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Introduction

The relationship between risk and expected return, where risk is interpreted as financial

uncertainty and volatility, plays a central role in financial economics. Indeed, volatility is a key

input to many investment decisions, portfolio selection, pricing of derivative securities and risk

management decisions; and has effects on the economy as a whole (Poon and Granger, 2003).

Given the relevance of volatility forecasts in economic and finance, several approaches have

been taken to produce these forecasts. Among the most popular time series volatility models

is the autoregressive conditional heteroskedasticity (ARCH) introduced by Engle (1982) and

its generalisation to GARCH by Bollerslev (1986). GARCH models specify the conditional

volatility of returns at time t based on the information set at time t− 1. Therefore, forecasts

of the volatility can be obtained in a straightforward way using iterative procedures.

A good volatility model should be able to capture the empirical regularities of asset returns:

volatility clustering, leptokurtosis, the asymmetric reaction of the volatility to past positive

and negative returns (“leverage effect”), and the possibility of exogenous or predetermined

variables influencing volatility (Engle and Patton, 2007). The volatility clustering property

implies that large volatility changes tend to be followed by large changes, of either sign, and

small changes tend to be followed by small changes (Mandelbrot, 1997). Consequently, volatil-

ity shocks today will influence the expectation of volatility many periods into the future. That

is, there exists significant autocorrelation in volatility despite insignificant autocorrelation in

returns. Furthermore, stock return distributions often exhibit excess kurtosis which could

be explained by the presence of outliers. The standard GARCH model of Bollerslev (1986)

successfully captures both volatility clustering and leptokurtosis. However, this model does

not accommodate the “leverage effect” or asymmetry in volatility. The “leverage effect” first

explored empirically by Black (1976) and Christie (1982) implies that negative returns in-
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2 Introduction

crease future volatility by a larger amount than positive returns of the same magnitude. For

this reason, multiple refinements of Bollerslev’s (1986) model have been proposed to include

volatility asymmetry in the GARCH context. The most popular asymmetric GARCH models

include the exponential GARCH (EGARCH) process of Nelson (1991), the threshold GARCH

(TGARCH) model of Zakoian (1994) and the GJRGARCH model of Glosten et al. (1993).

In an important paper, Hentschel (1995) develops a family of models that nests virtually all

symmetric and asymmetric GARCH models proposed in the literature.

A major drawback of single-regime GARCH models, however, is that they do not account

for structural changes in the volatility process. An early study by Lamoureux and Lastrapes

(1990) argues that neglected deterministic changes in the unconditional variance of the re-

turn process lead to strong persistence measured by GARCH models. Mikosch and Stărică

(2004) and Hillebrand (2005) show that this high degree of persistence, known as “integrated

GARCH effect”, is caused by the nonstationary behaviour of very long return series. Indeed,

financial markets often change their behaviour abruptly (Ang and Timmermann, 2012). For

example, the S&P 500 index lost one-third of its value in March 2020 during the COVID-19

pandemic. As another example of sudden market changes, the implied volatility of the S&P

500 portfolio, which is referred to as the VIX index, rose in value by approximately 175%

during September 2008 in response to the Lehman Brothers collapse (Schwert, 2011). Some

changes are transitory (“jumps”). For instance, it did not take too long for the stock market

to recover during the COVID-19 pandemic. At the beginning of June 2020, the S&P 500 was

about 95% of its peak value in February 2020 (Capelle-Blancard and Desroziers, 2020). Of-

tentimes, the changed behaviour of the market continues for many periods; e.g., the mean and

volatility patterns of October 2008 persisted during the global financial crisis of 2008-2009.

Engle et al. (2013) divide their sample into sub-samples to deal with the structural breaks

presented in their data. However, since most structural breaks are only known a posteriori, a

model that incorporates the impact of structural breaks potentially improves forecasts of the

volatility.

The Markov-switching model introduced by Hamilton (1989) is one of the most popular

nonlinear time series models to capture the abrupt changes of behaviour in the market and the

persistence of the changes for several time periods. This model allows different structures that
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describe the time series dynamics in different regimes. The process governing the switching

between regimes follows a latent (i.e., unobservable) homogeneous first-order Markov chain.

Thus, the probability of a change in regime depends on the past only through the value of

the most recent regime. In this way, a volatility dynamic persists for a period of time and

is replaced by another dynamic when a switching takes place. GARCH models have been

implemented in Hamilton’s (1989) Markov-switching framework. The first contributions to

the regime-switching autoregressive heteroscedastic literature, however, argue that Markov-

switching GARCH models are not tractable (Hamilton and Susmel, 1994; Cai, 1994). Indeed,

the lag structure of GARCHmodels causes dependence of the conditional variance on the entire

past history of the process. Since the regimes are unobservable, it is necessary to consider

all possible regime paths when estimating the volatility which makes estimation extremely

difficult as the number of possible paths increases exponentially with time. To solve this

problem, Gray (1996) proposes an approximation method where conditional variances depend

on the expectation of previous conditional variances. Past conditional variances are aggregated

across regimes, hence resulting in a model that is not path dependent. Gray’s (1996) collapsing

procedure is later refined by Klaassen (2002) who considers the expectation of past conditional

variances given all past information and the current regime.

Chapter 1: Markov-switching GARCH models: A unifying framework

In Chapter 1, we extend Hentschel’s (1995) family of single-regime GARCH models to a

regime-switching framework. We follow the collapsing procedure developed by Gray (1996)-

Klaassen (2002). Thus, we propose a tractable Markov-switching GARCH model that in-

cludes many, if not all, symmetric and asymmetric Markov-switching GARCH models. We

examine the properties of our model and provide necessary and sufficient conditions for it to

be asymptotic stationary. Since the model constitutes a unifying framework in which sev-

eral models are nested, our conditions apply to all the included models in the family. In

this sense, we make a substantial contribution to the literature on the statistical properties

of Markov-switching GARCH models. In fact, conditions for asymptotic stationarity of a

Markov-switching GARCH model in Gray’s (1996)-Klaassen’s (2002) framework have only

been studied for the symmetric standard GARCH model case (Klaassen, 2002; Abramson and
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Cohen, 2007). In practice, most Markov-switching GARCH models are commonly restricted

to impose stationarity conditions obtained for single-regime GARCH models separately within

each regime (see Francq and Zakoian, 2019, Chapter 2, for a review on stationarity conditions

for single-regime GARCH models). However, these restrictions may be too conservative as it is

the interaction between the parameters in each volatility regime and the probabilities of tran-

sition between regimes which determines the stationarity of the Markov-switching GARCH

models. Indeed, we show that our model is stationary as long as the single-regime conditions

are satisfied on average with respect to the transition probabilities of the regimes even if the

GARCH parameters in some regime are explosive (in the sense that do not satisfy stationarity

conditions for single-regime models).

In an empirical application, we apply the model to daily returns of the S&P 500 Index

between January 2000 and March 2019. Our unified framework is useful for model selection

and tests of functional form. For this reason, we estimate the nested models for comparison.

We also estimate the single-regime specifications of the models. We consider two regimes

and use a fat-tailed distribution, the Student-t, to account for the excess kurtosis in the

data. The results show that asymmetric Markov-switching GARCH models outperform single-

regime models and symmetric models when estimating the volatility of returns. Moreover,

we find that including asymmetry and regime-switching significantly improves out-of-sample

performance in terms of forecasting Value-at-Risk (VaR).

Chapter 2: Forecasting Value-at-Risk and Expected Shortfall with Markov-switching

GARCH models

In Chapter 2, the forecasting performance of the models introduced in Chapter 1 is further

explored from a risk management perspective. In particular, we compare the accuracy of risk

predictions in terms of Value-at-Risk (VaR) and Expected Shortfall (ES) of a total of twenty-

six models including parametric, nonparametric and semi-parametric models. Apart from

the single-regime and Markov-switching GARCH models studied in Chapter 1, we consider

nonparametric models based on historical simulation. Historical simulations are the most

popular techniques for forecasting risk among commercial banks, mainly due to their simplicity

of calculation. We also include in our analysis the models recently proposed by Patton et al.
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(2019). These models are semiparametric in that they impose a parametric structure on the

dynamics of VaR and ES but make no assumptions about the conditional distribution of

returns. To the best of our knowledge, this is the first paper that provides a comparison of

regime-switching GARCH models with nonparametric and semiparametric models in terms of

VaR and ES forecast accuracy.

Most studies of the implications of Markov-switching GARCH models for risk management

focus on VaR. VaR measures the maximum potential loss in value of a risky asset or portfolio

over a target horizon for a given probability (Jorion, 2007). VaR is easy to calculate and

understand, however, it has important deficiencies. First, VaR is not a coherent risk measure

as it does not meet the subadditivity axiom (Artzner et al., 1999). Thus, there may be

cases in which, in contrast with the idea of diversification, the total VaR of a portfolio is

larger than the sum of the VaRs of the portfolio components. In addition, VaR measures do

not provide any information regarding the loss beyond the estimated VaR level. For these

reasons, the Basel Committee on Banking Supervision (2019) recommends the use of ES

instead of VaR. ES gives the expected return on an asset conditional on the return being

below the VaR level. ES has the advantage that is a coherent measure. Recent literature

on the performance of Markov-switching GARCH models in predicting VaR and ES includes

a large empirical study using returns of stocks, equity indices and foreign exchange rates in

Ardia et al. (2018). The authors find that regime-switching models significantly outperform

single-regime GARCH models. Other papers such as Caporale and Zekokh (2019) and Maciel

(2020) show the superiority of Markov-switching GARCH over single-regime GARCH models

in the context of cryptocurrencies.

We use data for four international stock market indices: the S&P 500, Dow Jones Industrial

Average, the NIKKEI 225 and the FTSE 100. Using traditional and recently developed

backtesting procedures for VaR and ES, we show that asymmetric Markov-switching GARCH

models significantly outperform nonparametric, semiparametric, single-regime GARCH and

symmetric models. Furthermore, the Model Confidence Set (MCS) procedure of Hansen

et al. (2011) identifies our most flexible Markov-switching GARCH specification as the best

performing model for VaR and ES prediction at different tail probability values. Moreover,

according to Diebold and Mariano’s (1995) tests of equal predictive ability, the superiority of
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our model is significant and consistent across the four indices and probabilities level considered

in our study.

Chapter 3: Uncertainty and volatility: A Markov-switching GARCH-MIDAS

approach

In Chapter 3, we study the relationship between the volatility of the S&P 500 index and

macroeconomic uncertainty. Despite the substantial progress on modelling time-varying volatil-

ity with GARCH models, the links between stock market volatility, observed on a daily basis,

and macroeconomic variables observed at a lower frequency were not considered in the GARCH

context until 2013 in the seminal paper by Engle et al. (2013). The authors introduce the

MIxed Data Sampling (MIDAS) approach of Ghysels et al. (2004) into the GARCH class of

models. In this way, the GARCH-MIDAS model permits the inclusion of macroeconomic vari-

ables (observed at a monthly, quarterly or even lower frequency) directly into the specification

of the volatility dynamics and enables improved forecasts of the volatility.

We extend the GARCH-MIDAS model to account for regime changes. To the best of the

author’s knowledge, our proposed model encompasses all GARCH-MIDAS models already

proposed in the literature. Besides regime changes and mixed-frequency data, the model has

the advantage that it accommodates the asymmetric impact of innovations on volatility. To

the best of the authors knowledge, no asymmetric Markov-switching GARCH-MIDAS model

has been applied so far in the literature. The publications either account for regime-changes in

symmetric GARCH-MIDAS (e.g., Pan et al., 2017) or asymmetries in single-regime GARCH-

MIDAS (see e.g., Borup and Jakobsen, 2019; Conrad and Kleen, 2020; Wang et al., 2020).

In this sense, our paper is the first to combine regime switches and asymmetries in GARCH-

MIDAS models. We show that accounting for both aspects of the volatility leads to substantial

improvements in empirical fit and predictive accuracy.

As explanatory variables, we use two measures of uncertainty observed at a monthly fre-

quency: the Financial Uncertainty (FU) index of Ludvigson et al. (2020) and the Macroeco-

nomic Uncertainty (MU) index of Jurado et al. (2015), and a measure of daily fluctuations

in the market, the daily Chicago Board Options Exchange Volatility Index (VIX). Our re-

sults yield the following in-sample and out-of-sample conclusions. First, our model provides



a significantly better in-sample fit than nested single-regime and regime-switching GARCH-

MIDAS models proposed in the literature. Furthermore, the results suggest that the models

that combine the monthly FU variable and the VIX index in the specification of the volatility

give a superior characterisation of the data than models with just one explanatory variable

or with the combination MU-VIX. In fact, the MU variable is not found to provide useful

information when estimated along with the VIX.

In the out-of-sample exercise, we obtain volatility forecasts at horizons of 1 day, 2 weeks, 1

month, 2 months and 3 months. We show that our model provides more accurate forecasts than

the remaining GARCH-MIDAS models at essentially all horizons. We also find that models

with the FU variable outperform for longer forecast horizons of 2 weeks, 1 month, 2 months

and 3 months. On the other hand, models that consider the VIX variable achieve more precise

1 day-ahead forecasts than those that incorporate only one of the monthly macroeconomic

variables. Consequently, our results suggest that high-frequency uncertainty proxies such as

the VIX variable outperform at one-day horizon and low-frequency uncertainty such as the FU

index performs better at longer forecast horizons ranging from 2 weeks to 3 months. In this

way, our findings provide useful indication for selecting the appropriate explanatory variable

based on the required forecast horizon.
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Chapter 1

Markov-switching GARCH models: A

unifying framework

Abstract

This paper examines statistical properties of a family of Markov-switching GARCH

(MSGARCH) models. The family is obtained by extension of Hentschel’s (1995)

nesting of single-regime GARCH to the regime-switching framework introduced by

Gray (1996) and Klaassen (2002). The resulting specification nests a wide range of

symmetric and asymmetric MSGARCH models already proposed in the literature.

Consequently, our specification is useful for model selection and tests of functional

form. We derive necessary and sufficient conditions for asymptotic stationarity of

the general model. In an empirical application using daily returns of the S&P 500

index, we show that the nested asymmetric MSGARCH models provide superior

empirical fit and Value-at-Risk (VaR) forecasts accuracy than single-regime and

symmetric MSGARCH models.

1.1 Introduction

Volatility, as a measure of uncertainty, is central to much of modern finance theory. Since

the introduction of GARCH (generalised autoregressive conditional heteroskedasticity) mod-

els by Engle (1982) and Bollerslev (1986), multiple extensions of the standard GARCH model

have been proposed to capture stylised facts of financial time series such as leptokurtosis and

asymmetric volatility (or “leverage effect”) first noted by Black (1976). The most popular
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asymmetric GARCH models include the exponential GARCH (EGARCH) process of Nel-

son (1991), the GJRGARCH model of Glosten et al. (1993) and Zakoian’s (1994) threshold

GARCH (TGARCH) model1. Hentschel (1995) provides a parametric family of models that

nests a wide range of symmetric and asymmetric GARCH models. The family is obtained

by applying a Box-Cox (1964) transformation to the conditional volatility. This approach

accommodates the inclusion of models in which the logarithm of the conditional variance is

parameterized, such as the EGARCH model.

A major drawback of single-regime GARCH models is that they do not account for struc-

tural changes in the volatility process. In fact, applications using high-frequency data show

that GARCH-type models often involve a high degree of persistence. This finding motivates

the introduction of the integrated GARCH model (IGARCH) by Engle and Bollerslev (1986).

In IGARCH processes, a shock to the conditional variance is persistent in the sense that it

affects future forecasts of all horizons. However, Lamoureux and Lastrapes (1990) argue that

it might be misleading to assume strong persistence in variance and show that it may be

overestimated due to the existence of deterministic structural shifts in the variance process

that are not taken into account. Failure to consider these structural breaks leads to poor

forecasting performance (see e.g., Marcucci, 2005 and Ardia et al., 2018).

One possibility to allow for periods with different volatility dynamics is the use of Markov-

switching GARCH (MSGARCH) models. Following Hamilton’s (1989) regime-switching model,

the parameters of the conditional variance equation can be viewed as the outcome of a latent

discrete-state Markov process. However, as pointed out by Hamilton and Susmel (1994) and

Cai (1994), combining the regime-switching model with GARCH leads to estimation problems

as a result of path dependence. The lag structure of GARCH models causes dependence of

the conditional variance on the entire history of states. Since the states are unobservable, it is

necessary to consider all possible regime paths when estimating the volatility. This is infeasi-

ble in practice as the number of possible paths increases exponentially with time. Gray (1996)

introduces a collapsing procedure that circumvents this problem. His idea is to integrate out

the unobserved regime path by replacing lagged conditional variances with their expectations

over the entire set of states; see also Dueker (1997) for a related approach. Klaassen (2002)

1Important surveys on GARCH models include Bollerslev et al. (1994), Bollerslev (2010), Andersen et al.
(2006) and Francq and Zakoian (2019).
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refines Gray’s model by using the expectation conditional on all available information and the

current regime. An alternative Markov-switching GARCH model avoiding path dependence

is proposed by Haas et al. (2004). The authors assume that past conditional variances are

in the same regime as the current conditional variance. More recently, Augustyniak et al.

(2018) introduce a different concept of collapsing procedure based on the particle filter algo-

rithm. This approach includes Gray’s (1996), Dueker’s (1997) and Klaassen’s (2002) methods

as special cases.

MSGARCH models are widely used in the field of econometrics both by practitioners and

academics. Henry (2009) extends the collapsing procedure proposed by Gray (1996) to a

regime-switching EGARCH model to investigate the relationship between equity returns and

short-term interest rates. Reher and Wilfling (2016) compare the performance of asymmetric

and symmetric models within Klaassen’s (2002) regime-switching GARCH framework to es-

timate and forecast daily volatility of the German DAX index. Augustyniak and Boudreault

(2012) analyse monthly returns of the S&P 500 price index using different models which

include those proposed by Gray (1996), Klaassen (2002) and Haas et al. (2004). See Ané

and Ureche-Rangau (2006) and Sajjad et al. (2008) for more applications of Gray’s (1996)

and Klaassen’s (2002) collapsing procedures. Other papers have focused on simulation-based

methods to estimate path-dependent MSGARCH models; e.g., see Bauwens et al. (2014),

Augustyniak (2014), Dufays (2016) and Billio et al. (2016). In recent years, MSGARCH mod-

els have gained special attention in the context of cryptocurrencies (see e.g., Caporale and

Zekokh, 2019; Maciel, 2020).

Statistical properties of path-dependent MSGARCH models are found in Francq et al.

(2001), Francq and Zakoian (2005), Francq and Zaköıan (2006), Meitz and Saikkonen (2008)

and Bauwens et al. (2010), among others. Regarding path-independent MSGARCH models,

Klaassen (2002) develops necessary conditions for stationarity of his model in the case of two

regimes and first-order GARCH processes. Haas et al. (2004) and Liu (2006) give necessary

and sufficient conditions for stationarity of Haas et al.’s (2004) model in the special case of

first-order GARCH. Abramson and Cohen (2007) derive stationarity conditions for Klaassen’s

(2002) and Haas et al.’s (2004) models in the general case of k-regimes and GARCH processes

of any order. Liu (2007) extends the model of Haas et al.’s (2004) to allow for an asymmetric
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response of volatility to positive and negative shocks and obtains conditions for the existence

of stationarity solution and high-order moments.

In this paper, we perform a theoretical and empirical analysis of Markov-switching GARCH

(MSGARCH) models. The analysis is based on a family of MSGARCH models that incorpo-

rates Hentschel’s (1995) nesting of single-regime symmetric and asymmetric GARCH models

to the regime-switching framework introduced by Gray (1996) and later refined by Klaassen

(2002). The resulting model nests virtually all symmetric and asymmetric MSGARCH models

already proposed in the literature2. Thus, it is useful for model selection under a unifying

framework. In the theoretical part of the paper, we derive necessary and sufficient conditions

for asymptotic stationarity of the general model. Hence, since the model constitutes a unified

framework in which several models are included, stationary conditions of the nested mod-

els are obtained as special cases. The development of these conditions makes a substantial

contribution to the literature on statistical properties of MSGARCH models within Gray’s

(1996)-Klaassen’s (2002) framework. Indeed, these conditions have only been examined by

Klaassen (2002) and by Abramson and Cohen (2007) for the symmetric regime-switching stan-

dard GARCH model. We extend the proofs derived in Abramson and Cohen (2007) to obtain

results for a wide range of symmetric and asymmetic regime-switching GARCH models. In

the second part of the paper, we conduct an empirical application using daily returns of the

S&P 500 index. We show that asymmetric MSGARCH models yield superior in-sample fit

and out-of-sample forecasts of Value-at-Risk (VaR) than single-regime models and symmetric

MSGARCH models. In this way, we confirm the existing evidence in the literature regarding

asymmetry and regime changes in the dynamics of the volatility of stock returns.

This paper contains four sections. The next section introduces the family of MSGARCH

models and provides necessary and sufficient conditions for stationarity. Section 1.3 describes

the data and presents estimation and forecasting results. Section 1.4 concludes.

2Exceptions of GARCH models that do not fit in our model are the smooth transition GARCH
(STGARCH) model of González-Rivera (1998) and the Volatility Switching GARCH (VSGARCH) model
of Fornari and Mele (1997).
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1.2 Nesting Markov-switching GARCH models

This section first presents a general single-regime model that nests many commonly used

GARCH processes and then extends this model to a regime-switching framework following

the collapsing procedure proposed by Gray (1996) and Klaassen (2002).

1.2.1 A family of GARCH models

GARCH(p, q) models consist of two elements: the mean equation and the variance equation.

Since the focus of this paper is the volatility rather than the mean, we assume that returns

can be described as

rt = µ+ εt (1.1)

where µ is constant representing the mean3 and εt denotes the innovation process.

The variance equation specifies the variance at time t, conditional on the set of available

information It−1 = {rt−i, i ≥ 1}, as a function of p past innovations and q past conditional

variances. Hentschel (1995) proposes the following GARCH(1, 1) model for the innovation

process4:

εt = zt σt | It−1 ∼ F (0, σ2

t , ν) (1.2)

σλ
t − 1

λ
= ω + α f λ̂(zt)σ

λ

t−1 + β
σλ

t−1 − 1

λ
, λ ≥ 0, λ̂ > 0

f λ̂(zt) = [|zt−1 − ψ| − γ (zt−1 − ψ)]λ̂

where {zt} is a sequence of independent and identically distributed (iid) zero-mean unit-

variance random variables; F(0, σ2
t , ν) is a continuous distribution with mean zero, time-

varying variance σ2
t and shape parameter ν. The parameters ω, α, β, γ and ψ are subject

to appropriate constraints in order to guarantee that the conditional variance takes positive

real values. For λ = 0 or λ = 1
n
with n integer number, no constraints are required since the

3For modelling asset returns, the mean is often treated as a function of the conditional volatility. Assuming
time-varying conditional mean does not make the formulas that follow essentially different.

4The model can be generalised to a higher-order model. For simplicity, we only present the first-order
case. Furthermore, the first-order GARCH is the most commonly applied parameterization in practice.
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conditional variance is found by exponentiation or by raising σλ
t to an even power and hence

positivity is guaranteed. For the remaining cases, sufficient conditions for positivity of σλ
t ,

and therefore σ2
t , are

λω + 1− β > 0, α, β ≥ 0, |γ| ≤ 1 (1.3)

By appropriately choosing the parameters λ, γ and ψ, model (1.1)-(1.2) nests a wide range

of symmetric and asymmetric GARCH models. Hentschel (1995) illustrates the asymmetry in

his model via the news impact curve of Pagan and Schwert (1990) and Engle and Ng (1993).

The news impact curve is useful in understanding the impact of shocks on the conditional

variance. It measures how news impacts on the conditional time-varying volatilities. The

asymmetric models are those that allow at least one of the parameters γ or ψ to be nonzero.

The parameter γ causes a rotation to the news impact curve while the parameter ψ causes a

shift to the news impact curve. Most asymmetric GARCH models take into account the lever-

age effect by transforming the news impact curve of the standard GARCH5. As in Hentschel

(1995), we introduce asymmetry by allowing a shift and a rotation of the news impact curve

of the standard GARCH via the function

f λ̂(zt) = [|zt−1 − ψ| − γ (zt−1 − ψ)]λ̂

As shown in Figure 1.1, for λ̂ < 1 the function f λ̂(zt) is concave while for λ̂ > 1 it is convex.

A positive value of γ causes a rotation to the right (clockwise). If the news impact curve is

clockwise rotated, negative shocks increase volatility by a larger amount than positive shocks

of the same magnitude (asymmetry effect). Thus, we expect nonnegative values of γ. On the

other hand, the parameter ψ causes a shift of the news impact curve. As shown in Figure 1.1,

the plots are shifted by |ψ| units to the right (left) when ψ is positive (negative).

[ Figure 1.1 here ]

The vast majority of the models considered in the literature do not allow for both a shift

and a rotation simultaneously. To the best of the authors knowledge, a model that allows for

5The news impact curve of the standard GARCH model is symmetric centred on 0. Therefore, no distinc-
tion is made between the effects of positive and negative shocks on the conditional volatility.
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both a shift and a rotation simultaneously are only applied in Hentschel (1995) and Reher and

Wilfling (2016). In fact, most of the literature considering asymmetric models allows just for a

rotation of the news impact curve. In particular, the EGARCH, TGARCH and GJRGARCH

models are the most widely used asymmetric GARCH models. However, a combination of

both a shift and a rotation can reinforce the asymmetric effect on the volatility. Furthermore,

despite the fact that the terms asymmetry and leverage effect are used interchangeably in

the GARCH literature, Caporin and Costola (2019) argue that both effects should not be

treated as the same phenomenon. The authors contend that a GARCH model is consistent

with the presence of leverage effect if negative (positive) shocks lead to an increase (decrease)

in variance and show that the NAGARCH model causing a shift of the news impact curve

is the only GARCH model allowing for local leverage effect. Therefore, by permitting both

rotation and shift of the news impact curve we accommodate two types of asymmetry: (a)

asymmetry in the sense that positive and negative news of the same magnitude have different

effects on the volatility and (b) leverage effect as defined in Caporin and Costola (2019).

Below we briefly describe the nested models in (1.2). In order to formulate the nested

models in a way that is consistent with the standard literature, we present an equivalent

representation of (1.2). After reparametrization, (1.2) can be rewritten as:

lnσ2

t =
.
ω +

.
α (|zt−1| − E |zt−1| − γ zt−1) + β lnσ2

t−1, if λ = 0, λ̂ = 1 (1.4)

σλ

t =
..
ω +

{
..
α [|zt−1 − ψ| − γ (zt−1 − ψ)]λ̂ + β

}
σλ

t−1, if λ, λ̂ > 0 (1.5)

where
.
ω= 2ω + 2αE |zt−1|,

.
α= 2α,

..
α= λα and

..
ω= λω + 1 − β. Table 1.1 shows the

parameter restrictions and the volatility specifications of the nested models6,7.

[ Table 1.1 here ]

Exponential GARCH (EGARCH) model (λ = 0, λ̂ = 1, γ free, ψ = 0)

The value of
σλ
t −1

λ
in (1.2) at λ = 0 is established using L’Hopital’s rule whereby, if f(λ) and

6Without risk of confusion, we drop the superscripts in the ω and α parameters in (1.4)-(1.5).
7Note that, for most of the models we have λ̂ = λ. Hence, our choice to label the exponent of the

standardised shocks function f(zt) = |zt−1 − ψ| − γ (zt−1 − ψ) by λ̂.
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g(λ) are two differentiable functions, then

lim
λ→a

f(λ)

g(λ)
= lim

λ→a

f ′(λ)

g′(λ)

Therefore, we have

lim
λ→0+

σλ
t − 1

λ
= lim

λ→0+
σλ lnσt = lnσt

and the volatility equation in (1.2) becomes

lnσt = ω + α [|zt−1 − ψ| − γ (zt−1 − ψ)]λ̂ + β lnσt−1

If λ̂ and ψ are set to 1 and 0, respectively, and the constant unconditional mean of |zt−1| is

subtracted from |zt−1| − γ zt−1 and added to the intercept, the variance equation8 becomes

lnσ2

t = 2ω + 2αE |zt−1| + 2α (|zt−1| − E |zt−1| − γ zt−1) + β lnσ2

t−1

=
.
ω +

.
α (|zt−1| − E |zt−1| − γ zt−1) + β lnσ2

t−1, if λ = 0, λ̂ = 1

where
.
ω= 2ω + 2αE |zt−1| and

.
α= 2α. And we get model (1.4) which is the same as Nelson’s

(1991) EGARCH model.

Absolute value GARCH (AVGARCH) model (λ = 1, λ̂ = 1, γ = 0, ψ = 0)

The absolute value GARCH (AVGARCH) model used in Schwert (1989) and Taylor (2008)

parameterises the conditional volatility as a distributed lag of the absolute innovations and

the lagged conditional volatilities. In this model both asymmetric parameters γ and ψ are

set to 0. It is, therefore, a symmetric model in the sense that past negative shocks influence

volatility by the same amount as positive shocks of the same magnitude:

σt = ω + (α |zt−1| + β) σt−1

Threshold GARCH (TGARCH) model (λ = 1, λ̂ = 1, |γ| ≤ 1, ψ = 0)

8We need to multiply both sides of the equality by 2 to obtain the variance in the equation instead of the
volatility.
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The threshold GARCH (TGARCH) model proposed by Zakoian (1994) extends the AV-

GARCH model to allow the news impact curve to be rotated through the parameter γ:

σt = ω + [α (|zt−1| − γ zt−1) + β ]σt−1

Standard GARCH (GARCH) model (λ = 2, λ̂ = 2, γ = 0, ψ = 0)

The standard GARCH model proposed by Bollerslev (1986) treats the conditional variance as

a linear function of squared shocks and lagged conditional variances. It is obtained by setting

both λ and λ̂ to 2 and imposing γ and ψ to be equal 0:

σ2

t = ω +
(
α z2

t−1 + β
)
σ2

t−1

Glosten-Jagannathan-Runkle (GJRGARCH) model (λ = 2, λ̂ = 2, γ free, ψ = 0)

When λ = λ̂ = 2 and ψ = 0 but γ is freely estimated, we obtain the Glosten-Jagannathan-

Runkle GARCH (GJRGARCH) model proposed by Glosten et al. (1993):

σ2

t = ω +
[
α (|zt−1| − γ zt−1)

2 + β
]
σ2

t−1

The GJRGARCH model allows the conditional variance to respond differently to the past

negative and positive innovations by allowing a rotation of the news impact curve through the

parameters γ.

Nonlinear asymmetric GARCH (NAGARCH) model (λ = 2, λ̂ = 2, γ = 0, ψ free)

When a shift of the news impact curve is allowed with γ = 0 but a free ψ, then the model

reduces to the Engle and Ng’s (1993) nonlinear asymmetric GARCH (NAGARCH) model for

λ = λ̂ = 2:

σ2

t = ω +
[
α (zt−1 − ψ)2 + β

]
σ2

t−1

Nonlinear GARCH (NLGARCH) model (λ free, λ̂ = λ, γ = 0, ψ = 0)
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The nonlinear GARCH (NLGARCH) model propodes by Higgins and Bera (1992) parame-

terizes the conditional standard deviation raised to the power λ as a function of the lagged

conditional standard deviations and the lagged absolute innovations raised to the same power:

σλ

t = ω +
(
α |zt−1|λ + β

)
σλ

t−1

This formulation reduces to the standard GARCH model for λ = λ̂ = 2 and to the AV-

GARCH model for λ = λ̂ = 1.

Asymmetric power (APGARCH) model (λ free, λ̂ = λ, |γ| ≤ 1, ψ = 0)

The asymmetric power (APGARCH) model of Ding et al. (1993) is obtained by freely esti-

mating λ > 0, setting λ̂ = λ and imposing ψ to be equal 0:

σλ

t = ω +
[
α (|zt−1| − γ zt−1 )

λ + β
]
σλ

t−1

The APGARCH model, in turn, nests the AVGARCH model for λ = λ̂ = 1 and γ = 0 the

TGARCH model for λ = λ̂ = 1, the standard GARCH model for λ = λ̂ = 2 and γ = 0,

the GJRGARCH model for λ = λ̂ = 2 and the NLGARCH model for γ = 0.

In the next section, we extend model (1.1)-(1.2) to the Markov-switching framework of

Gray (1996)-Klaassen (2002) and provide necessary and sufficient conditions for stationarity

of the resulting model.

1.2.2 A family of Markov-switching GARCH models

Let st ∈ {1, . . . , k} be a first-order ergodic Markov chain representing the (unobserved) regime

at time t. Consider the regime-switching version of Equations (1.1)-(1.2) as follows:

rt = µst + εt (1.6)

εt = zt,st σt,st | st, It−1 ∼ F
(
0, σ2

t,st
, νst
)

σλ
t,st

− 1

λ
= ωst + αst [|zt−1,st

− ψst | − γst (zt−1,st
− ψst)]

λ̂ σλ
t−1,st

+ βst
σλ

t−1,st
− 1

λ
,
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where λ ≥ 0, λ̂ > 0, zt,st =
rt−µst

σt,st

iid∼ F (0, 1, νst) and

σ(λ
t−1,st

=
k∑

i=1

P (st−1 = i | st, It−1) σ
λ

t−1,i (1.7)

That is, σ(λ
t−1,st

denotes the expectation of σλ
t−1,st−1

over the set of states, conditional on past

information It−1 and the current regime st. The regime parameters ωst , αst , βst and γst satisfy

the conditions in (1.3) whenever λ ̸= 0, 1
n
, n ∈ N.

This model combines the nesting of single-regime GARCH models in (1.2) with Gray

(1996)-Klaassen (2002) Markov-switching framework. A similar family of models is considered

by Reher and Wilfling (2016) in an empirical analysis of the German stock market. The

authors also extend Klaassen’s (2002) Markov-switching GARCH framework by incorporating

Hentschel’s (1995) nesting of single-regime GARCH specifications. However, the authors

assume a mixture of normal distributions for the distribution of returns and GARCH-in-mean.

In contrast, we consider Student-t distributions to account for the excess kurtosis presented

in our data in the empirical application in Section 1.3. Furthermore, since the focus of our

paper is on the volatility rather than the mean, we do not consider GARCH-in-mean effects.

Asymptotic stationarity

We now consider stationarity of the MSGARCH family. We begin by introducing notation.

The stationary and transition probabilities of the Markov chain {st} will be denoted by πi =

P (st = i) and pij = P (st = j | st−1 = i), i, j ∈ {1, . . . , k}. Define the k-vectors

∆t =
[
λα1

[
|zt,1 − ψ1| − γβ1 (zt,1 − ψ1)

]λ̂
, . . . , λ αk

[
|zt,k − ψk| − γβk (zt,k − ψk)

]λ̂]⊤
, (1.8)

β = [ β1, . . . , βk ]
⊤ , (1.9)

where ⊤ denotes the transpose operator. Consider a k × k matrix Kn given by

Kn = E
[
diag

(
∆β

t + β
)]n

, n ∈ N (1.10)
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and a k × k matrix Q with elements

{Q}i,j = P(st−1 = j | st = i) =
πj

πi

pji, i, j = 1, . . . , k (1.11)

Let ρ(·) denote the spectral radius of a matrix, i.e., its largest eigenvalue in modulus. We

have the following theorem:

Theorem 1. For the MSGARCH family, defined in (1.6)-(1.7), ρ(K1Q) < 1 is:

1. a sufficient condition for asymptotic stationarity when λ ≥ 2.

2. a necessary condition for asymptotic stationarity when 0 < λ ≤ 2.

Proof. See Appendix 1.5.2.

Theorem 1 provides a sufficient and necessary condition for stationarity of the model

when λ = 2. This condition can be found in Klaassen (2002) for the standard GARCH model

(λ = 2 and γst , ψst = 0) with k = 2. Abramson and Cohen (2007) generalise Klaassen’s (2002)

condition to a Markov chain of higher order k.

The next theorem provides sufficient conditions for stationarity. Let ⌈·⌉ represent the

ceiling function. We can state the following result:

Theorem 2. The MSGARCH model in (1.6)-(1.7) is asymptotically stationary if ρ(K iQ) < 1

for i = 1, . . . ,
⌈
2
λ

⌉
.

Proof. See Appendix 1.5.2.

Note that for λ ≥ 2 we have
⌈
2
λ

⌉
= 1 and the condition in Theorem 2 is that given in Theorem

1. As λ approaches zero, Theorem 2 yields a sharp stationarity condition as a corollary:

Corollary 1. As λ approaches zero, a sufficient condition for asymptotic stationarity of the

MSGARCH family is |βst
| ≤ 1 for st = 1, . . . , k with at least one βst

inside the unit circle.

Proof. See Appendix 1.5.2.
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1.3 Data, Estimation and Volatility forecasting

1.3.1 Data

We apply our family of models to daily returns on the S&P 500 price index from January

2000 to March 2019. In total, we have 4840 observations. The plot of the time series of stock

returns is presented in Figure 1.2.

[ Figure 1.2 here ]

In Table 1.2, we report summary statistics of returns. The daily average return is 0.0136%,

with a minimum of−9.4695% and a maximum of 10.9572%, which shows the high variability of

returns during this period with a standard deviation of 1.2034. The skewness is significant and

negative indicating that negative returns are more likely to be far below the mean than positive

returns. The kurtosis is significantly higher than 3, suggesting that fat-tailed distributions are

appropriate to estimate the data. Indeed, the Jarque-Bera test for normality clearly rejects

the null hypothesis that the data comes from a normal distribution. Furthermore, we apply

the Lagrange Multiplier test for ARCH effects up to ten lags. The statistic from this test

follows a χ2(10) distribution. The null hypothesis of no ARCH effects is strongly rejected

indicating the presence of ARCH effects.

[ Table 1.2 here ]

1.3.2 Estimation results

The MSGARCH family developed in Section 1.2 can be estimated by numerical maximum

likelihood. Appendix 1.5.3 shows that the likelihood function follows a first-order recursive

structure. We estimate the models in MATLAB by extending the MFE MATLAB toolbox

(Sheppard, 2009) for estimation of single-regime GARCH models to our regime-switching

frameworks. Starting values are chosen as follows: (1) estimate a Gaussian mixture model by

using the expectation maximization algorithm; (2) calculate the most probable state sequence

by applying Viterbi’s (1967) algorithm and separate the data in k different vectors, one for

each regime; (3) estimate the single-regime counterpart model for each of the vectors obtained
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in (2). We ensure that the parameter estimates respect the positivity of the variance and the

stationarity of the process by imposing the constraints developed in Section 1.2.

Due to the high-kurtosis presented in the data, we consider a heavy-tail distribution, the

Student-t distribution with state-dependent degrees of freedom. The use of the t-distribution

is useful for regime-switching models because it improves the stability of the regimes. As

pointed out by Klaassen’s (2002), the use of the normal distribution could jeopardise regime

stability since a large shock in the low-volatility regime will force a switch to the high-volatility

regime, even if it is a single outlier in an otherwise moderate period.

We compare the performance of the nested models presented in Table 1.1 and the more

general model where all the parameters are freely estimated. We consider two-regime and

single-regime models. We refer to the general model as FGARCH when the number of regimes

is one and MSFGARCH when we allow for two regimes. In total, we estimate 18 models.

Table 1.3 compares goodness of fit statistics. The table is divided into four panels based on

the assumed value of λ for each model in the first column (see Table 1.1). The second and third

columns list, respectively, the number of parameters n and the maximized log-likelihood LL.

The Akaike information criterion (AIC) and Bayesian information criterion (BIC) computed

as AIC= 2 × (n − LL) and BIC = −2LL + n log(T ), T = 4840 being the sample size, are

displayed in the fourth and sixth columns. The AIC ranks the MSNAGARCH, MSFGARCH

and MSEGARCH models as the three best specifications. According to the BIC, the best

specifications are the MSNAGARCH, MSFGARCH and the more parsimonious single-regime

FGARCH. Both criteria agree in categorising the symmetric models as providing the worst

data fit. Overall, the results from both criteria suggest that the models that account for

leverage effect with a shift to the news impact curve (ψ ̸= 0) provide superior insample fit.

