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Abstract

This paper presents an efficient numerical algorithm to compute eigenvalues of stochastic prob-

lems. The proposed method represents stochastic eigenvectors by a sum of the products of un-

known random variables and deterministic vectors. Stochastic eigenproblems are thus decoupled

into deterministic and stochastic analyses. Deterministic vectors are computed efficiently via a

few number of deterministic eigenvalue problems. Corresponding random variables and stochas-

tic eigenvalues are solved by a reduced-order stochastic eigenvalue problem that is built by deter-

ministic vectors. The computational effort and storage of the proposed algorithm increase slightly

as the stochastic dimension increases. It can solve high-dimensional stochastic problems with

low computational effort, thus the proposed method avoids the curse of dimensionality with great

success. Numerical examples compared to existing methods are given to demonstrate the good

accuracy and high efficiency of the proposed method.
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1. Introduction

Developments in numerical techniques and computing hardware have made it possible to solve

high-resolution models in various computational physics problems. The considerable influence of

uncertainties on system behavior has led to the development of dedicated numerical methods for

uncertainty analysis. Predicting uncertainty propagation on the physical models has become an

essential part of the analysis and design of practical engineering systems.

As an important part of structural dynamics analysis, the eigenvalue problem has received ex-

tensive attention and is well understood for deterministic problems [1, 2]. Its extension, known as

the stochastic eigenvalue problem, is introduced to consider influence of uncertainties on system

dynamics analysis. There are several kinds of methods for solving stochastic eigenvalue prob-

lems. The first kind of method is Monte Carlo simulation (MCS) [3]. As a most powerful tool

for stochastic analysis, MCS can be applied to almost all kinds of stochastic problems. MCS

is very easy to implement by use of the already existing deterministic solvers but has poor con-

vergence. A large number of deterministic eigenvalue problems are solved in order to compute

high-accuracy stochastic eigenvalues, which are computationally expensive, especially for large-

scale problems. Several improvements, e.g. quasi-MCS and multilevel MCS [4], are used to save

computational costs of MCS. The second kind of method is perturbation methods [5]. The per-

turbation approach expands the random variables around their mean values to first/second order

by use of Taylor series. It is easy to implement and has high computational efficiency. However,

being limited to small variability and only giving statistical moments make the method unsuitable

for complex stochastic problems. Several improvements of perturbation methods are given in ref-

erences [6, 7]. The third kind of method is the Polynomial chaos-based (PC) method [8]. In this

kind of method, the stochastic matrices, the stochastic eigenvectors and the stochastic eigenval-

ues are projected onto a stochastic space spanned by (generalized) PC basis. Stochastic Galerkin

method is then used to transform the original stochastic eigenvalue problem into a nonlinear sys-

tem of coupled deterministic equations whose size is much larger than that of the original problem.

The Newton-Raphson method is adopted to solve the nonlinear system. PC-based methods have

rigorous mathematical foundation and good convergence. It is general-purpose and can be applied
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to both real- and complex-valued stochastic eigenvalue problems. However, the computational

efficiency of the PC-based method needs to be further improved. Several improvements [7, 9]

are proposed to reduce computational costs. Other extensions of PC-based methods are to solve

stochastic eigenvalue problems by combing PC expansion and deterministic numerical techniques,

e.g. power method [10], inverse power method [11, 12, 13], subspace iteration [14, 15, 16]. Other

methods are also proposed to solve stochastic eigenvalue problems. The stochastic collocation

method [17] is to approximate stochastic eigenvalues and eigenvectors via an interpolation ap-

proach. It is non-intrusive and only uses deterministic solvers to solve a set of random samples of

the solutions. The methods in references [18, 19] transform the stochastic eigenvalue problem into

initial equations with a pseudo time parameter, which is then solved by the PC-based method. The

homotopy approach is proposed in the reference [20], which expands stochastic eigenvalues and

eigenvectors by an infinite multivariate series and adopts homotopy analysis to compute expanded

coefficients. Stochastic eigenvalues and eigenvectors are solved by combining PC expansion and

dedicatedly iterative algorithms for low-rank approximations in references [21, 22].

We mention another method, known as reduced-order method (ROM). In this method, stochas-

tic eigenvalues and eigenvectors are solved by a reduced-order (normally small-scale) eigenvalue

problem, which is obtained by projection subspace of the large-scale problem. Solutions of the

reduced-order eigenvalue problem are very close to the exact solutions if the subspace is similar

to the space of stochastic eigenvectors of the original problem [1]. The key of this kind of method

is to construct a good projection approximation subspace. Several methods are proposed for this

purpose, e.g. perturbation-based subspace [23], optimization-based subspace [24, 25], stochastic

Krylov subspace [26] and subspace of mean matrices [27]. Another point that needs to pay more

attention is the stochastic dimension, which has significant influence on the computational accu-

racy and efficiency of numerical methods for stochastic eigenvalue problems. There are usually

a large number of uncertain parameters in many applications, e.g. the input is approximated by

random fields with a large number of random variables, which leads to the curse of dimension-

ality in high-dimensional stochastic spaces. MCS and its extensions [4] can overcome curse of

dimensionality but a large number of deterministic simulations are needed. Stochastic collocation

method [17] needs to construct high-dimensional interpolation formulas of the solutions based
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on a certain amount of deterministic simulations. The computational effort of PC-based meth-

ods increases dramatically as the number of stochastic dimensions and/or the order of PC basis

increase, which is prohibitively expensive. Sparse PC method is an available tool to reduce the

computational effort [28].

We also highlight another kind of method called polynomial dimension decomposition (PDD)

[29]. Similar to PC-based methods, orthogonal polynomial bases are used in the PDD method

to approximate stochastic responses. The PDD method develops a dimensional hierarchy of the

stochastic response, which alleviates the curse of dimensionality suffered from PC-based meth-

ods. The application of the PDD method in stochastic eigenvalue problems is given in refer-

ences [30, 31], which allows lower-variate approximations of stochastic eigenvalues and lower-

dimensional numerical integration for the statistical moments. To avoid the difficulty that the

polynomial basis does not work well in capturing strongly local variations of solutions, e.g. non-

smooth and discontinuous stochastic solutions, a spline chaos expansion [32] is also proposed,

which represents stochastic solutions by using orthogonal B-spline bases. Combining and general-

izing ideas of the dimension decomposition and the spline chaos expansion, the spline dimensional

decomposition method is developed to solve the high-dimensional and dynamical stochastic prob-

lems [33, 34], which avoids the curse of dimensionality to a great extent. The above methods have

become powerful methods in uncertainty quantification and have great potential for very complex

stochastic problems.

Although a lot of excellent work have been discussed above, the development of numerical

methods for stochastic eigenvalue problems is still an attractive topic, especially robust, efficient

and accurate methods for solving large-scale, high-dimensional stochastic eigenvalue problems.

In this paper, we focus on developing efficient numerical algorithms to compute first several max-

imum/minimum stochastic eigenvalues of problems with high stochastic dimensions and large

scale. The stochastic eigenvectors are firstly approximated by summing a set of products of ran-

dom variables and deterministic vectors. The deterministic vectors (also considered as a set of

reduced basis) are computed via a few number of decoupled deterministic eigenvalue problems

and a dedicated iterative algorithm, where the deterministic eigenvalue problems are obtained

by combining an approximation of the stochastic eigenvector and stochastic Galerkin method.
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A reduced-order stochastic eigenvalue problem based on the obtained reduced basis is used to

solve stochastic eigenvalues of the original problem and random coefficients of the reduced basis.

