Interfacial Embedding of Laser-Manufactured Fluorinated Gold Clusters Enabling Stable Perovskite Solar Cells with Efficiency Over 24%



Guo, Pengfei, Zhu, Hongfu, Zhao, Wenhao, Liu, Chen, Zhu, Liguo, Ye, Qian, Jia, Ning, Wang, Hongyue, Zhang, Xiuhai, Huang, Wanxia
et al (show 7 more authors) (2021) Interfacial Embedding of Laser-Manufactured Fluorinated Gold Clusters Enabling Stable Perovskite Solar Cells with Efficiency Over 24%. ADVANCED MATERIALS, 33 (36). e2101590-.

[img] Text
interfacial_author_version.pdf - Author Accepted Manuscript

Download (13MB) | Preview

Abstract

Tackling the interfacial loss in emerged perovskite-based solar cells (PSCs) to address synchronously the carrier dynamics and the environmental stability, has been of fundamental and viable importance, while technological hurdles remain in not only creating such interfacial mediator, but the subsequent interfacial embedding in the active layer. This article reports a strategy of interfacial embedding of hydrophobic fluorinated-gold-clusters (FGCs) for highly efficient and stable PSCs. The p-type semiconducting feature enables the FGC efficient interfacial mediator to improve the carrier dynamics by reducing the interfacial carrier transfer barrier and boosting the charge extraction at grain boundaries. The hydrophobic tails of the gold clusters and the hydrogen bonding between fluorine groups and perovskite favor the enhancement of environmental stability. Benefiting from these merits, highly efficient formamidinium lead iodide PSCs (champion efficiency up to 24.02%) with enhanced phase stability under varied relative humidity (RH) from 40% to 95%, as well as highly efficient mixed-cation PSCs with moisture stability (RH of 75%) over 10 000 h are achieved. It is thus inspiring to advance the development of highly efficient and stable PSCs via interfacial embedding laser-generated additives for improved charge transfer/extraction and environmental stability.

Item Type: Article
Uncontrolled Keywords: environmental stability, gold clusters, interfacial loss, perovskite solar cells, pulsed laser irradiation
Divisions: Faculty of Science and Engineering > School of Physical Sciences
Depositing User: Symplectic Admin
Date Deposited: 05 Sep 2022 07:51
Last Modified: 18 Jan 2023 20:46
DOI: 10.1002/adma.202101590
Related URLs:
URI: https://livrepository.liverpool.ac.uk/id/eprint/3163224