This is remarkable since most of the empirical applications on asymmetric GARCH apply

models such as the EGARCH, TGARCH or GJRGARCH which introduce asymmetry by

rotating the news impact curve (γ ̸= 0). We also apply Likelihood Ratio (LR) tests to formally

test the performance of the asymmetric models against their symmetric counterparts. The

statistics from these tests are reported in the antepenultimate and penultimate columns of

Table 1.3. The null hypothesis of symmetry, corresponding to the model in the first column

of the same row, is tested against the alternative that asymmetry is caused by a rotation or
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a shift. The LR test statistics for these tests are asymptotically distributed as a χ2 random

variable with degrees of freedom equal to the 1 for single-regime models and equal to 2 for

regime-switching models9. The statistics far exceed the critical values at any confidence level,

thus strongly rejecting the null of symmetry.

The last column in the table contains LR tests for the null of the models in the first row

against the most general model with two regimes, the MSFGARCH model. All the Markov-

switching models are rejecting at a 1% significance level against the MSFGARCH, except for

the MSNAGARCH model. This suggests that allowing just for a shift of the news impact

curve is enough to accommodate the asymmetry effects presented in the data. A difficulty

arises when testing a Markov-switching model versus a single-regime model. The problem is

known as the Davies’s (1977) problem and occurs since the state parameter is unidentified

under the null hypothesis. This problem is typically approached by treating the traditional

likelihood ratio (LR) test statistic as a function of the unidentified parameter and obtaining

an upper bound for the statistic across all possible values of the parameter (see Davies, 1977;

Garcia et al., 1996; inter alia). Garcia (1998) follows Davies’s (1977) approach and derives

an upper bound for the significance level of the LR test under the nuisance parameters10,11.

Given the LR statistic LR = 2 (LRA−LR0) where LR0 is the log-likelihood under the null and

LRA the log-likelihood under the alternative, the upper bound proposed by Garcia (1998) is

given as P (χ2
d > LR)+2

(
LR
2

) d
2 exp

(
−LR

2

) [
Γ
(
d
2

)]−1
, where d is the difference in the number

of parameters. For the values of the LR statistics corresponding to the null of single-regime

models in the last columns of Table 1.3, the term exp
(
−LR

2

)
is essentially 0 so the upper bound

for our tests is approximately equal to P (χ2
d > LR), the usual marginal level associated with

the traditional LR test12. We obtain LR test statistics that far exceeds the marginal level

associated with the traditional LR at any significance level, hence supporting two-regime

specifications.

[ Table 1.3 here ]

9In the Markov-switching case, the parameters γ and ψ switch under the alternative.
10See Qu and Zhuo (2021) for an algorithm to simulate critical values of LR tests for Markov-switching

models similar to that developed in Garcia (1998).
11The bounds holds assuming that the likelihood function has a single peak.
12The smallest LR test statistic for testing single-regime against the MSFGARCH model takes a value of

68.25 and corresponds to the null of the single-regime FGARCH model. Being d = 9 the difference in the

number of parameters, we have 2
(
68.25

2

) 9
2 exp

(
− 68.25

9

) [
Γ
(
9
2

)]−1
= 2.0602 · 10−9 ≈ 0.
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Table 1.4 exhibits parameter estimates for the nested models in the MSGARCH family

with two regimes. Regime 1 corresponds to the high-mean low-volatility regime while regime

2 corresponds to a low-mean high-volatility state. The second and third rows list values of

λ and λ̂, respectively. These parameters are set to the established value according to each

specification (see Table 1.1), except for the three last columns where is freely estimated. We

calculate Bollerslev and Wooldridge’s (1992) coefficient robust standard errors and perform

Student-t tests to assess the statistical significance of the parameters. The estimates show

that almost all the parameters are statistically significant, except for the mean parameter in

the high-volatility state, µ2. The models that allow asymmetric response to volatility shocks

are estimated with highly significant asymmetry parameters γi or ψi, reinforcing the strong

presence of asymmetry in the data. However, when we allow for both types of asymmetry in

the MSFGARCH model, the shift parameter ψ is highly significant but the rotation parameter

γ is not suggesting again that the shift alone appears enough to capture the asymmetry in

returns. The state-dependent degrees of freedom are almost always greater than 4. Hence, in

both regimes, we have fatter tails than the normal distribution. The last two rows concern

the sufficient stationary conditions provided in Theorem 2. We have ρi = ρ(K i,λQ) < 1 for

i = 1, . . . ,
⌈
2
λ

⌉
indicating stationarity of the estimated models.

[ Table 1.4 here ]

The transition probabilities pii = P (st = i | st−1 = i) can be used to estimate the persis-

tence for regime i as (1−pii)
−1, i = 1, 2. For the MSFGARCH model, for instance, persistence

of regime 1 and 2 are estimated to be 568.66 and 496.51 days, respectively, which correspond

to approximately 2 years. The unconditional probabilities, reported in the bottom panel of the

table, are calculated as π1 = (1−p22)/(2−p11−p22) and π2 = (1−p11)/(2−p11−p22) = 1−π1 (see

Hamilton, 1994, Chapter 22). The estimated unconditional probabilities of being in the high-

mean low-volatility regime are higher than 50% and thus the models estimate more than half

of the sample in the low-volatility regime. The left panel of Figure 1.3 displays the smoothed

probabilities of the high-mean low-volatility regime as estimated by the 9 Markov-switching

models. Smoothed probabilities are obtained following Kim (1994)’s algorithm (see Appendix

1.5.3). Most models estimate the period from the dot-com crisis until 2006, the subprime

crisis of 2008 and the second semester of 2011 in the high-volatility regime. The right panel
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of Figure 1.3 shows the conditional time-varying volatilities estimated by the models. The

models display a similar conditional volatility pattern during the sample period. As expected,

the periods where the smoothed probabilities of being in the high-mean low-volatility regime

are near one coincide with those where the estimated conditional volatility is higher.

Table 1.5 contains the parameters estimates from the single-regime models. Again, we find

the asymmetric parameters γ and ψ highly significant. Furthermore, for the FGARCH model

with a rotated and shifted news impact curve, we find ψ highly significant but not γ. This

reiterates the fact that the shift alone appears sufficient to capture the asymmetric effect on

volatility.

[ Table 1.5 here ]

We perform Ljung and Box’s (1978) tests on standardized squared residuals to test for the

presence of ARCH effects. All the models pass the tests for different lag values (5, 10, 20).

1.3.3 Forecasting Value-at-Risk

The development of models that provide accurate volatility forecasts is essential to financial

risk management. In particular, volatility forecasts are used as inputs to Value-at-Risk (VaR)

calculations. VaR is one of the most popular risk measures for regulating and managing market

risk. In this section, we evaluate the ability of the single-regime and Markov-switching regime

models estimated in Section 1.3.2 to provide accurate one-step-ahead VaR forecasts.

VaR is defined as the 100α% quantile of the distribution of returns, such that, at time t

there is a 100α% probability that the return will be lower than the VaR value. As in Section

1.3.2, we assume that returns following a Student-t distribution. The VaR at time t is given

by

VaRα

t =
2∑

i=1

P (st = i | It−1)

[
µi + σt,i

√
νi − 2

νi

t−1

νi
(α)

]

where P (st = i | It−1) is the so-called predicted probability which gives the probability of being

in regime i ∈ {1, 2} given the information set up to time t − 1, It−1; µi, σt,i and νi are the

estimated mean, conditional volatility and shape parameter from model (1.6) and t−1
νi
(α) is the
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α-quantile of the standard t-distribution (see e.g., McNeil et al., 2015, pp. 71). We consider

the values α = 1%, α = 2.5% and α = 5% for the significance levels of VaR. The out-of-

sample period starts on January 2007 and ends on March 2019. Each model is estimated on a

rolling-window basis where the window size is 1759, the number of observations from January

2000 to December 2006. The model parameters are updated every 21 observations13.

The most popular procedures for testing the accuracy of VaR forecasts are based on the

so-called “hit sequence” of VaR violations,

Hitαt = I{rt ≤VaRα
t } (1.12)

For a correctly specified model, we expect that the observed return values will only be worse

than the VaR forecast 100α% of the time. Hence, ideally, the hit variable should have a

mean value of α (see Kupiec, 1995). This property is known as Unconditional Coverage (UC).

The hit sequence should also be completely unpredictable and, therefore, independently dis-

tributed as a Bernouilli random variable, Hitαt
iid∼ Bernouilli(α). Furthermore, the occurrences

of observations outside the interval provided by the VaR forecasts must be homogeneous over

the sample and not come in clusters (Christoffersen, 1998). This property is called Condi-

tional Coverage (CC). Christoffersen (1998) introduces a three-step procedure for testing the

correct unconditional coverage, independence and conditional coverage. All three tests can be

implemented in the likelihood ratio (LR) framework. The null hypothesis and the LR statistic

of the tests are given by:

• Unconditional coverage test:

HUC : E (Hitαt ) = α (1.13)

LRUC = −2 log

[
αn1(1− α)n0

πn1(1− π)n0

]
∼ χ2

1

where n1 and n0 are, respectively, the number of 1’s and 0’s in the hit sequence and

π = n1

n0+n1
is the maximum likelihood estimate of α.

13The forecast performance of GARCH models does not change significantly when moving from a daily
updating frequency to a monthly updating frequency (see Ardia and Hoogerheide, 2014).
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• Test of independence:

HInd : Hitαt
iid∼ Bernouilli(α) (1.14)

LRInd = −2 log

[
πn1(1− π)n0

(1− π01)n00πn01
01 (1− π11)n10πn11

11

]
∼ χ2

1

where nij is the number of observations with a j following an i, π01 = n01

n00+n01
and

π11 =
n11

n10+n11
.

• Conditional coverage test:

HCC : E
(
Hitαt | Hitαt−1, . . . ,Hit

α

1

)
= α (1.15)

LRCC = −2 log

[
αn1(1− α)n0

(1− π01)n00πn01
01 (1− π11)n10πn11

11

]
∼ χ2

2

Note that the three LR tests are numerically related by the identity LRCC = LRUC + LRInd,

which enables joint testing of randomness and correct coverage while retaining the individual

hypotheses as subcomponents.

Table 1.6 presents the backtesting results for each model and significance level. The top

panel contains the results for the single-regime models while the bottom panel contains the

results for the Markov-switching models. Columns labelled PF provide the proportion of

failures given by the number of ones in the hit sequence in (1.12) divided by the out-of-

sample size, 3081, times 100. It is clear from the table that single-regime GARCH models

result in a far higher proportion of failures than the nominal level α. On the other hand,

the proportion of failures provided by the Markov-switching GARCH models are closer to

the correct nominal value. The Unconditional Coverage test in (1.13) formally tests if the

proportion of failures is significantly different from α. The test statistics from these tests

are presented in the LRUC columns. No single-regime model passes this test for any of the

considered values of α. All the Markov-switching GARCH models pass the test for α = 1%

and α = 2.5%. When α = 5%, most of the asymmetric Markov-switching GARCH models

pass the test. However, the symmetric regime-switching models and the MSGJRGARCH

and MSNAGARCH models result in VaR levels that are rather conservative and provide too

few VaR violations, thus failing the test. Both single-regime and Markov-switching GARCH
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models pass the independence test in (1.14) (column LRind). Finally, columns labelled LRCC

give the results from the Conditional Coverage tests. The tests reject all single-regime models

for the three nominal levels. The symmetric MSGARCH and MSNLGARCH models and the

asymmetric MSGJRGARCH and MSNAGARCH models also fail the test when α = 5%.

[Table 1.6 here ]

On balance, we find that regime-switching GARCHmodels outperform single-regime GARCH

models when forecasting VaR. This conclusion is in line with the results in Ardia et al. (2018).

Furthermore, our results suggest that failure to account for the asymmetric effect on the

volatility specification leads to poor out-of-sample VaR forecasts.

1.4 Conclusion

In this paper, we develop a parametric family of Markov-switching GARCH models. The

family extends Hentschel’s (1995) nesting of symmetric and asymmetric single-regime GARCH

models to the Markov-switching framework introduced by Klaassen (2002), which extends that

of Gray (1996). Necessary and sufficient conditions for asymptotic stationarity of the family

are provided. The conditions are obtained by constraining the spectral radius of matrices

whose elements are built from the model parameters.

In an empirical application, we apply the model to daily returns of the S&P 500 Index

between January 2000 and March 2019. Our unified framework is useful for model selection

and tests of functional form. For this reason, we estimate the nested models for comparison.

We also estimate the single-regime specifications of the models. We consider two regimes

and use a fat-tailed distribution, the Student-t, to account for the excess kurtosis in the data.

The results show that asymmetric regime-switching GARCH models outperform single-regime

models and symmetric models when estimating the volatility of returns. Moreover, we find

that including asymmetry and regime-switching significantly improves out-of-sample forecasts

of Value-at-Risk (VaR).
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1.5.1 Tables and Figures

• Our model nests single regime models in Conrad when we impose the number of regimes

= 1.

Table 1.1: Nested GARCH models.

Model λ λ̂ γ ψ Volatility Specification Reference

EGARCH 0 1 free 0 lnσ2
t = ω + α (|zt−1| − E|zt−1| − γ zt−1) + β lnσ2

t−1 Nelson (1991)

AVGARCH 1 1 0 0 σt = ω + (α |zt−1| + β )σt−1 Schwert (1989); Taylor (2008)

TGARCH 1 1 |γ| ≤ 1 0 σt = ω + [α (|zt−1| − γ zt−1) + β ]σt−1 Zakoian (1994)

GARCH 2 2 0 0 σ2
t = ω +

(
α z2

t−1 + β
)
σ2

t−1 Bollerslev (1986)

GJRGARCH 2 2 free 0 σ2
t = ω +

[
α (|zt−1| − γ zt−1)

2 + β
]
σ2

t−1 Glosten et al. (1993)

NAGARCH 2 2 0 free σ2
t = ω +

[
α (zt−1 − ψ)2 + β

]
σ2

t−1 Engle and Ng (1993)

NLGARCH free λ 0 0 σλ
t = ω +

(
α |zt−1|λ + β

)
σλ

t−1 Higgins and Bera (1992)∗

APGARCH free λ |γ| ≤ 1 0 σλ
t = ω +

[
α (|zt−1| − γ zt−1 )

λ + β
]
σλ

t−1 Ding et al. (1993)∗

∗Nested if λ > 0.

Table 1.2: Descriptive statistics for S&P 500 daily returns

Mean Std Min Max Skewness Kurtosis Normality test LM(10)

0.0136 1.2034 −9.4695 10.9572 −0.2165 11.5175 14668.2854∗∗∗ 1279.8932∗∗∗

Note: Sample period: 2000:M1 to 2019:M3 (4840 observations).
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Table 1.3: Model comparisons.

AIC BIC LRT

Model n LL Value Rank Value Rank HA : γ free HA : ψ free HA : MSFGARCH

Panel A : λ = 0

EGARCH 6 -6409.23 12830.46 11 12869.36 9 122.58

MSEGARCH 14 -6373.50 12775.00 3 12865.79 7 231.86 51.12

Panel B : λ = 1

AVGARCH 5 -6518.69 13047.38 18 13079.80 17 341.50

TGARCH 6 -6402.76 12817.52 10 12856.43 5 258.93 109.64

MSAVGARCH 12 -6504.08 13032.15 17 13109.97 18 312.27

MSTGARCH 14 -6374.61 12777.22 4 12868.01 8 53.34

Panel C : λ = 2

GARCH 5 -6509.96 13029.92 15 13062.35 13 170.51 220.08 324.04

GJRGARCH 6 -6424.71 12861.42 12 12900.32 12 153.54

NAGARCH 6 -6399.92 12811.84 8 12850.75 4 103.96

MSGARCH 12 -6488.16 13000.31 14 13078.13 16 195.05 274.41 280.43

MSGJRGARCH 14 -6390.63 12809.26 7 12900.05 11 85.38

MSNAGARCH 14 -6350.95 12729.90 1 12820.69 1 6.02

Panel D : λ free

NLGARCH 6 -6509.91 13031.81 16 13070.72 14 218.31 323.93

APGARCH 7 -6400.75 12815.50 9 12860.89 6 105.62

FGARCH 9 -6382.07 12782.13 6 12840.49 2 68.25

MSNLGARCH 13 -6481.33 12988.65 13 13072.95 15 213.47 266.77

MSAPGARCH 15 -6374.59 12779.18 5 12876.45 10 53.30

MSFGARCH 18 -6347.94 12731.88 2 12848.60 3

Note: n denotes the number of parameters to be estimated and LL the maximized log-likelihood value of a given model. AIC and

BIC are the Akaike information criterion and the Bayesian information criterion, respectively, computed as AIC = −2 (LL − n) and

BIC = −2LL + n log(T ) where T = 4840 is the sample size. The LRTs in the antepenultimate and penultimate columns are the

likelihood test statistics for the following tests: H0 : the symmetric specification corresponding to the model in the first column of the

same row, versus HA : the parameters γ or ψ are freely estimated. Under the null hypothesis, the LRT statistics are asymptotically

χ2-distributed with 1 degrees of freedom. The last column reports the LRT of the problem: H0 : the specification corresponding to the

model in the first column of the same row versus HA : the most general model in (1.6), denoted here MSFGARCH model. ∗,∗∗ and ∗∗∗

denote statistical significance at 1%, 5% and 10% levels, respectively.
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Table 1.4: Estimated MSGARCH models

MSEGARCH MSAVGARCH MSTGARCH MSGARCH MSGJRGARCH MSNAGARCH MSNLGARCH MSAPGARCH MSFGARCH

λ 0 1 1 2 2 2
2.7802∗∗∗

2.6684∗∗∗ 1.0207∗∗∗ (0.0015)

λ̂ 1 1 1 2 2 2
(0.5094) (0.1139) 3.2607∗∗∗

(0.0030)

µ1

0.0628∗∗∗ 0.0863∗∗∗ 0.0563∗∗∗ 0.0923∗∗∗ 0.0679∗∗∗ 0.0443∗∗∗ 0.0920∗∗∗ 0.0565∗∗∗ 0.0489∗∗∗

(0.0173) (0.0122) (0.0128) (0.0137) (0.0131) (0.0118) (0.0139) (0.0123) (0.0123)

µ2

0.0106 0.0197 -0.0206 0.0267 -0.0177 0.0160 0.0270 -0.0206 -0.0198

(0.0145) (0.0208) (0.0208) (0.0195) (0.0202) (0.0002) (0.0188) (0.0202) (0.0215)

ω1

-0.0832∗∗∗ 0.0253∗∗∗ 0.0409∗∗∗ 0.0379∗∗ 0.0351∗∗∗ 0.0479∗∗∗ 0.0312∗∗ 0.0408∗∗∗ 0.0205∗∗∗

(0.0179) (0.0076) (0.0081) (0.0168) (0.0073) (0.0085) (0.0128) (0.0080) (0.0073)

ω2

-0.0005 0.0107 0.0157∗∗∗ 0.0152∗∗∗ 0.0145∗∗∗ 0.0045∗∗∗ 0.0153∗∗∗ 0.0156∗∗∗ 0.0290∗∗∗

(0.0026) (0.0045) (0.0043) (0.0049) (0.0042) (0.0142) (0.0049) (0.0042) (0.0033)

α1

0.0386 0.1489∗∗∗ 0.1293∗∗∗ 0.1701∗∗∗ 0.0778∗∗∗ 0.0814∗∗∗ 0.1441∗∗∗ 0.1287∗∗∗ 0.0063∗∗∗

(0.0420) (0.0196) (0.0171) (0.0380) (0.0215) (0.0153) (0.0430) (0.0138) (0.0008)

α2

0.0642∗∗∗ 0.0887∗∗∗ 0.0641∗∗∗ 0.0870∗∗∗ 0.0367∗∗∗ 0.0438∗∗∗ 0.0716∗∗∗ 0.0639∗∗∗ 0.0038∗∗∗

(0.0144) (0.0120) (0.0092) (0.0120) (0.0091) (0.0104) (0.0187) (0.0077) (0.0004)

β1

0.8764∗∗∗ 0.8647∗∗∗ 0.8535∗∗∗ 0.7819∗∗∗ 0.7994∗∗∗ 0.4071∗∗∗ 0.7629∗∗∗ 0.8524∗∗∗ 0.3160∗∗∗

(0.0176) (0.0198) (0.0192) (0.0617) (0.0273) (0.0022) (0.0747) (0.0184) (0.0123)

β2

0.9930∗∗∗ 0.9226∗∗∗ 0.9371∗∗∗ 0.9062∗∗∗ 0.9187∗∗∗ 0.8534∗∗∗ 0.8997∗∗∗ 0.9366∗∗∗ 0.7422∗∗∗

(0.0022) (0.0111) (0.0090) (0.0127) (0.0106) (0.0125) (0.0138) (0.0088) (0.0015)

γ1

0.3677∗∗∗ 0.9999∗∗∗ 0.9971∗∗∗ 0.9999∗∗∗ 0.0005

(0.0427) (0.1384) (0.2234) (0.0162) (0.0003)

γ2

0.1286∗∗∗ 0.9999∗∗∗ 0.9973∗∗∗ 0.9998∗∗∗ 0.0671

(0.0121) (0.1535) (0.2101) (0.2250) (0.0140)

ψ1

2.4281∗∗∗ 3.9511∗∗∗

(0.1417) (0.0598)

ψ2

1.5298∗∗∗ 2.8122∗∗∗

(0.0469) (0.1358)

ν1

7.1875∗∗∗ 4.5121∗∗∗ 5.0657∗∗∗ 4.0540∗∗∗ 4.5904∗∗∗ 6.3791∗∗∗ 3.9847∗∗∗ 5.0593∗∗∗ 6.1426∗∗∗

(1.2946) (0.5095) (0.6460) (0.4895) (0.5434) (0.8684) (0.4771) (0.6235) (0.7339)

ν2

8.9030∗∗∗ 12.9438∗∗∗ 21.7877∗∗ 11.3146∗∗∗ 21.6618∗∗ 16.1935∗∗∗ 11.6159∗∗∗ 21.9176∗∗ 16.9923∗∗∗

(1.3357) (3.6986) (9.3938) (2.5920) (9.0882) (5.4780) (2.7015) (9.5347) (5.5298)

p11 0.9983 0.9990 0.9984 0.9978 0.9980 0.9977 0.9978 0.9984 0.9982

p22 0.9882 0.9989 0.9983 0.9962 0.9975 0.9974 0.9969 0.9983 0.9980

π1 0.5009 0.5387 0.5169 0.6308 0.5560 0.5239 0.5844 0.5161 0.5339

π2 0.4991 0.4613 0.4831 0.3692 0.4440 0.4761 0.4156 0.4839 0.4661

ρ1 0.9930 0.9923 0.9867 0.9911 0.9900 0.9957 0.9935 0.9869 0.9999

ρ2 0.9886 0.9807 0.9812

Note: This table shows parameter estimates for the two-regime model in (1.6) and the nested models with two regimes. Standard errors are
displayed in parenthesis; p-values are displayed as [·]. ∗,∗∗ and ∗∗∗ denote statistical significance at 1%, 5% and 10% levels, respectively.
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Table 1.5: Estimated GARCH models

EGARCH AVGARCH TGARCH GARCH GJRGARCH NAGARCH NLGARCH APGARCH FGARCH

λ
2.9807∗∗∗

1.8146∗∗∗ 0.9857∗∗∗ (0.8044)

λ̂
(0.2339) (0.0915) 2.2429∗∗∗

(0.3905)

µ
0.0386∗∗∗ 0.0670∗∗∗ 0.0331∗∗∗ 0.0660∗∗∗ 0.0379 0.0256∗∗ 0.0663∗∗∗ 0.0329∗∗∗ 0.0289∗∗∗

(0.0102) (0.0102) (0.0103) (0.0105) (0.0105) (0.0107) (0.0104) (0.0102) (0.0105)

ω
-0.0031 0.0134∗∗∗ 0.0203∗∗∗ 0.0102∗∗∗ 0.0147∗∗∗ 0.0168∗∗∗ 0.0110∗∗∗ 0.0204∗∗∗ 0.0125∗∗∗

(0.0027) (0.0030) (0.0029) (0.0027) (0.0025) (0.0022) (0.0028) (0.0029) (0.0038)

α
0.1321∗∗∗ 0.1141∗∗∗ 0.0887∗∗∗ 0.1060∗∗∗ 0.0480∗∗∗ 0.0791∗∗∗ 0.1115∗∗∗ 0.0890∗∗∗ 0.1840∗∗

(0.0137) (0.0100) (0.0080) (0.0111) (0.0109) (0.0092) (0.0120) (0.0067) (0.0802)

β
0.9814∗∗∗ 0.9022∗∗∗ 0.9114∗∗∗ 0.8921∗∗∗ 0.8918∗∗∗ 0.7623∗∗∗ 0.8926∗∗∗ 0.9118∗∗∗ 0.6420∗∗∗

(0.0030) (0.0088) (0.0074) (0.0105) (0.0092) (0.0096) (0.0105) (0.0069) (0.0772)

γ
0.1584∗∗∗ 0.9999∗∗∗ 0.9941∗∗∗ 0.9999∗∗∗ -0.2807

(0.0118) (0.0928) (0.2040) (0.0000) (0.1950)

ψ
1.3972∗∗∗ 1.5833∗∗∗

(0.1245) (0.2636)

ν
7.0591∗∗∗ 6.1559∗∗∗ 7.3679∗∗∗ 6.3298∗∗∗ 7.2661∗∗∗ 7.5901∗∗∗ 6.3143∗∗∗ 7.3644∗∗∗ 7.5103∗∗∗

(0.6259) (0.5603) (0.7644) (0.5897) (0.7518) (0.7381) (0.5882) (0.7642) (0.7958)

Note: This table presents parameter estimates for the single-regime model in (3.12) and the nested models, presented

in Table 1.2. Standard errors are displayed in parenthesis; p-values are displayed as [·]. ∗,∗∗ and ∗∗∗ denote statistical

significance at 1%, 5% and 10% levels, respectively.
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λ̂ = 0.5 λ̂ = 1

λ̂ = 1.5 λ̂ = 2

Figure 1.1: The Transformation f λ̂(zt)

The panels show the behaviour of the transformation function

f λ̂(zt) = [|zt − ψ| − γ (zt − ψ)]λ̂

for different values of λ̂, γ and ψ.
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hhhhS&P 500 Stock Price Index

hhhhStock Returns

Figure 1.2: The upper panel displays the daily S&P 500 price index for a period ranging from
2000:M1 to 2019:M3 for a total of 4840 observations. The lower panel depicts the corresponding
daily log-returns in percentage.
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hhhhSmoothed probabilities hhhhConditional time-varying volatility

Figure 1.3: Conditional volatilities and estimated smoothed probabilitites of being in the high-mean,
low-volatility regime.
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1.5.2 Proof of stationarity conditions

Proof of Theorem 1. The volatility equation of the MSGARCH family in (1.6)-(1.7) for

λ > 0 can be rewritten as

σλ

t,st
= ξst +

{
λαst [|zt−1,st

− ψst | − γst (zt−1,st
− ψst)]

λ̂ + βst

}
σλ

t−1,st
, (1.16)

σ(λ
t−1,st

= E
(
σλ

t−1,st−1
| It−1, st

)
=

k∑
j=1

P (st−1 = j | It−1, st) σ
λ

t−1,j (1.17)

where ξst = λωst + 1 − βst . Taking expectations in (1.16) conditional on st = i ∈ {1, . . . , k}

yields

E
(
σλ

t,i | st = i
)
= ξi +

{
λαi E [|zt−1,i − ψi| − γi (zt−1,i − ψi)]

λ̂ + βi

}
E
(
σλ

t−1,i | st = i
)

(1.18)

Using the law of iterated expectations we have

E
(
σλ

t−1,i | st = i
)
= E

[
E
(
σλ

t−1,st−1
| It−1, st = i

)
| st = i

]
= E

(
σλ

t−1,st−1
| st = i

)
= E

[
E
(
σλ

t−1,st−1
| st−1, st = i

)
| st = i

]
= E

[
E
(
σλ

t−1,st−1
| st−1

)
| st = i

]
=

k∑
j=1

P(st−1 = j | st = i) E
(
σλ

t−1,j | st−1 = j
)

(1.19)

where the antepenultimate equality uses the fact that the expected value given the current

state does not depend on any future states.

Define the k-vectors ξ = [ ξ1, . . . , ξk ]
⊤ , β = [ β1, . . . , βk ]

⊤ ,

∆t =
[
λα1

[
|zt,1 − ψ1| − γβ1 (zt,1 − ψ1)

]λ̂
, . . . , λ αk

[
|zt,k − ψk| − γβk (zt,k − ψk)

]λ̂]⊤
, (1.20)

H(λ)

t =
[
E
(
σλ

t,1 | st = 1
)
, . . . ,E

(
σλ

t,k | st = k
) ]⊤

. (1.21)

Let Q denote a k × k matrix with elements

{Q}i,j = P(st−1 = j | st = i) =
πj
πi

pji, i, j = 1, . . . , k (1.22)
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and K be a k × k matrix given by

K = E
[
diag

(
∆β

t + β
)]

(1.23)

Then, by (1.18)-(1.19), we have

H(λ)

t = ξ + KQH(λ)

t−1 (1.24)

which converges as t tends to infinity if and only if ρ(KQ) < 1.

The remainder of the proof follows easily by applying the condition that the existence of

the moment of a certain order implies the existence of all moments of a lower order:

• Case λ ≥ 2. In this case, a sufficient condition for the existence of H(2)

t is the existence

of H(λ)

t . As shown above, H(λ)

t converges as t tends to infinity if and only if ρ(KQ) < 1.

• Case 0 < λ ≤ 2. The same reasoning applies to this case. A necessary condition for

the existence of H(2)

t is that of H(λ)

t . Therefore, we can conclude that ρ(KQ) < 1 is a

necessary condition for stationarity of our model when 0 < λ ≤ 2.

Proof of Theorem 2. For λ ≥ 2 we have
⌈
2
λ

⌉
= 1 and the results follows by Theorem 1.

Assume 0 < λ < 2. Raising (1.16) to the power n ∈ N yields

σλn

t,i =
n∑

j=0

(
n

j

)
ξj

i

{
λαi [|zt−1,i − ψi| − γi(zt−1,i − ψi)]

λ̂ + βi

}n−j [
σλ

t−1,i

]n−j
(1.25)

Consider the terms
[
σλ

t−1,i

]n−j
for j = 0, . . . , n. Since the function f(x) = xn, n ∈ N, is convex

in [0,∞), we can apply Jensen’s inequality to obtain:

[
σλ

t−1,i

]n−j
=
[
E
(
σλ

t−1,st−1
| It−1, st = i

)]n−j

≤ E
(
σλ(n−j)

t−1,st−1
| It−1, st = i

)
= σλ(n−j)

t−1,i (1.26)

Substituting (1.26) into (1.25) yields

σλn

t,i ≤
n∑

j=0

(
n

j

)
ξj

i

{
λαi [|zt−1,i − ψi| − γi(zt−1,i − ψi)]

λ̂ + βi

}n−j

σλ(n−j)
t−1,i (1.27)



1.5 Appendix 39

Therefore, the expectation of σλn
t,i conditional on st = i ∈ {1, . . . , k} satisfies the following

inequality:

E
(
σλn

t,i | st = i
)
≤ (1.28)

n∑
j=0

(
n

j

)
ξj

i E
{
λαi [|zt−1,i − ψi| − γi(zt−1,i − ψi)]

λ̂ + βi

}n−j

E
(
σλ(n−j)

t−1,i | st = i
)

Replacing σλ
t−1,i by σ

λ(n−j)
t−1,i in (1.19) gives

E
(
σλ(n−j)

t−1,i | st = i
)

=
k∑

j=1

P(st−1 = j | st = i)E
(
σλ(n−j)

t−1,j | st−1 = j
)

(1.29)

=
k∑

j=1

πj

πi

pij E
(
σλ(n−j)

t−1,j | st−1 = j
)

Thus, substituting (1.29) into (1.28) we obtain

E
(
σλn

t,i | st = i
)
≤ (1.30)

n∑
j=0

(
n

j

)
ξj

i E
{
λαi [|zt−1,st

− ψi| − γi(zt−1,st
− ψi)]

λ̂ + βi

}n−j
k∑

j=1

πj

πi

pij E
(
σλ(n−j)

t−1,j | st−1 = j
)

Let ξ(n) = diag [ ξn
1 , . . . , ξ

n
k ] and let Kn be a k × k matrix given by

Kn = E
[
diag

(
∆β

t + β
)]n

, n ∈ N (1.31)

with ∆β
t defined in (1.20). Equation (1.28) can be expressed in matrix form as follows:

H(λn)

t ≤ Kn QH(λn)

t−1 +
n∑

j=1

(
n

j

)
ξ(j) Kn−j QH(λ(n−j))

t−1 (1.32)

whereH(λn)

t =
[
E
(
σλn

t,1 | st = 1
)
, . . . ,E

(
σλn

t,k | st = k
) ]⊤

andQ is defined in (1.22). In (1.32),

the inequality ≤ represents an element by element inequality. That is, the i ∈ {1, . . . , k}

element in H(λn)

t is less than or equal the i element of the k × 1 vector resulting in the right

hand side of the inequality.

We now show that if ρ (Ki Q) < 1 for i = 1, . . . , n, the vector of expected values H(λn)

t
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converges as t goes to infinity. The convergence follows by induction on n. The base case

n = 1 is given in the proof of Theorem 1, Equation (1.24). Suppose the result holds for n− 1.

That is, limt→∞ H(λ(n−1))

t exists if ρ (Ki Q) < 1 for i = 1, . . . , n− 1. Proceeding recursively in

(1.32) we obtain:

H(λn)

t ≤ (Kn Q)t H(λn)

0 +
n∑

j=1

(
n

j

) t−1∑
i=0

(Kn Q)i ξ(j) Kn−j QH(λ(n−j))

t−i−1 (1.33)

By the induction hypothesis we have that the right-hand side of (1.33) converges if ρ (Ki Q) <

1 for i = 1, . . . , n. The convergence of this side of the inequality implies the convergence of

H(λn)

t .

Let n =
⌈
2
λ

⌉
. Since 0 < λ < 2, it follows that λn ≥ 2. Therefore, we can conclude that

ρ (Ki Q) < 1 for i = 1, . . . ,
⌈
2
λ

⌉
, is a sufficient condition for the convergence of H(2)

t .

Proof of Corollary 1. When λ approaches 0, the matrix Kn approaches [diag (β)]n and the

natural number
⌈
2
λ

⌉
tends to ∞. Therefore, the sufficient condition in Theorem 2 becomes

ρ ([diag (β)]n Q) < 1, ∀n ∈ N (1.34)

We now show that this condition is equivalent to

|βi| ≤ 1 ∀ i ∈ {1, . . . , k} where ∃ i ∈ {1, . . . , k} s.t. |βi| < 1 (1.35)

(1.34) ⇒ (1.35). Assume (1.34) holds. Let {η1,n, . . . , ηk,n} denote the spectrum of [diag (β)]n Q.

Since the trace of a matrix is equal to the sum of its eigenvalues, we have

trace {[diag (β)]n Q} =
k∑

i=1

βn

i pii =
k∑

i=1

ηi,n ≤
k∑

i=1

|ηi,n| < k, ∀n ∈ N (1.36)

where the last inequality follows by (1.34). Therefore, lim
n→∞

k∑
i=1

βn

i pii ≤ k which implies |βi| ≤ 1,

∀ i = 1, . . . , k.

It remains to show that there must exists at least one i ∈ {1, . . . , k} such that |βi| < 1.

To obtain a contradiction, suppose that |βi| = 1, ∀ i. Then, [diag (β)]n becomes the identity
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matrix of order k for any even natural number n and condition (1.34) becomes ρ (Q) < 1.

Note that the matrix Q and the transition probability matrix P are similar matrices. Indeed,

Q = [diag (π1, . . . , πk)]
−1 P diag (π1, . . . , πk). Therefore, the eigenvalues of Q are equal to those

of P. Since P is the transition probability matrix of an ergodic Markov chain, unity is an

eigenvalue of P and all other eigenvalues are inside the unit circle (see Hamilton, 1994, pp.

681). Thus, ρ (Q) = ρ (P) = 1 and we obtain a contradiction.

(1.35) ⇒ (1.34). We now prove that (1.35) implies (1.34). Condition (1.35) yields

k∑
j=1

∣∣([diag (β)]n Q)
ij

∣∣ = |βn

i |
k∑

j=1

P(st−1 = j | st = i) = |βn

i | ≤ 1, ∀n ∈ N (1.37)

with strict inequality for at least one i. In order to prove that (1.34) is satisfied, we use

the following result for the spectral radius of an irreducible matrix with absolute row sum

bounded by one (see e.g. Lancaster and Tismenetsky, 1985, pp. 377):

Lemma 1.5.1. Let C = (cij)
k
i,j=1 be irreducible and satisfy

∑k
j=1

|cij| ≤ 1, for j = 1, . . . , k,

with strict inequality for at least one i. Then, ρ (C ) < 1.

If we show that [diag (β)]n Q is irreducible, condition (1.34) holds by Lemma 1.5.1. Note

that [diag (β)]n Q = [diag (β)]n [diag (π1, . . . , πk)]
−1 P diag (π1, . . . , πk). Suppose first that

none of the parameters βi is null. Therefore, [diag (β)]n Q can be obtained pre- and post-

multiplying P by diagonal matrices with non null diagonal elements. Then, the non zero en-

tries in [diag (β)]n Q coincide with those in P and both matrices share directed graph. Since

a square matrix is irreducible if and only if its directed graph is strongly connected (see Lan-

caster and Tismenetsky, 1985, pp. 528-529) and P is irreducible, we have that [diag (β)]n Q

is irreducible ∀n ∈ N.

Suppose now that there exists i such that βi = 0, then ρ ([diag (β)]n Q) < 1 follows easily

by applying the following result:

Lemma 1.5.2. Let C = (cij)
k

i,j=1
∈ Ck×k, D = (dij)

k

i,j=1
∈ Rk×k and let |C| denote a nonneg-

ative matrix with elements |cij|. If |C| ≤ D, then ρ (C) ≤ ρ (D).

Since |[diag (β)]n Q| ≤ |[diag (β∗)]n Q| for any β∗ obtained from β by replacing the zeros en-

tries by non zero entries, it follows from Lemma 1.5.2 that ρ ([diag (β)]n Q) ≤ ρ (|[diag (β∗)]n Q|).
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Take the replaced non zero entries in β∗ be inside the unit circle. We have seen that

|[diag (β∗)]n Q| is irreducible and therefore ρ ([diag (β)]n Q) ≤ ρ (|[diag (β∗)]n Q|) < 1 by

Lemma 1.5.1.

1.5.3 Maximum likelihood estimation

In this appendix, we develop the log-likelihood function of our Markov-switching GARCH

model in (1.6)-(1.7). Estimation of the model can be done following the quasi-maximum

likelihood method.