All stochastic analysis, including solving reduced basis and solving the reduced-order stochastic

eigenvalue problem, are implemented by non-intrusive sampling methods, which has less compu-

tational effort and is almost independent of the stochastic dimension. The curse of dimensionality

induced by the high-dimensional stochastic problem is thus avoided, which is demonstrated by

using a numerical example with up to a hundred stochastic dimensions. Also, compared to PC

and PDD methods, the non-intrusiveness of the proposed method is highlighted, which does not

require dedicated approximation structures of the solutions in stochastic spaces. The proposed

method is easy to implement and existing solvers can be embedded into solving procedure. It

combines the fast convergence of intrusive methods and the weak dimensionality dependency of

non-intrusive methods. Another advantage is that the proposed method obtains sample representa-

tions of stochastic eigenvalues and semi-explicit representations of stochastic eigenvectors, which

provides a pathway to describe the probability density function of the quantity of interest and can

be readily applied to structural stochastic dynamical analysis [35, 36, 37].

The paper is organized as follows: Section 2 gives the basic setting of the stochastic eigenvalue

problem and a brief description of the PC method for solving stochastic eigenvalue problems. In

Section 3, we propose a new reduced-order method to solve stochastic eigenvalue problems, in-

cluding the construction of stochastic eigenvectors, the solution of reduced basis, the applicability

to high-dimensional stochastic problems and the proofs of convergence and optimal approxima-

tion. The algorithm implementation of the proposed method is elaborated in Section 4. Following

that, several numerical examples of low- and high-dimensional cases are given to demonstrate

the performance of the proposed method in Section 5, and conclusions and discussions follow in

Section 6.

2. Stochastic eigenvalue problems

In this paper, let (Θ,Σ,P) be a complete probability space, where Θ denotes the space of

elementary events, Σ is the σ-algebra defined on Θ and P is the probability measure. We consider
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the following stochastic eigenvalue equation,

K (θ) u (θ) = λ (θ) u (θ) , (1)

where θ ∈ Θ, K (θ) ∈ Rn×n is the real symmetric and positive definite stochastic stiffness matrix

related to stochastic properties of the physical models, λ (θ) ∈ R and u (θ) ∈ Rn are stochastic

eigenvalues and stochastic eigenvectors, respectively. The orthonormal condition

uT
i (θ) u j (θ) = δi j, θ ∈ Θ (2)

is met for the eigenvectors ui (θ) and u j (θ), where δi j is the Kronecker delta function. In a general

setting, the matrix K (θ) depends on a finite set of real valued random variables reduced from the

infinite-dimensional probability space. When the inputs are random fields represented with a set

of random variables, the number of random variables may be large, which possibly induces the so

called curse of dimensionality.

2.1. Polynomial Chaos expansion for solving stochastic eigenvalue problems

Polynomial Chaos expansion is a powerful tool for stochastic analysis and has been applied to

many kinds of stochastic problems. A PC-based method [8] is proposed in order to solve Eq. (1).

In this method, K (θ), λ (θ) and u (θ) are represented by PC basis in the form,

K (θ) =

l−1∑
i=0

ψi (θ) Ki, um (θ) =

p−1∑
i=0

ψi (θ) u(i)
m , λm (θ) =

p−1∑
i=0

ψi (θ) λ(i)
m , (3)

where {Ki}
l−1
i=0 ∈ Rn×n are deterministic matrices,

{
u(i)

m

}p−1

i=0
∈ Rn are deterministic vectors and{

λ(i)
m

}p−1

i=0
∈ R are expanded coefficients. All of them are unknown and need to be computed by

a coupled system of equations. Moreover, the orthonormal condition Eq. (2) is written as

uT
k (θ) um (θ) =

p−1∑
i=0

p−1∑
j=0

ψi (θ)ψ j (θ) u(i)T
k u( j)

m = δkm. (4)

Substituting the expansion Eq. (3) into Eq. (1) and applying stochastic Galerkin method [38, 39]

to Eq. (1) and (4) yield a deterministic system of equations

l−1∑
i=0

p−1∑
j=0

ci jqKiu( j) =

p−1∑
i=0

p−1∑
j=0

ci jqλiu( j) (5)
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and the equation of the orthonormal condition

p−1∑
i=0

p−1∑
j=0

ci jqu(i)T
k u( j)

m = δkmδq0, (6)

where the coefficients is given by ci jq = E
{
ψi (θ)ψ j (θ)ψq (θ)

}
, q = 0, · · · , p − 1. Eq. (5) and (6)

can be rewritten as a compact system of nonlinear equations,

p−1∑
i=0

p−1∑
j=0

(BiΓi − λiΓi) u = 0, Bi = 0, i > l (7)

and

uT
k Γqum = δkmδq0, (8)

where the matrices Bi and Γi are given by

Bi =


Ki 0

. . .

0 Ki

 ∈ Rnp×np, Γi =
[
ci jqIn

]p−1

j,q=0
∈ Rnp×np, (9)

In ∈ Rn×n is the identity matrix.

The above PC-based method gives a powerful tool to solve stochastic eigenvalue problems. It

has a rigorous mathematical foundation and is of high accuracy. The method can provide proba-

bility density descriptions for eigenvalues and eigenvectors instead of moments. However, it needs

to be further improved in terms of computational efficiency. On one hand, it requires to solve the

augmented nonlinear system Eq. (7) for each eigenpair {λ (θ) , u (θ)}. On the other hand, the size

of Eq. (7) is prohibitively large as the stochastic dimension, the order of PC basis and the degree

of freedom of the physical model increase, whose solution is time-consuming. We remark that

the dimension decomposition method, including polynomial dimension decomposition [29] and

the spline dimension decomposition[34], can be used to reduce the computational cost and cap-

ture high-accuracy stochastic solutions. Similar to the PC method, the method adopts orthogonal

polynomial/spline bases to approximate stochastic solutions and develops a hierarchical decom-

position to overcome some difficulties arising in PC methods, e.g. the curse of dimensionality,

capturing discontinuous stochastic solutions. An exhaustively comparative study of the two meth-

ods of solving stochastic eigenvalue problems can be found in the reference [31]. In this paper,
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we will explore a non-intrusive method instead of intrusive solution approximations in stochastic

spaces.

3. A reduced-order method for stochastic eigenvalue analysis

In this section, we develop an efficient method to solve the stochastic eigenproblem Eq. (1).

A new expansion similar to the PC expansion is used to approximate stochastic eigenvectors, but

the random coefficients and deterministic vectors are not known a priori. A numerical algorithm

is proposed to compute corresponding deterministic vectors and a reduced-order eigenequation is

then used to solve stochastic eigenvalues of the original eigenproblem.

3.1. Reduced-order stochastic eigenvalue equation

Similar to the expansion Eq. (3), we decompose the stochastic eigenvector into the determinis-

tic and stochastic spaces and consider the expansion of the stochastic eigenvector um (θ) in a form

um (θ) =

k∑
i=1

φ(i)
m (θ) di = Dφm (θ) ∈ Rn, (10)

where the deterministic vector di ∈ Rn, the random variable φ(i)
m (θ) ∈ R, the deterministic matrix

D = [di]k
i=1 ∈ Rn×k, the random vector φm (θ) =

[
φ(i)

m (θ)
]k

i=1
∈ Rk. All of them are not known a

priori and need to be solved. Moreover, we let the orthonormal condition DT D = Ik hold, i.e. the

vectors {di}
k
i=1 are orthogonal dT

i d j = δi j. The original eigenproblem Eq. (1) thus becomes as

K (θ) Dφm (θ) = λm (θ) Dφm (θ) . (11)

It is noted that Eq. (11) is insoluble since both the matrix D and the random vector φm (θ)

are unknown. If one of them has been known, the other is readily computable. In this way, an

available way is to fix one of them and then to solve the other. Inspired by the classical subspace

iteration method [1, 2] for solving deterministic eigenvalue problems and reduced basis methods,

we assume the matrix D has been known and then solve the unknown random vector φm (θ). By

use of the matrix D, a reduced-order eigenvalue problem can be obtained,

K̃k (θ) φm (θ) = λm (θ) φm (θ) , (12)
8



where the reduced-order stochastic matrix K̃k (θ) is given by K̃k (θ) = DT K (θ) D ∈ Rk×k and

