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Abstract 

 

The paper presents the results of a feasibility study aimed at combining probabilistic approaches for dealing with 

uncertainty with Artificial Intelligence (AI) technology for the prediction of the properties of materials used by the nuclear 

industry. This allows the AI tools to produce predictions with associated confidence, essential for the application of AI in 

safety critical systems.    More specifically, this work involves predicting the Creep rupture and Tensile properties of a given 

type of steel material. To do so, a set of Artificial Neural Network (ANN) have been trained from relevant experimental data. 

However, the collected datasets are characterized by discontinuities and gaps in the data values. Furthermore, no information 

on its associated uncertainties is provided. To address these problems, a stochastic data-generating method is proposed which 

is used to enhance the dataset used to train the ANN models. From which, the Adaptive Bayesian Model Selection method is 

applied to obtain the corresponding probabilistic prediction with its associated confidence bounds. The results are well-

validated against the given experimental data where the data is shown to fall within the prediction bounds.  The approach has 

allowed for the improved accuracy of the prediction and making the model robust to bad data. 

1. INTRODUCTION 

1.1. Research Motivation 

Currently, the nuclear sector is faced with 3 key challenges: 1) the need to decommission ageing nuclear 

reactors; 2) the high costs associated with the construction of new reactors; and 3) the high costs in performing 

experimental campaigns resulting in the lack of data [1]. Among the 3 challenges, the focus of the research would 

be on addressing the third challenge. As such, for the work presented in the paper, a general framework combining 

AI with Uncertainty Quantification (UQ) tools is proposed. This framework is known as project PROMAP – 

Probabilistic Prediction of Material Properties in Nuclear power plant structures. The objective behind the 

formulation of such method is to allow for the AI models to yield robust predictions, along with the associated 

confidence bounds, over a material property of interest under model uncertainty and scarce data. 

1.2. Review of Artificial Intelligence in Nuclear 

In a recent study, it was found that the AI technology is not widely implemented within the nuclear sector 

and that the sector is currently lagging behind in the industry 4.0 revolution compared to other industries such as 

the healthcare, automotive and manufacturing [1]. In addition, the industry seeks to develop new reactor designs 

for both fusion and fission. These would come in the form of the newer generation Light Water Reactors, Liquid 

Metal Cooled Reactors, and High-temperature Gas-cooled Reactors which are expected to be more modular and 

compact in their designs. In this regard, this brings opportunities for the application of AI which can be expected 

to play an important role in devising new ways to design, construct, operate, and decommission such reactors 

across the entire project operation duration [5]. 

The role of AI can be categorised into 2 types [1]: 1) De-centralised decision-making; and 2) Technical 

assistance. The first category refers to the capability of the AI systems to become autonomous, thereby being able 

to make simple decisions itself without human intervention. The second category refers to the capability of the AI 

systems in supporting the decision-making process by human towards problem-solving as well as assisting 

humans in completing tasks which are too complex and risky for them. These include accident identification, 

system performance, structural integrity, predictive maintenance, and predicting material properties and 

behaviours. The focus of the paper is on the technical assistance aspect of AI in the context of material properties 

prediction. 
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Over the years, numerous approaches have been implemented to predict material properties in Nuclear 

applications under scarce data. These include: 1) Shotgun Transfer Learning [2]; 2) Exact Muffin-Tin Orbitals 

[3]; and 3) Coherent Potential Approximation [3]. For the work presented in the paper, the approach involving 

Artificial Neural Networks (ANNs) is employed to model and predict nuclear material properties given the 

following strengths ANNs possess: 1) it provides a fast response in the mapping of the data; and 2) it is able to  

capture the non-linear behaviour which is a common characteristic of complex systems [4]. These advantages 

motivated the implementation of ANNs towards the work presented in the paper. 

 

2. PROPOSED METHODOLOGY 

The proposed methodology consists of 3 main steps: 1) the enhancement of the existing experimental 

dataset; 2) training a set of ANNs; and 3) merging the ANN predictions with Bayesian statistics.  