The log-likelihood function is given by

L (Θ) =
T∑

t=1

log f(rt | Θ, It−1) (1.38)

where Θ is the vector of parameters and f(rt | Θ, It−1) is the density of rt given the past

observable information in It−1 = {rt−1, rt−2, . . . }. The density can be decomposed as

f(rt | Θ, It−1) =
k∑

j=1

f(rt | Θ, It−1, st = j)P (st = j | It−1) (1.39)

The probabilities P (st = j | It−1), j = 1, . . . , k denote the predicted probabilities at time t

and can be calculated using the law of total probabilities as follows:

P (st = j | It−1) =
k∑

i=1

P (st = j | It−1, st−1 = i) P (st−1 = i | It−1) (1.40)

Since the state variable follows a first-order Markov process with constant transition probabil-

ities, we have that the first term of the summation in (1.40) is constant and equal to the proba-

bility of transition from regime i to regime j: P (st = j | It−1, st−1 = i) = P (st = j | st−1 = i) :=

pij. Furthermore, by the Bayes’ rule the probabilities P (st−1 = i | It−1) for i = 1, . . . , k, re-



ferred to as filtered probabilities, follow a first-order recursive structure :

P (st−1 = i | It−1) = P (st−1 = i | It−2, rt−1) (1.41)

=
f (rt−1 | Θ, It−2, st−1 = i) P (st−1 = i | It−2)

f (rt−1 | Θ, It−2)

=
f (rt−1 | Θ, It−2, st−1 = i) P (st−1 = i | It−2)∑

k

j=1
f(rt−1 | It−2, st−1 = j)P (st−1 = j | It−2)

=
f (rt−1 | Θ, It−2, st−1 = i)

∑
k

m=1
pmi P (st−2 = m | It−2)∑

k

j=1
f(rt−1 | It−2, st−1 = j)

∑
k

m=1
pmj P (st−2 = m | It−2)

Thus, the filtered probabilities can be obtained in a recursive way from its previous values

and the transition probabilities.

Moreover, the Klaassen’s (2002) probabilities used in the calculation of the time-varying

volatility in (1.7) can be calculated from the predicted and filtered probabilities in (1.40)-(1.41)

and the transition probabilities as follows:

P (st−1 = i | st = j, It−1) =
P (st = j | st−1 = i) P (st−1 = i | It−1)

P (st = j | It−1)
(1.42)

where we again use the fact that the regime st depends on past observations It−1 only through

the value of st−1 and, therefore, P (st = j | It−1, st−1 = i) = P (st = j | st−1 = i).

Finally, the smoothed probabilities P (st = i | IT ), i = 1, . . . , k, represent the inference

about the regime the process was at time t based on data from the whole sample period

until date T . Kim (1994) develops an algorithm for calculating these probabilities. Let

ξt|t = [P (st = 1 | It) , . . . ,P (st = k | It) ]
⊤, ξt+1|t = [P (st+1 = 1 | It) , . . . ,P (st+1 = k | It) ]

⊤

and ξt|T = [P (st = 1 | IT ) , . . . ,P (st = k | IT ) ]
⊤ denote the vectors of filtered, predicted and

smoothed probabilities, respectively. Then, the smoothed probabilities at time t are obtained

by backward recursion as follows:

ξt|T = ξt|t ◦
{
P⊤
(
ξt+1|T ./ ξt+1|t

)}
(1.43)

where ./ denotes the element-wise division and P is the k × k matrix with the transition

probability P (st = j | st−1 = i) in position pij = {P}
ij
. See Hamilton and Susmel (1994),

Chapter 22.4.
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Chapter 2

Forecasting Value-at-Risk and
Expected Shortfall with
Markov-switching GARCH models

Abstract

This paper presents a comparison study of the forecasting performance of a wide set
of models in terms of Value-at-Risk (VaR) and Expected Shortfall (ES) predictions.
We propose a flexible specification that allows for two regimes and asymmetry
in the conditional volatility within regime, and nests the most commonly used
Markov-switching GARCH models. Using data for four international stock market
indices, we show that asymmetric Markov-switching GARCH models significantly
outperform nonparametric, semiparametric, single-regime GARCH and symmetric
models. Furthermore, the Model Confidence Set (MCS) procedure of Hansen
et al. (2011) identifies our most flexible Markov-switching GARCH specification
as the best performing model for VaR and ES predictions. Moreover, according to
Diebold and Mariano’s (1995) tests of equal predictive ability, the superiority of
our model is significant and consistent across the four indices.

2.1 Introduction

Measurement of risk is central to the process of managing risk in financial institutions and

corporations. Value-at-Risk (VaR) has been the standard risk measure for the past two

decades. VaR gives the worst loss over a target horizon that will not be exceeded with a

given level of confidence (Jorion, 2007). Despite its ease of computation and conceptual

simplicity, VaR has important deficiencies. First, VaR is not a coherent risk measure as it

does not meet the subadditivity axiom (Artzner et al., 1999). Thus, there may be cases in
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which, contrary to the idea of diversification, the total VaR of a portfolio is larger than the

sum of the VaRs of the portfolio components. In addition, VaR measures do not provide any

information regarding the loss beyond the estimated VaR level.

After the financial crisis of 2007–2008, the Basel Committee on Banking Supervision (2010)

placed more emphasis on Expected Shortfall (ES) as a measure of risk complementing VaR.

ES is defined as the expected return on an asset conditional on the return being below the

VaR level. In contrast to VaR, ES is a coherent measure. The Basel III Accord, implemented

in 2019, proposed a transition from VaR at a 99% confidence level to ES with a confidence

level of 97.5%: “ES must be computed on a daily basis for the bank-wide internal models to

determine market risk capital requirements.”; “In calculating ES, a bank must use a 97.5th

percentile, one-tailed confidence level” (Basel Committee on Banking Supervision, 2019).

There are many approaches in the current literature to forecasting VaR and ES. These

include non-parametric methods, e.g. historical simulation (using past or in-sample quan-

tiles); semi-parametric approaches, e.g. the dynamic quantile regression CAViaR model of

Engle and Manganelli (2004) or recently proposed models for joint estimation of VaR and

ES (Patton et al., 2019; Taylor, 2019; Taylor, 2020; Storti and Wang, 2021); and parametric

approaches that fully specify model dynamics and distributional assumptions, e.g. generalized

autoregressive conditional heteroskedasticity (GARCH) models (see Engle, 1982; Bollerslev,

1986). GARCH models in particular are widely used among both academics and practitioners

(see e.g., McNeil and Frey, 2000; Christoffersen et al., 2004; Hansen and Lunde, 2005; Kuester

et al., 2006).

Several studies have shown that incorporating structural shifts into the GARCH equation

enables improved forecast of the volatility (see e.g., Lamoureux and Lastrapes, 1990; Gray,

1996; Klaassen, 2002; Haas et al., 2004; Marcucci, 2005). Following Hamilton (1989), one

popular way to incorporate these structural shifts is through a discrete unobservable variable

following a Markov process. See Ardia et al. (2018) and Caporale and Zekokh (2019) for recent

studies on Markov-switching GARCH models.

In this paper, we propose a flexible Markov-switching GARCH (MSGARCH) model and

evaluate its ability to forecast VaR and ES. Our specification nests several symmetric and

asymmetric models and is based on a family of single-regime GARCH models introduced by
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Hentschel (1995). The symmetric models include the standard GARCH model of Bollerslev

(1986), the absolute value GARCH (AVGARCH) (Schwert, 1989; Taylor, 2008) and the non-

linear GARCH (NLGARCH) model of Higgins and Bera (1992). The nested asymmetric mod-

els are the exponential GARCH (EGARCH) model of Nelson (1990), the threshold GARCH

(TGARCH) model of Zakoian (1994), the GJRGARCH model of Glosten et al. (1993), the

nonlinear asymmetric GARCH (NAGARCH) of Engle and Ng (1993) and the asymmetric

power GARCH (APGARCH) model of Ding et al. (1993). All these models are extended

to allow for regime switches in the dynamics of the volatility. A challenge for MSGARCH

models, however, is the path dependence problem. As shown by Gray (1996), given a Markov

chain with k different regimes and T observations, the evaluation of the likelihood requires

integration over all possible kT paths. This is infeasible in practice as the number of pos-

sible paths grows exponentially with time. To avoid this problem, we follow the collapsing

procedure introduced by Gray (1996) and later extended by Klaassen (2002).

We perform a thorough analysis using daily data for four stock indices (the S&P 500, Dow

Jones Industrial Average, the NIKKEI 225 and the FTSE 100) to evaluate the forecasting

performance of our model and the models nested within it. Nonparametric rolling window

models and the semiparametric models proposed by Patton et al. (2019) are also included in

our analysis. In total, we compare 26 different models. To the best of the authors’ knowledge,

the present study is the first to provide a comparison of MSGARCH models with nonpara-

metric or semiparametric models in terms of their ability to forecast VaR and ES. To test the

competing models under varying market conditions, we consider a forecasting period spanning

the 2008 financial crisis.

Our results are summarized as follows: the Model Confidence Set (MCS) procedure of

Hansen et al. (2011) identifies our most flexible MSGARCH specification as the best per-

forming model for VaR and ES forecasting within the set of competing models. Furthermore,

according to Diebold and Mariano (1995) tests of equal predictive ability, the superiority of

our model is significant and consistent across the four indices.

This paper is structured into three main sections. Section 2.2 introduces the model speci-

fications. The data used in our study and the forecasting evaluation are presented in Section

2.3. Finally, Section 2.4 concludes.
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2.2 Methodology

This section presents the specifications of the models used in the out-of-sample forecast evalua-

tion exercise in Section 2.3. Section 2.2.1 introduces our proposed Markov-switching GARCH

(MSGARCH) model and the nested models within it. Nonparametric and semiparametric

models for VaR and ES are presented in Section 2.2.2.

2.2.1 Risk forecasting with Markov-switching GARCH models

Let rt ∈ R denote the log-return of a financial asset at time t, It = {rt−i, i ≥ 0} denote

the set of available information and let st ∈ {1, . . . , k} be a first-order ergodic Markov chain

representing the (unobserved) regime at time t. Following Hentschel’s (1995) nesting of single-

regime GARCH models, we propose the following MSGARCH model:

rt = µst + εt (2.1)

εt = zt,st σt,st | st, It−1 ∼ tνst (0, σ
2

t,st
)

σλ
t,st

− 1

λ
= ωst + αst [|zt−1,st

− ψst | − γst (zt−1,st
− ψst)]

λ̂ σλ
t−1,st

+ βst
σλ

t−1,st
− 1

λ
,

where λ ≥ 0, λ̂ > 0; tνst (0, σ
2
t,st

) is a Student-t distribution with νst degrees of freedom and{
zt,st =

rt−µst

σt,st

}
is a sequence of independent and identically distributed (iid) zero-mean unit-

variance random variables. To avoid the path-dependence problem, we follow Gray’s (1996)

and Klaassen’s (2002) collapsing procedure and define σ(λ
t−1,st

as the expectation of σλ
t−1,st−1

over the set of states, conditional on past information It−1 and the current regime st:

σ(λ
t−1,st

=
k∑

i=1

P (st−1 = i | st, It−1) σ
λ

t−1,i. (2.2)

When λ ̸= 0 and λ ̸= 1
n
, n ∈ N, the parameters ωst , αst , βst , τst and ψst in (2.1) satisfy

λω + 1− β > 0, α, β ≥ 0, |γ| ≤ 1 (2.3)

to ensure that the conditional variance takes positive real values1.

1Conditions for stationarity of model (2.1)-(2.2) are provided in Chapter 1.
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By appropriately choosing the parameters λ, λ̂, τst and ψst , model (2.1) nests a wide-range

of symmetric and asymmetric MSGARCH models as shown in Table 2.12.

[ Table 2.1 here ]

The VaR and ES at time t at (1− α)% significance level are calculated as follows

VaRα

t = µt +
k∑

i=1

P (st = i | It−1) σt,i

√
νi − 2

νi

t−1

νi
(α) (2.4)

ESα

t = µt +
k∑

i=1

P (st = i | It−1) σt,i

√
νi − 2

νi

gνi(t
−1
νi
(α))

α

(
νi + (t−1

νi
(α))2

νi − 1

)

where gν denotes the density of the standard t (see e.g., McNeil et al., 2015, pp. 71). In our

application to forecast VaR and ES, we use two-regime (k = 2) MSGARCH models and single-

regime (k = 1) GARCH models. The next section presents the remaining models considered

in our study.

2.2.2 Existing models for ES and VaR

In this section, we introduce a set of nonparametric and semiparametric models for ES and

VaR. The nonparametric models are the simple rolling window estimation of quantiles, known

as historical simulation. The semiparametric models include filtered historical simulation and

the models recently proposed by Patton et al. (2019).

Nonparametric models for ES and VaR

Historical simulations are the most widely used VaR forecast methods at commercial banks

(see e.g., Berkowitz et al., 2011). Let vt and et represent the values of VaR and ES, respectively,

at time t. For a given rolling window size, w, a historical simulation model estimates vt and

2Section 1.2.1 in Chapter 1 provides a discussion and description of the asymmetric and symmetric models
being nested. An illustration of the asymmetry of the models using the news impact curve of Pagan and
Schwert (1990) and Engle and Ng (1993) is also given.
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et as follows:

vt = ̂Quantile{ri}t−1
i=t−w (2.5)

et =
1

αw

t−1∑
i=t−w

ri I{ri≤vi}

where ̂Quantile{ri}t−1
i=t−w is the sample quantile of ri over the period i ∈ [ t−w, t− 1 ] and I{·}

denotes the indicator function. In our forecast evaluation exercise, we select three commonly

used rolling window sizes corresponding to six months (w = 125), one year (w = 250) and

two years (w = 500) of daily return observations.

The principal advantage of the historical simulation method is that it is easy to implement.

However, it is based on the assumption of independent and identically distributed returns.

This assumption is unrealistic as it contradicts the well-known volatility clustering property

of financial returns. Another inherent problem of historical simulation models is the difficulty

in finding the optimal size of the rolling window (Pritsker, 2006).

Semiparametric models for ES and VaR

Semiparametric models impose a parametric structure on the dynamics of VaR and ES but

make no assumptions about the conditional distribution of returns. The first semiparametric

model we consider is a combination of a parametric GARCH(1, 1) with a nonparametric

distribution:

rt = µt + zt σt (2.6)

σ2

t = ω + γ ε2t−1 + β σ2

t−1

vt = µt + F−1(α)σt

et = µt + E [ zt | zt ≤ F−1(α) ] σt

where F represents the empirical distribution function (EDF) of {zt}. This approach is known

as “filtered historical simulation”. In what follows, we denote model (2.6) as GARCH-EDF.

We also consider the semiparametric models proposed by Patton et al. (2019). Their work

builds on the results in Fissler et al.’s (2016) that show that ES is jointly elicitable with VaR.
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That is, there exists a class of loss functions that is consistent for VaR and ES and, therefore,

minimizing the expected loss using any of these loss functions returns the true values of VaR

and ES. Based on the “generalized autoregressive score” (GAS) framework of Creal et al.

(2013), Patton et al. (2019) propose four models for VaR and ES:

• Two-factor GAS model (GAS-2F):

 vt

et

 = w +B

 vt−1

et−1

+A

 λv,t−1

λe,t−1

 (2.7)

where w is a (2× 1) vector, B and A are (2× 2) matrices and

 λv,t−1

λe,t−1

 =

 −vt−1

(
I{rt−1≤vt−1} − α

)
− 1

α
I{rt−1≤vt−1} rt−1 − et−1

 (2.8)

is the forcing variable of the GAS model.

• One-factor GAS model (GAS-1F):

vt = a exp {κt}, (2.9)

et = b exp {κt}, b < a < 0,

κt = ω + β κt−1 + γ
1

b exp {κt−1}

(
1

α
I{rt−1≤a exp (κt−1)} rt−1 − b exp (κt−1)

)

• GARCH-FZ:

vt = a σt, (2.10)

et = b σt, b < a < 0,

σ2
t = ω + β σ2

t−1 + γ r2t−1
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• Hybrid (GAS/GARCH) model:

vt = a exp {κt}, (2.11)

et = b exp {κt}, b < a < 0,

κt = ω + β κt−1 + γ
1

b exp {κt−1}

(
1

α
I{rt−1≤a exp (κt−1)} rt−1 − b exp (κt−1)

)
+ δ log |rt−1|

The four models proposed by Patton et al. (2019) are estimated by minimizing the following

loss function

LFZ0(r, v, e;α) = − 1

αe
(v − r) I{r≤v} +

v

e
+ log (−e)− 1 (2.12)

See Lazar and Xue (2020) for an application of Patton et al.’s (2019) models using intraday

data.

2.3 Data and Out-of-sample Forecasting

We now apply the models introduced in Section 2.2 to forecast and backtest the 99%, 97.5%,

95% and 90% VaR and ES of four international equity indices. We consider single-regime

and two-regime Markov-switching versions of the GARCH models introduced in Section 2.2.1.

The model in (2.1)-(2.2) is denoted by FGARCH when the number of regimes is one and

by MSFGARCH when we allow for two regimes. The nested models, presented in Table

2.1, are also estimated for comparison. In total, we consider three nonparametric models,

five semiparametric models, nine single-regime GARCH models and nine Markov-switching

GARCH models. Section 2.3.1 describes the data. Section 2.3.2 presents the testing design

and the results of the paper.

2.3.1 Data description

We consider daily prices of the S&P 500 index, the Dow Jones Industrial Average, the NIKKEI

225 index of Japanese stocks and the FTSE 100 index of UK stocks.3 The sample period is

3The data can be downloaded from https://realized.oxford-man.ox.ac.uk/

https://realized.oxford-man.ox.ac.uk/
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from 3 January 2000 to 31 December 2019, yielding between 4866 and 5039 observations per

series (the exact numbers vary due to differences in holidays and market closures). To assess

how the forecasting models perform during the 2008 financial crisis, we use data until 31

December 2007 for estimation and reserve the last 12 years for evaluation of VaR and ES

forecasts and model comparison.

In Table 2.2, we report summary statistics of the four daily equity returns over the full

sample period. Average annualized returns range from 0.661% for the FTSE to 4.691% for

the DJIA and annualized standard deviations range from 17.694% to 23.539%. The return

series exhibit mild negative skewness and significant kurtosis, which motivates our choice of

the t-distribution in model (2.1). The lower two panels of Table 2.2 present the sample VaR

and ES at different confidence levels.

[ Table 2.2 here ]

2.3.2 Backtesting VaR and ES

The most popular procedures for testing the accuracy of VaR forecasts use the “hit sequence”

of VaR violations (see Nieto and Ruiz, 2016),

Hitαt = I{rt ≤VaRα
t } (2.13)

For a correctly specified model, we expect that the observed return values will only be worse

than the VaR forecast 100 × α% of the time. Hence, ideally, the hit variable should have a

mean value of α (see Kupiec, 1995). This property is known as Unconditional Coverage (UC).

The hit sequence should also be completely unpredictable and, therefore, independently dis-

tributed as a Bernouilli random variable, Hitαt
iid∼ Bernouilli(α). Furthermore, the occurrences

of observations outside the interval provided by the VaR forecasts must be homogeneous over

the sample and not come in clusters (Christoffersen, 1998). This property is called Condi-

tional Coverage (CC). Christoffersen (1998) introduces a three-step procedure for testing the

correct unconditional coverage, independence and conditional coverage. All three tests can be

implemented in the likelihood ratio (LR) framework.

Table 2.3 presents the number of rejections of the null of correct unconditional coverage,
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independence and conditional coverage for each model across the four equity indices. The

significance level considered for the tests is 5%. Semiparametric models and MSGARCH

models have a lower number of rejections than historical simulation models and single-regime

models across the four values of α. Overall, the best models for VaR based on the UC,

independence and CC tests are the asymmetric Markov-switching GARCH models where the

λ parameter in (2.1) is freely estimated. That is, the MSAPGARCH and MSFGARCHmodels.

[ Table 2.3 here ]

However, these tests based on the binary hit variable have been criticized in several stud-

ies. For instance, Thiele (2019) has recently shown that the tests have an undesirable power

asymmetry, with a greater ability to identify conservative VaR models than those that under-

estimate risk on average. In the following section, we perform recently proposed backtesting

methods to jointly backtest VaR and ES forecasts.

Joint Backtests of VaR and ES

As in Patton et al. (2019), we jointly backtest the VaR and ES forecasts generated by different

models using the LFZ0 loss function of Fissler et al. (2016) given in (2.12). Columns 2-5 in

Table 2.4 to Table 2.7 present the average out of sample losses for α = 1%, α = 2.5%,

α = 5% and α = 10%. We show results for the 26 models and the four equity return

series. The smallest loss is highlighted in bold, the second-lowest is highlighted in italics. Our

more flexible specification in (2.1)-(2.2) with two-regimes, MSFGARCH model, consistently

provides the smallest losses across indices and values of α. In fact, it is only beaten by other

asymmetric MSGARCH models for the FTSE index when α = 1% or α = 10%.

[ Table 2.4 - Table 2.7 here ]

The ranking of the models based on the losses in Table 2.4 - Table 2.7 are given in Table

2.8. The model with the smallest loss is ranked 1 and the model with the highest loss is ranked

26. Columns 6 and 12 give the average rank across the four series and columns 7 and 13 give

the rank for each value of α. As noted above, the MSFGARCH model ranks first across the

four indices. On the other hand, nonparametric methods based on rolling windows are at the

bottom of the ranking.
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[Table 2.8 here ]

Figure 2.1 - Figure 2.4 show the VaR and ES forecasts when α = 5% for the four indices

using our more general regime-switching GARCH model in (2.1), the GARCH-FZ model in

(2.10) and the rolling window model in (2.5) with a rolling window of 500 observations. The

risk measures obtained from the parametric and semiparametric models follow a dynamic

pattern mimicking the fluctuations in returns. On the other hand, the nonparametric model

yield stepped VaR and ES forecasts that little resembles the movements in returns. It is

therefore not surprising that nonparametric models based on rolling windows do not provide

accurate VaR and ES forecasts.

[ Figure 2.1 - Figure 2.4 here ]

While average losses are useful for an initial look at forecast performance, they do not

reveal whether the gains are statistically significant. To analyse the relative performance of

each model, we use the Diebold–Mariano (DM) test on the loss differences. In this way, we

use t-statistics from the DM test to compare the losses of each pair of models, using the LFZ0

loss function. Figure 2.5 to Figure 2.8 show the results of the DM tests for the S&P 500,

DJIA, NIKKEI 225 and FTSE 100 indices. The numbering of the models used in the figures

corresponds to column 1 in Table 2.3. The tests are conducted as “row model minus column

model” and so a negative t-statistic indicates that the row model outperforms the column

model. Values of the t-statistics smaller than −1.96, indicating losses from the row model sig-

nificantly smaller than losses from the column model at the 95% confidence level, are depicted

in dark green. Values of the t-statistics greater than 1.96, showing significant outperformance

of the column model, are indicated in dark red. Light green (red) indicates that the row

(column) model performs better than the column (row) model but not significantly at the

95% confidence level.

[ Figure 2.5 - Figure 2.8 here ]

For the S&P 500, the MSFGARCH model significantly outperforms all competing model

when α = 5% and α = 10%. Although the MSFGARCH model still provides the smallest

losses for values of α = 1% and α = 2.5%, these losses are not statistically lower than those
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obtained from other regime-switching GARCH models such as the MSGJRGARCH or the

MSNAGARCH models. When considering the DJIA and NIKKEI 225 indices, the MSF-

GARCH model significantly outperforms for any value of α. Finally, for the FTSE 100 index

only the MSTGARCH and MSNAGARCH models significantly outperform the MSFGARCH

model for one of the four values of α, α = 10%. We can conclude that, based on Diebold and

Mariano’s (1995) tests, the MSFGARCH model provides losses that are significantly smaller

than those obtained from the competing models.

An alternative forecast comparison is the Model Confidence Set (MCS) approach of Hansen

et al. (2011). This test enables one to obtain a set of models for which there is a pre-specified

probability that the set contains the best model. It is similar to the DM test for two models

but estimates the distribution of the test statistic using a bootstrap procedure. In this study,

we consider the 90% confidence level and use two methods: the R method which uses sums of

absolute values for calculating the test statistic, and the SQ method which uses the summed

squares. Table 2.9 presents the number of models within the MCS test using the block

bootstrap with a block length of 12 and 10,000 replications based on the losses generated

from the LFZ0 loss function. The results from the MCS approach reaffirm the fact that the

MSFGARCH model provides a superior forecast accuracy. Indeed, the MSFGARCH model is

included in the final set in 15 out of the 16 forecast events. It is followed by the MSTGARCH

and MSNAGARCH models which are included only 5 times.

[ Table 2.9 here ]

To individually evaluate the VaR and ES estimates for the different models, we follow

Patton et al. (2019) in using regression frameworks related to those in Engle and Manganelli

(2004). Correct forecasts of ES and VaR must satisfy:

E [∂LFZ0(rt, vt, et;α)/∂vt | It−1] = E [∂LFZ0(rt, vt, et;α)/∂et | It−1] = 0 (2.14)

which is equivalent to E (λv,t | It−1) = E (λe,t | It−1) = 0 where λv,t and λe,t are defined in (2.8).

Based on this, Patton et al. (2019) propose a linear regression of λsv,t =
λv,t

vt
and λse,t =

λe,t

et
on its
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lagged values and any useful function of past information. Consider the following regressions:

λsv,t = a0 +
l∑

i=1

at−iλ
s
v,t−i + al+1vt−1 + ϵv,t (2.15)

λse,t = b0 +
l∑

i=1

bt−iλ
s
v,t−i + bl+1et−1 + ϵe,t (2.16)

where the ai and bi are the parameters of the regression and εv,t, ϵe,t are the regression residuals.

The test then consists of testing the significance of all coefficients in the regressions. Note that

(2.15) is just the dynamic quantile regression test of Engle and Manganelli (2004). As in Engle

and Manganelli (2004), we choose l = 4. Columns 6-13 in Table 2.4 to Table 2.7 present the

p-values from the test of the goodness-of-fit of the VaR and ES forecasts for different values

of α. Entries greater than 0.10 (indicating no evidence against optimality at the 0.10 level)

are in bold and entries between 0.05 and 0.10 are in italics. For α = 1%, no model passes the

test across the four equity indices. For α = 2.5% and α = 5%, most of the semiparametric

and MSGARCH models pass the tests for at least two of the indices. For α = 10%, the

results are mixed. Only a few single-regime GARCH models and the MSFGARCH model

pass the tests for the S&P 500 and DJIA indices; most of the models pass the test for the

FTSE index, while only semiparametric and single-regime GARCH models pass the test for

the NIKKEI 225 index. Nevertheless, as discussed in Nolde et al. (2017) and Patton et al.

(2019), it is difficult to discuss the relative of the models when many different models pass (or

fail) a goodness-of-fit test. In this case, comparative backtesting methods such as the DM or

MCS tests above are more appropriate approaches.

2.4 Conclusion

Following the Basel III Accord, more attention is placed on Expected Shortfall (ES) as a

measure of risk complementing and partly replacing Value-at-Risk (VaR) procedures. In this

paper, we propose a flexible Markov-switching GARCH model and evaluate its ability to fore-

cast the VaR and ES of four international stock indices. Namely, the S&P 500, Dow Jones

Industrial Average, the NIKKEI 225 and the FTSE 100. We compare the forecasting perfor-

mance of our general model with a set of models used in the literature including nonparametric,
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semiparametric, single-regime and Markov-switching GARCH models. To test the competing

models under varying market conditions, we consider a forecasting period spanning the 2008

financial crisis.

Using traditional and comparative backtesting procedures, we show that asymmetric MS-

GARCH models significantly outperform nonparametric, semiparametric, single-regime and

symmetric GARCH models. The Model Confidence Set (MCS) procedure of Hansen et al.

(2011) identifies our most flexible specification as the best performing model for VaR and ES

across a range of tail probability values used in risk management. Furthermore, based on

Diebold and Mariano (1995) tests, the superiority of our model is significant and consistent

across the four indices and probabilities level considered in our study.
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Table 2.1: Nested GARCH models.

Model λ λ̂ γ ψ Volatility Specification Reference

EGARCH 0 1 free 0 lnσ2
t = ω + α (|zt−1| − E|zt−1| − γ zt−1) + β lnσ2

t−1 Nelson (1991)

AVGARCH 1 1 0 0 σt = ω + [α |zt−1| + β ]σt−1 Schwert (1989); Taylor (2008)

TGARCH 1 1 |γ| ≤ 1 0 σt = ω + [α (|zt−1| − γ zt−1) + β ]σt−1 Zakoian (1994)

GARCH 2 2 0 0 σ2
t = ω +

[
α z2

t−1 + β
]
σ2

t−1 Bollerslev (1986)

GJRGARCH 2 2 free 0 σ2
t = ω +

[
α (|zt−1| − γ zt−1)

2 + β
]
σ2

t−1 Glosten et al. (1993)

NAGARCH 2 2 0 free σ2
t = ω +

[
α (zt−1 − ψ)2 + β

]
σ2

t−1 Engle and Ng (1993)

NLGARCH free λ 0 0 σλ
t = ω +

[
α |zt−1|λ + β

]
σλ

t−1 Higgins and Bera (1992)∗

APGARCH free λ |γ| ≤ 1 0 σλ
t = ω +

[
α (|zt−1| − γ zt−1 )

λ + β
]
σλ

t−1 Ding et al. (1993)∗

∗Nested if λ > 0.

Table 2.2: Summary Statistics.

S&P 500 DJI NIKKEI FTSE

Mean (Annualized) 4.053 4.691 0.865 0.661

Std dev (Annualized) 18.765 17.694 23.539 17.987

Skewness -0.218 -0.135 -0.432 -0.175

Kurtosis 11.242 11.039 9.448 9.525

99% VaR -3.416 -3.255 -4.101 -3.241

97.5% VaR -2.525 -2.358 -3.033 -2.404

95% VaR -1.876 -1.767 -2.344 -1.779

90% VaR -1.270 -1.171 -1.669 -1.222

99% ES -4.820 -4.542 -5.943 -4.520

95% ES -3.656 -3.434 -4.456 -3.439

97.5% ES -2.908 -2.734 -3.546 -2.752

90% ES -2.222 -2.086 -2.764 -2.107

Note: The sample period is from January 2000 to December 2019.
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To individually evaluate the VaR and ES estimates for the different models we follow.

Correct forecasts of ES and VaR must satisfied:kjfdksDFNlksnfdklsNDFKlsdfn,klsngd,xvmnv

s,dnfks,.DNFSkd,.nf lskndfknsfd ñnsdflkñnsf

Table 2.3: Rejections based on tests for VaR across the four indices for different values of α.

α = 1% α = 2.5% α = 5% α = 10%

UC Ind CC UC Ind CC UC Ind CC UC Ind CC

1 RW-125 2 2 4 0 1 1 0 2 2 0 3 3
2 RW-250 1 3 3 0 3 4 0 3 3 0 1 1
3 RW-500 0 1 4 1 3 4 0 3 3 0 3 3

4 GARCH-EDF 2 1 2 1 0 0 0 0 0 0 1 1
5 GAS-2F 4 0 4 2 0 1 0 0 0 2 0 1
6 GAS-1F 1 0 1 0 0 0 0 0 0 1 0 1
7 GARCH-FZ 1 0 2 1 0 0 0 0 0 0 1 1
8 Hybrid 1 0 1 0 0 0 0 0 0 1 0 1

9 EGARCH 4 0 4 4 0 4 2 0 2 0 0 0
10 AVGARCH 4 2 4 4 0 4 4 0 3 1 1 2
11 TGARCH 4 0 4 4 0 4 2 0 2 1 0 1
12 GARCH 3 0 3 3 0 3 1 0 1 0 1 1
13 GJRGARCH 3 0 3 3 0 3 1 0 1 0 0 0
14 NAGARCH 3 0 3 3 0 3 4 0 4 0 0 0
15 NLGARCH 3 0 4 3 0 3 1 0 1 0 1 1
16 APGARCH 4 0 3 4 0 4 2 0 1 0 0 0
17 FGARCH 4 0 4 4 0 3 3 0 3 1 0 1

18 MSEGARCH 2 0 2 1 0 1 0 0 0 0 0 0
19 MSAVGARCH 0 3 3 0 0 0 1 0 1 2 0 2
20 MSTGARCH 1 0 2 1 0 1 0 0 0 1 0 0
21 MSGARCH 0 0 1 0 0 0 1 0 0 3 0 2
22 MSGJRGARCH 1 1 2 1 0 0 0 0 0 2 0 2
23 MSNAGARCH 1 0 1 0 0 0 4 0 4 1 0 1
24 MSNLGARCH 0 0 1 0 0 0 0 0 0 3 0 3
25 MSAPGARCH 1 0 2 1 0 1 0 0 0 0 0 0
26 MSFGARCH 0 0 1 0 0 0 0 0 0 0 0 0

Note: This table presents the number of model rejections based on unconditional coverage,
independence and conditional coverage tests of VaR for the four daily equity return series over
the out-of-sample period for 26 different forecasting models. The first three rows (models 1–3)
correspond to rolling window historical forecasts, the next five rows correspond to forecasts based
on the semiparametric models in Section 2.2.2, the next eight rows (models 9–17) correspond
to single-regime GARCH models and the last 8 rows (models 18–28) correspond to the different
Markov-switching GARCH models nested in model (2.1).
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To individually evaluate the VaR and ES estimates for the different models we follow.

Correct forecasts of ES and VaR must satisfied:kjfdksDFNlksnfdklsNDFKlsdfn,klsngd,xvmnv

s,dnfks,.DNFSkd,.nf lskndfknsfd ñnsdflkñnsf

Table 2.4: Out-of-sample average losses and goodness-of-fit tests (α = 1%)

Average Loss GoF p-values VaR GoF p-values ES

S&P DJIA NIKKEI FTSE S&P DJIA NIKKEI FTSE S&P DJIA NIKKEI FTSE

RW-125 1.4712 1.3960 1.8247 1.3059 0.0229 0.1145 0.0000 0.0015 0.0146 0.0647 0.0000 0.0019

RW-250 1.5036 1.4556 1.9135 1.3749 0.0353 0.0720 0.0036 0.0001 0.0448 0.0354 0.0010 0.0001

RW-500 1.6125 1.5307 1.9937 1.4609 0.0673 0.0163 0.0045 0.0002 0.0315 0.0038 0.0000 0.0000

GARCH-EDF 1.2729 1.1285 1.5454 1.1194 0.0087 0.3429 0.0000 0.0000 0.0111 0.0164 0.0000 0.0000

GAS-2F 1.2588 1.1956 1.6131 1.2263 0.0000 0.0184 0.0000 0.0002 0.0000 0.0002 0.0000 0.0018

GAS-1F 1.2204 1.1801 1.6075 1.1784 0.0000 0.0000 0.0000 0.6653 0.0000 0.0000 0.0000 0.8570

GARCH-FZ 1.2347 1.1466 1.5046 1.0943 0.0022 0.0011 0.0000 0.0000 0.0056 0.0115 0.0000 0.0000

Hybrid 1.2342 1.1798 1.5172 1.1996 0.0000 0.0000 0.0000 0.1009 0.0000 0.0000 0.0000 0.0860

EGARCH 1.4114 1.2439 1.5027 1.2266 0.0005 0.0156 0.0000 0.0012 0.0002 0.0120 0.0000 0.0006

AVGARCH 1.4487 1.2888 1.9547 1.2718 0.0002 0.0007 0.0000 0.0004 0.0003 0.0008 0.0000 0.0003

TGARCH 1.4107 1.2341 1.8951 1.2756 0.0000 0.0004 0.0000 0.0006 0.0001 0.0002 0.0000 0.0004

GARCH 1.2995 1.1790 1.5821 1.1604 0.0084 0.0116 0.0000 0.0000 0.0077 0.0003 0.0000 0.0000

GJRGARCH 1.2521 1.1320 1.5166 1.1721 0.0000 0.0000 0.0000 0.0033 0.0000 0.0000 0.0000 0.0017

NAGARCH 1.3064 1.1837 1.5046 1.1730 0.0000 0.0933 0.0000 0.0000 0.0000 0.0605 0.0000 0.0000

NLGARCH 1.2846 1.1785 1.5853 1.1601 0.0117 0.0116 0.0002 0.0000 0.0097 0.0003 0.0029 0.0000

APGARCH 1.2965 1.1983 1.5093 1.1947 0.0047 0.0254 0.0000 0.0018 0.0032 0.0404 0.0001 0.0008

FGARCH 1.3070 1.2062 1.5105 1.1700 0.0002 0.0048 0.0196 0.0004 0.0001 0.0049 0.0105 0.0003

MSEGARCH 1.2340 1.1962 1.3952 1.1684 0.0635 0.1423 0.0084 0.0292 0.0446 0.0990 0.0085 0.0159

MSAVGARCH 1.2037 1.1024 1.5570 1.0663 0.4200 0.0065 0.1096 0.0000 0.4495 0.0012 0.2436 0.0010

MSTGARCH 1.1775 1.0785 1.4520 0.9634 0.4375 0.3378 0.5871 0.0000 0.3414 0.1909 0.4400 0.0000

MSGARCH 1.1837 1.0986 1.5482 1.0710 0.0000 0.0000 0.0178 0.0003 0.0000 0.0000 0.1130 0.0001

MSGJRGARCH 1.1565 1.0568 1.4757 1.0845 0.0000 0.0000 0.0116 0.0511 0.0000 0.0000 0.0037 0.0396

MSNAGARCH 1.1430 1.0388 1.4167 1.1076 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

MSNLGARCH 1.1808 1.0979 1.5466 1.0765 0.0000 0.0000 0.0193 0.0000 0.0000 0.0000 0.0772 0.0000

MSAPGARCH 1.1814 1.1087 1.4553 0.9831 0.3625 0.2552 0.5737 0.0000 0.2872 0.1307 0.4192 0.0000

MSFGARCH 1.1313 0.9392 1.3265 0.9911 0.0751 0.0036 0.0001 0.0067 0.0461 0.0021 0.0001 0.0040

Note: The left panel of this table presents the average losses, using the LFZ0 loss function, for four daily equity return series, over the
out-of-sample period, for α = 1%. The lowest average loss in each column is highlighted in bold, the second-lowest is highlighted in italics.
The middle and right panels of this table present p-values from goodness-of-fit tests of the VaR and ES forecasts respectively. Values that are
greater than 0.10 (indicating no evidence against optimality at the 0.10 level) are in bold and values between 0.05 and 0.10 are in italics.
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To individually evaluate the VaR and ES estimates for the different models we follow.