{φm (θ)}m meets the orthonormal condition φT
i (θ) φm (θ) = δim almost everywhere (a.e.) since they

are eigenvectors of the eigenequation (12). In this way, we recall the the orthonormal condition

Eq. (2) of the original eigenproblem,

uT
i (θ) u j (θ) = φT

i (θ) DT Dφ j (θ) = δi j (13)

holds naturally, thus extra equations (like Eq. (4)) are not needed to impose the orthonormal con-

dition. The size of the reduced-order problem Eq. (12) is k, which is much lower than the size

of the original eigenproblem Eq. (1). In our experience, a small number k normally achieves a

good approximation of the stochastic eigenvectors of the original eigenproblem. Several methods

can be used to solve Eq. (12) efficiently and accurately, e.g. the Monte Carlo simulation and the

PC-based method described in Section 2.1. In order to enable the proposed method to solve high-

dimensional stochastic eigenproblems, we adopt a non-intrusive sampling method to solve Eq. (12)

in this paper, which is easy to implement and has high accuracy and high efficiency thanking to the

small size k. By Eq. (12), the randomness of the matrix K (θ) is transferred to the reduced-order

matrix K̃k (θ). Thus the input random variables are propagated through a reduced-order eigen-

value system to the stochastic eigenvalues of both reduced-order and original eigenequations and

the stochastic eigenvectors of the reduced-order eigenequations. However, compared to the PC

method, the proposed method cannot provide an explicit representation between the input random

variables and the stochastic eigenvalues/eigenvectors. To avoid this point, an available method is

to represent the obtained λm (θ) and φm (θ) using the PC basis.

The key part of the proposed method is to determine the matrix D = [di]k
i=1. For this purpose,

we solve the vector di one by one by considering the following approximation of the stochastic

eigenvector u (θ),

min
d∈Rn
‖u (θ) − d‖2, (14)

where ‖·‖2 is defined as ‖u (θ)‖2 = E
{
u(θ)T u (θ)

}
and d ∈ Rn is an unknown deterministic vec-

tor. From a vector approximation point of view, we approximate the stochastic eigenvector u (θ)

by using the deterministic vector d. The approximation accuracy is very low due to the loss of

randomness in the vector d, thus it is wrong to some extent. To illustrate the reasonableness of
9



the approximation, we consider Eq. (14) from a subspace point of view. In Section 3.5, we will

show that the stochastic eigenvalues of Eq. (12) converge to the stochastic eigenvalues of Eq. (1)

if the stochastic vector u (θ) is nearly in the subspace obtained by deterministic vectors {di}i. In

this sense, Eq. (14) is used to construct a subspace that nearly includes the stochastic vector u (θ).

In practice, the stochastic eigenvector u (θ) is not known a priori, thus the vector d cannot be

computed directly by using Eq. (14). To avoid this difficulty, we substitute the stochastic vector

u (θ) = d into the eigenproblem Eq. (1) and thus obtain the following stochastic residual

R (θ) = [K (θ) − λ (θ) In] d ∈ Rn, (15)

only the random variable λ (θ) and the deterministic vector d in which are unknown. Thus the

problem is to find λ (θ) and d to minimize ‖R (θ)‖2,

min
λ(θ)∈R, d∈Rn

‖R (θ)‖2 = min
λ(θ)∈R, d∈Rn

‖K (θ) d − λ (θ) d‖2. (16)

Remark 1. From a vector approximation point of view, a better approximation of the stochastic

eigenvector u (θ) is given as follows

min
ϕ(θ)∈R, d∈Rn

‖u (θ) − ϕ (θ) d‖2 , (17)

where ϕ (θ) ∈ R is a unknown random variable. Eq. (17) can be considered as a kind of rank-1

random singular value decomposition (SVD) of u (θ). Specifically, giving the sample representa-

tion u (θ) ∈ Rn×ns (ns is the number of random samples) of u (θ) we have the following rank-1 SVD,

u (θ) ≈ dϕ (θ) , ϕ (θ) ∈ R1×ns . (18)

In the sense of sample representation, Eq. (17) is the optimal rank-1 approximation [40] of u (θ).

But it is not easy to solve the couple {ϕ (θ) , d} since both of them are unknown. The solution of

Eq. (17) needs further study and we only consider the approximation Eq. (14) in this paper.

We now focus on computing the random variable λ (θ) and the deterministic vector d in

Eq. (16). To this end, we develop an alternating minimization iteration, the idea of which is to

fix one of λ (θ) and d to solve the other and then to update the fixed one according to the solution.
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Specifically, for a known random variable λ (θ) (or a given initial value), we apply the stochastic

Galerkin method [38, 39] to the stochastic residual Eq. (15) and transform it as

E{λ (θ)R (θ)} = 0, (19)

which is used to solve the vector d and can be rewritten as a compact form,

K∗d = λ∗d, (20)

where the deterministic matrix K∗ = E {λ (θ) K (θ)} ∈ Rn×n and λ∗ = E
{
λ2 (θ)

}
∈ R. Eq. (20) is

a classically deterministic eigenvalue equation, which can be solved by use of existing methods,

e.g. power method, Lanczos method and QR method [2]. The details will be discussed in the next

subsection. After solving the vector d by Eq. (20), the random variable λ (θ) is updated by the

Galerkin procedure,

dTR (θ) = 0, (21)

equivalently,

λ (θ) =
dT K (θ) d

dT d
∈ R, (22)

which can be simplified as λ (θ) = dT K (θ) d by considering the normalization dT d = 1.

There are stochastic computations involved in Eq. (20) and (22), i,e. the expectation E {λ (θ) K (θ)}

and the deterministic vector-stochastic matrix multiplication dT K (θ) d. A common method is to

approximate K (θ) and λ (θ) by use of an Eq. (3)-like expansion. In this method, the size of the

equation for solving expanded coefficients of λ (θ) is (m + p)!/ (m!p!), where (·)! represents the

factorial operator, m and p are the number of random variables and the order of PC basis. It in-

creases dramatically as the stochastic dimension increases, for instance, the size is about 1 × 103

when m = 10, p = 4 and 4.6 × 106 when m = 100, p = 4. An available method to avoid the diffi-

culty is sparse PC expansion [28]. In order to overcome the dependence on stochastic dimensions,

we adopt a non-intrusive sampling method,

E {λ (θ) K (θ)} = E {λ (θ) K (θ)} , λ (θ) = dT K (θ) d ∈ Rns , (23)

where λ (θ) ∈ Rns and K (θ) ∈ Rn×n×ns represent samples of the random variable λ (θ) and the

matrix K (θ), respectively. It is noted that Eq. (23) has low computational effort even for very high
11



stochastic dimensions, the applicability of which to high-dimensional problems will be discussed

in Section 3.3.

It is seen from Eq. (20) and (22) that dT K (θ) d , 0 needs to be hold. In other words, the pro-

posed method does not work on the case λ (θ) = 0. If there are zero eigenvalues in the problem, we

can adopt the frequency-shifting strategy [2] to move the eigenvalues away from zero. We remark

that although the proposed method is derived from real symmetric and positive definite stochastic

matrices, it can be extended to more general stochastic matrices, e.g. the non-symmetric com-

plex stochastic matrices, which is simply illustrated in Example 5.1.3. Also, nonlinear stochastic

eigenvalue problems arise in many practical problems [31, 33]. The current version of the pro-

posed method cannot solve nonlinear stochastic eigenvalue problems well. The proposed method

is possible to be extended to the nonlinear eigenvalue problems by combining the idea in this paper

and deterministic nonlinear eigenvalue methods [41, 42], which is out of the scope of this paper

and an exhaustive study of which will be presented in following-up studies. In addition, the pro-

posed method does not require the correlation of input random variables. As shown in Eq. (23),

we adopt a non-intrusive way to perform stochastic computations. After generating samples of

correlated/independent input random variables, all computations of the proposed method are the

same. Thus the proposed method can be applied to both correlated and independent input random

variables.