The first step involves the implementation of a multi-variate Gaussian Mixture Model (GMM) [6] over the 

raw experimental data. The assumption is that the measurement error follows that of a zero-mean Normal 

distribution. In constructing the covariance matrix of the GMM, the following are done: Firstly, the Pearson’s 

correlation coefficients between the features of interest are computed from which the covariance matrix is 

constructed. This helps to capture the physical relationship between the features, especially in the absence of a 

physics-based model, ensuring that such relationship is retained in the enhanced dataset. Secondly, the variance 

of the respective features is set at 1% of their respective nominal value to simulate the given degree of 

measurement error and variability for this study. This allows for the probabilistic enhancement of the experimental 

dataset. 

In the second step, a set of ANN models of varying architectures is constructed to predict each target feature 

of the steel type being studied. This is to introduce the element of model uncertainty and loosens the assumption 

of the choice of model to describe the relationship between the input and corresponding target feature. For this 

study, the ANNs are trained using the synthetic data generated in the first step and are then validated using the 

experimental data. To quantify the strength of validation by the ANN, the R2-score is computed for each model. 

Detailed conceptual and mathematical descriptions to ANNs can be found in [7].  

In the third step, the Adaptive Bayesian Model Selection (ABMS) method is implemented to incorporate 

the elements of Bayesian statistics to the ANN predictions under model uncertainty [8]. The concept behind the 

ABMS algorithm is based on Bayesian inference to account for the posterior probability across the set of ANN 

models used to predict a given target feature. From there, a robust prediction on the target feature of interest is 

obtained, along with the 95% confidence interval as determined by the posterior distribution across the ANN 

models (i.e. Bayesian model averaging) [9, 10, 11]. While implementing the ABMS method, the synthetic data 

generated in the first step is used to calibrate the set of ANNs used for the prediction and is then validated with 

the experimental data. It will be assumed apriori that all ANN models in the set are equally likely and a Uniform 

distribution is used as the prior. On the other hand, a GMM is used to approximate the posterior for the 

computation of the confidence intervals. Mathematical details behind the ABMS method and its procedures can 

be found in [9, 13]. 

To summarise the above steps presented in the section, an illustrative flow-chart is provided in Fig. 1. 

 



A. Lye, N. Prinja, and E. Patelli 

 
3 

 
FIG. 1. Flow-chart illustrating the proposed methodology which constitutes the framework for Project PROMAP. 

 

3. CASE STUDY 

3.1.     Experimental Data 

The database of the material properties used in this work is based m a previous experiment campaign under 

the Material Properties Predictor for Power Plant Steels (M4PS) project [1, 12]. The database contained the 

properties of 58 type of steel and the material properties of interest are: 1) Creep rupture properties; and 2) Tensile 

properties. For each of these properties, their corresponding identified key input and target features are 

summarised in Table 1 and Table 2 respectively [12]. 

 

TABLE 1. INPUT AND TARGET FEATURES FOR CREEP RUPTURE PROPERTIES PREDICTION. 

 

Input features Target features 

Material code Fracture time (FT) 

Cast code Elongation 

Stress Reduction of Area (RA) 

Temperature  

Composition (19 components)  

 

TABLE 2. INPUT AND TARGET FEATURES FOR TENSILE PROPERTIES PREDICTION. 

 

Input features Target features 

Material code Ultimate Tensile Strength (UTS) 

Cast code Elongation 

Temperature 0.2% Proof Stress (PS02) 

Composition (19 components) Reduction of Area (RA) 

 

To study the profile of the experimental data, a series of scatterplot diagrams are generated for both Creep 

rupture and Tensile properties data. These diagrams are presented in Fig. 2 and Fig. 3, respectively. From the 

figures, it can be observed that there is significant unevenness in the distribution as well as significant gaps 

between the data points. In addition, it can also be seen that some data points are grouped about discrete values as 

seen in the plot for Elongation vs Temperature in Fig. 1 and that for RA vs Temperature in Fig. 2. This leads to 
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significant loss of information as the data points do not explore the entire domain of the experimental input values. 

Such issue of having only limited data points can be attributed to the high costs associated with performing an 

experiment campaign [1]. Hence, to keep costs low, experiments can only be done with selected input parameter 

values.  