Correct forecasts of ES and VaR must satisfied:kjfdksDFNlksnfdklsNDFKlsdfn,klsngd,xvmnv

s,dnfks,.DNFSkd,.nf lskndfknsfd ñnsdflkñnsf

Table 2.5: Out-of-sample average losses and goodness-of-fit tests (α = 2.5%)

Average Loss GoF p-values VaR GoF p-values ES

S&P DJIA NIKKEI FTSE S&P DJIA NIKKEI FTSE S&P DJIA NIKKEI FTSE

RW-125 1.1982 1.1201 1.5068 1.0669 0.0028 0.0011 0.0018 0.0000 0.0064 0.0046 0.0023 0.0000

RW-250 1.2285 1.1590 1.5465 1.1251 0.0400 0.1319 0.0167 0.0003 0.0343 0.0733 0.0049 0.0000

RW-500 1.3380 1.2690 1.6248 1.2288 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0000

GARCH-EDF 1.0316 0.9410 1.3112 0.9493 0.1353 0.3658 0.7650 0.2204 0.1608 0.4859 0.8105 0.1670

GAS-2F 1.0312 0.9834 1.3542 1.0038 0.0121 0.2188 0.3687 0.0016 0.0189 0.5534 0.2024 0.0902

GAS-1F 1.0380 0.9684 1.3553 0.9749 0.0000 0.2143 0.0000 0.6596 0.0000 0.6145 0.0000 0.8712

GARCH-FZ 1.0245 0.9259 1.3034 0.9550 0.0963 0.4062 0.6781 0.0650 0.1354 0.4773 0.6892 0.0263

Hybrid 1.0299 0.9354 1.3041 0.9606 0.0000 0.6525 0.0029 0.2490 0.0000 0.8701 0.0157 0.2090

EGARCH 1.0929 0.9842 1.3005 0.9872 0.0097 0.0978 0.0002 0.0156 0.0014 0.0442 0.0010 0.0029

AVGARCH 1.1829 1.0638 1.5607 1.0548 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

TGARCH 1.1477 1.0312 1.5286 1.0447 0.0000 0.0001 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000

GARCH 1.0549 0.9691 1.3344 0.9773 0.0292 0.1072 0.5507 0.0045 0.0326 0.0902 0.3779 0.0017

GJRGARCH 1.0234 0.9275 1.3023 0.9668 0.0807 0.0826 0.0624 0.0035 0.0239 0.0750 0.0187 0.0007

NAGARCH 1.0398 0.9519 1.2947 0.9618 0.0107 0.0489 0.0629 0.0171 0.0067 0.0626 0.0176 0.0051

NLGARCH 1.0500 0.9689 1.3345 0.9783 0.0332 0.1072 0.5586 0.0041 0.0376 0.0905 0.3558 0.0016

APGARCH 1.0389 0.9642 1.2986 0.9736 0.0339 0.0636 0.1714 0.0026 0.0079 0.0355 0.0959 0.0006

FGARCH 1.0330 0.9647 1.3012 0.9516 0.0029 0.0885 0.0281 0.0044 0.0004 0.0274 0.0042 0.0009

MSEGARCH 0.9987 0.9452 1.2366 0.9491 0.5214 0.7694 0.9105 0.1236 0.2081 0.3610 0.8987 0.0417

MSAVGARCH 1.0008 0.9204 1.3188 0.9042 0.2773 0.4829 0.1750 0.7915 0.5028 0.0000 0.2076 0.7798

MSTGARCH 0.9669 0.8834 1.2487 0.8682 0.4926 0.9392 0.3348 0.0340 0.4145 0.8699 0.2421 0.0337

MSGARCH 0.9853 0.9118 1.3130 0.9127 0.5685 0.3204 0.7471 0.5731 0.7067 0.4231 0.8026 0.4839

MSGJRGARCH 0.9623 0.8747 1.2653 0.9117 0.5677 0.4707 0.9718 0.1531 0.4761 0.2617 0.8178 0.0826

MSNAGARCH 0.9533 0.8589 1.2218 0.9125 0.4322 0.3893 0.0030 0.5765 0.3488 0.2343 0.0047 0.4388

MSNLGARCH 0.9837 0.9111 1.3119 0.9166 0.6317 0.3194 0.6842 0.3529 0.5461 0.4284 0.7709 0.1564

MSAPGARCH 0.9691 0.9052 1.2478 0.8765 0.3651 0.5539 0.0175 0.1176 0.2803 0.3557 0.0352 0.0743

MSFGARCH 0.9342 0.8032 1.1432 0.8436 0.4285 0.8904 0.0233 0.0059 0.2145 0.8774 0.0220 0.0021

Note: The left panel of this table presents the average losses, using the LFZ0 loss function, for four daily equity return series, over the
out-of-sample period, for α = 2.5%. The lowest average loss in each column is highlighted in bold, the second-lowest is highlighted in italics.
The middle and right panels of this table present p-values from goodness-of-fit tests of the VaR and ES forecasts respectively. Values that are
greater than 0.10 (indicating no evidence against optimality at the 0.10 level) are in bold and values between 0.05 and 0.10 are in italics.
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To individually evaluate the VaR and ES estimates for the different models we follow.

Correct forecasts of ES and VaR must satisfied:kjfdksDFNlksnfdklsNDFKlsdfn,klsngd,xvmnv

s,dnfks,.DNFSkd,.nf lskndfknsfd ñnsdflkñnsf

Table 2.6: Out-of-sample average losses and goodness-of-fit tests (α = 5%)

Average Loss GoF p-values VaR GoF p-values ES

S&P DJIA NIKKEI FTSE S&P DJIA NIKKEI FTSE S&P DJIA NIKKEI FTSE

RW-125 0.9710 0.8910 1.2752 0.8742 0.0021 0.0145 0.0000 0.0002 0.0114 0.0135 0.0010 0.0000

RW-250 1.0045 0.9442 1.2931 0.9234 0.0001 0.0001 0.0002 0.0002 0.0033 0.0011 0.0029 0.0000

RW-500 1.0953 1.0474 1.3536 0.9845 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

GARCH-EDF 0.8306 0.7601 1.1324 0.7900 0.0715 0.6559 0.9774 0.3855 0.2452 0.6312 0.9922 0.4459

GAS-2F 0.8622 0.7976 1.1408 0.7950 0.1292 0.2752 0.3580 0.9376 0.4954 0.3232 0.0254 0.7555

GAS-1F 0.8489 0.7781 1.1383 0.7892 0.0401 0.3987 0.0519 0.8265 0.1680 0.5085 0.0319 0.8882

GARCH-FZ 0.8332 0.7561 1.1321 0.7896 0.0373 0.3866 0.8995 0.2130 0.1358 0.4209 0.9622 0.3752

Hybrid 0.8522 0.7664 1.1145 0.7957 0.0360 0.1422 0.0173 0.5640 0.1534 0.2555 0.0114 0.5082

EGARCH 0.8456 0.7591 1.1098 0.7941 0.0173 0.2689 0.2287 0.0364 0.0045 0.0903 0.0733 0.0050

AVGARCH 0.9480 0.8635 1.2858 0.8650 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

TGARCH 0.9142 0.8362 1.2613 0.8521 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

GARCH 0.8385 0.7705 1.1392 0.8021 0.2646 0.5776 0.6612 0.0879 0.1232 0.3691 0.5381 0.0276

GJRGARCH 0.8070 0.7312 1.1130 0.7857 0.1830 0.3938 0.8673 0.1147 0.0921 0.3528 0.5196 0.0183

NAGARCH 1.0030 0.9208 1.2649 0.9521 0.0573 0.3745 0.1333 0.0177 0.0595 0.3418 0.1481 0.0334

NLGARCH 0.8367 0.7704 1.1387 0.8019 0.1371 0.5776 0.6652 0.0695 0.1003 0.3700 0.5126 0.0271

APGARCH 0.8119 0.7440 1.1070 0.7850 0.0408 0.3226 0.2243 0.0594 0.0156 0.1451 0.1389 0.0064

FGARCH 1.0020 0.9415 1.2758 0.8159 0.0177 0.1602 0.0127 0.1262 0.0009 0.0314 0.0040 0.0114

MSEGARCH 0.7906 0.7386 1.0830 0.7617 0.2883 0.6277 0.1187 0.5481 0.1463 0.4632 0.1628 0.1734

MSAVGARCH 0.8165 0.7539 1.1298 0.7560 0.0024 0.0064 0.0009 0.8777 0.0406 0.0146 0.0051 0.8933

MSTGARCH 0.7761 0.7080 1.0712 0.7287 0.1594 0.2094 0.0286 0.5045 0.5543 0.4835 0.0556 0.2747

MSGARCH 0.8130 0.7476 1.1285 0.7619 0.0133 0.0086 0.0051 0.3020 0.0673 0.0227 0.0287 0.7439

MSGJRARCH 0.7821 0.7070 1.0899 0.7497 0.2150 0.1814 0.0411 0.7374 0.4447 0.5919 0.1045 0.4299

MSNAGARCH 0.8053 0.7766 1.1273 0.8732 0.0508 0.1374 0.0003 0.3376 0.1901 0.2590 0.0018 0.3472

MSNLGARCH 0.8129 0.7475 1.1285 0.7645 0.0124 0.0164 0.0055 0.1524 0.0643 0.0352 0.0292 0.3295

MSAPGARCH 0.7772 0.7156 1.0698 0.7316 0.1610 0.1340 0.0013 0.3450 0.4438 0.0922 0.0056 0.1588

MSFGARCH 0.7490 0.6611 1.0063 0.7050 0.1077 0.5318 0.1716 0.3055 0.4384 0.6655 0.0703 0.0364

Note: The left panel of this table presents the average losses, using the LFZ0 loss function, for four daily equity return series, over the
out-of-sample period, for α = 5%. The lowest average loss in each column is highlighted in bold, the second-lowest is highlighted in italics.
The middle and right panels of this table present p-values from goodness-of-fit tests of the VaR and ES forecasts respectively. Values that
are greater than 0.10 (indicating no evidence against optimality at the 0.10 level) are in bold and values between 0.05 and 0.10 are in italics.
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To individually evaluate the VaR and ES estimates for the different models we follow.

Correct forecasts of ES and VaR must satisfied:kjfdksDFNlksnfdklsNDFKlsdfn,klsngd,xvmnv

s,dnfks,.DNFSkd,.nf lskndfknsfd ñnsdflkñnsf

Table 2.7: Out-of-sample average losses and goodness-of-fit tests (α = 10%)

Average Loss GoF p-values VaR GoF p-values ES

S&P DJIA NIKKEI FTSE S&P DJIA NIKKEI FTSE S&P DJIA NIKKEI FTSE

RW-125 0.7014 0.6354 1.0094 0.6396 0.0000 0.0000 0.0000 0.0063 0.0014 0.0000 0.0000 0.0004

RW-250 0.7257 0.6686 1.0170 0.6687 0.0000 0.0000 0.0008 0.0359 0.0001 0.0000 0.0005 0.0001

RW-500 0.8019 0.7525 1.0525 0.7257 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

GARCH-EDF 0.5910 0.5274 0.9183 0.5858 0.0065 0.0398 0.4546 0.6258 0.1564 0.1229 0.7096 0.4086

GAS-2F 0.5885 0.5179 0.9057 0.5913 0.0099 0.1493 0.2607 0.0510 0.2487 0.2314 0.3360 0.0050

GAS-1F 0.6287 0.5201 0.9085 0.5825 0.0049 0.0060 0.2833 0.8673 0.1512 0.0542 0.5271 0.7001

GARCH-FZ 0.5931 0.5255 0.9197 0.5860 0.0026 0.0119 0.4191 0.7205 0.0865 0.0967 0.4837 0.5171

Hybrid 0.5962 0.5144 0.8974 0.5814 0.0003 0.0116 0.7274 0.4629 0.0682 0.1265 0.8893 0.3090

EGARCH 0.5806 0.5116 0.8944 0.5718 0.0245 0.0186 0.5081 0.2733 0.0166 0.0275 0.3000 0.0765

AVGARCH 0.6752 0.6044 1.0021 0.6314 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

TGARCH 0.6464 0.5788 0.9844 0.6161 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

GARCH 0.5915 0.5303 0.9209 0.5905 0.0874 0.0772 0.4549 0.6666 0.2376 0.0765 0.4701 0.2113

GJRGARCH 0.5642 0.4976 0.9010 0.5670 0.2980 0.0544 0.8141 0.9261 0.4612 0.2500 0.8931 0.3049

NAGARCH 0.5605 0.4971 0.8924 0.5613 0.0379 0.0553 0.7499 0.9299 0.0783 0.1274 0.6771 0.4949

NLGARCH 0.5913 0.5303 0.9195 0.5905 0.0622 0.0772 0.3855 0.7453 0.2292 0.0764 0.4195 0.2909

APGARCH 0.5631 0.5011 0.8933 0.5648 0.1148 0.0484 0.6619 0.2698 0.1494 0.0815 0.5473 0.0446

FGARCH 0.5576 0.5050 0.8942 0.6382 0.4428 0.3381 0.0297 0.5820 0.0625 0.0223 0.0109 0.2158

MSEGARCH 0.5498 0.5001 0.8812 0.5503 0.0307 0.0363 0.0180 0.6344 0.2216 0.1514 0.0667 0.3305

MSAVGARCH 0.5918 0.5340 0.9100 0.5654 0.0000 0.0000 0.0008 0.6281 0.0000 0.0000 0.0088 0.6233

MSTGARCH 0.5484 0.4819 0.8626 0.5361 0.0013 0.0243 0.0468 0.9695 0.0420 0.0905 0.1249 0.7813

MSGARCH 0.5878 0.5296 0.9111 0.5679 0.0000 0.0000 0.0021 0.4196 0.0000 0.0001 0.0246 0.4801

MSGJRGARCH 0.5555 0.4874 0.8827 0.5444 0.0003 0.0015 0.0494 0.5606 0.0167 0.0452 0.1449 0.8129

MSNAGARCH 0.5492 0.4587 0.8396 0.5398 0.0000 0.0000 0.0003 0.2568 0.0147 0.0094 0.0028 0.4659

MSNLGARCH 0.5878 0.5297 0.9112 0.5658 0.0000 0.0000 0.0012 0.2083 0.0001 0.0001 0.0199 0.2604

MSAPGARCH 0.5492 0.4882 0.8595 0.5372 0.0017 0.0363 0.0276 0.7342 0.0414 0.0361 0.0632 0.4378

MSFGARCH 0.5189 0.4569 0.8266 0.5531 0.0898 0.1451 0.0342 0.7399 0.1258 0.0981 0.0354 0.3135

Note: The left panel of this table presents the average losses, using the LFZ0 loss function, for four daily equity return series, over the
out-of-sample period, for α = 10%. The lowest average loss in each column is highlighted in bold, the second-lowest is highlighted in italics.
The middle and right panels of this table present p-values from goodness-of-fit tests of the VaR and ES forecasts respectively. Values that are
greater than 0.10 (indicating no evidence against optimality at the 0.10 level) are in bold and values between 0.05 and 0.10 are in italics.
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Table 2.8: Out-of-sample performance rankings.

α = 1% α = 2.5%

SPX DJI N225 FTSE Average Rank SPX DJI N225 FTSE Average Rank

RW-125 24 24 22 24 23.50 24 24 24 22 24 23.50 23
RW-250 25 25 24 25 24.75 25 25 25 24 25 24.75 25
RW-500 26 26 26 26 26.00 26 26 26 26 26 26.00 26

GARCH-EDF 15 9 14 10 12.00 11 14 12 14 10 12.50 13
GAS-2F 14 17 21 20 18.00 20 13 20 20 21 18.50 19
GAS-1F 9 15 20 17 15.25 16 16 17 21 17 17.75 17
GARCH-FZ 12 11 8 8 9.75 9 11 9 12 12 11.00 10
Hybrid 11 14 13 19 14.25 13 12 11 13 13 12.25 12

EGARCH 22 22 7 21 18.00 21 21 21 9 20 17.75 18
AVGARCH 23 23 25 22 23.25 23 23 23 25 23 23.50 24
TGARCH 21 21 23 23 22.00 22 22 22 23 22 22.25 22
GARCH 18 13 18 12 15.25 17 20 19 18 18 18.75 20
GJRGARCH 13 10 12 15 12.50 12 10 10 11 15 11.50 11
NAGARCH 19 16 9 16 15.00 15 18 14 7 14 13.25 15
NLGARCH 16 12 19 11 14.50 14 19 18 19 19 18.75 21
APGARCH 17 19 10 18 16.00 18 17 15 8 16 14.00 16
FGARCH 20 20 11 14 16.25 19 15 16 10 11 13.00 14

MSEGARCH 10 18 2 13 10.75 10 8 13 3 9 8.25 6
MSAVGARCH 8 7 17 4 9.00 8 9 8 17 4 9.50 9
MSTGARCH 4 4 4 1 3.25 2 4 4 5 2 3.75 3
MSGARCH 7 6 16 5 8.50 7 7 7 16 7 9.25 8
MSGJRGARCH 3 3 6 7 4.75 4 3 3 6 5 4.25 4
MSNAGARCH 2 2 3 9 4.00 3 2 2 2 6 3.00 2
MSNLGARCH 5 5 15 6 7.75 6 6 6 15 8 8.75 7
MSAPGARCH 6 8 5 2 5.25 5 5 5 4 3 4.25 5
MSFGARCH 1 1 1 3 1.50 1 1 1 1 1 1.00 1

α = 5% α = 10%

SPX DJI NIKKEI FTSE Average Rank SPX DJI N225 FTSE Average Rank

RW-125 22 22 22 23 22.25 22 24 24 24 24 24.00 24
RW-250 25 25 25 24 24.75 25 25 25 25 25 25.00 25
RW-500 26 26 26 26 26.00 26 26 26 26 26 26.00 26

GARCH-EDF 12 13 15 13 13.25 13 15 16 18 16 16.25 18
GAS-2F 19 19 19 15 18.00 19 14 13 13 20 15.00 15
GAS-1F 17 18 16 11 15.50 16 21 14 14 15 16.00 17
GARCH-FZ 13 11 14 12 12.50 12 19 15 20 17 17.75 19
Hybrid 18 14 9 16 14.25 15 20 12 11 14 14.25 12

EGARCH 16 12 7 14 12.25 11 11 11 10 13 11.25 10
AVGARCH 21 21 24 21 21.75 21 23 23 23 22 22.75 23
TGARCH 20 20 20 20 20.00 20 22 22 22 21 21.75 22
GARCH 15 16 18 18 16.75 18 17 19 21 18 18.75 21
GJRGARCH 7 5 8 10 7.50 6 10 7 12 11 10.00 9
NAGARCH 24 23 21 25 23.25 24 8 6 7 7 7.00 7
NLGARCH 14 15 17 17 15.75 17 16 20 19 19 18.50 20
APGARCH 8 7 6 9 7.50 7 9 9 8 8 8.50 8
FGARCH 23 24 23 19 22.25 23 7 10 9 23 12.25 11

MSEGARCH 5 6 4 6 5.25 5 5 8 5 5 5.75 6
MSAVGARCH 11 10 13 5 9.75 10 18 21 15 9 15.75 16
MSTGARCH 2 3 3 2 2.50 2 2 3 4 1 2.50 2
MSGARCH 10 9 12 7 9.50 9 13 17 16 12 14.50 14
MSGJRGARCH 4 2 5 4 3.75 4 6 4 6 4 5.00 5
MSNAGARCH 6 17 10 22 13.75 14 3 2 2 3 2.50 3
MSNLGARCH 9 8 11 8 9.00 8 12 18 17 10 14.25 13
MSAPGARCH 3 4 2 3 3.00 3 4 5 3 2 3.50 4
MSFGARCH 1 1 1 1 1.00 1 1 1 1 6 2.25 1

Note: This table presents the rankings (with the best-performing model ranked 1 and the worst ranked 26) based on the

average losses obtained with the LFZ0 loss function.
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To individually evaluate the VaR and ES estimates for the different models we follow.

Correct forecasts of ES and VaR must satisfied:kjfdksDFNlksnfdklsNDFKlsdfn,klsngd,xvmnv

s,dnfks,.DNFSkd,.nf lskndfknsfd ñnsdflkñnsf

Table 2.9: The 90% MCS for the R and SQ methods across the four stock indices.

R method SQ method

α = 1% α = 2.5% α = 5% α = 10% Total α = 1% α = 2.5% α = 5% α = 10% Total

RW-125 0 0 0 0 0 0 0 0 0 0

RW-250 0 0 0 0 0 0 0 0 0 0

RW-500 0 0 0 0 0 0 0 0 0 0

GARCH-EDF 0 0 0 0 0 0 0 0 0 0

GAS-2F 0 0 0 0 0 0 0 0 0 0

GAS-1F 1 0 0 0 1 1 0 0 0 1

GARCH-FZ 0 0 0 0 0 0 0 0 0 0

Hybrid 1 0 0 0 1 1 0 0 0 1

EGARCH 0 0 0 0 0 0 0 0 0 0

AVGARCH 0 0 0 0 0 0 0 0 0 0

TGARCH 0 0 0 0 0 0 0 0 0 0

GARCH 0 0 0 0 0 0 0 0 0 0

GJRGARCH 0 0 0 0 0 0 0 0 0 0

NAGARCH 0 0 0 0 0 0 0 0 0 0

NLGARCH 0 0 0 0 0 0 0 0 0 0

APGARCH 0 0 0 0 0 0 0 0 0 0

FGARCH 0 0 0 0 0 0 0 0 0 0

MSEGARCH 1 0 0 1 2 1 0 0 1 2

MSAVGARCH 1 0 0 0 1 1 0 0 0 1

MSTGARCH 2 1 1 1 5 2 2 0 1 5

MSGARCH 1 0 0 0 1 1 0 0 0 1

MSGJRGARCH 1 1 0 1 3 1 1 0 1 3

MSNAGARCH 1 1 0 3 5 1 1 0 3 5

MSNLGARCH 1 0 0 0 1 1 0 0 0 1

MSAPGARCH 1 0 1 1 3 1 0 0 1 2

MSFGARCH 3 4 4 4 15 3 4 4 4 15

Note: This table presents the number of indices for which each method is within the MCS at the 95% confidence level based on

the LFZ0 loss function. The highest value (in bold) means that the model is the most favoured one across the four stock indices

and for different probability levels.



5% VaR and ES for S&P 500 daily returns

Figure 2.1: Value-at-Risk (VaR) and Expected Shortfall (ES) at the 5% risk level for the S&P 500
index provided by the MSFGARCH model in (2.1), the GARCH-FZ model in (2.10) and the rolling
window in (2.5) using 500 observations.
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5% VaR and ES for Dow Jones Industrial Average daily returns

Figure 2.2: Value-at-Risk (VaR) and Expected Shortfall (ES) at the 5% risk level for the S&P 500
index provided by the MSFGARCH model in (2.1), the GARCH-FZ model in (2.10) and the rolling
window in (2.5) using 500 observations.
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5% VaR and ES for NIKKEI 225 daily returns

Figure 2.3: Value-at-Risk (VaR) and Expected Shortfall (ES) at the 5% risk level for the S&P 500
index provided by the MSFGARCH model in (2.1), the GARCH-FZ model in (2.10) and the rolling
window in (2.5) using 500 observations.
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5% VaR and ES for FTSE 100 daily returns

Figure 2.4: Value-at-Risk (VaR) and Expected Shortfall (ES) at the 5% risk level for the S&P 500
index provided by the MSFGARCH model in (2.1), the GARCH-FZ model in (2.10) and the rolling
window in (2.5) using 500 observations.
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S&P 500 Index

Figure 2.5: Colour map based on the DM test comparing the average losses obtained with
the LFZ0 loss function over the out-of-sample period for 26 different models for the S&P 500.
Dark green blocks indicate that the row model has lower average loss than the column model
at the 5% significance level; light-green blocks mean that the row model has lower average
loss than the column model, but it is not significantly different from it. Dark red blocks mean
that the row model has significantly higher average loss than the column model; light red
blocks mean that the row model has greater average loss than the column model, but it is not
significantly different from it.
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Dow Jones Industrial Average Index

Figure 2.6: Colour map based on the DM test comparing the average losses obtained with the
LFZ0 loss function over the out-of-sample period for 26 different models for the Dow Jones
Industrial Average index. Dark green blocks indicate that the row model has lower average
loss than the column model at the 5% significance level; light-green blocks mean that the row
model has lower average loss than the column model, but it is not significantly different from
it. Dark red blocks mean that the row model has significantly higher average loss than the
column model; light red blocks mean that the row model has greater average loss than the
column model, but it is not significantly different from it.
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NIKKEI 225 Index

Figure 2.7: Colour map based on the DM test comparing the average losses obtained with
the LFZ0 loss function over the out-of-sample period for 26 different models for the NIKKEI
225 Index. Dark green blocks indicate that the row model has lower average loss than the
column model at the 5% significance level; light-green blocks mean that the row model has
lower average loss than the column model, but it is not significantly different from it. Dark
red blocks mean that the row model has significantly higher average loss than the column
model; light red blocks mean that the row model has greater average loss than the column
model, but it is not significantly different from it.
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FTSE 100 Index

Figure 2.8: Colour map based on the DM test comparing the average losses obtained with
the LFZ0 loss function over the out-of-sample period for 26 different models for the FTSE
100 Index. Dark green blocks indicate that the row model has lower average loss than the
column model at the 5% significance level; light-green blocks mean that the row model has
lower average loss than the column model, but it is not significantly different from it. Dark
red blocks mean that the row model has significantly higher average loss than the column
model; light red blocks mean that the row model has greater average loss than the column
model, but it is not significantly different from it.



Chapter 3

Uncertainty and volatility: A
Markov-switching GARCH-MIDAS
approach

Abstract

In this paper, we examine the relationship between S&P 500 returns volatility and
macroeconomic uncertainty. We extend the GARCH-MIDAS model proposed by
Engle et al. (2013) to account for regime changes. To the best of the author’s
knowledge, our specification encompasses all GARCH-MIDAS models proposed in
the literature. We show that our model provides more accurate volatility forecasts
than the nested GARCH-MIDAS models at forecast horizons of 1 day, 2 weeks, 1
month, 2 months and 3 months. Furthermore, we find that models that incorporate
the daily VIX index as an explanatory variable achieve more precise 1 day-ahead
forecasts than those that consider the monthly uncertainty measure of Ludvigson
et al. (2020). On the other hand, Ludvigson et al.’s (2020) index outperforms
for longer forecast horizons. Consequently, our findings suggest that while high-
frequency uncertainty indices such as the VIX variable are suitable for short-
horizon forecasts, low-frequency uncertainty proxies provide better forecasts at
longer horizons ranging from 2 weeks to 3 months.

3.1 Introduction

The field of financial economics contains a vast literature on modelling and forecasting asset

price volatility. Risk management, derivative pricing and hedging, portfolio selection, and

many other financial activities depend on volatility forecasts. The generalized autoregressive

conditional heteroskedasticity (GARCH) class of models has been particularly common in

volatility modelling since its introduction by Bollerslev (1986). GARCH models, however,
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can only incorporate variables sampled at identical frequencies. This is a major drawback

since, although researchers and market participants are mainly concerned with daily volatility,

most macroeconomic variables containing useful market information are available at a lower

frequency (such as monthly frequency).

Fortunately, Ghysels et al. (2004), Ghysels et al. (2005) and Ghysels et al. (2007) propose

MIxed Data Sampling (MIDAS) regressions that directly accommodate variables sampled at

different frequencies. More recently, Engle et al. (2013) combines GARCH with mixed data

frequency introducing the GARCH-MIDAS model. This model has proven to be useful in

explaining and predicting variations in volatility by economic variables (see, e.g., Conrad and

Loch, 2015; Amado et al., 2019; Conrad and Kleen, 2020; Wang et al., 2020). In GARCH-

MIDAS, the conditional variance is decomposed into a short-term daily GARCH component

and a long-term component that is driven by macroeconomic explanatory variables observed

at a monthly, quarterly or even lower frequency.

In this paper, we extend the GARCH-MIDAS model to account for regime changes. Our

model has a specification rich enough to nest all GARCH-MIDAS models already proposed

in the literature1. Failure to account for regime changes leads to high-volatility persistence

in GARCH models (Lamoureux and Lastrapes, 1990). Furthermore, incorporating structural

shifts into GARCH have been shown to improve volatility forecasts (Gray, 1996; Klaassen,

2002; Haas et al., 2004; Pan et al., 2017; Ardia et al., 2018). Besides regime changes and mixed-

frequency data, our proposed model has the advantage that it accommodates the presence of

a “leverage effect”, that is the asymmetric response of volatility to positive or negative return

innovations. There is strong evidence in the literature to support the asymmetric impact

of innovations on volatility. However, to the best of the authors’ knowledge, no asymmetric

Markov-switching GARCH-MIDAS model has been applied so far in the literature. In this

paper, we fill this gap by allowing for different types of asymmetry and functional forms for

the conditional volatility.

We apply our model and various nested models to daily returns of the S&P 500 index from

January 1990 to November 2020. Our sample period includes not only the Great Recession

of 2008 but also the COVID-19 pandemic episode. We aim to provide a better understanding

1We are not aware of papers that have proposed a GARCH-MIDAS model that is not included in our
specification.
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of how the stock market reacts during periods of heightened uncertainty in the economy. As

explanatory variables, we use two measures of uncertainty observed at a monthly frequency:

the Financial Uncertainty (FU) index of Ludvigson et al. (2020) and the Macroeconomic

Uncertainty (MU) index of Jurado et al. (2015). The Financial Uncertainty index contains

147 financial time series including dividend-price ratio and earnings-price ratio, growth rates of

aggregate dividends and prices, default and term spreads, yields on corporate bonds of different

rating grades, yields on Treasuries and yield spreads, and a broad cross-section of industry,

size, book-market, and momentum portfolio equity returns. The Macroeconomic Uncertainty

index is calculated using 132 series representing broad categories of macroeconomic time series:

real output and income, employment and hours, real retail, manufacturing and trade sales,

consumer spending, housing starts, inventories and inventory sales ratios, orders and unfilled

orders, compensation and labor costs, capacity utilization measures, price indexes, bond and

stock market indexes, and foreign exchange measures. Following the COVID-19 pandemic, the

authors report four estimates of uncertainty: total FU, economic FU, total MU and economic

MU. “Total” uncertainty includes an estimate of the effect of COVID-19 on uncertainty. The

authors include COVID-related information such as the number of increased hospitalization

and positive COVID cases2. Since we are interested in studying the effect of COVID in

the stock market, we mainly focus on “total” uncertainty throughout the paper3. We also

consider the daily Chicago Board Options Exchange Volatility Index (VIX) as a measure of

daily fluctuations in the market. We estimate Markov-switching GARCH-MIDAS models with

one, two or three explanatory variables.

Our results yield the following in-sample and out-of-sample conclusions. First, our model

provides a significantly better in-sample fit than the competing models. Furthermore, the

results suggest that the combination FU-VIX gives a superior characterisation of the data

than the combination MU-VIX or models with one explanatory variable. In fact, the MU

variable is not found to provide useful information when estimated along with the VIX.

Regarding forecasts of volatility, we are interested in forecast horizons of 1 day, 2 weeks, 1

month, 2 months and 3 months. We show that our model provides more accurate forecasts than

2See https://www.sydneyludvigson.com/ for a description of the series.
3As robustness check to our results, we also consider a sample period that excludes the COVID-19 pan-

demic.

https://www.sydneyludvigson.com/
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the remaining GARCH-MIDAS models at essentially all horizons. We also find that models

with the FU variable outperform for longer forecast horizons of 2 weeks, 1 month, 2 months

and 3 months. On the other hand, models that consider the VIX variable achieve more precise

1 day-ahead forecasts than those that incorporate only one of the monthly macroeconomic

variables.

This paper is organized as follows. In Section 3.2, we introduce our Markov-switching

GARCH-MIDAS model and the model nested within it. Section 3.3 presents the data and

the estimation results. Volatility forecasting is performed in Section 3.4. Section 3.5 reports

robustness checks. Finally, Section 3.6 concludes.

3.2 Methodology

Let ri,t denote the log-return of a financial asset on day i of month t. We assume the returns

follow a GARCH-MIDAS process:

ri,t = µ + εi,t

εi,t =
√
τt gi,t zi,t

(3.1)

where τt is the so-called long-term volatility component as it evolves according to low-frequency

explanatory variables; gi,t is the short-term volatility component and follows a GARCH pro-

cess; zi,t is an identically and independently distributed standard normal random variable.

Let Nt denote the number of days in month t and let Ii,t denote the information set

available up to day i ∈ {1, . . . , Nt} of month t. We have that

σ2

i,t = var (εi,t | Ii−1,t) = τt g
2

i,t (3.2)

is the conditional variance of returns.

Following Hentschel’s (1995) nesting of single-regime GARCH models, we model the Box-

Cox (1964) transformation to the short-term volatility component,
gλi,t−1

λ
, as follows:

gλ
i,t − 1

λ
= ω + α (|zi−1,t| − γ zi−1,t)

λ̂ g(λ

i−1,t − ψ
εi−1,t√
τt

+ β
gλ
i−1,t − 1

λ
, λ ≥ 0, λ̂ > 0 (3.3)
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Appendix 3.7.4 shows that, after reparametrization, an equivalent specification of (3.3) has

the form:

ln g2

i,t = ω + α (|zi−1,t| − E|zi−1,t|)− γ zi−1,t − ψ
εi−1,t√
τt

+ β ln g(2

i−1,t, if λ = 0, λ̂ = 1,

gλ

i,t = ω + α (|zi−1,t| − γ zi−1,t)
λ̂ g(λ

i−1,t − ψ
εi−1,t√
τtα

+ β g(λ

i−1,t, if λ > 0, λ̂ > 0
(3.4)

Taking expectations on (3.4), we have that:

E
[
ln g2

i,t

]
= ω/(1− β), if λ = 0, λ̂ = 1,

E
[
gλ

i,t

]
= ω/

(
1− αE (|zi,t| − γ zi,t)

λ̂ − β
)
, if λ > 0, λ̂ > 0

(3.5)

The long-term volatility component τt is given by

τt = exp

{
m+ θX

K∑
k=1

φk(w
X

1 , w
X

2 )Xt−k

}
(3.6)

where X is a financial or macroeconomic variable that can be observed at a frequency lower

than daily (e.g., monthly or weekly). The use of the exponential function in (3.6) ensures that

τt is nonnegative and the weighting scheme follows the Beta lag structure:

φk(w
X

1 , w
X

2 ) =

[
k/(1 +K)w

X
1 −1

] [
1− k/(1 +K)w

X
2 −1

]
∑K

j=1

[
j/(1 +K)w

X
1 −1

] [
1− j/(1 +K)w

X
2 −1

] (3.7)

The specification in (3.7) is introduced by Ghysels et al. (2004) and explored further in Ghysels

et al. (2007). It is the most common weighting scheme in the context of GARCH-MIDAS

regressions (see, e.g., Engle and Ng, 1993; Conrad and Kleen, 2020). Its popularity is due

to its flexibility to accommodate various lag structures. If wX
1 = wX

2 = 1, we obtain equal

weights φk(w
X
1 , w

X
2 ) =

1
K
. The restriction wX

1 = 1, wX
2 > 1 guarantees a decaying pattern, i.e.,

the maximum weight is at the first lag. As wX
2 increases, we obtain a faster decaying pattern.

By construction, all the weights φk(w
X
1 , w

X
2 ) are non-negative and sum to one.

As noted by Pan et al. (2017), the existence of a constant term in both short- and long-

term components would lead to identification problems. Therefore, in the following section

we substitute the parameter ω in (3.4) by the term 1−αE (|zi,t| − γ zi,t)
λ̂ −β if λ > 0, and by
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0 when λ = 04. It follows from (3.5) that, after imposing these restrictions, the unconditional

variance of the short-term component becomes 1 when λ = 2.

The specification of the short-term volatility component in (3.4) is intended to be a nesting

framework in which several GARCH specifications are included. Indeed, by appropriately

choosing the parameters λ, λ̂, γ and ψ in (3.4), our model nests a wide-range of symmetric

and asymmetric GARCH-MIDAS models as shown in Table 3.1. The parameters γ and ψ

introduce asymmetry in the conditional volatility of returns, thus accounting for the well-

known “leverage effect”. Therefore, the asymmetric models are those that do not require that

both the parameters γ and ψ be equal to 0. The specification of our model permits tests of

different types of asymmetry and functional forms for the conditional volatility.

[ Table 3.1 here ]

Several studies have shown that incorporating structural shifts into GARCH models im-

proves volatility forecasting (see e.g., Lamoureux and Lastrapes, 1990; Gray, 1996; Klaassen,

2002; Haas et al., 2004; Pan et al., 2017). We introduce regime changes in our model in the

following section.

3.2.1 Markov-switching GARCH-MIDAS models

In this section, we present two types of Markov-switching GARCH-MIDAS models. In Section

3.2.2, we consider switches in the long-term volatility component. In Section 3.2.3, we modify

the short-term volatility component in (3.4) to account for regime changes.

3.2.2 Regime-switching in the long-term volatility component

Let si,t ∈ {1, 2} be a first-order Markov chain representing the (unobserved) regime. In our

first specification, we allow the parameters m and θX in the long-term component (3.6) to

switch between regimes as follows:

τt (si,t) = exp

{
msi,t

+ θX

si,t

K∑
k=1

φk(w
X

1 , w
X

2 )Xt−k

}
(3.8)

4An alternative would be to eliminate the constant term in (3.6). That is, imposing m = 0. We consider
this specification in Section 3.2.3.
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where the MIDAS weighting function, φk(w
X
1 , w

X
2 ) is given in (3.7).

As previously pointed out, the existence of a constant term in both the long- and short-

term volatility components would lead to identification problems. Therefore, we substitute

the parameter ω in (3.4) by the term 1−αE (|zi,t| − γ zi,t)
λ̂−β if λ > 0, and by 0 when λ = 0:

ln g2

i,t (si,t) = α (|zi−1,t| − E|zi−1,t|)− γ zi−1,t − ψ
εi−1,t√
τt

α
+ β ln g(2

i−1,t, (3.9)

gλ

i,t (si,t) = 1− αE (|zi−1,t| − γ zi,t)
λ̂ − β + α (|zi−1,t| − γzi−1,t)

λ̂ g(λ
i−1,t − ψ

εi−1,t√
τt

α
+ β g(λ

i−1,t

It is common practice in the context of GARCH-MIDAS models to consider this substitution

(see, e.g., Engle et al., 2013; Conrad and Loch, 2015; Conrad and Kleen, 2020). However, to

the best of the authors’ knowledge, this is the first paper in the Markov-switching GARCH

framework that imposes this restriction. For instance, Pan et al. (2017) and Ma et al. (2020)

consider a constant term in the short-term volatility component.

In order to avoid the path-dependence problem, we follow Klaassen’s (2002)5 procedure

and define

ln g(2
i−1,t = E

(
ln g2

i−1,t | si,t, Ii−1,t

)
=

2∑
j=1

P (si−1,t = j | si,t, Ii−1,t) ln g
2

i−1,t(si−1,t = j) (3.10)

gλ
i−1,t = E

(
gλ

i−1,t | si,t, Ii−1,t

)
=

2∑
j=1

P (si−1,t = j | si,t, Ii−1,t) g
λ

i−1,t(si−1,t = j) (3.11)

τt = E (τt | si,t, Ii−1,t) =
2∑

j=1

P (si−1,t = j | si,t, Ii−1,t) τt(si−1,t = j) (3.12)

The state variable si,t is assumed to follow an homogeneous first-order Markov process

with constant transition probabilities pjj = P (si,t = j | si−1,t = j), j = 1, 2.

3.2.3 Regime-switching in the short-term volatility component

We now consider an alternative Markov-switching model in which the short-term volatility

component switches while the long-term component remains constant across regimes. In this

specification, the long-term component follows equations (3.6)-(3.7) with m = 0 while we

5Klaassen (2002) refines the collapsing procedure introduced by Gray (1996). Other collapsing procedures
are proposed by Dueker (1997) and Haas et al. (2004).
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allow the constant term in (3.4) to switch between regimes:

ln g2

i,t(si,t) = ωsi,t
+ α (|zi−1,t| − E|zi−1,t|) − γ zi−1,t − ψ

εi−1,t√
τt

+ β ln g(2
i−1,t,

gλ

i,t(si,t) = ωsi,t
+ α (|zi−1,t| − γ zi−1,t)

λ̂ g(λ
i−1,t − ψ

εi−1,t√
τtα

+ β g(λ
i−1,t

(3.13)

where ln g(2
i−1,t follows (3.10) and g

(λ
i−1,t follows (3.11).

We could allow for switches not only in the constant term, ω, but also in the rest of

the parameters. However, to make our model tractable and parsimonious we consider the

parameters α, β, γ and ψ to be constant across regimes. Furthermore, as noted by Pan

et al.’s (2017), it is unlikely to find significant differences between regimes in the α, β, γ and

ψ parameters.

Pan et al.’s (2017) regime-switching GARCH-MIDAS is nested in our model when λ =

λ̂ = 2 and γ = ψ = 0 (Standard GARCH-MIDAS model in Table 3.1)6. Our model also

nests the single-regime GJRGARCH-MIDAS model used in Conrad and Kleen’s (2020) (see

Appendix 3.7.4).

3.3 Data and Estimation Results

3.3.1 Data

In this section, we apply the models introduced in Section 3.2 to daily returns of the S&P

500 calculated as ri,t = 100 (ln pi,t − ln pi−1,t). The period under consideration dates from 1st

January 1990 to 30st November 2020. As explanatory variable we use the Financial Uncer-

tainty (FU) measure of Ludvigson et al. (2020) and the Macroeconomic Uncertainty (MU)

measure of Jurado et al. (2015)7. These variables are observed at a monthly frequency. We

also consider the Chicago Board Options Exchange Volatility Index (VIX) observed daily8.