3.2. Solution of deterministic eigenvectors

In this section, we simply discuss the method for solving the deterministic eigenproblem

Eq. (20). For each vector d, the single vector iteration method is enough for our purpose. In

this paper, we adopt the power iteration for the explanation of our method. For complex and large-

scale problems in practice, other numerical methods can be found in the reference [2] and they can

be readily used as an alternative to the power method in this paper.

By adopting the power iteration to compute the maximum eigenvalue of Eq. (20), a new solu-

tion d( j) is computed based on a known approximation d( j−1),

d( j) = K∗d( j−1), (24)
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where the deterministic matrix is inherited from Eq. (20) and d is the deterministic vector to be

solved. The iteration Eq. (24) is stopped until d converges.

Although Eq. (24) is only used to solve a single vector d, it can be readily extended to solve a

set of vectors d1, · · · , dk. To illustrate this point, assuming that the first k − 1 vectors d1, · · · , dk−1

have been known, we calculate the k-th vector dk. Eq. (24) is still adopted

d( j)
k = K∗d( j−1)

k , (25)

which is stopped until the vector dk converges. It is noted that dk is the eigenvector of the different

matrix K∗ = E {λk (θ) K (θ)} since λk (θ) are different random variables that vary with k. To speed

up the computation and to avoid the overlapping eigenmodes, we let the vector d( j)
k orthogonal to

the already obtained vectors d1, · · · , dk−1. Here we utilize Gram-Schmidt orthonormalization

d( j)
k = d( j)

k −

k−1∑
i=1

d( j)T
k di

dT
i di

di, d( j)
k = d( j)

k

/(
d( j)T

k d( j)
k

)
, (26)

which needs to hold along whole iterative process of Eq. (25) until dk converges. The iterations

Eq. (25) and (26) are very similar to the classical power method for solving the eigenvectors of

a deterministic matrix, but the randomness is embedded into the matrix K∗ in this paper, which

allows the subspace obtained by [d1, · · · , dk] to be a good approximation of the space of the first

few stochastic eigenvectors. In the same way, we can compute new vector dk+1, dk+2, · · · by using

Eq. (25) until the specified number of items is calculated. Similarly, the inverse power method

can be used to compute deterministic vectors {di}i that are used to approximate the first several

minimum stochastic eigenvectors.

We remark that it is suggested to only use the proposed method to compute the first few maxi-

mum and minimum stochastic eigenvalues and eigenvectors, although it can be used to solve more

eigenvalues and eigenvectors. Much more reduced basis {di}i are required when a large number

of stochastic eigenvalues and stochastic eigenvectors are considered. Although the calculation of

deterministic vectors {di}i is readily implemented and can be accelerated and improved by other

methods, e.g. the Lanczos method and the QR method, the size of the reduced-order eigenequa-

tion (12) increases as the number of reduced basis {di}i. More computational effort is needed

for the solution of Eq. (12). Hence, although the proposed method can be applied to calculate a
13



large number of eigenvalues and eigenvectors, it only speeds up the computation to a lesser extent.

An extreme case is that when we consider all eigenvalues and eigenvectors of the matrix K (θ),

the size of reduced-order matrix D is the same as the stochastic matrix K (θ) and the size of the

reduced-order Eq. (12) is the same as the original problem, which makes the ”reduced-order” no

sense.

3.3. High-dimensional stochastic eigenvalue problems

In this subsection, we show that the proposed method can be applied to high-dimensional

stochastic eigenvalue problems without any modification and extra computational effort. We as-

sume that the stochastic matrix K (θ) can be represented in a series expansion form

K (θ) =

r∑
j=1

ξ j (θ) K j, (27)

where
{
ξ j (θ)

}r

j=1
are random variables described by probability distributions, random samples or

PC approximation,
{
K j

}r

j=1
∈ Rn×n are deterministic matrices. High-dimensional cases are induced

by a large value of r. For non-separated stochastic matrices, Eq. (27) can be obtained by PC

expansion in Eq. (3), or a third-order tensor of random samples K (θ) ∈ Rn×n×ns is generated by

using non-intrusive methods.

We introduce the following sample matrix of random variables
{
ξ j (θ)

}r

j=1
,

ξ (θ) =


ξ1

(
θ(1)

)
· · · ξr

(
θ(1)

)
...

. . .
...

ξ1

(
θ(ns)

)
· · · ξr

(
θ(ns)

)
 ∈ Rns×r (28)

and the sample vector of λ (θ) is λ (θ) =
[
λ
(
θ(1)

)
, · · · , λ

(
θ(ns)

)]T
∈ Rns . Thus stochastic computa-

tions in Eq. (23) are reformulated as

E {λ (θ) K (θ)} =

r∑
j=1

E
{
λ (θ) ξ j (θ)

}
K j, λ(θ) =

r∑
j=1

ξ j (θ) dT K jd = ξ (θ) c ∈ Rns , (29)

where the coefficient vector c =
[
dT K1d, · · · , dT Krd

]T
∈ Rr and the expectation E

{
λ (θ) ξ j (θ)

}
are

calculated efficiently in a non-intrusive way[
E

{
λ (θ) ξ j (θ)

}]r

j=1
=

1
ns
λ(θ)Tξ (θ) ∈ Rr. (30)
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In this way, we use the same method for solving both low- and high-dimensional stochastic

problems and do not need to design dedicated algorithms for high-dimensional cases. The compu-

tational effort increases slightly as the dimension increases since only extra memories for storing

ξ (θ) ∈ Rns×r and
{
K j

}r

j=1
are needed.

Remark 2. Combining Eq. (20) and (22) we have

E
{[

dT K (θ) d
]

K (θ)
}

d = λ∗d (31)

or the separated form  r∑
j=1

g j (d) K j

 d = λ∗d, (32)

where the scalar function g j (d) =
r∑

i=1
E

{
ξi (θ) ξ j (θ)

} (
dT Kid

)
∈ R and E

{
ξi (θ) ξ j (θ)

}
are given by

[
E

{
ξi (θ) ξ j (θ)

}]r

i, j=1
=

1
ns
ξ(θ)Tξ (θ) ∈ Rr×r. (33)

Eq. (31) and (32) are deterministic nonlinear eigenvalue problems. The vector d can be con-

sidered as the eigenvector of the matrix obtained by the combination of
{
K j

}r

j=1
. In this paper, we

solve stochastic eigenproblems by iteratively solving linear eigenvalue problems. Compared to the

proposed method, only one stochastic computation Eq. (33) is required for solving Eq. (32) and

the vector d is solved only by deterministic problems. However, nonlinear eigenvalue problems

are beyond the scope of this article and can be found in references [41, 42].

3.4. Maximum and minimum stochastic eigenvalues

The proposed method utilizes a two-step strategy to compute eigenvalues of the original eigen-

problem Eq. (1), that is, the first step is to solve deterministic eigenvalue problems to generate a

set of reduced basis and the second step is to solve a reduced-order stochastic eigenvalue problem.

In this section we discuss computing original maximum and minimum stochastic eigenvalues by

combining two-step eigenvalue analysis.

The maximum and minimum eigenvalues of Eq. (1) are given by

λmax (θ) = max
u(θ),0

uT (θ) K (θ) u (θ)
uT (θ) u (θ)

, λmin (θ) = min
u(θ),0

uT (θ) K (θ) u (θ)
uT (θ) u (θ)

. (34)
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In the first step, maximum/minimum stochastic eigenvectors u (θ) are approximated by the vector

d that is solved by the minimization Eq. (16),

max
d,0

dT K∗d
dT d

→ dmax, min
d,0

dT K∗d
dT d

→ dmin, (35)

which indicates that dmax/dmin are the maximum/minimum eigenvectors of K∗. Further, maxi-

mum/minimum stochastic eigenvectors of the original eigenproblem are solved by the eigenvalues

problem Eq. (12) in the second step,

φmax (θ) = max
φ(θ),0

φT (θ) K̃k (θ) φ (θ)
φT (θ) φ (θ)

, φmin (θ) = min
φ(θ),0

φT (θ) K̃k (θ) φ (θ)
φT (θ) φ (θ)

. (36)

which indicates that φmax (θ) /φmin (θ) are the maximum/minimum eigenvectors of the reduced-

order stochastic eigenvalue problem.