 Another problem faced is the lack of uncertainty quantification over the experimental data points. The 

measured data obtained does not include any information on its confidence bounds or measurement error. In 

addition, due to the limited experimental campaigns conducted, the inherent variability associated with the 

experimental data (i.e. the aleatory uncertainty [8]) is not captured as well.  

Hence, there are 2 main problems that PROMAP seeks to address: 1) How to enhance the existing dataset 

without having to perform additional experiment campaigns; and 2) How to propagate the uncertainties in 

predicting the material property of interest using AI tools. For this study, the Chromium-Nickel-Carbon steel type 

is studied for Creep rupture properties prediction, while the Chromium-Nickel-Molybdenum steep type is studied 

for Tensile properties prediction under scarce data. These respective steep types are chosen due to their relatively 

small data size available for the corresponding material properties which are relevant for this study. 

 

 
FIG. 2. Scatterplot diagrams illustrating the experimental data of the selected input features for Creep rupture properties 

against the target feature of Elongation. 

 

 
FIG. 3. Scatterplot diagrams illustrating the experimental data of the selected input features for Tensile properties against the 

target feature of Reduction of Area (RA). 
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3.2.     Dataset Enhancement 

Using the data enhancement approach described in Section 2, for the case of the Creep rupture data, the 

Pearson’s correlation is computed between the features: Stress, Temperature, FT, Elongation, and RA. Next, the 

multi-variate GMM is constructed over the experimental data from which, 10000 synthetic data is generated in a 

stochastic matter. This procedure is repeated for the Tensile data for the following features: Temperature, PS02, 

UTS, Elongation, and RA. The resulting enhanced data for both the Creep rupture and Tensile properties data are 

presented in Fig. 4. 

 

 
FIG. 4. Violin plots of the synthetic data along with the experiment data for both the Creep rupture data and Tensile data 

presented in the (standard) normal scale for fair comparison. 

 

4. RESULTS AND DISCUSSIONS 

4.1.     Artificial Neural Network Training 

For each of the target features, 5 ANN models are constructed and trained to which their corresponding 

R2-scores in the prediction performance of the Creep rupture and Tensile properties are presented in Table 3 and 

Table 4 respectively. The training times for the ANN models range between 1.63s to 1534.80s and is dependent 

on the number of hidden-layers and hidden-nodes. 

Based on the results in Table 3 and Table 4, the R2-scores are at least 92.91% which indicates a strong 

degree of validation against the experimental data as well as the effectiveness of using the synthetic data as the 

training data. However, it needs to be highlighted as well that such high R2-scores is due to the small experimental 

dataset and that such scores may potentially be lower with the increased size of the experimental dataset used for 

validation. 

 

TABLE 3. R2-SCORES OF THE RESPECTIVE ANN MODEL FOR THE TARGET FEATURES FOR 

CREEP RUPTURE PROPERTIES PREDICTION. 

 

ANN Configuration R2-scores [%] 

FT Elongation RA 

23-18-1 99.85 99.98 99.98 

23-32-1 - 99.94 99.95 

23-18-9-1 99.99 99.99 99.99 

23-27-18-9-1 99.99 99.99 99.99 

23-64-32-8-1 99.99 - - 

23-64-32-16-1 99.99 99.99 99.99 
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TABLE 4. R2-SCORES OF THE RESPECTIVE ANN MODEL FOR THE TARGET FEATURES FOR 

TENSILE PROPERTIES PREDICTION. 

 

ANN Configuration R2-scores [%] 

UTS Elongation PS02 RA 

22-18-1 94.68 99.88 96.60 94.58 

22-32-1 - - 96.59 - 

22-64-1 99.99 99.99 - 94.58 

22-18-9-1 99.84 99.88 92.91 94.55 

22-27-18-9-1 99.97 99.99 92.94 94.82 

22-64-32-16-1 99.99 100.00 99.98 99.95 

 

4.2.     Robust Probabilistic Predictions 

The results to the probabilistic predictions to the target features corresponding to the creep rupture and 

tensile properties of the steel being studied are presented in Fig. 6 and Fig. 7 respectively. For each of the plot, 

the robust estimates and the 95% confidence interval are plotted against the corresponding validation data point 

(i.e. Data no.). From the figures, it can be observed that the 95% confidence interval of the estimates generally 

enclose the experimental data points which indicates a strong degree of validation of the probabilistic estimates 

by the ABMS method. In addition, despite the small number of experimental data points, the 95% confidence 

intervals across the target features are not as wide. This is attributed to the large number of calibration data (i.e. 

the 10000 synthetic data points) used to train the set of ANNs and the strong R2-scores achieved by the surrogate 

models as reflected in Section 4.1. The result is a high degree of precision and accuracy on the estimates of the 

target features of interest. 