The CBOE Volatility Index (VIX) is a measure of expected price fluctuations in the S&P 500

Index options over the next 30 days. It is available from the year 1990 onwards9. Table 3.2

6See equation (3) in Pan et al. (2017).
7https://www.sydneyludvigson.com/macro-and-financial-uncertainty-indexes
8https://www.cboe.com/indices/
9We convert the VIX variable to daily levels by dividing it by

√
252.

https://www.sydneyludvigson.com/macro-and-financial-uncertainty-indexes
https://www.cboe.com/indices/
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presents summary statistics of the data and Figure 3.1 plots the macroeconomic variables.

[ Table 3.2 and Figure 3.1 here ]

As explained in Conrad and Kleen (2020), assuming a large enough lag length K in the

long-term volatility component ensures that the data identifies the optimal weighting scheme.

We use K = 36 for the monthly variables. That is, three years of monthly observations.

For the daily VIX variable, we choose 3 lags as is shown by Conrad and Kleen (2020) to be

adequate. Furthermore, we find that the restricted Beta weighting scheme, wX
1 = 1 in (3.7), is

the best choice for our explanatory variables. That is, the optimal weights follow a decaying

pattern from the beginning10,11.

3.3.2 Estimation results with one explanatory variable

In this section, we estimate the models introduced in Section 3.2 for the two monthly macroe-

conomic variables FU and MU and for the daily volatility index VIX. We estimate two-regime

models and their single-regime counterparts.

Switching in the long-term volatility component

Table 3.3, Table 3.4 and Table 3.5 compare goodness of fit statistics of the models introduced

in Section 3.2.2 with FU, MU and VIX as explanatory variables, respectively. We refer to

our more general model as MSFGARCH-MIDAS when the number of regimes is two and

FGARCH-MIDAS when we impose one regime.

[ Table 3.3 - 3.5 here ]

The second and third columns list, respectively, the number of parameters n and the max-

imized log-likelihood LL. The Akaike information criterion (AIC) and Bayesian information

10We find from our estimation results, reported in Section 3.3.2 to Section 3.3.4, that the models estimate
a high value of the weighting parameter wX , indicating that most of the weight is placed at the first lag.
Therefore, our chosen values of K are found to be too large but guarantee that the models identify the
optimal weight.

11We also estimate the models with the “exponential Almon lag” specification used in Ghysels et al. (2007)
and Ghysels et al. (2005). The “exponential Almon lag” yield essentially the same τ dynamics as the Beta
weighting scheme. Therefore, we only report the results for the Beta weighting scheme.
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criterion (BIC) calculated as AIC = −2 (LL − n) and BIC = −2LL + n log(T ), T = 7764

being the sample size, are displayed in the fourth and sixth columns. Irrespective of the

macroeconomic variable considered, the AIC and BIC rank the asymmetric regime-switching

MSFGARCH-MIDAS, MSEGARCH-MIDAS and MSQGARCH-MIDAS models as the three

best specifications. On the other hand, the single-regime symmetric models AVGARCH-

MIDAS, GARCH-MIDAS and NLGARCH-MIDAS are categorised as the worst performing

models by both criteria.

We further perform likelihood ratio tests for testing the estimation performance of the

asymmetric models against their symmetric counterparts. The statistics from these tests are

reported in the antepenultimate and penultimate columns of the tables. The null hypothesis

of symmetry, corresponding to the model in the first column of the same row, is tested against

the alternative that asymmetry is governed by the parameter γ or the parameter ψ. The

LRT statistics for these tests are asymptotically distributed as a χ2(1) random variable. The

statistics far exceed the value of χ2(1) at 1%, 5% and 10% levels of confidence, thus rejecting

the null of symmetry.

The last column in the tables tests the different nested models in Table 3.1 against the

alternative of the most general MSFGARCH-MIDAS model. The LRT statistics for these tests

are asymptotically distributed as a χ2 random variable with a degree of freedoms equal to the

difference in the number of parameters. The only regime-switching model that is not rejected

at a 1% significance level in favour of the MSFGARCH-MIDAS is the MSQGARCH-MIDAS

for the VIX variable. Thus, our more general model provides a superior characterisation of

the data when considering the monthly macroeconomic variables and it is only beaten by the

more parsimonious MSQGARCH-MIDAS when the daily VIX is the explanatory variable.

A difficulty arises when testing a Markov-switching model versus a single-regime model

since the state parameter is unidentified under the null hypothesis (see Davies, 1977). This

problem is typically approached by treating the traditional likelihood ratio test (LRT) statistic

as a function of the unidentified parameter and obtaining an upper bound for the statistic

across all possible values of the parameter (see Davies, 1977; Garcia et al., 1996; inter alia).

Garcia et al. (1996) follows Davies’s (1977) approach and derives an upper bound for the

significance level of the LRT when testing a Markov-switching autoregressive model against
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a single-regime model12. Given the LR statistic LR = 2 (LR1 − LR0) where LR0 is the log-

likelihood under the null and LR1 the log-likelihood under the alternative, the upper bound

proposed by Garcia et al. (1996) is given as P (χ2
d > LR) + 2

(
LR
2

) d
2 exp

(
−LR

2

) [
Γ
(
d
2

)]−1
,

where d is the difference in the number of parameters. For the values of the LR statistics

corresponding to the null of single-regime models in the last columns of Table 3.3 - 3.5, the

term exp
(
−LR

2

)
is essentially 0 so the upper bound for our tests is approximately equal to

P (χ2
d > LR), the usual marginal level associated with the traditional LR test13. We obtain a

LRT statistics that far exceeds the marginal level associated with the traditional LR at any

significance level. Therefore, if this bound could be used in the context of GARCH-MIDAS

models we would strongly reject the null of a single-regime specification. Unfortunately, an

extension of Garcia et al.’s (1996) bound to GARCH-MIDAS is not currently available in the

literature. Its derivation constitutes a substantial task for future research. In any case, the

large values of the LRT statistics support the regime-switching specification.

In summary, the estimation results show that our proposed MSFGARCH-MIDAS model

significantly outperforms existing models in explaining the data and that both asymmetry and

regime changes are important features of returns. This is a significant finding of our research

since, so far in the literature, the presence of asymmetries in Markov-switching GARCH-

MIDAS models has been neglected. The publications either account for regime-changes in

symmetric GARCH-MIDAS (for instance, Pan et al., 2017 and Ma et al., 2020 use the standard

MSGARCH-MIDAS model) or asymmetries in single-regime GARCH-MIDAS (e.g., Conrad

and Kleen, 2020 and Wang et al., 2020 use the single-regime GJRGARCH model). In this

sense, our paper is the first to combine regime switches and asymmetries in GARCH-MIDAS

models and we have shown that there is strong evidence to consider both aspects of the

volatility. Failure to account for either of these characteristics of the volatility would lead to

misleading inferences and poor out-of-sample volatility forecasts (as shown below in Section

3.4).

Table 3.6 - 3.8 show the estimated parameters from the Markov-switching MIDAS mod-

12The bounds holds assuming that the likelihood function has a single peak.
13The smallest LRT statistic for testing single-regime against the MSFGARCH-MIDAS model is given in

Table 3.3. It takes a value of 172.75 and corresponds to the null of the single-regime FGARCH-MIDAS model.
Being d = 4 the difference in the number of parameters, we have exp

(
− 172.75

4

)
= 1.75 · 10−19 ≈ 0.
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els14. Regime 1 corresponds to the low-volatility regime while regime 2 is a high-volatility

regime. Unsurprisingly, the parameters governing asymmetry γ and ψ are highly significant.

Regarding the parameters in the long-term volatility component (3.8), the coefficient θFU of the

FU variable in Table 3.6 is significant in both regimes. However, this parameter appears to be

constant across regimes. We formally test θFU
1 = θFU

2 through a Wald test. The p-values from

the tests are presented in the last row of the table. All the p-values are far greater than 10%.

Thus, there is not enough evidence to suggest that the parameter θFU switches across regimes.

If θFU
1 = θFU

2 , then from (3.8) we have that
τt(si,t=1)

τt(si,t=2)
= exp (m1)

exp (m2)
and the unconditional variance in

regime one relative to that in regime 2 is given by
σ2
1

σ2
2
= exp (m1) g2

exp (m2) g2
= exp (m1)

exp (m2)
. The penultimate

row in the table shows the ratio σ2
1/σ

2
2. The three best specifications MSFGARCH-MIDAS,

MSEGARCH-MIDAS and MSQGARCH-MIDAS, estimate that the unconditional variance

in the low-volatility regime is approximately 35% of the unconditional variance in the high-

volatility regime. For the remaining models, the ratio is approximately 25%. Similarly, from

Table 3.7 the coefficient of the MU variable θMU is significant within regime but not signifi-

cantly different across regimes. For most of the models, the ratio σ2
1/σ

2
2 does not deviate a lot

from the value obtained when FU was the explanatory variable in the previous table. On the

other hand, the coefficient θVIX in Table 3.8 is highly significant in both regimes for the ma-

jority of the models and there is enough evidence to suggest that θVIX switches across regimes

for all of the models. Therefore, it is not possible to obtain the ratio of the unconditional

variance in regime 1 over the unconditional variance in regime 2 solely from the estimated

parameters.

[ Table 3.6 - 3.8 here ]

Figures 3.2, 3.3 and 3.4 plot the smoothed probabilities of being in the low-volatility regime

for the three best specifications MSFGARCH-MIDAS, MSQGARCH-MIDAS and MSEGARCH-

MIDAS with FU, MU and VIX as explanatory variable, respectively. Periods of high-volatility

include, among others, the dot-com bubble, around the year 2003, the global financial crisis

of 2008 and the recent COVID global pandemic in 2020. The main difference between the

probabilities in the three figures is that the models with MU as explanatory variable estimate

14Table 3.37 - 3.39 contain the parameter estimates for the single-regime models.
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a persistent period in the high-volatility state from 1997 to 2001. On the other hand, the

models with the FU or VIX variables estimate the period from the end of 1998 to the begin-

ning of 1999 in the low-volatility regime. This behaviour may be explained by the fact that

while the MU index dropped 6.8% from August 1998 to the end of July 1999, the FU (VIX)

index decreased 22.8% (62%).

[ Figure 3.2 - 3.4 here ]

Figure 3.5 - 3.7 show the time-varying conditional volatilities obtained from the MSFGARCH-

MIDAS, MSQGARCH-MIDAS and MSEGARCH-MIDAS models with one explanatory vari-

able. The conditional volatilities from the models with monthly long-term component show

similar patterns. However, models with the FU (MU) index estimate higher (lower) volatility

during the 2008 financial crisis than during the COVID-19 pandemic. This is not surprising

given that the FU variable reaches its maximum level during the crisis of 2008 while COVID

is the highest uncertainty episode for the MU index. Furthermore, the models with the daily

VIX in the long-term component estimate far higher volatility during the first quarter of 2020

than the models with monthly variables. This result may be driven by the fact that while the

FU (MU) variable increased its value by about 23.9% (48.8%) from January 2020 to March

2020, the VIX index increased its value by approximately 562% during the same period (see

Figure 3.1).

[ Figure 3.5 - 3.7 here ]

On balance, the monthly macroeconomic variables and the daily VIX appear to provide

useful information to explain returns. In the following section, we consider switches in the

short-term volatility component and compare the results with those obtained when the regime

changes occur in the long-term component.

Switching in the short-term volatility component

Table 3.9 - 3.11 give goodness of fit statistics of the models introduced in Section 3.2.3. The

ranking of the models based on the AIC and BIC criteria remains almost unchanged compared

to those obtained in Section 3.3.2 (see Table 3.3 - 3.5). Tests for asymmetry in the 8th and 9th
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columns again reject the null of symmetry in favour of the asymmetric models. Additionally,

based on LRT tests in the last column of the table, the general MSFGARCH-MIDAS model

is preferred over the remaining models with the exception of the MSQGARCH-MIDAS model

when FU or VIX are the explanatory variables in the long-term component.

[ Table 3.9 - 3.11 here ]

Table 3.12 - 3.14 provide the estimated parameters from the Markov-switching MIDAS

models in Section 3.2.315. As before, regime 1 (2) corresponds to the low-(high-) volatility

regime. Again, we find the parameters governing asymmetry γ and ψ highly significant.

Furthermore, the coefficient associated with the macroeconomic variables θFU, θMU and θVIX

are also significant suggesting again the usefulness of the variables to characterise the returns.

[ Table 3.12 - 3.14 here ]

The unconditional short-term variance in each of the regimes, g2
j j = 1, 2, and σ2

1/σ
2
2 are

given in the last three rows of the tables. For the models with the FU variable (Table 3.12)

the unconditional variance in the low-volatility regime is approximately 30% the unconditional

variance in the high-volatility regime. When considering the MU variable, the ratio g2
1/g

2
2 is

around 26% from the asymmetric models while around 17% for the symmetric models. Finally,

for the models with the daily VIX in the long-term component the ratio of the unconditional

variances is about 42%.

Note that the values of the AIC and BIC information criteria from the models that allow

switches in the long-term volatility component (Table 3.3 - 3.5) are smaller than those ob-

tained from the models that allow switches in the short-term volatility component (Table 3.9

- 3.11). Consequently, we obtain a better description of the data when allowing the coefficient

associated with the macroeconomic variables to switch across regimes16. For this reason, in

what follows we use the models introduced in Section 3.2.2. That is, those that allow switches

in the long-term component17.

15Table 3.40 - 3.42 present the parameter estimates for the single-regime models.
16Other papers such as Pan et al. (2017) only consider switches in the short-term volatility component.
17We have also estimated models that allow switches in both long- and short-term components simulta-

neously. In these models, the short-term volatility component follows equation (3.13) while the long-term
volatility component follows (3.8) (with m = 0 to avoid identification problems). We do not find significant
improvements in terms of fit. Furthermore, the increment in the number of parameters makes these models
less tractable than those considered in Section 3.2.2 and Section 3.2.3.
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From the previous results, the VIX variable seems to be good at capturing the daily

movements in the long-term volatility component. Our subsequent analysis is based on the

combination of information in the monthly variables with that in the daily volatility index.

With this aim, we consider models that include VIX and one of the monthly variables in the

long-term component in Section 3.3.3.

3.3.3 Estimation results with two explanatory variables

We now extend the long-term volatility component in (3.8) to include two explanatory vari-

ables. In addition to the monthly variables in Section 3.3.2, we include the VIX variable.

We choose to include VIX as one of the explanatory variables since it appears to be a rele-

vant variable in explaining returns. We argue that omitting this variable from the estimation

would lead to biased and misleading inference18. The short-term volatility component follows

equations (3.9)-(3.12) while the long-term volatility component is now given by

τi,t (si,t) = exp

{
msi,t

+ θX

si,t

36∑
k=1

φk(1, w
X)Xt−k + θ VIX

si,t

3∑
k=1

φk(1, w
VIX) VIXi−k,t

}
(3.14)

where X denotes either of the FU or MU variables.

Log-likelihood values, AIC and BIC criteria from the different models with two explanatory

variables are given in Table 3.15 and Table 3.16. As in the previous section, the MSQGARCH-

MIDAS, MSEGARCH-MIDAS and MSFGARCH-MIDAS are found to provide the best fit

irrespective of the monthly variable considered. The symmetric single-regime models again

give the worst description of the data and tests for symmetry are rejected in favour of the

asymmetric models. When comparing the models with the most general model in the last

column of the tables, the MSQGARCH-MIDAS and MSEGARCH-MIDAS are the only models

not rejected at a 1% significance level. Furthermore, according to the AIC and BIC information

criterion presented in the tables, the combination FU-VIX provides a superior characterisation

of the data than MU-VIX.

[ Table 3.15 and Table 3.16 here ]

18We confirm this argument in Section 3.3.4 where we include the two monthly variables and the daily
variable simultaneously in the long-term component.
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The estimated parameters are presented in Table 3.17 and Table 3.18. For most of the

models, the VIX and FU coefficients θVIX and θFU are found to be significant in at least one

regime and, according to the Wald tests in the last two rows of Table 3.17, the parameters

θVIX and θFU are significantly different across regimes. On the other hand, from Table 3.18

very few models estimate significant θMU parameters. Consequently, the variable MU does

not seem to provide complementary information to that included in the VIX19.

[ Table 3.17 and Table 3.18 here ]

3.3.4 Estimation results with three explanatory variables

We further consider models that include three explanatory variables. The models in this

section include the three covariates simultaneously: the two monthly indexes FU and MU and

the VIX variable. The short-term volatility component follows equations (3.9)-(3.12) while

the long-term volatility component is given by

τi,t (si,t) = exp

{
msi,t

+ θFU

si,t

36∑
k=1

φk(1, w
FU)FUt−k + θMU

si,t

36∑
k=1

φk(1, w
MU)MUt−k { (3.15)

{ + θ VIX

si,t

3∑
k=1

φk(1, w
VIX)VIXi−k,t

}

Table 3.19 contains goodness of fit statistics from the single-regime and two-regime models.

As before, the MSQGARCH-MIDAS, MSEGARCH-MIDAS and MSFGARCH-MIDAS yield

the best fit while the symmetric single-regime models are at the bottom of the AIC and

BIC rankings. The LRT tests in the last three columns of the table again make clear the

significance of asymmetry and regime-switching in returns.

[ Table 3.19 here ]

The estimated parameters are presented in Table 3.20. The coefficients θFU and θVIX are

significant in at least one regime for most of the models. On the other hand, the coefficient

19This behaviour is also evident from the smoothed probabilities and time-varying volatilities depicted in
Figure 3.9 and Figure 3.11. The probabilities and volatilities obtained from the combinations MU-VIX are
very similar to those obtained from the models with just the daily VIX variable in the long-term component
in Figure 3.4 and Figure 3.7.
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θMU is not significant in any of the regimes. The last panel in the table reports likelihood

ratio tests (LRT) for the null of only one of the monthly variables with VIX in the long-term

component. There is not enough evidence to suggest that the unrestricted model provides a

better in-sample fit than the combination FU-VIX. This result reaffirms the conclusions in

Section 3.3.3 where we found that MU does not add complementary information to that in the

VIX. For this reason, we do not consider models that include both MU and VIX simultaneously

as explanatory variables in the out-of-sample exercise in the following section.

[ Table 3.20 here ]

3.4 Forecasting volatility

In this section, we compare the forecasting ability of the models that allow switches in the

long-term volatility component introduced in Section 3.2.2 and estimated in Section 3.3. We

evaluate the predictive performance of the models that consider either one of the FU, MU and

VIX variables and the models with both VIX and FU as explanatory variables. We attempt to

answer the following two questions: (1) Do two-regime GARCH-MIDAS models provide more

accurate volatility predictions than single-regime GARCH-MIDAS models? (2) Is accounting

for asymmetry in volatility important when forecasting volatility?

To find the answer to these questions, we obtain and evaluate cumulative volatility forecasts

for horizons up to 3 months. The out-of-sample period comprises January 2007 to November

2020. Our out-of-sample period covers the 2008 financial crisis and the recent COVID pan-

demic in order to compare the performance of the models under different market conditions.

Estimation is performed on a rolling window basis and the model parameters are updated on

a monthly frequency20.

The forecasts are obtained on the last day Nt of month t. We denote the k-step-ahead

variance forecast by σ̂2
k,t+1|t with k ≤ Nt+1. That is, σ̂k,t+1|t is the volatility forecast on day k

of month t + 1 given the information up to the last day of month t, INt,t
. For simplicity of

20We do not update the value of the parameters daily since the computational cost of the daily updating
was high (about two days per model). As shown by Ardia and Hoogerheide (2014), the forecast performance
of GARCH models does not change significantly when moving from a daily updating frequency to a higher
updating frequency.
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notation, we write It instead of INt,t
. The optimal forecast is given by

σ̂2

k,t+1|t = E
(
σ2

k,t+1 | It

)
= E

(
τk,t+1 g

2

k,t+1 | It

)
(3.16)

We approximate E
(
τk,t+1 g

2
k,t+1 | It

)
in (3.16) by21

E
(
τk,t+1 g

2

k,t+1 | It

)
≈

2∑
j=1

P (sk,t+1 = j | It) τk,t+1 (sk,t+1 = j)
[
E
(
gλ

k,t+1 | sk,t+1 = j, It

)] 2
λ (3.17)

The probabilities of being in each regime on day k of month t + 1 given It are obtained

by:

Psk,t+1|t =

 P(sk,t+1 = 1 | It)

P(sk,t+1 = 2 | It)

 =

 p11 1− p22

1− p11 p22


k−1  P(s1,t+1 = 1 | It)

P(s1,t+1 = 2 | It)

 (3.18)

The expectation of the k -step-ahead short-term component in (3.17) is a function of the

one-step-ahead short-term component, gλ
1,t+1|t. Let △ = αE (|zi,t| − γ zi,t)

λ̂ + β and consider

the following matrices

Tk,t+1 =

 τk,t+1 (sk,t+1 = 1)

τk,t+1 (sk,t+1 = 2)

 , Hλ

k,t+1|t =

 E
(
gλ
k,t+1 | sk,t+1 = 1, It

)
E
(
gλ
k,t+1 | sk,t+1 = 2, It

)
 (3.19)

and

Ψ = △

 P (sk−1,t+1 = 1 | sk,t+1 = 1) P (sk−1,t+1 = 2 | sk,t+1 = 1)

P (sk−1,t+1 = 1 | sk,t+1 = 2) P (sk−1,t+1 = 2 | sk,t+1 = 2)

 . (3.20)

Appendix 3.7.4 shows that Hλ

k,t+1|t can be obtained in a recursive way as follows

Hλ

k,t+1|t = (1−△) 12×1 + ΨHλ

k−1,t+1|t = Ψk−1 Hλ

1,t+1|t +
k−2∑
j=0

Ψj (1−△) 12×1 (3.21)

21For λ = 2 we have an equality.
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where 12×1 is a 2× 1 vector of ones.

Therefore, we calculate the optimal forecasts as:

σ̂2

k,t+1|t = P⊤
sk,t+1|t

[
Tk,t+1 ◦

(
Hλ

k,t+1|t

). 2λ ]
(3.22)

where ⊤ denotes the transpose operator, ◦ denotes the Hadamard product of matrices and .
2
λ

denotes the element-wise exponent.

For forecasting horizons that are beyond one-low frequency period, we have

Hλ

k,t+s|t = ΨN1:s+k−1Hλ

1,t+1|t +

N1:s+k−2∑
j=0

Ψj (1−△) 12×1, s > 1 (3.23)

where N1:s =
∑

s

h=2
Nt+h−1. As in Conrad and Kleen’s (2020), we forecast τt+s by τt+1. Thus,

we obtain

σ̂2

k,t+s|t = P⊤
sk,t+s|t

[
Tk,t+1 ◦

(
Hλ

k,t+s|t

). 2λ ]
(3.24)

Finally, cumulative forecasts are obtained as

σ̂2

1:k,t+s|t =
k∑

j=1

σ̂2

j,t+s|t (3.25)

In Section 3.4.1, we consider cumulative volatility forecasts for horizon up to 3 months.

In particular, we consider one day forecasts (s = 1, k = 1), 2 weeks cumulative forecasts

(s = 1, k = 10), 1 month cumulative forecasts (s = 1, k = 22), 2 months cumulative forecasts

(s = 2, k = 22) and 3 months cumulative forecasts (s = 3, k = 22).

3.4.1 Forecasting performance evaluation

We evaluate the forecasts against the daily realised variances, RVi,t, defined as the sum of

5-minute intraday subsampling log-returns on day i of month t plus the squared overnight
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log-return22,23. To asses the prediction accuracy of each model, we use the QLIKE loss

function,

QLIKE
(
RV1:k,t+s, σ̂

2

1:k,t+s|t

)
=

RV1:k,t+s

σ̂2
1:k,t+s|t

− ln

(
RV1:k,t+s

σ̂2
1:k,t+s|t

)
− 1 (3.26)

where RV1:k,t+s =
∑k

i=1RVi,t+s. As shown by Patton (2011), the QLIKE loss function is robust

to noise in the volatility proxy.

Table 3.21 - 3.24 contain the average QLIKE losses for each of the single-regime and two-

regime GARCH-MIDAS models and the different forecast horizons. The smallest average loss

is highlighted in bold; the second smallest is in italics. The models that consider the VIX

variable, both alone and together with FU, give the smallest losses for 1 day-ahead forecasts.

On the other hand, the models with only FU as explanatory variable provide the smallest

average losses for longer forecast horizons from 2 weeks to 3 months. Moreover, models

with the MU index as explanatory variable also achieve better performance than models that

consider the VIX or FU-VIX variables for 2 months and 3 months horizons. This finding is in

line with the results in Megaritis et al. (2021) which show that the MU variable outperforms

the VIX for 3 month and 12 months horizons in predicting stock market volatility and jump

tail risk in the post-2007 crisis period. Even so, the MU variable results in higher losses than

the FU variable for all horizons.

[ Table 3.21 - 3.24 here ]

Regarding the individual performance of the models, our more general MSFGARCH-

MIDAS model achieves the lowest QLIKE for most of the horizons and economic variables

considered. In particular, the performance of our model is remarkable for the FU and FU-VIX

variables. The MSAPGARCH-MIDAS model also does a good job in terms of providing small

QLIKE losses.

To further evaluate the individual performance of the models, we consider the Model

Confidence Set (MCS) approach of Hansen et al. (2011). This approach consists of obtaining

22Several papers, such as Pan et al. (2017), use the squared daily returns as the volatility proxy. It has
been shown, however, that squared daily returns are unbiased but noisy volatility proxy (see Patton, 2011).

23The data can be downloaded from https://www.oxford-man.ox.ac.uk/.

https://www.oxford-man.ox.ac.uk/
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a set of models for which there is a pre-specified probability that the set contains the best

model. The distribution of the test statistic is estimated using a bootstrap procedure. In

this paper, we consider 90% confidence level, 10, 000 bootstrap replications and use the range

statistic proposed by Hansen et al. (2011). The optimal block-length is obtained following the

procedure in Politis and White (2004) and Patton et al. (2009)24. The models included in the

final set are shaded in blue in the tables. For the FU and FU-VIX variables, the only model

included in the final set at all horizons is the MSFGARCH-MIDAS model. The asymmetric

MSTGARCH-MIDAS, MSQGARCH-MIDAS and MSAPGARCH-MIDAS are also included

in the MCS at almost all horizons for the remaining variables, VIX and MU. On balance,

our model outperforms for most of the horizons considered and its superiority is particularly

evident for the FU and FU-VIX combination when no other model enters the MCS at all

horizons.

In an attempt to obtain a better picture of the performance of the models, we divide

the sample into three different subsamples using the method in Conrad and Kleen (2020).

The authors consider forecasts to be in the low-/normal-/high-volatility period if the level of

the realised variance on the day the forecasts was issued is below the 25% quantile, between

the 25% and 75% quantile, or above the 75% quantile of the full-sample realised variances,

respectively. We have 1013 observations in the low, 1587 observations in the normal and 828

observations in the high regime. That is, approximately 30% of the sample is in the low-

volatility period, 46% of the sample is in the normal-volatility period, and 24% of the sample

is in the high-volatility period.

Table 3.25 - 3.28 contain the forecasts results on these subsamples. The MSFGARCH-

MIDAS model is included in the three volatility regimes at essentially all horizons. As for

the whole out-of-sample period, our model clearly dominates in all regimes for the FU and

FU-VIX variables. When considering the VIX or MU variables our model also performs

very well especially in the normal- and high-volatility periods and at shorter horizons. In

the low-volatility period, other more parsimonious models such as the MSTGARCH-MIDAS,

MSAPGARCH-MIDAS or even the symmetric MSAVGARCH-MIDAS and MSNLGARCH-

MIDAS models are competitive models.

24For implementation of the MCS procedure, we use the MFE Matlab Toolbox by Kevin Sheppard: https:
//www.kevinsheppard.com/code/matlab/mfe-toolbox/.

https://www.kevinsheppard.com/code/matlab/mfe-toolbox/
https://www.kevinsheppard.com/code/matlab/mfe-toolbox/
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[ Table 3.25 - 3.28 here ]

In summary, the most general MSFGARCH-MIDAS outperforms for the FU and FU-

VIX variables when evaluating the forecasts across the whole out-of-sample period and in

subsamples of low-, normal- and high-volatility regimes. For VIX and MU variables, other

more parsimonious models such as the MSTGARCH-MIDAS and MSAPGARCH-MIDAS also

perform well, and in the low-regime symmetric regime-switching models achieve good perfor-

mance. Nevertheless, the MSFGARCH-MIDAS model is included in the final MCS for almost

all horizons even in the low-volatility regime.

3.5 Robustness

In this section, we provide robustness of the previous results by considering an alternative out-

of-sample period which excludes the COVID-19 pandemic. COVID-19 constitutes a period

of high uncertainty particularly during the first quarter of 2020 where uncertainty achieved

historical records. We now consider pre-COVID data until December 2019. As in Section 3.4,

we apply a rolling forecasting scheme where the window size is determined by the length of the

first estimation period ending in December 2006. The models are re-estimated on a monthly

basis. We evaluate the forecasting performance of the models during the period January 2007

to December 2019.

Table 3.29 - 3.32 present the average QLIKE losses for each of the GARCH-MIDAS models

and the different forecast horizons. Our conclusions remain essentially unaltered. First, our

model significantly outperforms at all horizons when considering the FU and FU together

with VIX variables. For the MU variable, the results are mixed. Surprisingly, the symmet-

ric single-regime GARCH models, AVGARCH-MIDAS and NLGARCH-MIDAS perform very

well at horizons of 2 and 3 months. This result may be driven by the fact that the perfor-

mance of the single-regime symmetric models substantially deteriorates during periods of high

uncertainty which explains the bad performance of the models when the COVID-19 period

is included in the out-of-sample period. Nevertheless, asymmetric regime-switching models

such as MSFGARCH-MIDAS and MSAPGARCH-MIDAS achieve the best performance at

shorter horizons. When VIX is the only explanatory variable, asymmetric regime-switching
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models still perform the best. However, more single-regime models are included in the final

MCS set than when including the COVID-19 pandemic episode, particularly at longer hori-

zons. This again manifests that periods of heightened uncertainty hinder the performance of

single-regime models.

[ Table 3.29 - 3.32 here ]

Results in low-, normal- and high- volatility periods are presented in Table 3.33 - 3.36.

The tables again show the remarkable performance of asymmetric regime-switching models.

In particular, our more general MSFGARCH-MIDAS model is the only model included in the

final set at virtually all horizon and volatility regimes.

[ Table 3.33 - 3.36 here ]

Overall, we have shown that our proposed model performs best at essentially all the hori-

zons considered and that this superiority is robust to the sample period under consideration.

As we would expect, single-regime models achieve a better performance when excluding the

high-uncertainty period during the COVID-19 pandemic. Even so, regime-switching models

are superior irrespective of the sample period.

3.6 Conclusion

We introduce a general model that nests several single-regime and regime-switching GARCH-

MIDAS models as special cases. We apply this general model and the nested models to daily

returns of the S&P 500 index from January 1990 to November 2020. As explanatory variables

in the long-term volatility component, we use two measures of uncertainty: the Financial

Uncertainty index of Ludvigson et al. (2020) and the Macroeconomic Uncertainty (MU) index

of Jurado et al. (2015). Even though both measures of uncertainty provide useful information

to explain returns, the FU variable provides a superior description of the data than the other

uncertainty index. Furthermore, we combine the information in the monthly variables with

the daily Chicago Board Options Exchange Volatility Index (VIX) and find that the MU index

does not provide complementary information to the VIX.
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We consider two different types of Markov-switching GARCH-MIDAS models. First, we

allow regime changes in the long-term volatility component. We then consider switches in the

short-term component. Our results show that asymmetries and regime changes are important

features of the volatility and that failure to account for either of these properties leads to

misleading inferences and biased forecasts. This is a significant finding of our research since,

so far in the literature, the presence of asymmetries in Markov-switching GARCH-MIDAS

models has been neglected.

In the volatility forecasting evaluation exercise, we show that the models that consider

the VIX variable provide the most accurate predictions for 1 day-ahead forecasts. On the

other hand, the models with the FU variable outperform for longer forecast horizons of 2

weeks, 1 month, 2 months and 3 months horizons. Moreover, models with the MU index

as explanatory variable also achieve better performance than models that consider the VIX

variable (alone or with FU) for 2 months and 3 months horizons. This finding is in line

with the results in Megaritis et al. (2021) which show that the MU variable outperforms the

VIX for 3 months and 12 months horizons in predicting stock market volatility in the post-

2007 crisis period. Even so, we find that the FU variable significantly outperforms the MU

variable at all horizons considered. Thus, our findings provide a useful indication for selecting

the appropriate explanatory variable depending on the forecasts horizon under consideration.

While high-frequency uncertainty proxies such as the VIX variable appear to perform well at

one-day horizon, low-frequency uncertainty indexes perform better at longer forecast horizons.

Furthermore, we find that our proposed model achieves the lowest QLIKE losses at essentially

all horizons and is the only model that is almost always included in the Model Confidence

Set of Hansen et al. (2011). This suggests that our model is more useful than other more

parsimonious GARCH-MIDAS models when forecasting the volatility of returns.



3.7 Appendix

3.7.1 Tables

• Our model nests single regime models in Conrad when we impose the number of regimes

= 1.

Table 3.1: Nested GARCH models in the short-term component.

λ λ̂ γ ψ Model Reference

0 1 free 0 Exponential GARCH (EGARCH) Nelson (1991)

1 1 0 0 Absolute Value GARCH (AVGARCH) Schwert (1989); Taylor (2008)

1 1 |γ| ≤ 1 0 Threshold GARCH (TGARCH) Zakoian (1994)

2 2 0 0 Standard GARCH (GARCH) Bollerslev (1986)

2 2 free 0 GJRGARCH Glosten et al. (1993)

2 2 0 free
Quadratic GARCH (QGARCH)
Asymmetric GARCH (AGARCH)

Sentana (1995)
Engle (1990)

free λ 0 0 Nonlinear GARCH (NLGARCH) Higgins and Bera (1992)∗

free λ |γ| ≤ 1 0 Asymmetric Power GARCH (APGARCH) Ding et al. (1993)∗

∗Nested if λ > 0.

Table 3.2: Summary statistics of returns and explanatory variables.

Starts Frecuency Mean Min. Max. Std. Dev. Skew. Kurt.

S&P 500 returns 1990:M1 Daily 0.0302 -12.7652 10.9572 1.1517 -0.4093 14.3369

VIX 1990M1 Daily 1.2255 0.5758 5.2090 0.5119 0.1388 0.7108

FU index 1987:M1 Monthly 0.8920 0.6293 1.5463 0.1844 0.8373 3.2776

MU index 1987:M1 Monthly 0.6380 0.5286 1.2190 0.1084 2.7023 11.7180

Note: This table presents summary statistics for the log-returns of the S&P 500, the Chicago Board Options

Exchange Volatility Index (VIX), the Financial Uncertainty (FU) index of Ludvigson et al. (2020) and the

Macroeconomic Uncertainty (MU) index of Jurado et al. (2015). The sample ends in 2020:M11.
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Table 3.3: Model comparisons, long-term component switching, FU.

AIC BIC LRT

Model n LL Value Rank Value Rank HA : γ free HA : ψ free HA : MSFGARCH

Panel A : λ = 0

EGARCH 7 -10041.68 20097.36 10 20146.06 10 227.22∗∗∗

MSEGARCH 11 -9940.19 19902.37 2 19978.90 1 24.23∗∗∗

Panel B: λ = 1

AVGARCH 6 -10230.77 20473.55 18 20515.29 18 390.11∗∗∗ 605.40∗∗∗

TGARCH 7 -10035.72 20085.43 9 20134.13 8 215.29∗∗∗

MSAVGARCH 10 -10091.13 20202.25 13 20271.83 13 239.33∗∗∗ 326.11∗∗∗

MSTGARCH 11 -9971.46 19964.93 5 20041.45 5 86.78∗∗∗

Panel C: λ = 2

GARCH 6 -10216.84 20445.68 16 20487.43 16 274.80∗∗∗ 338.49∗∗∗ 577.54∗∗∗

GJRGARCH 7 -10079.44 20172.88 12 20221.58 12 302.73∗∗∗

QGARCH 7 -10047.60 20109.19 11 20157.89 11 239.05∗∗∗

MSGARCH 10 -10099.17 20218.34 15 20287.91 15 201.56∗∗∗ 312.20∗∗∗ 342.19∗∗∗

MSGJRGARCH 11 -9998.39 20018.78 6 20095.31 6 140.63∗∗∗

MSQGARCH 11 -9943.07 19908.14 3 19984.67 3 29.99∗∗∗

Panel D: λ free

NLGARCH 7 -10216.34 20446.68 17 20495.39 17 363.80∗∗∗ 576.54∗∗∗

APGARCH 8 -10034.44 20084.88 8 20140.54 9 212.74∗∗∗

FGARCH 10 -10014.45 20048.90 7 20118.47 7 172.75∗∗∗

MSNLGARCH 11 -10090.66 20203.32 14 20279.85 14 259.89∗∗∗ 325.18∗∗∗

MSAPGARCH 12 -9960.72 19945.43 4 20028.92 4 65.28∗∗∗

MSFGARCH 14 -9928.07 19884.15 1 19981.55 2

Note: n denotes the number of parameters to be estimated and LL the maximized log-likelihood value of a given model. AIC and

BIC are the Akaike information criterion and the Bayesian information criterion, respectively, computed as AIC = −2 (LL − n) and

BIC = −2LL+n log(T ) where T = 7764 is the sample size. The LRTs in the antepenultimate and penultimate columns are the likelihood

test statistics for the following tests: H0 : the symmetric specification corresponding to the model in the first column of the same row,

versus HA : the parameters γ or ψ are freely estimated. Under the null hypothesis, the LRT statistics are asymptotically χ2-distributed

with 1 degrees of freedom. The last column reports the LRT of the problem: H0 : the specification corresponding to the model in the

first column of the same row versus HA : the most general model in (3.1), (3.8)-(3.12) denoted here MSFGARCH model. ∗,∗∗ and ∗∗∗

denote statistical significance at 1%, 5% and 10% levels, respectively.
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Table 3.4: Model comparisons, long-term component switching, MU.

AIC BIC LRT

Model n LL Value Rank Value Rank HA : γ free HA : ψ free HA : MSFGARCH

Panel A : λ = 0

EGARCH 7 -10118.77 20251.54 10 20300.24 10 275.84∗∗∗

MSEGARCH 11 -9998.06 20018.12 3 20094.65 3 34.42∗∗∗

Panel B: λ = 1

AVGARCH 6 -10288.65 20589.31 18 20631.05 18 368.48∗∗∗ 615.62∗∗∗

TGARCH 7 -10104.42 20222.83 8 20271.53 8 247.14∗∗∗

MSAVGARCH 10 -10116.53 20253.07 11 20322.64 12 224.28∗∗∗ 271.38∗∗∗

MSTGARCH 11 -10004.39 20030.79 5 20107.32 4 47.10∗∗∗

Panel C: λ = 2

GARCH 6 -10270.82 20553.64 16 20595.39 16 253.82∗∗∗ 291.36∗∗∗ 579.95∗∗∗

GJRGARCH 7 -10143.91 20301.83 15 20350.53 15 326.13∗∗∗

QGARCH 7 -10125.14 20264.28 13 20312.98 11 288.59∗∗∗

MSGARCH 10 -10123.43 20266.86 14 20336.43 14 181.53∗∗∗ 253.90∗∗∗ 285.17∗∗∗

MSGJRGARCH 11 -10032.67 20087.33 6 20163.86 6 103.64∗∗∗

MSQGARCH 11 -9996.48 20014.96 2 20091.49 2 31.27∗∗∗

Panel D: λ free

NLGARCH 7 -10270.32 20554.65 17 20603.35 17 331.96∗∗∗ 578.96∗∗∗

APGARCH 8 -10104.35 20224.69 9 20280.35 9 247.00∗∗∗

FGARCH 10 -10080.36 20200.71 7 20250.29 7 199.02∗∗∗

MSNLGARCH 11 -10115.79 20253.58 12 20330.11 13 227.64∗∗∗ 269.89∗∗∗

MSAPGARCH 12 -10001.97 20027.94 4 20111.42 5 42.25∗∗∗

MSFGARCH 14 -9980.85 19989.69 1 20087.09 1

Note: As in Table 3.3.