Thus the maximum/minimum stochastic eigenvalues and eigenvectors of the original eigen-

problems are obtained by two-step maximum/minimum eigenvalue problems,

umax,i (θ) = Dmaxφmax,i (θ) , umin,i (θ) = Dminφmin,i (θ) , i = 1, 2, · · · (37)

where Dmax =
[
dmax,1, · · · , dmax,k

]
∈ Rn×k, φmax,i (θ) ∈ Rk and Dmin =

[
dmin,1, · · · , dmin,k

]
∈ Rn×k,

φmin,i (θ) ∈ Rk are the first several maximum/minimum eigenvectors obtained by Eq. (20) and (12).

3.5. Convergence analysis of stochastic eigenvalues

In this section, we extend the analysis of deterministic eigenvalue problems to stochastic cases.

We will demonstrate that if an eigenvector of the matrix K (θ) is nearly in the subspace K (Dk)

consisting of the reduced-order matrix Dk (we denote the matrix D in Eq. (10) as Dk in this section),

the corresponding stochastic eigenvalue of the reduced-order eigenproblem Eq. (12) converges to

the stochastic eigenvalue of the full-order eigenproblem Eq. (1).

We adopt some concepts from the perturbation theory of eigenspaces [2, 43]. The acute angle

between a vector v and a subspace K is defined as the smallest acute angle between v and all

vectors w ∈ K

∠ (v,K) = min
w∈K

∠ (v,w) , (38)
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where ∠ (v,w) is defined as the acute angle between the nonzero vectors v and w and

cos∠ (v,w) =
|(v,w)|
‖v‖2‖w‖2

, 0 ≤ ∠ (v,w) ≤
π

2
. (39)

In this way, recalling Eq. (1) and (12), the angle between the eigenvector u (θ) of the full-order

eigenproblem and the subspace K (Dk) is given by

α (θ) = ∠ (u (θ) ,K (Dk)) . (40)

K (Dk)

u (θ)
u⊥ (θ)

u∈ (θ)

α (θ)

Figure 1: Decomposition of the eigenvector u (θ).

As illustrated in Fig. 1, we decompose the eigenvector u (θ) into two parts

u (θ) = u∈ (θ) + u⊥ (θ) a.e., (41)

where the components are

u∈ (θ) = DkDT
k u (θ) ∈ K (Dk) , u⊥ (θ) =

(
I − DkDT

k

)
u (θ)⊥K (Dk) . (42)

According to Eq. (38) and (39), the relationships between the L2 norms of u∈ (θ), u⊥ (θ) and the

angle α (θ) are given by

‖u∈ (θ)‖2 = cosα (θ) , ‖u⊥ (θ)‖2 = sinα (θ) . (43)

Considering K (θ) u (θ) by Eq. (41) we have

K (θ) u (θ) = K (θ) u∈ (θ) + K (θ) u⊥ (θ) = K (θ) DkDT
k u (θ) + K (θ) u⊥ (θ) , (44)
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Substituting which into Eq. (1) and multiplying by DT
k from left yields

DT
k K (θ) u (θ) = K̃k (θ) DT

k u (θ) + DT
k K (θ) u⊥ (θ) = λ (θ) DT

k u (θ) , (45)

which is equivalent to

(
λ (θ) I − K̃k (θ)

)
DT

k u (θ) = DT
k K (θ) u⊥ (θ) a.e.. (46)

Further, the eigendecomposition of the matrix K̃k (θ) is

K̃k (θ) = Ũ (θ) Λ̃ (θ) Ũ(θ)T a.e., (47)

where Λ̃ (θ) ∈ Rk×k is a diagonal matrix consisting of the eigenvalues λ̃ (θ) of the reduced-order

matrix K̃k (θ). Substituting Eq. (47) into Eq. (46) we have

Ũ (θ)
(
λ (θ) I − Λ̃ (θ)

)
Ũ(θ)T DT

k u (θ) = DT
k K (θ) u⊥ (θ) , (48)

multiplying which by Ũ(θ)T from left we have

(
λ (θ) I − Λ̃ (θ)

)
Ũ(θ)T DT

k u (θ) = Ũ(θ)T DT
k K (θ) u⊥ (θ) a.e.. (49)

Thus the following inequality holds

min
λ(θ)∈eig(K(θ))

∣∣∣λ (θ) − λ̃ (θ)
∣∣∣ ∥∥∥Ũ(θ)T DT

k u (θ)
∥∥∥

2
≤

∥∥∥∥(λ (θ) I − Λ̃ (θ)
)

Ũ(θ)T DT
k u (θ)

∥∥∥∥
2

=
∥∥∥Ũ(θ)T DT

k K (θ) u⊥ (θ)
∥∥∥

2
,

(50)

equivalently,

min
λ(θ)∈eig(K(θ))

∣∣∣̃λ (θ) − λ (θ)
∣∣∣ ≤ ∥∥∥Ũ(θ)T DT

k K (θ) u⊥ (θ)
∥∥∥

2∥∥∥∥Ũ(θ)T
(
DT

k Dk

)
DT

k u (θ)
∥∥∥∥

2

≤
‖K (θ)‖2‖u⊥ (θ)‖2
‖u∈ (θ)‖2

= ‖K (θ)‖2 tanα (θ) a.e..

(51)

The right side of Eq. (51) only depends on the values ‖K (θ)‖2 and tanα (θ). The value ‖K (θ)‖2

is fixed for a given matrix K (θ). Hence we can conclude
∣∣∣̃λ (θ) − λ (θ)

∣∣∣→ 0 as the angle α (θ)→ 0.

In other words, if the eigenvector u (θ) of the matrix K (θ) is nearly in K (Dk), the stochastic

eigenvalue λ̃ (θ) of the reduced-order matrix K̃k (θ) converges to the stochastic eigenvalue λ (θ) of

the full-order matrix K (θ). It is noted that we need to make sure that the subspaceK (Dk) is ”good”
18



enough such that the target eigenvector is nearly in it. A simple way for this purpose is to increase

the dimension of the subspace. Furthermore, only symmetrically positive definite matrix K (θ) is

considered in this paper. Eq. (51)-like bound estimations for more generally deterministic matrices

can be found in the references [43, 44] and we can extend these theories to the corresponding

stochastic cases.

3.6. Optimal approximation

In this section, we will demonstrate that the stochastic eigenvalues and eigenvectors of the

reduced-order matrix K̃k (θ) are considered optimal approximations to the stochastic eigenvalues

and eigenvectors of the full-order matrix K (θ) from the given subspace K (Dk). For this purpose,

we will show that

min
Q(θ)∈Rk×k

‖K (θ) Dk − DkQ (θ)‖2 (52)

reaches its minimum value when Q (θ) = DT
k K (θ) Dk (i.e. the reduced-order stochastic matrix in

Eq. (12)).

