best overall was found with 2.55% of the total run-

time. For instance S5, a solution within 1.37% of the best overall was found within 3.53% of the total

run-time. It can also be seen that in these cases, the fewest iterations were completed for corresponding

scenario 3 instances, and the most were completed for corresponding scenario 1 instances and can be

explained by the relative sizes of the solution spaces of the three scenarios. Scenario 2 introduces a

degree of freedom regarding vehicle types, while scenario 3 introduces a degree of freedom regarding

where vehicle tours start. Table 6 also indicates that as the number of customers and their density

increases, the average cost per delivery decreases, indicating an economy of scale effect.

6.3.3 Demand density

In this section we examine the impact of average parcel size and customer density on the resulting fleet

composition. Using the 181 customer instance MM3 of Section 6.3.2 as the control problem, we modify

the the spatial distribution of customers by applying scale factors 1.5, 1, 0.8, 0.6, 0.4, 0.2, 0.1 to all

coordinates. A scale factor of 1.5, for example, increases the distance between all pairs of locations by

50%, and a scale factor of 0.1 reduces the distance between all pairs of locations to 10% of their original

values. We also apply scale factors of 0.1, 0.5, 1, 5, 10, 20, 30 to the sizes and weights of all parcels.

This two-factor experiment has 49 individual instances. The time limit for each instance was set at 10

minutes, and the vehicle fleet composition results are provided in Table 7.

Table 7 has columns for each parcel size scale factor, and rows for each spatial scale factor. The

third row also reports the total weights of all customer parcels after applying the parcel size scale factors.

In general, Table 7 shows that higher parcel sizes and weights increase the required number of larger

vehicles, especially vans, which is due the corresponding higher capacity requirements in such scenarios.

When the spatial distribution of customers is lower, the number of required vehicles decreases. When

parcel sizes are small and customers are near one another, fleets tend to be composed of smaller vehicle

28



Table 7: Fleet compositions (vans, cargo bikes, porters) for different spatial scale factors and total parcels
weights applied to instance MM3.

Parcel size scale factors 0.1 0.5 1 5 10 20 30
Spatial scale Total weight of all parcels (kilograms)

factors 12.14 60.7 121.41 607.03 1214.07 2428.14 3642.21
1.5 (5 1 0) (5 1 0) (5 1 0) (6 0 0) (6 1 0) (7 0 0) (7 0 0)
1 (3 2 0) (3 2 0) (3 2 0) (3 2 0) (4 1 0) (4 1 0) (5 0 0)

0.8 (2 2 0) (2 2 0) (2 2 0) (3 1 0) (3 1 0) (3 1 0) (4 0 0)
0.6 (0 4 0) (0 4 0) (0 4 0) (2 1 0) (3 0 0) (3 0 0) (4 0 0)
0.4 (0 3 0) (0 3 0) (0 3 0) (1 2 0) (2 1 0) (3 0 0) (4 0 0)
0.2 (0 1 1) (0 1 1) (0 1 1) (2 0 0) (2 0 0) (3 0 0) (4 0 0)
0.1 (0 0 2) (0 0 2) (0 1 1) (1 1 0) (2 0 0) (3 0 0) (4 0 0)

Figure 9: Vehicle route solutions for instance MM3 With parcel size scale factor 0.1 and spatial scale
factors 1.5, 0.6 and 0.1.
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types such as porters and cargo bikes, because the capacity and range requirements are lower in such

scenarios, and such vehicle types have both lower fixed and variable costs. When parcel sizes are very

high (last column) reducing the spatial distribution of customers does not reduce the required number of

vans, because in those scenarios, cargo bikes and porters do not have sufficient carrying capacity.

In the examples considered here, porters were used very little, which can be explained by their

relatively low carrying capacities and higher (full duration tour) average cost per mile, which owes to

their relatively low average speed, which increases tour times and therefore wage costs. Porters were

only ever used in cases where customer density was highest and while, at the same time, parcel sizes

and weights were smallest. Figure 9 shows the vehicle route solutions for the cases where the parcel

size scale factor is 0.1, while the spatial scale factors are 1.5, 0.6 and 0.1. When the spatial scale factor

is 0.1 porters are used, it is then likely, that in the non-scaled instances, that if the total demand were of

the order of tens of thousands, porters would become a more cost effective delivery mode.

7 Conclusions

This work proposes a multi-modal and variable-echelon last-mile delivery system. Multi-modal delivery

allows for parcels to be passed between different vehicle types, during the last-mile delivery. Variable-

echelon means that parcels can be transferred both ways between any pair of vehicle types, during

last-mile delivery. Parcel transfers are allowed at kerb-side transfer points. This work solves the routing

problem, including parcel transfers and associated vehicle synchronisation, ensuring that all parcels are

delivered. Compared to previous research which focus on fixed-echelon delivery system, the variable-

echelon relaxation proposed here vastly increases the size of the combinatorial optimisation problem

being solved.

A mathematical formulation is provided and solved for small instances. A scalable two-phase heuris-

tic solution methodology is provided. The heuristic is validated firstly, by comparison to optimal solu-

tions for small instances, and then by comparison with existing algorithms in a sub-problem of that

considered here, in which the proposed heuristic is able obtain solutions that are, on average, within a

few percent of the quality of the best-known solutions.

Computational results on instances with real sales data show that allowing the use of alternative

vehicle types, such as cargo bikes, and making use of vehicle rendezvous at mobile satellites, not only

reduces the overall cost but also decreases van mileage by shifting parcels onto more environmentally

friendly modes of transport. The experiments demonstrate how slower and cheaper vehicle types, de-

spite costing more per mile, provide the most preferable delivery modes when customer density is suf-

ficiently high and when parcel sizes are small, which has the potential of improving the environmental

performance of last-mile logistics systems. This in turn suggests that operational changes such as the

multi-modal delivery system introduced in this paper may be a simpler-to-implement and a more viable

alternative to other innovations described for urban logistics that require infrastructural changes, which

can be costly and require a long time to build.

Since this work introduces a new problem variant, there are several avenues for further research. One

is to develop more efficient mathematical models and exact solution algorithms for the problem to obtain

optimal solutions for large-scale instances in relatively short computational times. For example, one

may investigate the performance of a three-index continuous-time mathematical formulation that would
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avoid the need for time discretisation, in comparison to the one described in this paper that uses four-

index variables. Second, the proposed model could also be extended to account for stochastic or time-

dependent travel times that may better characterise some urban environments. Finally, new benchmark

instances could also be introduced for exploring the proposed delivery system, perhaps representing

other cities and vehicle type options, and the generality of the proposed model should facilitate this.
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