102 3 Uncertainty and volatility: A Markov-switching GARCH-MIDAS approach

Table 3.5: Model comparisons, long-term component switching, VIX.

AIC BIC LRT

Model n LL Value Rank Value Rank HA : γ free HA : ψ free HA : MSFGARCH

Panel A : λ = 0

EGARCH 7 -9980.21 19974.41 12 20023.11 10 214.44∗∗∗

MSEGARCH 11 -9879.50 19780.99 3 19857.52 2 13.02∗∗∗

Panel B: λ = 1

AVGARCH 6 -10061.34 20134.69 18 20176.43 17 152.94∗∗∗ 376.71∗∗∗

TGARCH 7 -9984.87 19983.75 14 20032.45 11 223.77∗∗∗

MSAVGARCH 10 -9964.14 19948.29 7 20017.86 9 84.89∗∗∗ 182.32∗∗∗

MSTGARCH 11 -9914.43 19850.86 5 19927.39 5 82.89∗∗∗

Panel C: λ = 2

GARCH 6 -10059.80 20131.60 17 20173.34 16 97.49∗∗∗ 166.60∗∗∗ 373.63∗∗∗

GJRGARCH 7 -10011.05 20036.11 15 20084.81 15 276.14∗∗∗

QGARCH 7 -9976.50 19967.00 10 20015.70 8 207.02∗∗∗

MSGARCH 10 -9973.29 19966.58 9 20036.15 12 69.67∗∗∗ 171.66∗∗∗ 200.61∗∗∗

MSGJRGARCH 11 -9927.54 19877.08 6 19953.61 6 109.10∗∗∗

MSQGARCH 11 -9875.64 19773.29 1 19849.82 1 5.32

Panel D: λ free

NLGARCH 7 -10058.76 20131.52 16 20200.23 18 152.81∗∗∗ 371.55∗∗∗

APGARCH 8 -9982.36 19980.72 13 20036.38 13 218.75∗∗∗

FGARCH 10 -9976.62 19973.24 11 20042.82 14 207.27∗∗∗

MSNLGARCH 11 -9956.11 19934.23 8 20010.76 7 94.00∗∗∗ 166.26∗∗∗

MSAPGARCH 12 -9909.11 19842.23 4 19925.72 4 72.26∗∗∗

MSFGARCH 14 -9872.99 19773.97 2 19871.37 3

Note: As in Table 3.3.



3.7 Appendix 103

Table 3.6: Estimated MSGARCH-MIDAS models, long-term component switching, FU

MSEGARCH MSAVGARCH MSTGARCH MSGARCH MSGJRGARCH MSQGARCH MSNLGARCH MSAPGARCH MSFGARCH

λ 0 1 1 2 2 2
0.7415∗∗∗

1.4574∗∗∗ 0.6334∗∗∗ (0.2526)

λ̂
1 1 1 2 2 2

(0.2641) (0.0863) 1.9820∗∗∗

(1.2224)

µ
0.0352∗∗∗ 0.0670∗∗∗ 0.0391∗∗ 0.0678∗∗∗ 0.0460∗∗∗ 0.0339∗∗∗ 0.0685∗∗∗ 0.0349∗∗∗ 0.0320∗∗∗

(0.0083) (0.0081) (0.0188) (0.0083) (0.0072) (0.0086) (0.0086) (0.0000) (0.0084)

α
0.0257∗ 0.0440∗∗∗ 0.0762∗∗∗ 0.0391∗∗∗ 0.0378∗∗∗ 0.0255∗∗∗ 0.0446∗∗∗ 0.0733∗∗∗ 0.0037

(0.0150) (0.0062) (0.0067) (0.0059) (0.0055) (0.0080) (0.0028) (0.0060) (0.0068)

β
0.9126∗∗∗ 0.9568∗∗∗ 0.8815∗∗∗ 0.9526∗∗∗ 0.8623∗∗∗ 0.8791∗∗∗ 0.9551∗∗∗ 0.8993∗∗∗ 0.9113∗∗∗

(0.0133) (0.0065) (0.2190) (0.0079) (0.0271) (0.0201) (0.0062) (0.0126) (0.0125)

γ
-0.1929∗∗∗ 0.9999∗∗∗ 0.9996∗∗∗ 0.9999∗∗∗ -0.8977∗∗∗

(0.0145) (0.2597) (0.0552) (0.0002) (0.3271)

ψ
0.1858∗∗∗ 0.0883∗∗∗

(0.0154) (0.0333)

m1

-3.9439∗∗∗ -4.0586∗∗∗ -3.5495∗∗∗ -4.3514∗∗∗ -3.7332∗∗∗ -3.8415∗∗∗ -4.4063∗∗∗ -3.5477∗∗∗ -3.7679∗∗∗

(0.2377) (0.5697) (0.5258) (0.5850) (0.3326) (0.2775) (1.0890) (0.2925) (0.2738)

m2

-2.9008∗∗∗ -2.6212∗∗∗ -2.0630 -3.0584∗∗∗ -2.2404∗∗∗ -2.8251∗∗∗ -3.0219∗∗∗ -2.2898∗∗∗ -2.6933∗∗∗

(0.3523) (0.7284) (1.5079) (0.6489) (0.5850) (0.4030) (1.0872) (0.6168) (0.3932)

θFU
1

3.6803∗∗∗ 4.0146∗∗∗ 3.4815∗∗∗ 4.0775∗∗∗ 3.4512∗∗∗ 3.6699∗∗∗ 4.2490∗∗∗ 3.5370∗∗∗ 3.5655∗∗∗

(0.2338) (0.5775) (1.0343) (0.5931) (0.3130) (0.2891) (1.1527) (0.2627) (0.2759)

θFU
2

3.6091∗∗∗ 4.0315∗∗∗ 3.0203 4.2555∗∗∗ 2.9726∗∗∗ 3.6527∗∗∗ 4.3202∗∗∗ 3.3844∗∗∗ 3.4205∗∗∗

(0.3820) (0.7027) (2.7274) (0.7012) (0.4862) (0.4536) (1.1796) (0.6583) (0.4384)

wFU
404.66 519.70∗ 104.58 520.05∗∗∗ 505.85 513.85∗ 506.88 106.21 509.73

(526.84) (267.42) (595.88) (103.98) (657.05) (280.11) (854.57) (138.77) (865.71)

p11 0.9841 0.9803 0.9888 0.9849 0.9757 0.9834 0.9811 0.9878 0.9842

p22 0.9685 0.9326 0.9681 0.9582 0.9582 0.9670 0.9415 0.9547 0.9716

σ2
1/σ

2
2 0.3524 0.2375 0.2262 0.2744 0.2248 0.3619 0.2505 0.2843 0.3414

θFU
1 = θFU

2 [0.8227] [0.9647] [0.7951] [0.6277] [0.7446] [0.9585] [0.8512] [0.8156] [0.6547]

Note: This table shows parameter estimates for the two-regime model in (3.1), (3.8)-(3.12) and the nested models, presented in Table 3.1. The explanatory

variable in the long-term component is the Financial Uncertainty (FU) index of Ludvigson et al. (2020). Standard errors are displayed in parenthesis; p-values

are displayed as [·]. ∗,∗∗ and ∗∗∗ denote statistical significance at 1%, 5% and 10% levels, respectively.
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Table 3.7: Estimated MSGARCH-MIDAS models, long-term component switching, MU

MSEGARCH MSAVGARCH MSTGARCH MSGARCH MSGJRGARCH MSQGARCH MSNLGARCH MSAPGARCH MSFGARCH

λ 0 1 1 2 2 2
3.5091∗∗∗

1.2345∗∗∗ 0.7899∗∗∗ (0.5408)

λ̂
1 1 1 2 2 2

(0.2159) (0.0983) 0.9620∗∗∗

(0.1353)

µ
0.0296∗∗∗ 0.0676∗∗∗ 0.0360∗∗∗ 0.0682∗∗∗ 0.0424∗∗∗ 0.0267∗∗∗ 0.0684∗∗∗ 0.0335∗∗∗ 0.0287∗∗∗

(0.0088) (0.0030) (0.0096) (0.0087) (0.0105) (0.0071) (0.0082) (0.0000) (0.0089)

α
0.0779∗∗∗ 0.0539∗∗∗ 0.0766∗∗∗ 0.0482∗∗∗ 0.0000 0.0517∗∗∗ 0.0550∗∗∗ 0.0780∗∗∗ 0.3163∗∗∗

(0.0158) (0.0046) (0.0098) (0.0035) (0.0000) (0.0072) (0.0043) (0.0087) (0.0731)

β
0.9543∗∗∗ 0.9529∗∗∗ 0.8934∗∗∗ 0.9488∗∗∗ 0.9047∗∗∗ 0.8788∗∗∗ 0.9516∗∗∗ 0.9004∗∗∗ 0.7394∗∗∗

(0.0148) (0.0039) (0.0243) (0.0034) (0.0209) (0.0192) (0.0042) (0.0190) (0.0435)

γ
-0.1643∗∗∗ 0.9999∗∗∗ 0.1491∗∗∗ 0.9999∗∗∗ 0.9999∗∗∗

(0.0180) (0.0899) (0.0391) (0.0004) (0.0034)

ψ
0.1784∗∗∗ 0.0274

(0.0163) (0.0187)

m1

-2.8181∗∗∗ -2.6585∗∗∗ -2.5759∗∗∗ -4.0364∗∗∗ -2.0619 -2.9243∗∗∗ -2.7936∗∗∗ -2.6513∗∗∗ -2.8094∗∗∗

(0.3681) (0.4028) (0.4556) (0.6479) (0.0000) (0.2809) (0.4657) (0.3939) (0.6355)

m2

-1.7165∗∗∗ -1.3225∗∗ -1.5780∗∗∗ -2.7284∗∗∗ -1.1734 -1.8387∗∗∗ -1.4426∗∗ -1.6525∗∗∗ -1.7467∗∗∗

(0.4415) (0.6284) (0.5817) (0.8006) (1.5845) (0.2446) (0.6040) (0.4622) (0.7159)

θMU
1

3.2713∗∗∗ 3.8236∗∗∗ 3.0521∗∗∗ 4.6121∗∗∗ 2.3238 3.6336∗∗∗ 3.8473∗∗∗ 3.2505∗∗∗ 3.0545∗∗∗

(0.4945) (0.6028) (0.5892) (0.9433) (3.4856) (0.4313) (0.6285) (0.6207) (0.5468)

θMU
2

3.4487∗∗∗ 4.4105∗∗∗ 3.4514∗∗∗ 5.4177∗∗∗ 3.0847∗∗∗ 3.9080∗∗∗ 4.4337∗∗∗ 3.6181∗∗∗ 3.6144∗∗∗

(0.5521) (0.8570) (0.7043) (1.2418) (1.0853) (0.4361) (0.8138) (0.6103) (0.5372)

wMU
369.58∗∗∗ 498.12∗∗∗ 479.21∗∗∗ 505.14∗∗ 465.94 503.02 504.75∗∗ 454.83 467.14

(129.51) (116.33) (111.12) (226.81) (420.89) (751.99) (218.93) (296.62) (805.75)

p11 0.9902 0.9866 0.9896 0.9885 0.9814 0.9916 0.9866 0.9899 0.9933

p22 0.9843 0.9497 0.9829 0.9582 0.9307 0.9848 0.9500 0.9825 0.9842

σ2
1/σ

2
2 0.3323 0.2629 0.3686 0.2704 0.4113 0.3377 0.2590 0.3683 0.3455

θMU
1 = θMU

2 [0.7399] [0.3903] [0.5556] [0.2169] [0.7933] [0.5725] [0.3290] [0.5978] [0.3894]

Note: This table shows parameter estimates for the two-regime model in (3.1), (3.8)-(3.12) and the nested models, presented in Table 3.1. The explanatory

variable in the long-term component is the Macroeconomic Uncertainty (MU) index of Jurado et al. (2015). Standard errors are displayed in parenthesis; p-values

are displayed as [·]. ∗,∗∗ and ∗∗∗ denote statistical significance at 1%, 5% and 10% levels, respectively.
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Table 3.8: Estimated MSGARCH-MIDAS models, long-term component switching, VIX

MSEGARCH MSAVGARCH MSTGARCH MSGARCH MSGJRGARCH MSQGARCH MSNLGARCH MSAPGARCH MSFGARCH

λ 0 1 1 2 2 2
3.0747∗∗∗

1.5045∗∗ 0.6373∗∗∗ (0.2040)

λ̂
1 1 1 2 2 2

(0.7108) (0.1321) 0.8791∗∗∗

(0.0338)

µ
0.0300∗∗∗ 0.0475∗∗∗ 0.0325∗∗∗ 0.0445∗∗∗ 0.0369 0.0285∗∗∗ 0.0457∗∗∗ 0.0321∗∗∗ 0.0279∗∗∗

(0.0084) (0.0130) (0.0085) (0.0109) (0.0972) (0.0079) (0.0102) (0.0000) (0.0000)

α
-0.0471 0.0190 0.0452∗∗∗ 0.0181∗ 0.0179 0.0000 0.0208 0.0461∗∗∗ 0.0021∗∗∗

(0.0327) (0.0247) (0.0050) (0.0102) (0.0862) (0.0002) (0.0133) (0.0056) (0.0000)

β
0.8032∗∗∗ 0.9712∗∗∗ 0.8762∗∗∗ 0.9630∗∗∗ 0.8909 0.8200∗∗∗ 0.9667∗∗∗ 0.8822∗∗∗ 0.8094∗∗∗

(0.0748) (0.0357) (0.0288) (0.0152) (2.0606) (0.0478) (0.0125) (0.0291) (0.0000)

γ
-0.1846∗∗∗ 0.9999∗∗∗ 0.9974∗∗∗ 0.9999∗∗∗ 0.9890∗∗∗

(0.0306) (0.1684) (0.3736) (0.0003) (0.0081)

ψ
0.1788∗∗∗ 0.2463∗∗∗

(0.0226) (0.0000)

m1

-2.6909∗∗∗ -2.7982∗∗ -2.4514∗∗∗ -2.8495∗∗∗ -2.6154∗∗∗ -2.5702∗∗∗ -2.7871∗∗∗ -2.4127∗∗∗ -2.5459∗∗∗

(0.1317) (1.2499) (0.1295) (0.4289) (0.4885) (0.1308) (0.6078) (0.1250) (0.1028)

m2

-0.9192∗∗∗ -0.4327 0.1197 -0.2122 0.0673 -0.7505∗∗∗ -0.2162 0.0546 -0.6634∗∗∗

(0.3324) (2.2438) (0.5792) (1.1042) (1.3893) (0.2806) (1.3698) (0.2416) (0.0000)

θVIX
1

0.1117∗∗∗ 0.1245∗∗ 0.1089∗∗∗ 0.1265∗∗∗ 0.1138∗∗∗ 0.1094∗∗∗ 0.1241∗∗∗ 0.1071∗∗∗ 0.1091∗∗∗

(0.0059) (0.0508) (0.0058) (0.0175) (0.0336) (0.0056) (0.0268) (0.0070) (0.0061)

θVIX
2

0.0640∗∗∗ 0.0572∗ 0.0391∗∗∗ 0.0498∗∗∗ 0.0392∗∗∗ 0.0606∗∗∗ 0.0518∗∗∗ 0.0417∗∗∗ 0.0595∗∗∗

(0.0084) (0.0312) (0.0099) (0.0147) (0.0168) (0.0071) (0.0163) (0.0033) (0.0000)

wVIX
2.1424∗∗∗ 5.4054 3.3429∗∗∗ 5.1081∗∗ 3.9998∗∗ 2.2599∗∗∗ 5.0227∗ 3.0827∗∗∗ 2.3687∗∗∗

(0.6861) (5.1170) (0.7781) (2.3733) (1.3021) (0.5209) (3.0005) (0.7147) (0.0148)

p11 0.9853 0.9852 0.9952 0.9916 0.9912 0.9876 0.9897 0.9938 0.9881

p22 0.9627 0.9326 0.9681 0.9582 0.9326 0.9649 0.9415 0.9547 0.9616

σ2
1/σ

2
2 0.1701 0.0939 0.0764 0.0716 0.0684 0.1621 0.0765 0.0848 0.1522

θVIX
1 = θVIX

2 [0.0000] [0.0083] [0.0000] [0.0000] [0.0276] [0.0000] [0.0001] [0.0000] [0.0000]

Note: This table shows parameter estimates for the two-regime model in (3.1), (3.8)-(3.12) and the nested models, presented in Table 3.1. The explanatory

variable in the long-term component is the Chicago Board Options Exchange Volatility Index (VIX). Standard errors are displayed in parenthesis; p-values are

displayed as [·]. ∗,∗∗ and ∗∗∗ denote statistical significance at 1%, 5% and 10% levels, respectively.
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Table 3.9: Model comparisons, short-term component switching, FU.

AIC BIC LRT

Model n LL Value Rank Value Rank HA : γ free HA : ψ free HA : MSFGARCH

Panel A : λ = 0

EGARCH 7 -10046.80 20107.60 10 20156.30 9 190.64∗∗∗

MSEGARCH 10 -9971.89 19963.78 3 20033.35 3 40.83∗∗∗

Panel B: λ = 1

AVGARCH 6 -10236.78 20485.56 18 20527.30 18 387.39∗∗∗ 570.60∗∗∗

TGARCH 7 -10043.09 20100.17 9 20148.87 7 183.22∗∗∗

MSAVGARCH 9 -10163.99 20345.98 15 20408.59 15 325.05∗∗∗ 425.02∗∗∗

MSTGARCH 10 -10001.46 20022.92 5 20092.50 5 99.97∗∗∗

Panel C: λ = 2

GARCH 6 -10223.63 20459.26 16 20501.01 16 274.95∗∗∗ 335.87∗∗∗ 544.31∗∗∗

GJRGARCH 7 -10086.16 20206.32 12 20235.02 12 269.36∗∗∗

QGARCH 7 -10055.70 20125.39 11 20174.09 11 208.44∗∗∗

MSGARCH 9 -10151.15 20320.29 14 20382.91 13 225.59∗∗∗ 397.29∗∗∗ 399.34∗∗∗

MSGJRGARCH 10 -10038.35 20096.71 7 20166.28 10 173.76∗∗∗

MSQGARCH 10 -9952.50 19925.00 1 19994.57 1 2.05

Panel D: λ free

NLGARCH 7 -10223.55 20461.11 17 20509.81 17 363.27∗∗∗ 544.15∗∗∗

APGARCH 8 -10041.92 20099.84 8 20155.50 8 180.89∗∗∗

FGARCH 10 -10025.83 20071.66 6 20141.24 6 148.71∗∗∗

MSNLGARCH 10 -10147.44 20314.88 13 20384.45 14 305.82∗∗∗ 391.92∗∗∗

MSAPGARCH 11 -9994.53 20011.05 4 20087.58 4 86.10∗∗∗

MSFGARCH 13 -9951.48 19928.95 2 20019.40 2

Note: n denotes the number of parameters to be estimated and LL the maximized log-likelihood value of a given model. AIC and

BIC are the Akaike information criterion and the Bayesian information criterion, respectively, computed as AIC = −2 (LL − n) and

BIC = −2LL+n log(T ) where T = 7764 is the sample size. The LRTs in the antepenultimate and penultimate columns are the likelihood

test statistics for the following tests: H0 : the symmetric specification corresponding to the model in the first column of the same row,

versus HA : the parameters γ or ψ are freely estimated. Under the null hypothesis, the LRT statistics are asymptotically χ2-distributed

with 1 degrees of freedom. The last column reports the LRT of the problem: H0 : the specification corresponding to the model in the

first column of the same row versus HA : the most general model introduced in Section 3.2.3, denoted here MSFGARCH model. ∗,∗∗ and
∗∗∗ denote statistical significance at 1%, 5% and 10% levels, respectively.
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Table 3.10: Model comparisons, short-term component switching, MU.

AIC BIC LRT

Model n LL Value Rank Value Rank HA : γ free HA : ψ free HA : MSFGARCH

Panel A : λ = 0

EGARCH 7 -10123.15 20260.30 10 20309.00 10 261.74∗∗∗

EGARCH 10 -10026.50 20073.00 3 20142.57 3 68.44∗∗∗

Panel B: λ = 1

AVGARCH 6 -10293.22 20598.43 18 20640.17 18 364.67∗∗∗ 601.87∗∗∗

TGARCH 7 -10110.88 20235.76 8 20284.47 7 237.20∗∗∗

AVGARCH 9 -10204.99 20427.97 15 20490.59 15 347.82∗∗∗ 425.41∗∗∗

TGARCH 10 -10031.08 20082.16 5 20151.73 4 77.60∗∗∗

Panel C: λ = 2

GARCH 6 -10274.16 20560.32 16 20602.06 16 251.74∗∗∗ 285.24∗∗∗ 563.76∗∗∗

GJRGARCH 7 -10148.29 20310.58 12 20359.28 12 312.02∗∗∗

QGARCH 7 -10131.54 20277.07 11 20325.78 11 278.51∗∗∗

GARCH 9 -10197.30 20412.60 13 20475.22 13 268.96∗∗∗ 355.85∗∗∗ 410.04∗∗∗

GJRGARCH 10 -10062.82 20145.64 6 20215.21 6 141.08∗∗∗

QGARCH 10 -10019.37 20058.75 2 20128.32 2 54.19∗∗∗

Panel D: λ free

NLGARCH 7 -10273.92 20561.84 17 20610.54 17 326.13∗∗∗ 563.28∗∗∗

APGARCH 8 -10110.86 20237.71 9 20293.37 8 237.15∗∗∗

FGARCH 10 -10107.39 20234.77 7 20304.34 9 230.21∗∗∗

NLGARCH 10 -10196.15 20412.30 14 20481.87 14 336.99∗∗∗ 407.74∗∗∗

APGARCH 11 -10027.66 20077.31 4 20153.84 5 70.75∗∗∗

FGARCH 13 -9992.28 20010.56 1 20101.00 1

Note: As in Table 3.9.
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Table 3.11: Model comparisons, short-term component switching, VIX.

AIC BIC LRT

Model n LL Value Rank Value Rank HA : γ free HA : ψ free HA : MSFGARCH

Panel A : λ = 0

EGARCH 7 -9982.35 19978.70 8 20027.40 7 182.16∗∗∗

MSEGARCH 10 -9904.36 19828.73 3 19898.30 2 26.19∗∗∗

Panel B: λ = 1

AVGARCH 6 -10069.30 20150.61 18 20192.35 17 160.63∗∗∗ 356.07∗∗∗

TGARCH 7 -9988.99 19991.98 14 20040.68 8 195.44∗∗∗

MSAVGARCH 9 -9982.63 19983.26 12 20045.87 11 46.86∗∗∗ 182.72∗∗∗

MSTGARCH 10 -9959.20 19938.40 5 20007.97 5 135.86∗∗∗

Panel C: λ = 2

GARCH 6 -10066.99 20145.99 16 20207.73 16 104.09∗∗∗ 172.92∗∗∗ 351.45∗∗∗

GJRGARCH 7 -10014.95 20043.89 15 20092.59 15 247.35∗∗∗

QGARCH 7 -9980.53 19975.07 7 20023.77 6 178.53∗∗∗

MSGARCH 9 -9983.24 19984.47 10 20047.09 12 14.99∗∗∗ 182.88∗∗∗ 183.93∗∗∗

MSGJRGARCH 10 -9975.74 19971.48 6 20041.05 9 168.94∗∗∗

MSQGARCH 10 -9891.80 19803.60 1 19873.17 1 1.06

Panel D: λ free

NLGARCH 7 -10066.79 20147.58 17 20196.28 18 160.58∗∗∗ 351.04∗∗∗

APGARCH 8 -9986.50 19989.00 13 20044.66 10 190.46∗∗∗

FGARCH 10 -9979.37 19978.74 9 20048.31 13 176.20∗∗∗

MSNLGARCH 10 -9981.39 19982.79 11 20052.36 14 63.23∗∗∗ 180.25∗∗∗

MSAPGARCH 11 -9949.78 19921.56 4 19998.09 4 117.02∗∗∗

MSFGARCH 13 -9891.27 19808.54 2 19898.98 3

Note: As in Table 3.9.
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Table 3.12: Estimated MSGARCH-MIDAS models, short-term component switching, FU

MSEGARCH MSAVGARCH MSTGARCH MSGARCH MSGJRGARCH MSQGARCH MSNLGARCH MSAPGARCH MSFGARCH

λ 0 1 1 2 2 2
1.6086

5.9967∗∗∗ 0.6417∗∗ (1.7190)

λ̂
1 1 1 2 2 2

(1.2057) (0.2984) 0.8027

(0.7471)

µ
0.0306∗∗∗ 0.0663∗∗∗ 0.0350∗∗ 0.0674∗∗∗ 0.0403∗∗∗ 0.0256∗∗ 0.0670 0.0324∗∗∗ 0.0289∗∗∗

(0.0660) (0.0150) (0.0095) (0.0048) (0.0089) (0.0024) (0.0083) (0.0009) (0.0104)

ω1

-0.4579∗∗∗ 0.0251∗∗∗ 0.0180∗∗∗ 0.0035∗∗∗ 0.0038∗ 0.0026 0.0000 0.0310∗∗∗ 0.0063

(0.0094) (0.0084) (0.0085) (0.0083) (0.0021) (0.0124) (0.0000) (0.0072) (0.0142)

ω2

-0.3126∗∗∗ 0.0488∗∗∗ 0.0294∗∗∗ 0.0133∗∗∗ 0.0107∗∗ 0.0079∗∗∗ 0.0001 0.0435∗∗∗ 0.0149

(0.0693) (0.0062) (0.0086) (0.0013) (0.0054) (0.0043) (0.0001) (0.0113) (0.0259)

α
-0.0004 0.0592 0.0861∗∗∗ 0.0544∗∗∗ 0.0470∗∗∗ 0.0307 0.0049∗∗∗ 0.0832∗∗∗ 0.0766∗∗∗

(0.0253) (0.0392) (0.0071) (0.0251) (0.0050) (0.0674) (0.0057) (0.0230) (0.1617)

β
0.8812∗∗∗ 0.7628∗∗∗ 0.8365∗∗∗ 0.7513∗∗∗ 0.7916∗∗∗ 0.8529∗∗∗ 0.5080∗∗∗ 0.8537∗∗∗ 0.8404∗∗∗

(0.0147) (0.0419) (0.0147) (0.0389) (0.0187) (0.1217) (0.1057) (0.0385) (0.1285)

γ
-0.2083∗∗∗ 0.9999∗∗∗ 0.9992∗∗∗ 0.9999∗∗∗ 0.9999∗∗∗

(0.0133) (0.0852) (0.0002) (0.0006) (0.0019)

ψ
0.0421∗∗∗ 0.0465

(0.0122) (0.1016)

θFU
3.4696∗∗∗ 3.6705∗∗∗ 3.1034∗∗∗ 3.5412∗∗∗ 3.0251∗∗∗ 3.4985∗∗∗ 3.5609∗∗∗ 3.2830∗∗∗ 3.2838∗∗∗

(0.2424) (0.4440) (0.9948) (0.3975) (0.5502) (0.4517) (0.3572) (1.1091) (0.8875)

wFU
448.11 474.31∗∗ 510.89∗∗∗ 509.38∗ 493.07 503.35 470.96 153.35∗ 510.06

(733.54) (216.13) (67.28) (298.74) (430.85) (898.71) (614.86) (87.79) (669.52)

p11 0.9761 0.9750 0.9857 0.9709 0.9820 0.9677 0.9754 0.9838 0.9808

p22 0.9627 0.9642 0.9753 0.9591 0.9762 0.9498 0.9661 0.9688 0.9682

g2
1 0.0212 0.0175 0.0362 0.0180 0.0334 0.0227 0.0166 0.0317 0.0295

g2
2 0.0720 0.0660 0.0964 0.0683 0.0938 0.0675 0.0583 0.0918 0.0864

σ2
1/σ

2
2 0.2943 0.2655 0.3751 0.2631 0.3559 0.3357 0.2843 0.3450 0.3409

Note: This table shows parameter estimates for the two-regime model introduced in Section 3.2.3 and the nested models, presented in Table 3.1. The

explanatory variable in the long-term component is the Financial Uncertainty (FU) index of Ludvigson et al. (2020). Standard errors are displayed in

parenthesis. ∗,∗∗ and ∗∗∗ denote statistical significance at 1%, 5% and 10% levels, respectively.
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Table 3.13: Estimated MSGARCH-MIDAS models, short-term component switching, MU

MSEGARCH MSAVGARCH MSTGARCH MSGARCH MSGJRGARCH MSQGARCH MSNLGARCH MSAPGARCH MSFGARCH

λ 0 1 1 2 2 2
3.4269∗∗∗

1.9261∗∗∗ 0.7928∗∗∗ (0.6057)

λ̂
1 1 1 2 2 2

(0.5086) (0.1154) 1.1066∗∗∗

(0.1639)

µ
0.0260∗∗∗ 0.0666∗∗∗ 0.0322∗∗∗ 0.0664∗∗∗ 0.0357∗∗∗ 0.0228∗∗∗ 0.0663∗∗∗ 0.0322∗∗∗ 0.0248∗∗∗

(0.0087 0.0092) (0.0082) (0.0084) (0.0082) (0.0086) (0.0085) (0.0006) (0.0080)

ω1

-0.2402∗∗∗ 0.0195∗∗∗ 0.0203∗∗∗ 0.0043∗ 0.0107∗∗ 0.0069∗∗∗ 0.0052∗ 0.0256∗∗∗ 0.0018

(0.0476) (0.0024) (0.0055) (0.0023) (0.0053) (0.0020) (0.0029) (0.0052) (0.0015)

ω2

-0.1283∗∗∗ 0.0514 0.0394∗∗∗ 0.0286∗∗ 0.0420∗∗ 0.0223∗∗∗ 0.0299∗∗ 0.0433∗∗∗ 0.0145∗

(0.0333) (0.0315) (0.0111) (0.0123) (0.0210) (0.0071) (0.0147) (0.0075) (0.0085)

α
0.0685∗∗∗ 0.0758∗ 0.0887∗∗∗ 0.0700∗∗∗ 0.0510∗∗∗ 0.0656∗∗∗ 0.0745∗∗∗ 0.0884∗∗∗ 0.3026∗∗∗

(0.0222) (0.0438) (0.0054) (0.0259) (0.0044) (0.0073) (0.0223) (0.0056) (0.0929)

β
0.9203∗∗∗ 0.8429∗∗∗ 0.8549∗∗∗ 0.8253∗∗∗ 0.8157∗∗∗ 0.8391∗∗∗ 0.8215∗∗∗ 0.8642∗∗∗ 0.7058∗∗∗

(0.0140) (0.0732) (0.0131) (0.0468) (0.0156) (0.0155) (0.0491) (0.0142) (0.0454)

γ
-0.1869∗∗∗ 0.9999∗∗∗ 0.9985∗∗∗ 0.9999∗∗∗ 0.9997∗∗∗

(0.0128 (0.0789) (0.0019) (0.0005) (0.0038)

ψ
0.0657∗∗∗ 0.0074

(0.0098) (0.0061)

θMU
3.5196∗∗∗ 3.7377∗∗ 3.1705∗∗∗ 3.5652∗∗∗ 2.0958∗∗ 3.2591∗∗∗ 3.5453∗∗∗ 3.3281∗∗∗ 2.5295∗∗∗

(0.3922) (1.7019) (0.9957) (0.5429) (0.8819) (0.4660) (0.5164) (0.4442) (0.5522)

wMU
296.07∗∗ 507.99 9.46 512.91 38.67 8.13 514.44∗ 530.28∗∗∗ 8.1489

(118.45) (790.06) (7.36) (642.64) (113.68) (5.06) (302.80) (154.88) (5.3021)

p11 0.9904 0.9842 0.9948 0.9834 0.9947 0.9932 0.9854 0.9936 0.9941

p22 0.9838 0.9642 0.9894 0.9591 0.9907 0.9867 0.9661 0.9871 0.9863

g2
1 0.0491 0.0407 0.0744 0.0414 0.1300 0.0729 0.0386 0.0672 0.1812

g2
2 0.1998 0.2828 0.2805 0.2729 0.5089 0.2344 0.2382 0.2528 0.6150

σ2
1/σ

2
2 0.2457 0.1438 0.2652 0.1518 0.2555 0.3110 0.1622 0.2657 0.2946

Note: This table shows parameter estimates for the two-regime model introduced in Section 3.2.3 and the nested models, presented in Table 3.1. The

explanatory variable in the long-term component is the Macroeconomic Uncertainty (MU) index of Jurado et al. (2015). Standard errors are displayed in

parenthesis. ∗,∗∗ and ∗∗∗ denote statistical significance at 1%, 5% and 10% levels, respectively.
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Table 3.14: Estimated MSGARCH-MIDAS models, short-term component switching, VIX

MSEGARCH MSAVGARCH MSTGARCH MSGARCH MSGJRGARCH MSQGARCH MSNLGARCH MSAPGARCH MSFGARCH

λ 0 1 1 2 2 2
2.3709∗∗∗

1.5693∗∗∗ 0.4176∗∗∗ (0.2871)

λ̂ 1 1 1 2 2 2
(0.1342) (0.1553) 0.0015

(0.0011)

µ
0.0304∗∗∗ 0.0465∗∗∗ 0.0693∗∗∗ 0.0467∗∗∗ 0.0388∗∗∗ 0.0253∗∗∗ 0.0464∗∗∗ 0.0321∗∗∗ 0.0250∗∗∗

(0.0101) (0.0084) (0.0224) (0.0084) (0.0085) (0.0085) (0.0084) (0.0000) (0.0088)

ω1

-0.8394∗ 0.2548∗∗∗ 0.0324∗∗∗ 0.0654∗∗∗ 0.0150 0.0211∗∗∗ 0.1167∗∗∗ 0.1004∗∗ 0.0135∗∗

(0.5063) (0.0163) (0.0093) (0.0094) (0.0129) (0.0041) (0.0155) (0.0443) (0.0055)

ω2

-0.5590∗ 0.3947∗∗∗ 0.0473∗∗∗ 0.1586∗∗∗ 0.0405∗∗∗ 0.0501∗∗∗ 0.2312∗∗∗ 0.1185∗∗ 0.0345∗∗∗

(0.3195) (0.0276) (0.0106) (0.0274) (0.0112) (0.0144) (0.0209) (0.0501) (0.0129)

α
-0.1158 0.0000 0.0506∗∗∗ 0.0000 0.0169∗∗∗ 0.0000 0.0000 0.0440∗∗∗ 0.0801

(0.0830) (0.0000) (0.0083) (0.0000) (0.0062) (0.0000) (0.0000) (0.0114) (0.0515)

β
0.6804∗∗∗ 0.0000 0.8034∗∗∗ 0.0000 0.7617∗∗∗ 0.7677∗∗∗ 0.0000 0.8084∗∗∗ 0.7020∗∗∗

(0.1809) (0.0000) (0.0426) (0.0000) (0.1664) (0.0599) (0.0000) (0.0488) (0.0364)

γ
-0.2027∗∗∗ 0.9999∗∗∗ 0.9975∗∗∗ 0.9999∗∗∗ 0.0328∗∗

(0.0406)) (0.2196) (0.0042) (0.0002) (0.0166)

ψ
0.0717∗∗∗ 0.0527∗∗∗

(0.0071) (0.0136)

θVIX
0.1001∗∗∗ 0.1064∗∗∗ 0.0930∗∗∗ 0.1065∗∗∗ 0.0998∗∗∗ 0.0937∗∗∗ 0.1064∗∗∗ 0.0950∗∗∗ 0.0926∗∗∗

(0.0063) (0.0035) (0.0134) (0.0034) (0.0042) (0.0062) (0.0036) (0.0084) (0.0081)

wVIX
1.8030∗∗∗ 5.3399∗∗∗ 2.9869∗∗∗ 5.2743∗∗∗ 3.5916∗∗∗ 1.6918∗∗∗ 5.3662∗∗∗ 2.7701∗∗∗ 2.1155∗∗∗

(0.5763) (1.2189) (0.6715) (1.2776) (0.7598) (0.6416) (1.3289) (0.6205) (0.7998)

p11 0.9740 0.9748 0.9794 0.9739 0.9654 0.9742 0.9752 0.9786 0.9799

p22 0.9627 0.9642 0.9695 0.9591 0.9266 0.9489 0.9661 0.9688 0.9625

g2
1 0.0723 0.0649 0.0431 0.0654 0.0735 0.0907 0.0647 0.0899 0.0954

g2
2 0.1739 0.1558 0.0915 0.1586 0.1979 0.2157 0.1547 0.1994 0.2108

σ2
1/σ

2
2 0.4159 0.4165 0.4715 0.4121 0.3716 0.4203 0.4183 0.4511 0.4525

Note: This table shows parameter estimates for the two-regime model introduced in Section 3.2.3 and the nested models, presented in Table 3.1. The

explanatory variable in the long-term component is the Chicago Board Options Exchange Volatility Index (VIX). Standard errors are displayed in parenthesis.
∗,∗∗ and ∗∗∗ denote statistical significance at 1%, 5% and 10% levels, respectively.
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Table 3.15: Model comparisons, long-term component switching, FU-VIX.

AIC BIC LRT

Model n LL Value Rank Value Rank HA : γ free HA : ψ free HA : MSFGARCH

Panel A : λ = 0

EGARCH 9 -9953.92 19925.85 9 19988.46 8 201.82∗∗∗

MSEGARCH 14 -9856.06 19900.12 3 19837.52 2 6.09

Panel B : λ = 1

AVGARCH 8 -10057.74 20131.48 18 20207.14 17 186.78∗∗∗ 409.46∗∗∗

TGARCH 9 -9964.35 19946.71 13 20009.32 10 222.68∗∗∗

MSAVGARCH 13 -9954.80 19935.61 11 20026.05 13 95.81∗∗∗ 203.58∗∗∗

MSTGARCH 14 -9906.90 19841.80 5 19939.20 5 107.77∗∗∗

Panel C : λ = 2

GARCH 8 -10055.04 20126.09 16 20201.75 16 121.99∗∗∗ 207.19∗∗∗ 404.06∗∗∗

GJRGARCH 9 -9994.05 20006.10 15 20068.71 15 282.07∗∗∗

QGARCH 9 -9951.45 19920.90 8 19983.52 7 196.87∗∗∗

MSGARCH 13 -9961.47 19948.95 14 20039.39 14 102.47∗∗∗ 234.63∗∗∗ 216.92∗∗∗

MSGJRGARCH 14 -9922.06 19872.11 6 19969.52 6 138.09∗∗∗

MSQGARCH 14 -9855.98 19739.95 1 19837.35 1 5.92

Panel D : λ free

NLGARCH 9 -10054.21 20126.42 17 20209.04 18 187.54∗∗∗ 402.40∗∗∗

APGARCH 10 -9960.44 19940.88 12 20010.45 11 214.86∗∗∗

FGARCH 12 -9947.02 19918.05 7 20001.53 9 188.02∗∗∗

MSNLGARCH 14 -9950.31 19928.62 10 20026.02 12 109.59∗∗∗ 194.60∗∗∗

MSAPGARCH 15 -9895.52 19821.03 4 19925.39 4 85.01∗∗∗

MSFGARCH 17 -9853.01 19900.03 2 19858.30 3

Note: n denotes the number of parameters to be estimated and LL the maximized log-likelihood value of a given model. AIC and

BIC are the Akaike information criterion and the Bayesian information criterion, respectively, computed as AIC = −2 (LL − n) and

BIC = −2LL+n log(T ) where T = 7764 is the sample size. The LRTs in the antepenultimate and penultimate columns are the likelihood

test statistics for the following tests: H0 : the symmetric specification corresponding to the model in the first column of the same row,

versus HA : the parameters γ or ψ are freely estimated. Under the null hypothesis, the LRT statistics are asymptotically χ2-distributed

with 1 degrees of freedom. The last column reports the LRT of the problem: H0 : the specification corresponding to the model in the

first column of the same row versus HA : the most general model, denoted here MSFGARCH model. ∗,∗∗ and ∗∗∗ denote statistical

significance at 1%, 5% and 10% levels, respectively.
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Table 3.16: Model comparisons, long-term component switching, MU-VIX.