Let D = [Dk,Dr] ∈ Rn×n be an orthogonal matrix, where the reduced-order matrix Dk ∈ Rn×k,

the supplementary matrix Dr ∈ Rn×r, r = n − k. Thus we have

K̃ (θ) = DT K (θ) D = [Dk,Dr]T K (θ) [Dk,Dr] =

 DT
k K (θ) Dk DT

k K (θ) Dr

DT
r K (θ) Dk DT

r K (θ) Dr

 =

 K̃kk (θ) K̃kr (θ)

K̃rk (θ) K̃rr (θ)

 .
(53)

To proof Eq. (52), we let

Q (θ) = K̃kk (θ) + S (θ) , ∀S (θ) ∈ Rk×k. (54)

Hence we have

[K (θ) Dk − DkQ (θ)]T [K (θ) Dk − DkQ (θ)]

=
[
K (θ) Dk − Dk

(
K̃kk (θ) + S (θ)

)]T [
K (θ) Dk − Dk

(
K̃kk (θ) + S (θ)

)]
=
[
K (θ) Dk − DkK̃kk (θ)

]T [
K (θ) Dk − DkK̃kk (θ)

]
−

[
K (θ) Dk − DkK̃kk (θ)

]T
(DkS (θ))

− (DkS (θ))T
[
K (θ) Dk − DkK̃kk (θ)

]
+ (DkS (θ))T (DkS (θ))
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=
[
K (θ) Dk − DkK̃kk (θ)

]T [
K (θ) Dk − DkK̃kk (θ)

]
−

(
DT

k K(θ)T Dk − K̃kk(θ)T
)

S (θ)

− S (θ)T
(
DT

k K (θ) Dk − K̃kk (θ)
)

+ S (θ)T S (θ)

=
[
K (θ) Dk − DkK̃kk (θ)

]T [
K (θ) Dk − DkK̃kk (θ)

]
+ S (θ)T S (θ) a.e., (55)

which reaches the minimum when S (θ) = 0, i.e. Q (θ) = K̃kk (θ), thus Eq. (52) is proved. Further-

more, the minimum value is given by

∥∥∥K (θ) Dk − DkK̃kk (θ)
∥∥∥

2

=
∥∥∥[Dk,Dr] [Dk,Dr]T K (θ) Dk − DkK̃kk (θ)

∥∥∥
2

=
∥∥∥∥[DkK̃kk (θ) + DrK̃rk (θ)

]
− DkK̃kk (θ)

∥∥∥∥
2

=
∥∥∥K̃rk (θ)

∥∥∥
2

a.e.. (56)

4. Algorithm implementation

The proposed method for solving the stochastic eigenvalue problem Eq. (1) is summarized

in Algorithm 1, which includes two parts in turn. The first part is from step 1 to 14, which

is to compute the reduced-order matrix D and includes a triple-loop iteration. The innermost

loop, which is from step 4 to 9, is used to solve the vector d( j)
k from a given random variable

λ
( j)
k (θ), where the subscript k represents the k-th reduced basis, the superscript j represents the

j-th iteration
{
λ

( j)
k (θ) , d( j)

k

}
and the superscript q only locally works on the power iteration for

deterministic eigenproblems. The maximum/minimum eigenvector d( j)
k is solved by power/inverse

power methods in step 6 and the orthonormalization is processed in step 7. The convergence error

in step 8 is defined as

εd,k, j,q =

∥∥∥d( j,q)
k − d( j,q−1)

k

∥∥∥
2∥∥∥d( j,q−1)

k

∥∥∥
2

=
∥∥∥d( j,q)

k − d( j,q−1)
k

∥∥∥
2
, (57)

which measures the convergence of the eigenvector d( j)
k of the deterministic eigenproblem Eq. (20).

The middle loop from step 2 to 12 corresponds to computing the k-th couple {λk(θ), dk}. The

random variable λk (θ) is initialized by ns random samples in step 2 and is updated in step 10 based
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on the vector d( j)
k obtained by the innermost loop. The convergence error in step 11 is defined as

εl,k, j =

∥∥∥d( j)
k − d( j−1)

k

∥∥∥
2∥∥∥d( j−1)

k

∥∥∥
2

=
∥∥∥d( j)

k − d( j−1)
k

∥∥∥
2
, (58)

which measures the difference between d( j)
k and d( j−1)

k . The iteration is stopped when d( j)
k is almost

the same as d( j−1)
k . The outermost loop from step 1 to 14 is used to compute the deterministic vec-

tor dk one after another, where kmax is the specified number of retained terms. For the second part,

the stochastic eigenvalues of both reduced-order and original eigenequations and the stochastic

eigenvectors of the reduced-order eigenequation (12) are solved in step 15. The stochastic eigen-

vectors of the original eigenproblem Eq. (1) are then calculated in step 16 by combining reduced

basis and stochastic eigenvectors of the reduced-order eigenproblem. Although only the standard

eigenvalue problem is considered, Algorithm 1 can be readily extended to generalized eigenvalue

Algorithm 1 Algorithm for solving stochastic eigenvalue problems
1: while k ≤ kmax do

2: Initialize λ(0)
k (θ) =

{
λ(0)

k

(
θ(i)

)}ns

i=1
∈ Rns

3: while εl,k, j > εl do

4: Initialize d( j,0)
k ∈ Rn

5: while εd,k, j,q > εd do

6: Compute d( j,q)
k by Eq. (25) (inverse power method for the minimum eigenvectors)

7: Orthogonalize d( j,q)
k ⊥di, i = 1, · · · , k − 1 and normalize

∥∥∥d( j,q)
k

∥∥∥
2

= 1

8: Compute the iterative error εd,k, j,q

9: q← q + 1

10: Compute λ( j)
k (θ) by Eq. (23)

11: Compute the iterative error εl,k, j

12: j← j + 1

13: Update the matrix D = [D, dk] ∈ Rn×k

14: k ← k + 1

15: Compute eigenpairs {λm (θ) , φm (θ)}m by Eq. (12)

16: Compute the m-th stochastic eigenvector um (θ) = Dφm (θ)
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equations, which will be demonstrated in numerical examples.

5. Numerical examples

Numerical implementations of the proposed method are illustrated with the aid of five exam-

ples. For all considered examples, convergence errors in step 3 and 5 of Algorithm 1 are set as

εl = εd = 1 × 10−4. 1 × 104 random samples are adopted in step 2 of Algorithm 1. Reference

solutions are computed by adopting 1 × 104 MCS. All examples are tested on a laptop (dual-core,

Intel Core i7, 2.40GHz).

5.1. Eigenvalues of stochastic matrices

In this example, we test the proposed method using separated and non-separated stochastic

matrices and compare the performance of the proposed method, MCS and PC method.

5.1.1. Separated stochastic matrix

In this case, we consider the stochastic eigenvalue problem Eq. (1) and compute stochastic

eigenvalues of the following stochastic matrix,

K (θ) =

r∑
i=1

ξi (θ) Ki ∈ Rn×n, (59)

where {ξi (θ)}ri=1 are mutually independent uniform random variables on [1, 2] and deterministic

matrices {Ki}
r
i=1 ∈ Rn×n are given by

Ki = UT
i DiUi ∈ Rn×n. (60)

We set the matrix size n = 50, the stochastic dimension r = 5 and the retained number of Algo-

rithm 1 kmax = 10 in this case. Deterministic matrices Di and Ui are a sample realization of stochas-

tic matrices Di (θ) and Ui (θ), where the diagonal matrix Di (θ) = diag
([
ηi1 (θ) , · · · , ηin (θ)

])
∈

Rn×n,
{
ηi j (θ)

}
i=1,··· ,r, j=1,··· ,n

are mutually independent uniform random variables on [10, 100] and

Ui (θ) ∈ Rn×n is a matrix formed by the orthonormal basis of the stochastic matrix [ςikl (θ)]n
k,l=1 ∈

Rn×n, {ςikl (θ)}i=1,··· ,r; k,l=1,··· ,n are mutually independent uniform random variables on [0, 1].