However, it is also observed that the 95% confidence interval bounds for the tensile properties target 

features Elongation and RA are significantly wider than those for the corresponding target features for the creep 

rupture properties. This is due to the relatively poor R2-scores achieved by the ANNs used to predict these tensile 

properties compared to those achieved the ANNs used to predict the creep rupture properties. As a result, the 

uncertainty in the estimates is greater in the case of the aforementioned target features for tensile properties 

compared to those for the creep rupture properties.  
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FIG. 6. Results of the robust estimates by the ABMS method over the target features for the steel’s creep rupture properties. 

 

 
FIG. 7. Results of the robust estimates by the ABMS method over the target features for the steel’s tensile properties. 

 

4.3.      Computational Times 

The resulting computation times taken by the ABMS algorithm to generate robust estimates of the 

corresponding target features are presented in Table 5. Based on the resulting times in Table 5, it can be observed 

that the computation time by the ABMS in predicting the target features for the steel’s Creep rupture properties is 

significantly longer compared to that for Tensile properties. This is because there are 13 validation data points for 

the case of the Creep rupture properties data while there are only 8 validation data points for the case of the Tensile 

properties data. Thus, it takes more time for the ABMS algorithm to generate the robust estimates and the 95% 

confidence interval bounds in the case of the target features for the Creep rupture properties. 
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TABLE 5. COMPUTATIONAL TIMES BY THE ABMS ALGORITHM FOR THE RESPECTIVE TARGET 

FEATURE. 

 

Material property Target feature Time elapsed [s] 

 

Creep rupture 

 

FT 6.33 

Elongation 4.51 

RA 5.38 

 

Tensile 

PS02 2.69 

UTS 2.36 

Elongation 2.01 

RA 2.71 

 

5. CONCLUSION 

Project PROMAP presents a novel framework merging Artificial Intelligence with Uncertainty 

Quantification tools to provide a probabilistic prediction over the nuclear material properties. This involves the 

training of a set of ANN models and the subsequent implementation of the Adaptive Bayesian Model Selection 

method to generate robust predictions and its associated 95% confidence intervals over the target feature of 

interest. The latter whose results are validated against experimental data. Based on the resulting training 

performance of the ANN models, the R2-scores are at least 92.91% when validated against the experimental data 

across all models constructed which indicates a strong degree of accuracy in the model prediction by the individual 

ANN relative to the experimental data. From the results of the probabilistic robust predictions by the Adaptive 

Bayesian Model Selection method, it can be observed that not only the robust estimates show a strong degree of 

agreement with the experimental data, its 95% confidence intervals also enclose the experimental data without 

any leaving any outlier. This also demonstrates the high degree of accuracy and precision achieved by the 

Adaptive Bayesian Model Selection method. 

There are 4 key benefits which PROMAP seeks to provide: 1) by providing a probabilistic prediction 

instead of a deterministic one, the uncertainty of the estimates is accounted for. This allows for the users to 

determine the level of confidence on the predictions as well as make an informative risk-based decision on the 

choice of materials to use in the design of new nuclear reactors; 2) the proposed framework accounts for the 

uncertainty associated with the choice of the ANN models used for the prediction of the material properties; 3) 

the stochastic data-enhancement method involving the Gaussian Mixture Model, along with the information on 

the correlation between the features of interest, is used to generate synthetic data from the experimental data whilst 

ensuring that he physical relationship between the features is retained in the absence of a physics-based model; 

and 4) this framework can help reduce the need to run multiple experimental campaigns, thereby saving costs. 

More details to Project PROMAP and the results obtained can be found in [13].      

For the users’ interest, the MATLAB codes written to generate the results presented in the paper are made 

available on OpenCOSSAN [14] via: https://github.com/cossan-working-group  
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