AIC BIC LRT

Model n LL Value Rank Value Rank HA : γ free HA : ψ free HA : MSFGARCH

Panel A : λ = 0

EGARCH 9 -9975.83 19969.66 12 20032.28 9 217.27∗∗∗

MSEGARCH 14 -9872.80 19773.59 3 19870.99 2 11.20∗∗

Panel B : λ = 1

AVGARCH 8 -10061.33 20138.66 18 20194.31 17 161.04∗∗∗ 388.27∗∗∗

TGARCH 9 -9980.81 19979.62 14 20042.23 12 227.23∗∗∗

MSAVGARCH 13 -9956.88 19939.76 9 20030.20 8 108.94∗∗∗ 179.37∗∗∗

MSTGARCH 14 -9909.67 19847.35 5 19944.75 5 84.96∗∗∗

Panel C : λ = 2

GARCH 8 -10059.71 20135.41 16 20191.07 16 102.04∗∗∗ 175.24∗∗∗ 385.02∗∗∗

GJRGARCH 9 -10008.69 20035.37 15 20097.99 15 282.98∗∗∗

QGARCH 9 -9972.09 19962.17 10 20024.79 7 209.78∗∗∗

MSGARCH 13 -9960.21 19946.41 8 20036.85 11 71.33∗∗∗ 184.62∗∗∗ 186.02∗∗∗

MSGJRGARCH 14 -9924.54 19877.08 6 19974.48 6 114.69∗∗∗

MSQGARCH 14 -9867.89 19763.79 1 19861.19 1 1.40

Panel D : λ free

NLGARCH 9 -10058.71 20135.43 17 20198.05 18 162.28∗∗∗ 383.04∗∗∗

APGARCH 10 -9977.58 19975.15 13 20044.72 13 220.76∗∗∗

FGARCH 12 -9971.89 19967.77 11 20051.26 14 209.38∗∗∗

MSNLGARCH 14 -9953.86 19935.71 7 20033.11 10 108.34∗∗∗ 173.32∗∗∗

MSAPGARCH 15 -9899.68 19829.37 4 19933.73 4 64.98∗∗∗

MSFGARCH 17 -9867.19 19768.39 2 19886.66 3

Note: As in Table 3.15.
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Table 3.17: Estimated MSGARCH-MIDAS models, long-term component switching, FU-VIX

MSEGARCH MSAVGARCH MSTGARCH MSGARCH MSGJRGARCH MSQGARCH MSNLGARCH MSAPGARCH MSFGARCH

λ 0 1 1 2 2 2
1.8390∗∗∗

1.4270∗∗∗ 0.5313∗∗ (0.4520)

λ̂ 1 1 1 2 2 2
(0.4165) (0.2175) 1.1836

(1.0777)

µ
0.0320∗∗∗ 0.0499∗∗∗ 0.0368∗∗∗ 0.0460∗ 0.0410∗∗∗ 0.0301∗∗∗ 0.0475∗∗∗ 0.0349∗∗∗ 0.0301∗∗∗

(0.0079) (0.0104) (0.0130) (0.0246) (0.0092) (0.0076) (0.0091) (0.0000) (0.0083)

α
-0.0606 0.0155 0.0500∗∗∗ 0.0010 0.0000 0.0000 0.0144∗∗∗ 0.0481∗∗∗ 0.0000

(0.0628) (0.0191) (0.0057) (0.0815) (0.0000) (0.0000) (0.0050) (0.0070) (0.0000)

β
0.8331∗∗∗ 0.9786∗∗∗ 0.8606∗∗∗ 0.9709∗∗∗ 0.8599∗∗∗ 0.8472∗∗∗ 0.9820∗∗∗ 0.8812∗∗∗ 0.8447∗∗∗

0.0611 0.0367 0.0238 0.1648 0.0457 0.0434 0.0049 0.0766 0.0492

γ
-0.1871∗∗∗ 0.9999∗∗∗ 0.0802∗∗∗ 0.9999∗∗∗ -0.3350

(0.0338) (0.1604) (0.0177) (0.0004) (0.3410)

ψ
0.1746∗∗∗ 0.1697∗∗∗

(0.0233) (0.0558)

m1

-3.0852∗∗∗ -2.8066∗∗∗ -2.8942∗∗∗ -3.5213∗∗∗ -2.9637∗∗∗ -2.9385∗∗∗ -2.8506∗∗∗ -2.8935∗∗∗ -2.9753∗∗∗

(0.1217) (0.4205) (0.2221) (0.5286) (0.2219) (0.1568) (0.3979) (0.3035) (0.1810)

m2

-2.1713∗∗∗ -1.4869∗∗∗ -1.7373∗∗∗ -1.5397 -1.7647∗∗∗ -1.9953∗∗∗ -1.5217∗∗∗ -1.8020∗∗∗ -2.0666∗∗∗

(0.7024) (0.4229) (0.5487) (2.1479) (0.6772) (0.3449) (0.4116) (0.5797) (0.3963)

θFU
1

0.7630 -0.4119 0.4661 1.0582∗∗∗ 0.2069∗ 0.6459∗∗ -0.7015 0.7316 0.7182∗∗

(0.4647) (2.7802) (0.3600) (0.3724) (0.1229) (0.2537) (0.6500) (0.9187) (0.3693)

θFU
2

1.7380∗∗∗ 1.1237 1.6911∗∗∗ -0.4506 1.6763∗∗∗ 1.7150∗∗∗ 0.9900∗∗ 2.0092 1.9194∗∗∗

(0.6192) (1.2092) (0.5157) (1.1373) (0.5351) (0.4499) (0.4870) (1.6820) (0.5590)

θVIX
1

0.0936∗∗∗ 0.1406 0.1059∗∗∗ 0.1012∗∗∗ 0.1184∗∗∗ 0.0967∗∗∗ 0.1566∗∗∗ 0.0938∗∗ 0.0949∗∗∗

(0.0286) (0.1139) (0.0129) (0.0207) (0.0098) (0.0103) (0.0234) (0.0452) (0.0143)

θVIX
2

0.0429∗∗∗ 0.0478∗ 0.0300∗∗∗ 0.1111 0.0304∗∗ 0.0390∗∗∗ 0.0515∗∗∗ 0.0256 0.0356∗∗∗

(0.0149) (0.0253) (0.0090) (0.1107) (0.0137) (0.0078) (0.0155) (0.0442) (0.0094)

wFU
422.31 518.12 511.59 1.0098 512.26 516.15 500.08 227.49∗∗∗ 499.11

(787.4272) (935.1448) (345.5859) (2.6951) (501.9760) (612.0390) (316.6408) (49.3430) (915.58)

wVIX
2.3357∗∗ 6.1138 3.9395∗∗∗ 5.0749∗∗ 4.7698∗∗∗ 2.6556∗∗∗ 6.4044∗∗∗ 3.2920∗∗ 2.2961∗∗∗

(0.9787) (4.6213) (0.9582) (2.2368) (1.3613) (0.8524) (1.9288) (1.5603 (0.7102)

p11 0.9807 0.9751 0.9881 0.9809 0.9814 0.9848 0.9813 0.9824 0.9792

p22 0.9627 0.9345 0.9698 0.9694 0.9519 0.9695 0.9644 0.9335 0.9475

θFU
1 = θFU

2 [0.0126] [0.3706] [0.0329] [0.1777] [0.0044] [0.0232] [0.0068] [0.1609] [0.0186]

θVIX
1 = θVIX

2 [0.2279] [0.3124] [0.0000] [0.9177] [0.0000] [0.0000] [0.0000] [0.0000] [0.0001]

Note: This table shows parameter estimates for the two-regime model with two explanatory variables in the long-term volatility component: the Financial

Uncertainty (FU) index of Ludvigson et al. (2020) and the Chicago Board Options Exchange Volatility Index (VIX). Standard errors are displayed in parenthesis;

p-values are displayed as [·]. ∗,∗∗ and ∗∗∗ denote statistical significance at 1%, 5% and 10% levels, respectively.
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Table 3.18: Estimated MSGARCH-MIDAS models, long-term component switching, MU-VIX

MSEGARCH MSAVGARCH MSTGARCH MSGARCH MSGJRGARCH MSQGARCH MSNLGARCH MSAPGARCH MSFGARCH

λ 0 1 1 2 2 2
2.2779∗∗∗

1.4801∗∗∗ 0.6026∗∗∗ (0.7182)

λ̂
1 1 1 2 2 2

(0.5081) (0.1101) 5.9962∗

(3.1598)

µ
0.0290∗∗∗ 0.0473∗∗∗ 0.0343∗∗ 0.0453∗∗∗ 0.0381∗∗∗ 0.0278∗∗∗ 0.0431∗∗∗ 0.0323∗∗∗ 0.0278∗∗∗

(0.0084) (0.0111) (0.0173) (0.0109) (0.0086) (0.0088) (0.0125) (0.0000) (0.0093)

α
-0.0295 0.0204 0.0479∗ 0.0097 0.0000 0.0013 0.0202∗∗ 0.0472∗∗∗ 0.0000

(0.0294) (0.0158) (0.0263) (0.0097) (0.0000) (0.0119) (0.0083) (0.0056) (0.0001)

β
0.8379∗∗∗ 0.9709∗∗∗ 0.8716∗∗∗ 0.9874∗∗∗ 0.8781∗∗∗ 0.8362∗∗∗ 0.9631∗∗∗ 0.8932∗∗∗ 0.8225∗∗∗

(0.0634) (0.0181) (0.3318) (0.0202) (0.0393) (0.0524) (0.0200) (0.0230) (0.1088)

γ
-0.1781∗∗∗ 0.9999∗∗∗ 0.0772∗∗∗ 0.9999∗∗∗ -0.6300

(0.0294) (0.0693) (0.0147) (0.0002) (2.1780)

ψ
0.1781∗∗∗ 0.2096∗∗

(0.0269) (0.0982)

m1

-2.7504∗∗∗ -2.5103∗∗∗ -2.6316∗∗∗ -2.3469 -2.7085∗∗∗ -2.6026∗∗∗ -2.6314∗∗∗ -2.5064∗∗∗ -2.6099∗∗∗

(0.2951 0.6801) (0.1448) (2.1956) (0.2474) (0.2693) (0.4636) (0.2570) (0.3201)

m2

-1.4689∗∗∗ -0.9082 -0.9743 -0.4180 -0.8867 -1.2850∗∗∗ 0.4438 -1.1105∗ -1.3158∗∗∗

(0.3630) (0.9128) (3.8969) (2.0677) (0.6600) (0.3759) (2.5264) (0.6164) (0.3983)

θMU
1

0.1466 -0.3938 0.2670 -1.7191 0.0726 0.0760 -0.2588 0.3224 0.0854

(0.4934) (0.3581) (2.7082) (4.2411) (0.3499) (0.3340) (0.7726) (0.3261) (0.6377)

θMU
2

1.4673∗ 1.1302 1.7085 -0.6084 1.5195 1.5663∗ -1.1269 2.4463∗ 1.4598∗

(0.8847) (2.3869) (6.8837) (3.7298) (0.9388) (0.8679) (3.0169) (1.2815) (0.7720)

θVIX
1

0.1116∗∗∗ 0.1233∗∗∗ 0.1081 0.1520∗∗∗ 0.1157∗∗∗ 0.1098∗∗∗ 0.1253∗∗∗ 0.1007∗∗∗ 0.1101∗∗∗

(0.0073) (0.0319) (0.0686) (0.0209) (0.0105) (0.0066) (0.0105) (0.0084) (0.0091)

θVIX
2

0.0455∗∗∗ 0.0490 0.0287 0.0585∗∗∗ 0.0294∗∗∗ 0.0410∗∗∗ 0.0550∗∗∗ 0.0215∗ 0.0441∗∗∗

(0.0143) (0.0476) (0.1781) (0.0063) (0.0066) (0.0140) (0.0139) (0.0113) (0.0122)

wMU
398.74 578.98 490.54 2.5299 409.97 501.22 2.2493 260.41 387.79

(594.1362) (628.4954) (720.2537) (2.9189) (348.2923) (563.7854) (2.4616) (164.6635) (994.70)

wVIX
2.2878∗∗∗ 5.2370 3.5526 5.9009∗∗∗ 4.2409∗∗∗ 2.1970∗∗∗ 5.2319∗∗∗ 3.0059∗∗∗ 2.2019∗∗

(0.8385) (4.0233) (4.1079) (1.5888) (1.0170) (0.7602) (1.7969) (0.7363) (1.0040)

p11 0.9864 0.9868 0.9926 0.9836 0.9894 0.9855 0.9933 0.9906 0.9875

p22 0.9627 0.9307 0.9652 0.9606 0.9436 0.9454 0.9692 0.9265 0.9611

θMU
1 = θMU

2 [0.2726] [0.4603] [0.7333] [0.3567] [0.1737] [0.1789] [0.7799] [0.1269] [0.2407]

θVIX
1 = θVIX

2 [0.0000] [0.0003] [0.4698] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000]

Note: This table shows parameter estimates for the two-regime model with two explanatory variables in the long-term volatility component: the Macroeconomic

Uncertainty (MU) index of Jurado et al. (2015) and the Chicago Board Options Exchange Volatility Index (VIX). Standard errors are displayed in parenthesis;

p-values are displayed as [·]. ∗,∗∗ and ∗∗∗ denote statistical significance at 1%, 5% and 10% levels, respectively.
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Table 3.19: Model comparisons, long-term component switching, FU-MU-VIX.

AIC BIC LRT

Model n LL Value Rank Value Rank HA : γ free HA : ψ free HA : MSFGARCH

Panel A : λ = 0

EGARCH 11 -9953.92 19929.84 9 20006.37 8 203.82∗∗∗

MSEGARCH 17 -9854.51 19743.02 2 19861.29 2 5.00

Panel B : λ = 1

AVGARCH 10 -10056.57 20133.14 18 20202.71 17 184.49∗∗∗ 409.12∗∗∗

TGARCH 11 -9964.33 19950.65 13 20027.18 10 224.63∗∗∗

MSAVGARCH 16 -9952.25 19936.51 11 20047.82 12 104.02∗∗∗ 200.49∗∗∗

MSTGARCH 17 -9900.24 19834.49 5 19952.76 5 96.47∗∗∗

Panel C : λ = 2

GARCH 10 -10053.10 20126.20 16 20195.77 16 118.17∗∗∗ 203.33∗∗∗ 402.18∗∗∗

GJRGARCH 11 -9994.01 20010.03 15 20086.56 15 284.01∗∗∗

QGARCH 11 -9951.44 19924.87 8 20001.40 7 198.85∗∗∗

MSGARCH 16 -9968.01 19968.01 14 20079.33 14 98.84∗∗∗ 227.81∗∗∗ 231.99∗∗∗

MSGJRGARCH 17 -9918.59 19871.17 6 19989.45 6 133.15∗∗∗

MSQGARCH 17 -9854.10 19742.20 1 19860.48 1 4.18

Panel D : λ free

NLGARCH 11 -10054.22 20130.45 17 20206.98 18 187.70∗∗∗ 404.43∗∗∗

APGARCH 12 -9960.37 19944.75 12 20028.24 11 216.73∗∗∗

FGARCH 14 -9946.97 19921.93 7 20019.33 9 189.91∗∗∗

MSNLGARCH 17 -9949.05 19932.10 10 20050.38 13 110.95∗∗∗ 194.08∗∗∗

MSAPGARCH 18 -9893.58 19823.15 4 19948.38 4 83.13∗∗∗

MSFGARCH 20 -9852.01 19744.02 3 19883.17 3

Note: As in Table 3.15.
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Table 3.20: Estimated MSGARCH-MIDAS models, long-term component switching, FU-MU-VIX

MSEGARCH MSAVGARCH MSTGARCH MSGARCH MSGJRGARCH MSQGARCH MSNLGARCH MSAPGARCH MSFGARCH

λ 0 1 1 2 2 2
2.5122∗∗∗

1.4875∗ 0.5570 (0.2957)

λ̂ 1 1 1 2 2 2
(0.8603) (1.1793) 0.0642

(0.1323)

µ
0.0321∗∗∗ 0.0475∗∗∗ 0.0366∗∗∗ 0.0474∗∗∗ 0.0415∗∗∗ 0.0303∗∗∗ 0.0492∗∗∗ 0.0343∗∗∗ 0.0310∗∗∗

(0.0081) (0.0092) (0.0101) (0.0178) (0.0091) (0.0081) (0.0110) (0.0000) (0.0000)

α
-0.0723∗ 0.0131∗∗∗ 0.0495 0.0019 0.0199∗∗∗ 0.0000 0.0128 0.0495 0.0159

(0.0374) (0.0046) (0.0061) (0.0288) (0.0035) (0.0000) (0.0093) (0.0097) (0.0326)

β
0.8204∗∗∗ 0.9840∗∗∗ 0.8814∗∗∗ 0.9705∗∗∗ 0.8774∗∗∗ 0.8427∗∗∗ 0.9843∗∗∗ 0.8877∗∗∗ 0.8012∗∗∗

(0.0481) (0.0078) (0.0526) (0.0537) (0.0453) (0.0417) (0.0171) (0.2412) (0.0566)

γ
-0.1957∗∗∗ 0.9999∗∗∗ 0.9977∗∗∗ 0.9999∗∗∗ 0.9954∗∗∗

(0.0242) (0.2924) (0.0016) (0.0027) (0.0211)

ψ
0.1773∗∗∗ 0.2301∗∗∗

(0.0245) (0.0289)

m1

-3.0104∗∗∗ -2.3915∗∗∗ -2.7370∗∗∗ -3.0512∗ -2.8901∗∗∗ -2.9629∗∗∗ -2.5613∗∗∗ -2.7707 -2.8137∗∗∗

(0.1975) (0.7581) (0.3437) (1.7905) (0.2454) (0.1953) (0.9835) (2.6192) (0.1826)

m2

-2.3459∗∗∗ -0.9952∗ -1.7767 -1.4486 -1.7546∗∗ -1.7868∗∗∗ -1.1438 -2.0303 -2.2342∗∗∗

(0.5096) (0.5741) (1.1614) (5.4213) (0.7791) (0.5767) (0.7475) (2.3425) (0.7737)

θFU
1

0.9623∗∗ -0.4978 0.8098 1.4922 0.4903 0.6720∗∗ -0.2295 0.8314 0.7924

(0.4272) (0.5597) (0.7293) (5.7583) (0.5712) (0.3202) (0.8813) (3.1491) (0.4840)

θFU
2

1.8648∗∗∗ 1.2419∗∗ 1.3903 -0.3252 1.5700∗ 1.8945∗∗∗ 1.4735∗∗ 1.6718∗∗ 1.8807∗∗∗

(0.4036) (0.5037) (1.3691) (8.0829) (0.8829) (0.4694) (0.6100) (0.8276) (0.5753)

θMU
1

-0.3566 -0.8612 -0.2027 -1.3533 -0.2403 -0.0321 -0.9332 -0.1003 -0.3525

(0.3729) (1.7074) (0.5708) (13.7050) (0.4870) (0.0233) (2.4388) (3.8928) (0.4059)

θMU
2

0.2082 -1.1314 1.4556 0.0187 0.5519 -0.5869 -1.1020 1.2952 0.2261

(0.7311) (0.9640) (1.8975) (0.7925) (0.9738) (1.3211) (1.3232) (9.2975) (1.7181)

θVIX
1

0.0918∗∗∗ 0.1535∗∗∗ 0.0907∗∗∗ 0.1028 0.1100∗∗∗ 0.0975∗∗∗ 0.1491∗∗∗ 0.0879 0.0946∗∗∗

(0.0132) (0.0322) (0.0246) (0.0780) (0.0169) (0.0106) (0.0556) (0.1189) (0.0142)

θVIX
2

0.0420∗∗∗ 0.0521∗∗∗ 0.0152 0.1038∗ 0.0228∗ 0.0392∗∗∗ 0.0462∗∗∗ 0.0174 0.0401∗∗∗

(0.0118) (0.0122) (0.0176) (0.0530) (0.0139) (0.0093) (0.0100) (0.1833) (0.0109)

wFU
438.530 504.097 480.575∗∗ 1.0050 505.280 508.042 513.987 609.053 167.331∗∗∗

(520.952) (770.550) (225.862) (17.610) (610.918) (823.388) (723.200) (791.526) (33.137)

wMU
181.054 5.3070 510.704 1.0238 496.703 4.8182 5.5978 350.856 65.953

(492.997) (5.4832) (800.524) (32.158) (995.619) (4.8921) (8.732) (507.948) (320.668)

wVIX
1.9793∗∗∗ 6.4710∗∗∗ 3.4679∗∗∗ 5.1561∗∗∗ 4.5793∗∗∗ 2.5741∗∗∗ 6.1542∗∗∗ 3.1191 2.1474∗∗∗

(0.7190) (2.0297) (0.9374) (2.0002) (1.1520) (0.8940) (1.8133) (4.3413) (0.7103)

p11 0.9759 0.9796 0.9892 0.9818 0.9805 0.9823 0.9750 0.9862 0.9800

p22 0.9422 0.9591 0.9353 0.9611 0.9263 0.9624 0.9414 0.9273 0.9487

LRTH0: FU-VIX [0.3765] [0.1641] [0.0040] [0.4249] [0.0740] [0.2897] [0.4711] [0.2758] [0.5712]

LRTH0:MU-VIX [0.0000] [0.0260] [0.0003] [0.9655] [0.0077] [0.0000] [0.0222] [0.0067] [0.0000]

Note: The explanatory variables in the long-term component are the Financial Uncertainty (FU) index, the Macroeconomic Uncertainty (MU) index and the

Chicago Board Options Exchange Volatility Index (VIX). Standard errors are displayed in parenthesis; p-values are displayed as [·]. ∗,∗∗ and ∗∗∗ denote statistical

significance at 1%, 5% and 10% levels, respectively.
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Table 3.21: QLIKE losses and MCS: full out-of-sample period, FU.

1d 2w 1m 2m 3m

EGARCH 0.2881 0.2410 0.2663 0.4229 0.5144

AVGARCH 0.3392 0.2620 0.2809 0.4265 0.5091

TGARCH 0.2777 0.2299 0.2630 0.4226 0.5074

GARCH 0.3374 0.2631 0.2846 0.4333 0.5168

GJRGARCH 0.2977 0.2422 0.2711 0.4298 0.5170

QGARCH 0.3104 0.2542 0.2835 0.4313 0.5126

NLGARCH 0.3371 0.2626 0.2840 0.4316 0.5143

APGARCH 0.2787 0.2301 0.2629 0.4211 0.5054

FGARCH 0.2898 0.2419 0.2712 0.4156 0.4985

MSEGARCH 0.2661 0.2184 0.2458 0.4212 0.5224

MSAVGARCH 0.3044 0.2475 0.2862 0.4661 0.5746

MSTGARCH 0.2643 0.2270 0.2735 0.4498 0.5392

MSGARCH 0.3110 0.2530 0.2906 0.4784 0.5858

MSGJRGARCH 0.2931 0.2484 0.2863 0.4476 0.5140

MSQGARCH 0.2709 0.2283 0.2669 0.4391 0.5238

MSNLGARCH 0.3146 0.2454 0.2735 0.4658 0.5855

MSAPGARCH 0.2601 0.2175 0.2572 0.4237 0.5108

MSFGARCH 0.2519 0.2057 0.2381 0.4146 0.5111

Note: This table presents forecasts performance at five horizons: 1-day (1d), 2-weeks

(2w), 1-month (1m), 2-moths (2m) and 3-months (3m). The table reports the average

QLIKE losses in the full out-of-sample period from 2007:M1 to 2020:M11. The explanatory

variable in the long-term component is the Financial Uncertainty (FU) index of Ludvigson

et al. (2020). The models with the lowest average losses are highlighted in bold; the second

lowest average losses are in italics. The table also presents the results from the 90% MCS

for each horizon. The models included in the final set are shaded in blue.
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Table 3.22: QLIKE losses and MCS: full out-of-sample period, MU.

1d 2w 1m 2m 3m

EGARCH 0.2966 0.2794 0.3400 0.6309 0.7277

AVGARCH 0.3519 0.2900 0.3547 0.6296 0.7303

TGARCH 0.2837 0.2594 0.3440 0.6158 0.7134

GARCH 0.3522 0.2932 0.3628 0.6791 0.8015

GJRGARCH 0.3078 0.2645 0.3228 0.5918 0.7104

QGARCH 0.3612 0.2859 0.3622 0.5926 0.6642

NLGARCH 0.3485 0.2894 0.3582 0.6615 0.7762

APGARCH 0.2877 0.2649 0.3478 0.5981 0.6860

FGARCH 0.2964 0.2759 0.3604 0.5779 0.6294

MSEGARCH 0.2797 0.2599 0.3173 0.5635 0.6789

MSAVGARCH 0.3089 0.2646 0.3270 0.5917 0.7581

MSTGARCH 0.2675 0.2377 0.3108 0.5587 0.6466

MSGARCH 0.3157 0.2709 0.3382 0.6246 0.7943

MSGJRGARCH 0.2969 0.2634 0.3362 0.6112 0.7322

MSQGARCH 0.2774 0.2530 0.3180 0.5516 0.6317

MSNLGARCH 0.3125 0.2687 0.3313 0.5959 0.7218

MSAPGARCH 0.2640 0.2334 0.3090 0.5555 0.6458

MSFGARCH 0.2655 0.2442 0.3058 0.5703 0.6413

Note: As in Table 3.21 except that the explanatory variable in the long-term component

is the Macroeconomic Uncertainty (MU) index of Jurado et al. (2015).
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Table 3.23: QLIKE losses and MCS: full out-of-sample period, VIX.

1d 2w 1m 2m 3m

EGARCH 0.2657 0.2574 0.3729 0.7785 0.9397

AVGARCH 0.2805 0.2482 0.3525 0.7598 0.9289

TGARCH 0.2585 0.2435 0.3531 0.7428 0.8972

GARCH 0.2833 0.2515 0.3583 0.7786 0.9545

GJRGARCH 0.2706 0.2472 0.3562 0.7834 0.9585

QGARCH 0.2714 0.2586 0.3668 0.7494 0.9022

NLGARCH 0.2804 0.2487 0.3554 0.7709 0.9429

APGARCH 0.2590 0.2457 0.3563 0.7297 0.8757

FGARCH 0.2767 0.2585 0.3662 0.7346 0.8837

MSEGARCH 0.2491 0.2424 0.3567 0.7667 0.9428

MSAVGARCH 0.2609 0.2541 0.3684 0.7793 0.9639

MSTGARCH 0.2527 0.2487 0.3583 0.7122 0.8577

MSGARCH 0.2644 0.2601 0.3751 0.7889 0.9753

MSGJRGARCH 0.2606 0.2512 0.3571 0.7248 0.8740

MSQGARCH 0.2537 0.2493 0.3580 0.7221 0.8688

MSNLGARCH 0.2569 0.2506 0.3651 0.7921 0.9972

MSAPGARCH 0.2445 0.2414 0.3483 0.7008 0.8471

MSFGARCH 0.2423 0.2424 0.3509 0.7301 0.8838

Note: As in Table 3.21 except that the explanatory variable in the long-term component

is the Chicago Board Options Exchange Volatility Index (VIX).
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Table 3.24: QLIKE losses and MCS: full out-of-sample period, FU-VIX .

1d 2w 1m 2m 3m

EGARCH 0.2666 0.2419 0.3209 0.6326 0.7805

AVGARCH 0.2861 0.2533 0.3642 0.7936 0.9725

TGARCH 0.2570 0.2283 0.3082 0.6122 0.7516

GARCH 0.2878 0.2545 0.3650 0.7967 0.9778

GJRGARCH 0.2697 0.2395 0.3393 0.7269 0.8896

QGARCH 0.2713 0.2430 0.3195 0.6158 0.7543

NLGARCH 0.2859 0.2528 0.3639 0.7961 0.9765

APGARCH 0.2580 0.2295 0.3074 0.5949 0.7279

FGARCH 0.2712 0.2442 0.3171 0.6012 0.7371

MSEGARCH 0.2526 0.2260 0.2999 0.6095 0.7641

MSAVGARCH 0.2529 0.2393 0.3560 0.7753 0.9492

MSTGARCH 0.2516 0.2353 0.3131 0.5899 0.6926

MSGARCH 0.2672 0.2534 0.3714 0.8231 1.0150

MSGJRGARCH 0.2675 0.2436 0.3256 0.6369 0.7525

MSQGARCH 0.2620 0.2419 0.3122 0.5828 0.6903

MSNLGARCH 0.2624 0.2449 0.3453 0.7149 0.8654

MSAPGARCH 0.2471 0.2272 0.3093 0.5958 0.7210

MSFGARCH 0.2508 0.2258 0.2931 0.5664 0.6997

Note: As in Table 3.21 except that the explanatory variables in the long-term component

are the Financial Uncertainty (FU) index of Ludvigson et al. (2020) and the Chicago

Board Options Exchange Volatility Index (VIX).
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Table 3.29: QLIKE losses and MCS: pre-COVID period, FU.

1d 2w 1m 2m 3m

EGARCH 0.2815 0.2290 0.2384 0.3563 0.4300

AVGARCH 0.3348 0.2497 0.2524 0.3738 0.4476

TGARCH 0.2718 0.2182 0.2349 0.3645 0.4378

GARCH 0.3351 0.2519 0.2524 0.3659 0.4413

GJRGARCH 0.2937 0.2308 0.2397 0.3591 0.4349

QGARCH 0.2964 0.2431 0.2576 0.3749 0.4435

NLGARCH 0.3348 0.2513 0.2518 0.3647 0.4391

APGARCH 0.2715 0.2182 0.2358 0.3675 0.4405

FGARCH 0.2828 0.2308 0.2454 0.3646 0.4366

MSEGARCH 0.2621 0.2094 0.2213 0.3607 0.4444

MSAVGARCH 0.2975 0.2276 0.2361 0.3516 0.4369

MSTGARCH 0.2613 0.2149 0.2407 0.3872 0.4737

MSGARCH 0.3052 0.2337 0.2421 0.3539 0.4372

MSGJRGARCH 0.2891 0.2392 0.2612 0.3880 0.4523

MSQGARCH 0.2634 0.2184 0.2403 0.3853 0.4637

MSNLGARCH 0.3063 0.2260 0.2301 0.3514 0.4433

MSAPGARCH 0.2567 0.2065 0.2300 0.3687 0.4473

MSFGARCH 0.2464 0.1972 0.2135 0.3471 0.4312

Note: This table presents forecasts performance at five horizons: 1-day (1d), 2-weeks

(2w), 1-month (1m), 2-moths (2m) and 3-months (3m). The table reports the average

QLIKE losses in the full out-of-sample period from 2007:M1 to 2019:M12. The explanatory

variable in the long-term component is the Financial Uncertainty (FU) index of Ludvigson

et al. (2020). The models with the lowest average losses are highlighted in bold; the second

lowest average losses are in italics. The table also presents the results from the 90% MCS

for each horizon. The models included in the final set are shaded in blue.
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Table 3.30: QLIKE losses and MCS: pre-COVID period, MU.

1d 2w 1m 2m 3m

EGARCH 0.2824 0.2588 0.2834 0.4289 0.5267

AVGARCH 0.3345 0.2497 0.2538 0.3822 0.4709

TGARCH 0.2726 0.2296 0.2562 0.4213 0.5194

GARCH 0.3374 0.2602 0.2675 0.3975 0.4891

GJRGARCH 0.2978 0.2449 0.2645 0.4187 0.5079

QGARCH 0.3349 0.2513 0.2728 0.4081 0.4769

NLGARCH 0.3336 0.2548 0.2617 0.3914 0.4815

APGARCH 0.2740 0.2304 0.2532 0.3998 0.4888

FGARCH 0.2797 0.2370 0.2597 0.4063 0.4824

MSEGARCH 0.2633 0.2350 0.2594 0.4269 0.5055

MSAVGARCH 0.2901 0.2331 0.2650 0.4534 0.5952

MSTGARCH 0.2577 0.2174 0.2582 0.4341 0.5010

MSGARCH 0.2996 0.2416 0.2763 0.4726 0.6061

MSGJRGARCH 0.2876 0.2456 0.2886 0.4780 0.5746

MSQGARCH 0.2656 0.2305 0.2681 0.4514 0.5135

MSNLGARCH 0.2944 0.2374 0.2693 0.4583 0.5535

MSAPGARCH 0.2537 0.2116 0.2527 0.4314 0.5056

MSFGARCH 0.2509 0.2181 0.2493 0.4258 0.5044

Note: As in Table 3.29 except that the explanatory variable in the long-term component

is the Macroeconomic Uncertainty (MU) index of Jurado et al. (2015).
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Table 3.31: QLIKE losses and MCS: pre-COVID period, VIX.

1d 2w 1m 2m 3m

EGARCH 0.2573 0.2276 0.2655 0.4776 0.5874

AVGARCH 0.2723 0.2224 0.2554 0.4634 0.5750

TGARCH 0.2509 0.2172 0.2550 0.4642 0.5718

GARCH 0.2766 0.2270 0.2597 0.4710 0.5868

GJRGARCH 0.2638 0.2226 0.2568 0.4740 0.5914

QGARCH 0.2618 0.2313 0.2677 0.4771 0.5838

NLGARCH 0.2735 0.2240 0.2566 0.4627 0.5743

APGARCH 0.2506 0.2182 0.2574 0.4646 0.5682

FGARCH 0.2679 0.2310 0.2670 0.4687 0.5723

MSEGARCH 0.2420 0.2115 0.2519 0.4782 0.6075

MSAVGARCH 0.2410 0.2121 0.2607 0.4881 0.6142

MSTGARCH 0.2457 0.2215 0.2650 0.4563 0.5627

MSGARCH 0.2446 0.2175 0.2642 0.4779 0.5955

MSGJRGARCH 0.2519 0.2242 0.2643 0.4569 0.5620

MSQGARCH 0.2471 0.2219 0.2664 0.4772 0.5882

MSNLGARCH 0.2374 0.2091 0.2565 0.4871 0.6267

MSAPGARCH 0.2372 0.2132 0.2542 0.4495 0.5549

MSFGARCH 0.2348 0.2133 0.2521 0.4661 0.5792

Note: As in Table 3.29 except that the explanatory variable in the long-term component

is the Chicago Board Options Exchange Volatility Index (VIX).
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Table 3.32: QLIKE losses and MCS: pre-COVID period, FU-VIX .

1d 2w 1m 2m 3m

EGARCH 0.2599 0.2210 0.2441 0.4082 0.5094

AVGARCH 0.2779 0.2243 0.2529 0.4435 0.5531

TGARCH 0.2503 0.2081 0.2343 0.4000 0.4972

GARCH 0.2808 0.2269 0.2539 0.4421 0.5536

GJRGARCH 0.2631 0.2146 0.2375 0.4064 0.5116

QGARCH 0.2634 0.2229 0.2459 0.4069 0.5039

NLGARCH 0.2788 0.2251 0.2528 0.4423 0.5531

APGARCH 0.2506 0.2092 0.2364 0.4026 0.4984

FGARCH 0.2643 0.2249 0.2467 0.4070 0.5041

MSEGARCH 0.2489 0.2072 0.2279 0.4016 0.5120

MSAVGARCH 0.2478 0.2128 0.2521 0.4609 0.5861

MSTGARCH 0.2461 0.2183 0.2504 0.4034 0.4775

MSGARCH 0.2623 0.2272 0.2664 0.4790 0.6016

MSGJRGARCH 0.2625 0.2257 0.2533 0.3988 0.4759

MSQGARCH 0.2580 0.2278 0.2579 0.4111 0.4953

MSNLGARCH 0.2574 0.2227 0.2580 0.4302 0.5244

MSAPGARCH 0.2427 0.2089 0.2435 0.4142 0.5033

MSFGARCH 0.2437 0.2075 0.2283 0.3869 0.4825

Note: As in Table 3.29 except that the explanatory variables in the long-term component

are the Financial Uncertainty (FU) index of Ludvigson et al. (2020) and the Chicago

Board Options Exchange Volatility Index (VIX).
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3.7.2 Figures

Chicago Board Options Exchange Volatility Index (VIX)

Financial Uncertainty Index Macroeconomic Uncertainty Index

Figure 3.1: Macroeconomic variables from 1990:M1 to 2020:M11. The top panel plots the daily
Chicago Board Options Exchange Volatility Index (VIX). The monthly Financial Uncertainty (FU)
index of Ludvigson et al. (2020) and the Macroeconomic Uncertainty (MU) index of Jurado et al.
(2015) are depicted in the bottom panel.
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hhhhSmoothed probabilities of being in the low-volatility regime, FU

Figure 3.2: Estimated smoothed probabilities of being in the low-volatility regime when the Financial
Uncertainty (FU) index of Ludvigson et al. (2020) is the explanatory variable in the long-term
component.
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hhhhSmoothed probabilities of being in the low-volatility regime, MU

Figure 3.3: Estimated smoothed probabilities of being in the low-volatility regime when the Macroe-
conomic Uncertainty (MU) index of Jurado et al. (2015) is the explanatory variable in the long-term
component.
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hhhhSmoothed probabilities of being in the low-volatility regime, VIX

Figure 3.4: Estimated smoothed probabilities of being in the low-volatility regime when the Chicago
Board Options Exchange Volatility Index (VIX) is the explanatory variable in the long-term com-
ponent.
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hhhhTime-varying conditional volatility, FU

Figure 3.5: Estimated time-varying conditional volatilities when the Financial Uncertainty (FU)
index of Ludvigson et al. (2020) is the explanatory variables in the long-term component.
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hhhhTime-varying conditional volatility, MU

Figure 3.6: Estimated time-varying conditional volatilities when the Macroeconomic Uncertainty
(MU) index of Jurado et al. (2015) is the explanatory variables in the long-term component.
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hhhhTime-varying conditional volatility, VIX

Figure 3.7: Estimated time-varying conditional volatilities when the Chicago Board Options Ex-
change Volatility Index (VIX) is the explanatory variables in the long-term component.
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hhhhSmoothed probabilities of being in the low-volatility regime, FU-VIX

Figure 3.8: Estimated smoothed probabilities of being in the low-volatility regime when the Finan-
cial Uncertainty (FU) index of Ludvigson et al. (2020) and the Chicago Board Options Exchange
Volatility Index (VIX) are the explanatory variables in the long-term component.
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hhhhSmoothed probabilities of being in the low-volatility regime, MU-VIX

Figure 3.9: Estimated smoothed probabilities of being in the low-volatility regime when the Macroe-
conomic Uncertainty (MU) index of Jurado et al. (2015) and the Chicago Board Options Exchange
Volatility Index (VIX) are the explanatory variables in the long-term component.
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hhhhTime-varying conditional volatility, FU-VIX

Figure 3.10: Estimated time-varying conditional volatilities when the Financial Uncertainty (FU)
index of Ludvigson et al. (2020) and the Chicago Board Options Exchange Volatility Index (VIX)
are the explanatory variables in the long-term component.
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hhhhTime-varying conditional volatility, MU-VIX

Figure 3.11: Estimated time-varying conditional volatilities when the Macroeconomic Uncertainty
(MU) index of Jurado et al. (2015) and the Chicago Board Options Exchange Volatility Index (VIX)
are the explanatory variables in the long-term component.
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3.7.3 Additional Tables

Table 3.37: Estimated GARCH-MIDAS models, long-term component, FU

EGARCH AVGARCH TGARCH GARCH GJRGARCH QGARCH NLGARCH APGARCH FGARCH

λ 0 1 1 2 2 2
0.4967∗∗∗

1.8121∗∗∗ 0.8745∗∗∗ (0.0005)

λ̂ 1 1 1 2 2 2
(0.0005) (0.0001) 1.6079∗∗∗

(0.0014)

µ
0.0308∗∗∗ 0.0629∗∗∗ 0.0302∗∗∗ 0.0588∗∗∗ 0.0326∗∗∗ 0.0263∗∗∗ 0.0594∗∗∗ 0.0292∗∗∗ 0.0251∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

α
0.1227∗∗∗ 0.1039∗∗∗ 0.0834∗∗∗ 0.0942∗∗∗ 0.0000∗∗∗ 0.0720∗∗∗ 0.0986∗∗∗ 0.0852∗∗∗ 0.0164∗∗∗

(0.0000) (0.0001) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

β
0.9315∗∗∗ 0.8617∗∗∗ 0.8689∗∗∗ 0.8498∗∗∗ 0.8423∗∗∗ 0.8489∗∗∗ 0.8521∗∗∗ 0.8733∗∗∗ 0.9259∗∗∗

(0.0000) (0.0001) (0.0000) (0.0001) (0.0000) (0.0000) (0.0001) (0.0000) (0.0000)

γ
0.1570∗∗∗ 0.9999∗∗∗ 0.1807∗∗∗ 0.9999∗∗∗ -0.5998∗∗∗

(0.0000) (0.0001) (0.0001) (0.0000) (0.0007)

ψ
0.1654∗∗∗ 0.0672∗∗∗

(0.0000) (0.0001)

m
-3.2898∗∗∗ -3.1930∗∗∗ -3.0650∗∗∗ -3.2503∗∗∗ -3.1606∗∗∗ -3.2317∗∗∗ -3.2393∗∗∗ -3.0544∗∗∗ -3.0493∗∗∗

(0.0013) (0.0013) (0.0015) (0.0016) (0.0018) (0.0014) (0.0016) (0.0015) (0.0017)

θFU 3.4707∗∗∗ 3.5787∗∗∗ 3.3416∗∗∗ 3.5296∗∗∗ 3.3751∗∗∗ 3.4914∗∗∗ 3.5346∗∗∗ 3.3435∗∗∗ 3.3176∗∗∗

(0.0015) (0.0017) (0.0017) (0.0020) (0.0020) (0.0016) (0.0020) (0.0016) (0.0018)

wFU 416.66∗∗∗ 534.45∗∗∗ 474.97∗∗∗ 502.09∗∗∗ 452.04∗∗∗ 502.15∗∗∗ 552.41∗∗∗ 500.44∗∗∗ 500.88∗∗∗

(0.8329) (0.3219) (0.3535) (0.0166) (0.3181) (0.0415) (0.2915) (0.7240) (0.2278)

Note: This table shows parameter estimates for the single-regime model in (3.1), (3.8)-(3.12) and the nested models, presented in

Table 3.1. The explanatory variable in the long-term component is the Financial Uncertainty (FU) index of Ludvigson et al. (2020).