Fig. 2 shows probability density functions (PDFs) of first four minimum and maximum stochas-

tic eigenvalues obtained by the proposed ROM and MCS. For both minimum and maximum
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stochastic eigenvalues, PDFs obtained by ROM have good agreements with MCS, which demon-

strate good accuracy of the proposed ROM. It is seen from Fig. 2b that the proposed method

works well even for highly close eigenvalues, which allows the proposed method to deal with

the problems with close eigenmodes. It is noted that the rank order of each sample realization

of stochastic eigenvalues is fixed, for instance, λ1

(
θ(i)

)
> λ2

(
θ(i)

)
, i = 1, · · · , ns must hold if we

consider λ1 (θ) and λ2 (θ) as the largest and second largest stochastic eigenvalues, which means

that there is strong correlations between stochastic eigenvalues. We compute the correlations of

eight stochastic eigenvalues (including the first four minimum eigenvalues shown in Fig. 2a and

the first four maximum eigenvalues shown in Fig. 2b) and the Pearson correlation coefficient

ρi j =
E

{
λi (θ) λ j (θ)

}
− E {λi (θ)}E

{
λ j (θ)

}
√
E

{
λ2

i (θ)
}
− [E {λi (θ)}]2

√
E

{
λ2

j (θ)
}
−

[
E

{
λ j (θ)

}]2
(61)

is adopted. As listed in Tab. 1, minimum stochastic eigenvalues are strongly correlative to maxi-

mum stochastic eigenvalues, which verifies the correlations between stochastic eigenvalues. The

correlation decreases if the values of two stochastic eigenvalues are far away.
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(a) PDFs of first four minimum eigenvalues.
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(b) PDFs of first four maximum eigenvalues.

Figure 2: PDFs of first four minimum and maximum eigenvalues.

As a comparison, we solve the problem by use of the PC method described in Section 2.1.

Two-order Legendre PC basis of five uniform random variables are adopted. The number of PC

basis is 21 and the size of the derived nonlinear system of equations is 1050. It is seen from Fig. 3a
23



400 500 600 700
0

2

4

6

8

P
D

F

10-3

(a) Comparisions of PDFs.

400 500 600 700
0

0.5

1

1.5

2

2.5

R
el

at
iv

e 
er

ro
r(

%
)

(b) Errors of PDFs of ROM and PC relative to MCS.

Figure 3: Comparisons of PDFs of first two maximum eigenvalues obtained by MCS, ROM and PC method and

corresponding relative errors.

that both ROM and PC method are in very good accordance with MCS. Relative errors (defined

by
∣∣∣∣PDF−PDFMCS

PDFMCS

∣∣∣∣ × 100%) depicted in Fig. 3b indicate both of their errors are small enough, but PC

method has a bit better accuracy than ROM.

We test computational efficiencies of the proposed method, MCS and PC method. Tab. 2

shows computational times of minimum and maximum eigenvalues obtained by ROM, MCS and

PC methods. The computational costs of ROM are obviously less than MCS for both minimum and

maximum eigenvalues, which demonstrate the high efficiency of the proposed ROM. Compared to

ROM, the PC method needs more effort since the size of the derived nonlinear system of equations

is larger than that of the original problem and Newton-Raphson is used to solve the nonlinear

system. This difficulty will be more pronounced for large-scale and high-dimensional stochastic

problems. More efficient methods are necessary to reduce the computational effort of the PC

method. Total computational times of ROM consist of the cost for computing the matrix D and the

cost for solving the reduced-order stochastic eigenvalue problem and the former is normally much

higher than the latter. It is the opposite in this example since only a small matrix size is tested.
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5.1.2. Non-separated stochastic matrix

In this case, we consider a non-separated stochastic matrix

Ki j (θ) = exp

−
∣∣∣xi − x j

∣∣∣
lx (θ)

 ∈ Rn×n, xi, x j ∈ [0, 1] , (62)

which is discretized with n = 100 degrees of freedom, where lx (θ) is the uniform random variable

on [0.5, 1].
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Figure 4: PDFs of first four maximum eigenvalues.

Expansion methods are available to approximate Ki j (θ), for instance, Eq. (3)-like can be ob-

tained by adopting PC method to expand K (θ). It is noted that the proposed method can be applied

to non-separated stochastic matrices without any modification. In this case, we use ns = 1 × 104

random samples K (θ) ∈ Rn×n×ns instead of the approximation of K (θ) and set kmax = 10. PDFs of

first four maximum eigenvalues compared to MCS are shown in Fig. 4, which indicates our method

has good accuracy for non-separated stochastic matrices. The computational time are 103.19s for

MCS and 21.08s for ROM, including 13.72s for computing the matrix D and 7.36s for solving

the reduced-order eigenvalue problem. Compared to separated cases, more effort are needed to

compute E {λ (θ) K (θ)} ∈ Rn×n and dT K (θ) d ∈ Rns for non-separated stochastic matrices.

5.1.3. Non-symmetric complex stochastic matrix

In this case, we consider a non-symmetric complex stochastic matrix

Ki j (θ) = exp

−
∣∣∣xi − x j

∣∣∣
lx,1 (θ)

 + exp
(
−

√
xi − x j

lx,2 (θ)

)
∈ Cn×n, xi, x j ∈ [0, 1] , (63)
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Figure 5: PDFs of first four maximum eigenvalues.

which is discretized with n = 100 degrees of freedom, where lx,1 (θ) and lx,2 (θ) are uniform random

variables on [0.5, 1] and [1, 1.5], respectively, and their Pearson correlation coefficient is 0.5.

In this case, we adopt ns = 1 × 104 random samples K (θ) ∈ Rn×n×ns to describe the stochastic

matrix and set kmax = 10. The complex stochastic eigenvalue has the form λ (θ) = λreal (θ) + iλ ·

λimag (θ), where iλ =
√
−1 is the imaginary unit, λreal (θ) and λimag (θ) are real-part and imaginary-

part random variables. PDFs of first four maximum eigenvalues compared to MCS are shown in

Fig. 5, where PDFs of the first four real-part random variables
{
λ j,real (θ)

}4

j=1
are depicted in Fig. 5a

and PDFs of the first four imaginary-part random variables
{
λ j,imag (θ)

}4

j=1
are depicted in Fig. 5b.

The PDFs of both real-part and imaginary-part random variables have good agreements with that

of MCS, which demonstrates the proposed method still works well in this case. The computational

times are 143.96s for MCS and 31.27s for ROM, including 27.17s for computing the matrix D and

4.10s for solving the reduced-order eigenvalue problem. The proposed method saves a lot of costs

compared with MCS.
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5.2. Stochastic vibration modes of a membrane

This example is to calculate the stochastic vibration modes of a membrane, which requires the

solution of the following eigenvalue partial differential equation,

−∇ ·
[
c (x, y, θ)∇u (x, y, θ)

]
= λ (θ) u (x, y, θ) (64)

defined on the domain shown in Fig. 6a and u (x, y, θ) = 0 holds on all boundaries (including inner

and outer boundaries). The finite element mesh is depicted in Fig. 6b, including np = 1157 nodes

ne = 1874 triangular elements. The coefficient c (x, y, θ) is a Gaussian random field with mean

function c0(x, y) = 2 and covariance function

Ccc (x1, y1; x2, y2) = σ2
c exp

(
−
|x1 − x2|

lx
−
|y1 − y2|

ly

)
, (65)

where the variance σc = 0.1 and correlation lengths li = max (i) −min (i), i = x, y.

By use of Karhunen–Loève expansion [45, 46], the random field c (θ, x, y) is approximated as

c (x, y, θ) =

r∑
j=0

ξ j (θ)
√
κ jc j (x, y), (66)

where ξ0 (θ) ≡ 1, κ0 ≡ 1, r is the truncated number,
{
ξ j (θ)

}r

j=1
are mutually independent stan-

dard Gaussian random variables and
{√
κ j, c j (x, y)

}r

j=1
are solved by the following homogeneous

Fredholm integral equation of the second kind,∫
Ω

Ccc (x1, y1; x2, y2) c j (x1, y1) dx1dy1 = κ jc j (x2, y2) . (67)

(a) Geometry. (b) Finite element mesh.

Figure 6: Model of the membrane and its finite element mesh.
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In order to ensure the well-posedness of Eq. (64), we need to keep min
x,y∈Ω

(c (x, y, θ)) > 0, ∀θ ∈ Θ

in the practical numerical implementation. For this purpose, the sample realization θ(i) such that

min
x,y∈Ω

(
c
(
x, y, θ(i)

))
< 1 × 10−3 will be dropped out. Thus c (x, y, θ) is considered as a truncated

Gaussian random field in the numerical processing. In this example, we truncate Eq. (66) at

r = 10 and the first six
{
c j (x, y)

}6

j=1
obtained by Eq. (67) are depicted in Fig. 7.

Figure 7: First six eigenvectors
{
c j (x, y)

}6

j=1
.

Considering the weak form of Eq. (64) we have

λ (θ)
∫

Ω

u (x, y, θ) v (x, y) dxdy =

∫
Ω

c (x, y, θ)∇u (x, y, θ)∇v (x, y) dxdy (68)

=

r∑
j=0

ξ j (θ)
√
κ j

∫
Ω

c j (x, y)∇u (x, y, θ)∇v (x, y) dxdy, (69)

where v(x, y) is the test function. A stochastic eigenequation is thus generated as

K (θ) u (θ) = λ (θ) Mu (θ) , (70)

where K (θ) =
r∑

j=0
ξ j (θ) K j ∈ Rnp×np , matrices

{
K j

}r

j=0
and M are computed by using shape functions

{$k (x, y)} of triangular elements,

K j,kl =
√
κ j

∫
Ω

c j (x, y)∇$k (x, y)∇$l (x, y) dxdy, (71)

Mkl =

∫
Ω

$k (x, y)$l (x, y) dxdy, k, l = 1, · · · , n. (72)

From the perspective of practical engineering applications, it is more concerned about the first

several minimum eigenvalues since they are related to structural frequencies and natural vibration
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Figure 8: First nine reduced basis {di}
9
i=1.

modes. We only compute the first five minimum eigenvalues in this example. By use of the

proposed ROM, the first nine vectors {di}
9
i=1 of the matrix D are shown in Fig. 8. It is seen that the

mode of di becomes less important as the number i increases. In other words, we can use fewer {di}

to approximate stochastic eigenvectors in this example. Different retained terms kmax = 5, 10, 20

are thus tested. It is seen from Fig. 9a that all PDFs of three cases are good enough to approximate

the reference solutions and they have similar approximation errors (seen from Fig. 9b), which

demonstrate five retained terms {di}
5
i=1 are enough for this example. However, we cannot determine

the retained term kmax a priori for practical problems. The preselection of kmax as small as possible

is still an open problem for our method and needs further study. Also, the computational time

18.73s (including 9.97s for computing the matrix D and 8.76s for solving reduced-order eigenvalue

problem) of ROM is much lower than 4.03×103s for 1×104 MCS, which verifies the high efficiency

of the proposed ROM again.

5.3. Stochastic eigenvalue analysis for a single part of robotic arm

This example considers a linear elastic robotic arm shown in Fig. (10a), stochastic eigenvalue

analysis of only single part of which is proceed. The finite mesh is depicted in Fig. (10b), including

np = 2062 nodes and ne = 6729 tetrahedron elements. Material properties of the arm are Poisson’s
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Figure 9: PDFs of first five maximum eigenvalues obtained by different numbers of reduced basis and corresponding

relative errors.

ratio ν = 0.30 and mass density ρ = 2000kg/m3. The Young’s modulus E(x, y, θ) is considered as

a Gaussian random field with mean function E0(x, y) = 1.50 × 1011Pa and covariance function

CEE (x1, y1, z1; x2, y2, z2) = σ2
E exp

(
−
|x1 − x2|

lx
−
|y1 − y2|

ly
−
|z1 − z2|

lz

)
, (73)

where the variance σE = 1.50 × 1010 and correlation lengths li = max (i) −min (i), i = x, y, z.

Similar to Example 5.2, we expand the random filed E(x, y, θ) by use of Eq. (66) and obtain

a same stochastic eigenequation as Eq. (70). Similar to the random field c (x, y, θ) considered

in Eq. (66), the sample realization θ(i) such that min
x,y,z∈Ω

(
E

(
x, y, z, θ(i)

))
< 1 × 10−3 is discarded to

ensure that the Young’s modulus is positive. The retained number is set as kmax = 20 in this case

and the first six minimum eigenvalues are computed. A low-dimensional case r = 10 is firstly

considered. It is seen from Fig. 11 that PDFs of the first six minimum eigenvalues are still in very

good accordance with MCS.

The computational time of the case r = 10 is 73.12s (seen from Tab. 3) and corresponding

MCS cost is 1.52×104s. For large-scale problems, ROM is more efficient since it only solves a few

number of large-scale deterministic eigenequations. To verify the validity of the proposed method

for high-dimensional stochastic problems, different stochastic dimensions r = 10, 30, 60, 100 are
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(a) Model. (b) Finite element mesh.

Figure 10: Arm model and its finite element mesh.
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Figure 11: PDFs of first six minimum eigenvalues.

tested and their computational times are listed in Tab. 3, which indicate that the proposed ROM

is efficient even for a stochastic dimension up to 100. As the stochastic dimension increases,

computational times for computing the matrix D increase since extra effort and storage are needed

to a large number of matrices
{
K j

}r

j=1
. Computational times for solving reduced-order stochastic

eigenequations are almost changeless since the size kmax is chosen to be fixed.
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6. Conclusions

This paper proposes an efficient reduced-order algorithm for solving stochastic eigenvalue

problems and certifies its accuracy and efficiency with the aid of several numerical examples. By

constructing an approximation of stochastic eigenvectors and developing a dedicated iterative al-

gorithm, solutions of reduced basis are transformed into a few number of deterministic eigenprob-

lems. Existing solvers can be readily incorporated into the computational procedure. Based on

the obtained reduced basis, the original eigenequation is transformed into a reduced-order eigen-

value problem, whose solution is solved by use of a non-intrusive sampling method. The proposed

method has low computational effort even for very high-dimensional stochastic problems. The

curse of dimensionality is thus avoided with great success, which has been illustrated by the nu-

merical example of up to 100 dimensions. In these senses, the proposed method is particularly

appropriate for large-scale and high-dimensional stochastic eigenvalue analysis of practical inter-

ests.
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Table 1: Correlations between stochastic eigenvalues.

Eigenvalues λMinEv
1 (θ) λMinEv

2 (θ) λMinEv
3 (θ) λMinEv

4 (θ) λMaxEv
1 (θ) λMaxEv

2 (θ) λMaxEv
3 (θ) λMaxEv

4 (θ)

λMinEv
1 (θ) 1.0000

λMinEv
2 (θ) 0.9755 1.0000

λMinEv
3 (θ) 0.9973 0.9825 1.0000 sym.

λMinEv
4 (θ) 0.9952 0.9819 0.9939 1.0000

λMaxEv
1 (θ) 0.9969 0.9749 0.9937 0.9916 1.0000

λMaxEv
2 (θ) 0.9935 0.9750 0.9891 0.9894 0.9975 1.0000

λMaxEv
3 (θ) 0.9954 0.9816 0.9935 0.9947 0.9984 0.9975 1.0000

λMaxEv
4 (θ) 0.9955 0.9804 0.9932 0.9947 0.9977 0.9983 0.9994 1.0000

λMinEv
i (θ): the i-th minimum eigenvalues, λMaxEv

i (θ): the i-th maximum eigenvalues.
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Table 2: Computational costs of minimum and maximum eigenvalues.

MinEv MinEv (MC) MaxEv MaxEv (MC) MaxEv (PC)

Solving costs (D) 1.70 1.37

Solving costs (ROM) 6.98 6.62

Total costs (seconds) 8.68 91.05 8.99 93.40 46.28

MinEv: minimum eigenvalues, MaxEv: maximum eigenvalues.

Table 3: Computational costs of different stochastic dimensions r.

Dimensions 10 30 60 100

Solving costs (D) 63.21 101.63 225.97 251.94

Solving costs (ROM) 9.91 8.09 9.80 10.59

Total costs (seconds) 73.12 109.72 235.27 262.53
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