Table 3.38: Estimated GARCH-MIDAS models, long-term component, MU

EGARCH AVGARCH TGARCH GARCH GJRGARCH QGARCH NLGARCH APGARCH FGARCH

λ 0 1 1 2 2 2
0.6085∗∗∗

1.8287∗∗∗ 0.9701∗∗∗ (0.0005)

λ̂ 1 1 1 2 2 2
(0.0011) (0.0001) 1.7037∗∗∗

(0.0010)

µ
0.0280∗∗∗ 0.0645∗∗∗ 0.0243∗∗∗ 0.0598∗∗∗ 0.0291∗∗∗ 0.0210∗∗∗ 0.0603∗∗∗ 0.0240∗∗∗ 0.0223∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0001) (0.0001)

α
0.1503∗∗∗ 0.1141∗∗∗ 0.0857∗∗∗ 0.1076∗∗∗ 0.0060∗∗∗ 0.0889∗∗∗ 0.1113∗∗∗ 0.0865∗∗∗ 0.0237∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

β
0.9633∗∗∗ 0.8832∗∗∗ 0.8982∗∗∗ 0.8696∗∗∗ 0.8771∗∗∗ 0.8736∗∗∗ 0.8718∗∗∗ 0.8986∗∗∗ 0.9451∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0001) (0.0000) (0.0000) (0.0000) (0.0000)

γ
0.1356∗∗∗ 0.9283∗∗∗ 0.1722∗∗∗ 0.9272∗∗∗ -0.4963∗∗∗

(0.0000) (0.0000) (0.0001) (0.0000) (0.0002)

ψ
0.1340∗∗∗ 0.0805∗∗∗

(0.0000) (0.0001)

m
-2.4465∗∗∗ -2.0891∗∗∗ -2.1679∗∗∗ -2.0289∗∗∗ -2.2223∗∗∗ -2.4994∗∗∗ -2.0389∗∗∗ -2.1678∗∗∗ -2.2360∗∗∗

(0.0056) (0.0051) (0.0064) (0.0051) (0.0118) (0.0073) (0.0052) (0.0063) (0.0087)

θMU
3.7146∗∗∗ 3.7017∗∗∗ 3.5429∗∗∗ 3.3427∗∗∗ 3.4082∗∗∗ 3.9612∗∗∗ 3.3892∗∗∗ 3.5535∗∗∗ 3.6504∗∗∗

(0.0092) (0.0084) (0.0103) (0.0083) (0.0185) (0.0120) (0.0087) (0.0100) (0.0136)

wMU
23.5083∗∗∗ 501.5850∗∗∗ 20.1394∗∗∗ 502.6379∗∗∗ 15.6314∗∗∗ 14.9320∗∗∗ 506.2740∗∗∗ 20.6051∗∗∗ 19.4422∗∗∗

(0.3499) (0.0910) (0.3872) (0.6055) (0.4903) (0.2596) (110.3022) (0.3617) (0.4427)

Note: This table shows parameter estimates for the single-regime model in (3.1), (3.8)-(3.12) and the nested models, presented in Table

3.1. The explanatory variable in the long-term component is the Macroeconomic Uncertainty (MU) index of Jurado et al. (2015).
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Table 3.39: Estimated GARCH-MIDAS models, long-term component, VIX

EGARCH AVGARCH TGARCH GARCH GJRGARCH QGARCH NLGARCH APGARCH FGARCH

λ 0 1 1 2 2 2
2.2980∗∗∗

1.5917∗∗∗ 0.7443∗∗∗ (0.0008)

λ̂ 1 1 1 2 2 2
(0.0012) (0.0001) 0.9767∗∗∗

(0.0002)

µ
0.0186∗∗∗ 0.0343∗∗∗ 0.0225∗∗∗ 0.0334∗∗∗ 0.0244∗∗∗ 0.0156∗∗∗ 0.0339∗∗∗ 0.0203∗∗∗ 0.0181∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0001) (0.0000)

α
0.0644∗∗∗ 0.0406∗∗∗ 0.0526∗∗∗ 0.0382∗∗∗ 0.0000∗∗∗ 0.0352∗∗∗ 0.0419∗∗∗ 0.0552∗∗∗ 0.1004∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

β
0.8949∗∗∗ 0.9221∗∗∗ 0.8688∗∗∗ 0.9021∗∗∗ 0.8537∗∗∗ 0.8497∗∗∗ 0.9100∗∗∗ 0.8733∗∗∗ 0.8246∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

γ
0.1227∗∗∗ 0.9999∗∗∗ 0.0933∗∗∗ 0.9999∗∗∗ 0.9968∗∗∗

(0.0000) (0.0004) (0.0000) (0.0000) (0.0009)

ψ
0.1329∗∗∗ 0.0562∗∗∗

(0.0000) (0.0001)

m
-2.1154∗∗∗ -2.2043∗∗∗ -2.0365∗∗∗ -2.2434∗∗∗ -2.1639∗∗∗ -2.0914∗∗∗ -2.2253∗∗∗ -2.0155∗∗∗ -2.0296∗∗∗

(0.0002) (0.0002) (0.0002) (0.0001) (0.0001) (0.0002) (0.0002) (0.0004) (0.0002)

θVIX
0.0964∗∗∗ 0.1045∗∗∗ 0.0944∗∗∗ 0.1036∗∗∗ 0.0979∗∗∗ 0.0969∗∗∗ 0.1037∗∗∗ 0.0944∗∗∗ 0.0957∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

wVIX
3.0153∗∗∗ 5.6346∗∗∗ 3.3301∗∗∗ 5.2318∗∗∗ 3.7157∗∗∗ 2.9706∗∗∗ 5.3542∗∗∗ 3.2612∗∗∗ 3.1007∗∗∗

(0.0008) (0.0006) (0.0000) (0.0009) (0.0007) (0.0011) (0.0004) (0.0004) (0.0009)

Note: This table shows parameter estimates for the single-regime model in (3.1), (3.8)-(3.12) and the nested models, presented in

Table 3.1. The explanatory variable in the long-term component is the Chicago Board Options Exchange Volatility Index (VIX).

Table 3.40: Estimated GARCH-MIDAS models, short-term component, FU

EGARCH AVGARCH TGARCH GARCH GJRGARCH QGARCH NLGARCH APGARCH FGARCH

λ 0 1 1 2 2 2
0.5714∗∗∗

1.7498∗∗∗ 0.8806∗∗∗ (0.0004)

λ̂ 1 1 1 2 2 2
(0.0006) (0.0001) 1.5401

(0.0011)

µ
0.0300∗∗∗ 0.0637∗∗∗ 0.0294∗∗∗ 0.0598∗∗∗ 0.0322∗∗∗ 0.0253∗∗∗ 0.0606∗∗∗ 0.0282∗∗∗ 0.0242∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

ω
-0.2291∗∗∗ 0.0128∗∗∗ 0.0151∗∗∗ 0.0028∗∗∗ 0.0033∗∗∗ 0.0037∗∗∗ 0.0041∗∗∗ 0.0181∗∗∗ 0.0264∗∗∗

(0.0001) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

α
0.1259∗∗∗ 0.1086∗∗∗ 0.0856∗∗∗ 0.1004∗∗∗ 0.0471∗∗∗ 0.0768∗∗∗ 0.1064∗∗∗ 0.0872∗∗∗ 0.0221∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

β
0.9294∗∗∗ 0.8535∗∗∗ 0.8644∗∗∗ 0.8390∗∗∗ 0.8358∗∗∗ 0.8401∗∗∗ 0.8419∗∗∗ 0.8688∗∗∗ 0.9166∗∗∗

(0.0000) (0.0001) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

γ
0.1590∗∗∗ 0.9999∗∗∗ 0.9989∗∗∗ 0.9999∗∗∗ -0.5629∗∗∗

(0.0000) (0.0001) (0.0000) (0.0000) (0.0004)

ψ
0.0357∗∗∗ 0.1488∗∗∗

(0.0000) (0.0000)

θFU
3.4199∗∗∗ 3.4454∗∗∗ 3.2510∗∗∗ 3.3276∗∗∗ 3.2467∗∗∗ 3.3773∗∗∗ 3.3401∗∗∗ 3.2586∗∗∗ 3.2193∗∗∗

(0.0015) (0.0016) (0.0017) (0.0019) (0.0019) (0.0016) (0.0019) (0.0016) (0.0018)

wFU
340.65∗∗∗ 508.46∗∗∗ 502.51∗∗∗ 505.82∗∗∗ 482.92∗∗∗ 500.83∗∗∗ 508.74∗∗∗ 494.02∗∗∗ 501.04∗∗∗

(0.8535) (0.2083) (1.2559) (0.5762) (0.5336) (0.6613) (0.2024) (0.3784) (0.4927)

Note: This table shows parameter estimates for the single-regime model introduced in Section 3.2.3 and the nested models, presented

in Table 3.1. The explanatory variable in the long-term component is the Financial Uncertainty (FU) index of Ludvigson et al.

(2020).



3.7 Appendix 147

Table 3.41: Estimated GARCH-MIDAS models, short-term component, MU

EGARCH AVGARCH TGARCH GARCH GJRGARCH QGARCH NLGARCH APGARCH FGARCH

λ 0 1 1 2 2 2
1.8196∗∗∗

1.8445∗∗∗ 0.9813∗∗∗ (0.0036)

λ̂ 1 1 1 2 2 2
(0.0005) (0.0002) 1.0072

(0.0004)

µ
0.0261∗∗∗ 0.0646∗∗∗ 0.0231∗∗∗ 0.0600∗∗∗ 0.0289∗∗∗ 0.0199∗∗∗ 0.0605∗∗∗ 0.0229∗∗∗ 0.0244∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

ω
-0.0825∗∗∗ 0.0113∗∗∗ 0.0130∗∗∗ 0.0045∗∗∗ 0.0045∗∗∗ 0.0041∗∗∗ 0.0053∗∗∗ 0.0133∗∗∗ 0.0053∗∗∗

(0.0002) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

α
0.1525∗∗∗ 0.1167∗∗∗ 0.0879∗∗∗ 0.1093∗∗∗ 0.0648∗∗∗ 0.0917∗∗∗ 0.1131∗∗∗ 0.0884∗∗∗ 0.1781∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0003)

β
0.9628∗∗∗ 0.8808∗∗∗ 0.8959∗∗∗ 0.8679∗∗∗ 0.8749∗∗∗ 0.8693∗∗∗ 0.8697∗∗∗ 0.8961∗∗∗ 0.8359∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0002)

γ
0.1363∗∗∗ 0.9135∗∗∗ 0.6704 0.9132∗∗∗ 0.9999∗∗∗

(0.0000) (0.0000) (0.0001) (0.0000) (0.0000)

ψ
0.0437∗∗∗ -0.0089∗∗∗

(0.0001) (0.0000)

θMU
3.3737∗∗∗ 3.0666∗∗∗ 3.1622∗∗∗ 2.7026∗∗∗ 2.9656∗∗∗ 3.5913∗∗∗ 2.6817∗∗∗ 3.1702∗∗∗ 3.0267∗∗∗

(0.0079) (0.0071) (0.0083) (0.0064) (0.0102) (0.0081) (0.0004) (0.0084) (0.0091)

wMU
24.8865∗∗∗ 500.0225∗∗∗ 20.8562∗∗∗ 484.7510∗∗∗ 18.6724∗∗∗ 16.4678∗∗∗ 500.3641∗∗∗ 21.1368∗∗∗ 21.1070∗∗∗

(0.3097) (0.0678 (0.2588) (2.7561) (0.3323) (0.1786) (285.4460) (0.2448) (0.3443)

Note: This table shows parameter estimates for the single-regime model introduced in Section 3.2.3 and the nested models, presented in

Table 3.1. The explanatory variable in the long-term component is the Macroeconomic Uncertainty (MU) index of Jurado et al. (2015).

Table 3.42: Estimated GARCH-MIDAS models, short-term component, VIX

EGARCH AVGARCH TGARCH GARCH GJRGARCH QGARCH NLGARCH APGARCH FGARCH

λ 0 1 1 2 2 2
1.3528∗∗∗

1.5572∗∗∗ 0.7476∗∗∗ (0.0001)

λ̂ 1 1 1 2 2 2
(0.0010) (0.0000) 1.7690∗∗∗

(0.0013)

µ
0.0184∗∗∗ 0.0358∗∗∗ 0.0226∗∗∗ 0.0349∗∗∗ 0.0247∗∗∗ 0.0158∗∗∗ 0.0356∗∗∗ 0.0204∗∗∗ 0.0157∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0001) (0.0000)

ω
-0.2291∗∗∗ 0.0219∗∗∗ 0.0347∗∗∗ 0.0088∗∗∗ 0.0127∗∗∗ 0.0154∗∗∗ 0.0134∗∗∗ 0.0454∗∗∗ 0.0288∗∗∗

(0.0001) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

α
0.0657∗∗∗ 0.0492∗∗∗ 0.0549∗∗∗ 0.0459∗∗∗ 0.0252∗∗∗ 0.0378∗∗∗ 0.0511∗∗∗ 0.0573∗∗∗ 0.0265∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

β
0.8915∗∗∗ 0.8953∗∗∗ 0.8602∗∗∗ 0.8728∗∗∗ 0.8410∗∗∗ 0.8381∗∗∗ 0.8812∗∗∗ 0.8652∗∗∗ 0.8574∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0001)

γ
0.1248∗∗∗ 0.9999∗∗∗ 0.9940∗∗∗ 0.9999∗∗∗ -0.4064∗∗∗

(0.0000) (0.0004) (0.0000) (0.0000) (0.0002)

ψ
0.0490∗∗∗ 0.0858∗∗∗

(0.0000) (0.0000)

θVIX
0.0962∗∗∗ 0.1033∗∗∗ 0.0941∗∗∗ 0.1024∗∗∗ 0.0973∗∗∗ 0.0965∗∗∗ 0.1025∗∗∗ 0.0941∗∗∗ 0.0953∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

wVIX
2.9667∗∗∗ 5.5043∗∗∗ 3.2290∗∗∗ 5.0849∗∗∗ 3.6076∗∗∗ 2.8403∗∗∗ 5.2112∗∗∗ 3.1616∗∗∗ 2.7464∗∗∗

(0.0008) (0.0008) (0.0001) (0.0009) (0.0007) (0.0012) (0.0005) (0.0004) (0.0006)

Note: This table shows parameter estimates for the single-regime model introduced in Section 3.2.3 and the nested models, presented

in Table 3.1. The explanatory variable in the long-term component is the Chicago Board Options Exchange Volatility Index (VIX).
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Estimated GARCH-MIDAS models, long-term component, FU-VIXEstimated GARCH-

MIDAS models, long-term component, FU-VIXEstimated GARCH-MIDAS models, long-term

component, FU-VIX

Table 3.43: Estimated GARCH-MIDAS models, long-term component, FU-VIX

EGARCH AVGARCH TGARCH GARCH GJRGARCH QGARCH NLGARCH APGARCH FGARCH

λ 0 1 1 2 2 2
0.9758∗∗∗

1.7289∗∗∗ 0.7021∗∗∗ (0.0006)

λ̂ 1 1 1 2 2 2
(0.1441) (0.0000) 1.8861∗∗∗

(0.0019)

µ
0.0232∗∗∗ 0.0360∗∗∗ 0.0275∗∗∗ 0.0357∗∗∗ 0.0280∗∗∗ 0.0206∗∗∗ 0.0359∗∗∗ 0.0247∗∗∗ 0.0206∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0126) (0.0001) (0.0000)

α
0.0608∗∗∗ 0.0417∗∗∗ 0.0584∗∗∗ 0.0395∗∗∗ 0.0000∗∗∗ 0.0354∗∗∗ 0.0415∗∗∗ 0.0606∗∗∗ 0.0143∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0222) (0.0000) (0.0000)

β
0.8944∗∗∗ 0.9142∗∗∗ 0.8611∗∗∗ 0.8932∗∗∗ 0.8459∗∗∗ 0.8515∗∗∗ 0.9006∗∗∗ 0.8678∗∗∗ 0.8821∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0539) (0.0000) (0.0000)

γ
0.1374∗∗∗ 0.9999∗∗∗ 0.1040∗∗∗ 0.9999∗∗∗ -0.4777∗∗∗

(0.0000) (0.0001) (0.0000) (0.0000) (0.0003)

ψ
0.1434∗∗∗ 0.0954∗∗∗

(0.0000) (0.0001)

m
-2.7767∗∗∗ -2.5354∗∗∗ -2.7023∗∗∗ -2.6354∗∗∗ -2.7741∗∗∗ -2.7376∗∗∗ -2.6241∗∗∗ -2.6701∗∗∗ -2.7338∗∗∗

(0.0011) (0.0012) (0.0012) (0.0013) (0.0012) (0.0011) (0.0708) (0.0012) (0.0012)

θFU
1.2876∗∗∗ 0.5649∗∗∗ 1.2864∗∗∗ 0.6920∗∗∗ 1.1736∗∗∗ 1.2681∗∗∗ 0.7000∗∗∗ 1.2783∗∗∗ 1.3629∗∗∗

(0.0018) (0.0024) (0.0021) (0.0024) (0.0022) (0.0018) (0.1965) (0.0020) (0.0017)

θVIX
0.0707∗∗∗ 0.0952∗∗∗ 0.0696∗∗∗ 0.0919∗∗∗ 0.0755∗∗∗ 0.0718∗∗∗ 0.0916∗∗∗ 0.0694∗∗∗ 0.0674∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0098) (0.0000) (0.0000)

wFU
344.37∗∗∗ 502.85∗∗∗ 515.98∗∗∗ 500.50∗∗∗ 537.68∗∗∗ 499.53∗∗∗ 502.49∗∗∗ 506.86∗∗∗ 501.20∗∗∗

(0.8701) (1.3287) (2.6327) (0.1162) (1.1628) (0.0156) (225.81) (1.2020) (1.1177)

wVIX
3.0933∗∗∗ 5.9704∗∗∗ 3.4586∗∗∗ 5.5619∗∗∗ 3.9186∗∗∗ 3.1593∗∗∗ 500.5424∗∗∗ 3.3671∗∗∗ 2.8283∗∗∗

(0.0008) (0.0008) (0.0000) (0.0003) (0.0003) (0.0009) (551.6) (0.0003) (0.0009)

Note: This table shows parameter estimates for the single-regime model with two explanatory variables in the long-term

volatility component: the Financial Uncertainty (FU) index of Ludvigson et al. (2020) and the Chicago Board Options

Exchange Volatility Index (VIX).
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Estimated GARCH-MIDAS models, long-term component, FU-VIXEstimated GARCH-

MIDAS models, long-term component, FU-VIXEstimated GARCH-MIDAS models, long-term

component, FU-VIX

Table 3.44: Estimated GARCH-MIDAS models, long-term component, MU-VIX

EGARCH AVGARCH TGARCH GARCH GJRGARCH QGARCH NLGARCH APGARCH FGARCH

λ 0 1 1 2 2 2
2.1212∗∗∗

1.5960∗∗∗ 0.7171∗∗∗ (0.0013)

λ̂ 1 1 1 2 2 2
(0.0006) (0.0002) 0.9016∗∗∗

(0.0005)

µ
0.0192∗∗∗ 0.0344∗∗∗ 0.0234∗∗∗ 0.0335∗∗∗ 0.0248∗∗∗ 0.0161∗∗∗ 0.0341∗∗∗ 0.0209∗∗∗ 0.0188∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0001) (0.0003) (0.0000)

α
0.0660∗∗∗ 0.0407∗∗∗ 0.0543∗∗∗ 0.0384∗∗∗ 0.0000∗∗∗ 0.0363∗∗∗ 0.0421∗∗∗ 0.0566∗∗∗ 0.1051∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

β
0.8990∗∗∗ 0.9218∗∗∗ 0.8705∗∗∗ 0.9018∗∗∗ 0.8548∗∗∗ 0.8551∗∗∗ 0.9096∗∗∗ 0.8762∗∗∗ 0.8313∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

γ
0.1249∗∗∗ 0.9999∗∗∗ 0.0967∗∗∗ 0.9999∗∗∗ 0.9921∗∗∗

(0.0000) (0.0002) (0.0000) (0.0000) (0.0000)

ψ
0.1342∗∗∗ 0.0508∗∗∗

(0.0000) (0.0000)

m
-2.4106∗∗∗ -2.2289∗∗∗ -2.3614∗∗∗ -2.3446∗∗∗ -2.4102∗∗∗ -2.3820∗∗∗ -2.2681∗∗∗ -2.3559∗∗∗ -2.3257∗∗∗

(0.0016) (0.0002) (0.0021) (0.0004) (0.0021) (0.0018) (0.0036) (0.0027) (0.0018)

θMU
0.6455∗∗∗ 0.0486∗∗∗ 0.7149∗∗∗ 0.1782∗∗∗ 0.5391∗∗∗ 0.6507∗∗∗ 0.0857∗∗∗ 0.7529∗∗∗ 0.6807∗∗∗

(0.0032) (0.0007) (0.0042) (0.0002) (0.0044) (0.0036) (0.0077) (0.0042) (0.0037)

θVIX
0.0904∗∗∗ 0.1042∗∗∗ 0.0879∗∗∗ 0.1030∗∗∗ 0.0929∗∗∗ 0.0907∗∗∗ 0.1031∗∗∗ 0.0875∗∗∗ 0.0891∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0001) (0.0000) (0.0000)

wMU
319.23∗∗∗ 500.23∗∗∗ 501.45∗∗∗ 1.4194∗∗∗ 337.52∗∗∗ 499.40∗∗∗ 500.52∗∗∗ 502.07∗∗∗ 500.62∗∗∗

(12.2276) (3.0569) (2.3833) (0.0984) (2.3530) (1.3241) (14.9688) (15.0157) (0.9705)

wVIX
3.0438∗∗∗ 5.6491∗∗∗ 3.3720∗∗∗ 5.2475∗∗∗ 3.7477∗∗∗ 3.0398∗∗∗ 5.3719∗∗∗ 3.3059∗∗∗ 3.1569∗∗∗

(0.0015) (0.0009) (0.0000) (0.0043) (0.0004) (0.0007) (0.0038) (0.0007) (0.0006)

Note: This table shows parameter estimates for the single-regime model with two explanatory variables in the long-term

volatility component: the Macroeconomic Uncertainty (MU) index of Jurado et al. (2015) and the Chicago Board Options

Exchange Volatility Index (VIX).
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Estimated GARCH-MIDAS models, long-term component, FU-MU-VIXEstimated GARCH-

MIDAS models, long-term component, FU-MU-VIX

Table 3.45: Estimated GARCH-MIDAS models, long-term component, FU-MU-VIX

EGARCH AVGARCH TGARCH GARCH GJRGARCH QGARCH NLGARCH APGARCH FGARCH

λ 0 1 1 2 2 2
0.9757∗∗∗

1.7420∗∗∗ 0.6999∗∗∗ (0.0006)

λ̂ 1 1 1 2 2 2
(0.0008) (0.0001) 1.8856∗∗∗

(0.0033)

µ
0.0232∗∗∗ 0.0356∗∗∗ 0.0273∗∗∗ 0.0354∗∗∗ 0.0280∗∗∗ 0.0206∗∗∗ 0.0357∗∗∗ 0.0244∗∗∗ 0.0205∗∗∗

(0.0000) (0.0001) (0.0002) (0.0001) (0.0000) (0.0001) (0.0000) (0.0000) (0.0000)

α
0.0608∗∗∗ 0.0409∗∗∗ 0.0585∗∗∗ 0.0387∗∗∗ 0.0000∗∗∗ 0.0355∗∗∗ 0.0408∗∗∗ 0.0607∗∗∗ 0.0143∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

β
0.8945∗∗∗ 0.9146∗∗∗ 0.8613∗∗∗ 0.8934∗∗∗ 0.8458∗∗∗ 0.8517∗∗∗ 0.9017∗∗∗ 0.8683∗∗∗ 0.8825∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

γ
0.1374∗∗∗ 0.9999∗∗∗ 0.1037∗∗∗ 0.9999∗∗∗ -0.4829

(0.0000) (0.0003) (0.0000) (0.0000) (0.0003)

ψ
0.1434∗∗∗ 0.0957∗∗∗

(0.0000) (0.0001)

m
-2.7823∗∗∗ -2.3598∗∗∗ -2.7209∗∗∗ -2.4851∗∗∗ -2.7531∗∗∗ -2.7489∗∗∗ -2.5159∗∗∗ -2.6992∗∗∗ -2.7579∗∗∗

(0.0010) (0.0042) (0.0019) (0.0046) (0.0004) (0.0026) (0.0021) (0.0016) (0.0014)

θFU
1.2818∗∗∗ 0.7163∗∗∗ 1.2659∗∗∗ 0.8379∗∗∗ 1.1964∗∗∗ 1.2563∗∗∗ 0.8220∗∗∗ 1.2462∗∗∗ 1.3383∗∗∗

(0.0019) (0.0004) (0.0100) (0.0000) (0.0040) (0.0012) (0.0012) (0.0013) (0.0016)

θMU
0.0186∗∗∗ -0.5075∗∗∗ 0.0639∗∗∗ -0.4607∗∗∗ -0.0708∗∗∗ 0.0384∗∗∗ -0.3585∗∗∗ 0.1006∗∗∗ 0.0814∗∗∗

(0.0004) (0.0076) (0.0137) (0.0089) (0.0056) (0.0038) (0.0033) (0.0019) (0.0007)

θVIX
0.0706∗∗∗ 0.0957∗∗∗ 0.0694∗∗∗ 0.0925∗∗∗ 0.0757∗∗∗ 0.0717∗∗∗ 0.0921∗∗∗ 0.0691∗∗∗ 0.0671∗∗∗

(0.0000) (0.0000) (0.0001) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

wFU
379.56∗∗∗ 507.98∗∗∗ 734.50 505.72∗∗∗ 468.68∗∗∗ 502.11∗∗∗ 161.90∗∗∗ 879.56 506.05∗∗∗

(8.2093) (30.1051) (503.49) (11.6832) (1.5770) (36.7224) (0.1813) (560.95) (30.232)

wMU
228.308∗∗∗ 11.0856∗∗∗ 526.11 14.12∗∗∗ 311.096∗∗∗ 502.56∗∗∗ 43.486∗∗∗ 46.2464∗∗∗ 502.11∗∗∗

(1.7871) (0.1894) (675.04) (0.4846) (0.6380) (46.2031) (0.9149) (2.5181) (22.7349)

wVIX
3.0922∗∗∗ 5.9295∗∗∗ 3.4592∗∗∗ 5.5287∗∗∗ 3.9199∗∗∗ 3.1609∗∗∗ 18.9269∗∗∗ 3.3746∗∗∗ 2.8295∗∗∗

(0.0011) (0.0017) (0.0108) (0.0043) (0.0002) (0.0006) (0.0051) (0.0010) (0.0007)

LRTH0: FU-VIX [0.9998] [0.3104] [0.9802] [0.3296] [0.9608] [0.9900] [0.4404] [0.9324] [0.9512]

LRTH0:MU-VIX [0.0000] [0.0086] [0.0000] [0.0013] [0.0000] [0.0000] [0.0112] [0.0000] [0.0000]

Note: This table shows parameter estimates for the single-regime model with three explanatory variables in the long-term volatility

component: the Financial Uncertainty (FU) index of Ludvigson et al. (2020), the Macroeconomic Uncertainty (MU) index of Jurado

et al. (2015) and the Chicago Board Options Exchange Volatility Index (VIX).
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3.7.4 Proofs

Equivalent specification of model (3.3). In this appendix we show that specification

(3.3) is equivalent to:

ln g2

i,t = ω + α (|zi−1,t| − E|zi−1,t|)− γ zi−1,t − ψ
εi−1,t√
τt

+ β ln g(2

i−1,t, if λ = 0, λ̂ = 1,

gλ

i,t = ω + α (|zi−1,t| − γ zi−1,t)
λ̂ g(λ

i−1,t − ψ
εi−1,t√
τtα

+ β g(λ

i−1,t, if λ > 0, λ̂ > 0

Equation (3.3) can be written as:

gλ
i,t − 1

λ
= ω∗ + α∗ (|zi−1,t| − γ∗ zi−1,t)

λ̂ g(λ

i−1,t − ψ∗ εi−1,t√
τt

+ β
gλ
i−1,t − 1

λ
(3.27)

• Case λ = 0, λ̂ = 1. In this case, limλ→0+
gλi,t−1

λ
= ln gi,t and (3.27) is given by

ln gi,t = ω∗ + α∗ (|zi−1,t| − γ∗ zi−1,t) − ψ∗ εi−1,t√
τt

+ β ln gi−1,t (3.28)

Multiplying by 2 on both sides and subtracting and adding the constant mean of |zi,t|,

(3.28) becomes

ln g2

i,t = ω + α (|zi−1,t| − E |zi−1,t|) − γ zi−1,t − ψ
εi−1,t√
τt

+ β ln g2

i−1,t (3.29)

where α = 2α∗, ω = 2ω∗ + αE|zi−1,t|, γ = α γ∗ and ψ = 2ψ∗.

• Case λ > 0, λ̂ > 0. It follows that (3.27) is equivalent to:

gλ

i,t = ω + α (|zi−1,t| − γ zi−1,t)
λ̂ g(λ

i−1,t − ψ
εi−1,t√
τt

+ β gλ

i−1,t (3.30)

where ω = λω∗ + 1− β, α = λα∗, γ = γ∗ and ψ = λψ∗.

Nesting of Conrad and Kleen’s (2020) model. Assume one regime and impose λ =

λ̂ = 2 and ψ = 0 in (3.4):
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g2

i,t = ω + α (|zi−1,t| − γ zi−1,t)
2 g(2

i−1,t + β g2

i−1,t (3.31)

= ω + α
[
(1 + γ2) z2

i−1,t − 2 γ |zi−1,t| zi−1,t

]
g(2

i−1,t + β g(2

i−1,t

= ω + α
[
(1− γ)2 + 4 γ I{εi−1,t<0}

] ε2i−1,t

τt
+ β g(2

i−1,t

The last step in (3.31) follows since

(1 + γ2) z2

i−1,t − 2 γ |zi−1,t| zi−1,t =

 (1− γ)2 z2
i−1,t, if zi−1,t ≥ 0

(1 + γ)2 z2
i−1,t, if zi−1,t < 0

 (3.32)

Therefore, equation (3.31) is equivalent to:

g2

i,t = ω +
(
α∗ + γ∗ I{εi−1,t<0}

) ε2i−1,t

τt
+ β g(2

i−1,t (3.33)

where α∗ = α (1− γ)2 and γ∗ = 4α γ. This is the model proposed by Conrad and Kleen

(2020)25.

Recursive form of the vector of conditional expectations, Hλ

k,t+1|t. In this appendix,

we show that the vector of conditional expectations,

Hλ

k,t+1|t =

 E
(
gλ
k,t+1 | sk,t+1 = 1, It

)
E
(
gλ
k,t+1 | sk,t+1 = 2, It

)
 (3.34)

follows the recursive vector form in (3.21).

Let △ = αE (|zi,t| − γ zi,t)
λ̂ + β. From equation (3.9) and (3.11), we have

E
(
gλ

k,t+1 | sk,t+1 = j, It

)
= (1−△) +△E

[
E
(
gλ

k−1,t+1 | sk,t+1 = j, Ik−1,t+1

)
| sk,t+1 = j, It

]
(3.35)

25Note that the authors include a constant parameter in the long-term component τi,t and not in the short-
term component where they impose w = 1− α− γ/2− β. See equation (3) in Conrad and Kleen (2020). We
consider this specification in 3.2.2. Note also the different notation used in their paper - the authors use

√
gi,t

to denote the short-term volatility component while we use gi,t.
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The conditional expectation over the conditional short-term in (3.35) can be obtained by

E [E(gλ

k−1,t+1 | sk,t+1 = j, Ik−1,t+1) | sk,t+1 = j, It ] = (3.36)

= E
(
gλ

k−1,t+1 | sk,t+1 = j, It

)
= E

[
2∑

q=1

P (sk−1,t+1 = q | sk,t+1 = j, It) g
λ

k−1,t+1 | sk,t+1 = j, It

]

=
2∑

q=1

∫
It
P (sk−1,t+1 = q | sk,t+1 = j, It) P (It | sk,t+1 = j) gλ

k−1,t+1 d It

=
2∑

q=1

∫
It
P (It | sk−1,t+1 = q, sk,t+1 = j) P (sk−1,t+1 = q | sk,t+1 = j) gλ

k−1,t+1 d It

=
2∑

q=1

P (sk−1,t+1 = q | sk,t+1 = j)E
(
gλ

k−1,t+1 | sk−1,t+1 = q, It

)
The last equality follows since the expected value given the current state does not depend on

any future states. Therefore, E
(
gλ
k−1,t+1 | sk−1,t+1 = q, sk,t+1 = j, It

)
= E

(
gλ
k−1,t+1 | sk−1,t+1 = q, It

)
.

Let

Ψ = △

 P (sk−1,t+1 = 1 | sk,t+1 = 1) P (sk−1,t+1 = 2 | sk,t+1 = 1)

P (sk−1,t+1 = 1 | sk,t+1 = 2) P (sk−1,t+1 = 2 | sk,t+1 = 2)


From (3.35)-(3.36), we have

Hλ

k,t+1|t = (1−△) 12×1 + ΨHλ

k−1,t+1|t = Ψk−1 Hλ

1,t+1|t +
k−2∑
j=0

Ψj (1−△) 12×1

and the proof is complete.
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Conclusion

The three main chapters of this dissertation focus on modelling and forecasting stock market

volatility with Markov-switching GARCH models (MSGARCH). In Chapter 1, we present a

flexible MSGARCH that nests a wide range of popular single-regime and regime-switching

GARCH models. In the theoretical part of the chapter, we derive necessary and sufficient

conditions for asymptotic stationarity of the model. In an empirical application, we apply the

nested two-regime MSGARCH models and their single-regime counterparts to daily returns

of the S&P 500 Index. We show that Markov-switching models accounting for an asymmetric

impact of returns on volatility significantly outperform single-regime models and symmetric

models both in explaining volatility and forecasting Value-at-Risk (VaR).

Chapter 2 further considers the risk management implications of modelling volatility with

Markov-switching GARCH models. With this aim, we present a comparative study of a

wide set of models including single-regime and two-regime GARCH models, nonparametric

models and semiparametric models in terms of forecasting Value-at-Risk (VaR) and Expected

Shortfall (ES). Using daily data for four stock indices, the S&P 500, Dow Jones Industrial

Average, the NIKKEI 225 and the FTSE 100, we show that Markov-switching GARCHmodels,

in particular our more flexible specification, significantly outperform all other models in the

set of competing models.

In Chapter 3, we focus on forecasting volatility with financial and macroeconomic uncer-

tainty. Following the seminal paper by Engle et al. (2013), we combine our proposed MS-

GARCH models with the MIxed Data Sampling (MIDAS) approach of Ghysels et al. (2004).

This combination allows the inclusion of macroeconomic variables observed at a monthly,

quarterly or even lower frequency into the specification of daily volatility. We consider the

monthly Financial Uncertainty (FU) index of Jurado et al. (2015), the monthly Macroe-
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conomic Uncertainty (MU) index of Ludvigson et al. (2020) and the daily Chicago Board

Options Exchange Volatility Index (VIX) as explanatory variables. We show that the in-

clusion of macroeconomic and financial uncertainty indices when modelling S&P 500 returns

significantly improves volatility predictions. In particular, the daily VIX index provides more

accurate 1 day-ahead volatility forecasts. On the other hand, the monthly MU and FU indices

provide more accurate forecasts at longer horizon of 2 weeks, 1 month, 2 months and 3 months.

Thus, our findings are useful for selecting the appropriate explanatory variable based on the

required forecasts horizon: while high-frequency indices are more appropriate for short-horizon

forecasts, low-frequency indices are more suitable for longer forecasts horizons. Furthermore,

we show that our proposed MSGARCH-MIDAS model outperforms all other single-regime

and regime-switching models nested within it. This superiority is consistent across forecasts

horizons and robust to the sample period under consideration.

Throughout this thesis, we have shown that there is strong evidence of two regimes in

equity returns and that failure to account for regime changes in the dynamics of the volatility

leads to biased inference and misleading out-of-sample forecasts. As a direction for further

research, we see the implications of considering more than two regimes in our model. For

instance, we could allow for more than two regimes to study how the stock market reacted

during the COVID-19 pandemic to macroeconomic policies and health policies implemented

during the crisis (i.e., Incubation, Outbreak, Fear and Rebound phases). Capelle-Blancard

and Desroziers (2020) divide their sample from January 2020 to April 2020 into sub-samples

to account for these four phases. We argue that incorporating different regimes in the model

itself would provide a better understanding of how the return volatility is affected during the

crisis. We leave this for future research.
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