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Simple Summary: MMP-13 is an enzyme that can digest and disrupt the tissue structures surround-
ing epithelial cells that line the surface of many internal organs, as well as the tissue structures
surrounding endothelial cells that line the surface of blood vessels. The production of MMP-13 is
tightly controlled in physiological conditions but is increased in various cancers and plays multiple
roles in tumour progression and metastasis. This review summarises the current understanding of
the regulation of MMP-13 production and discusses the actions of MMP-13 in cancer progression
and metastasis.

Abstract: Matrix metalloproteinase-13 (MMP-13) is a member of the Matrix metalloproteinases
(MMPs) family of endopeptidases. MMP-13 is produced in low amounts and is well-regulated
during normal physiological conditions. Its expression and secretion are, however, increased in
various cancers, where it plays multiple roles in tumour progression and metastasis. As an interstitial
collagenase, MMP-13 can proteolytically cleave not only collagens I, II and III, but also a range of
extracellular matrix proteins (ECMs). Its action causes ECM remodelling and often leads to the release
of various sequestered growth and angiogenetic factors that promote tumour cell growth, invasion
and angiogenesis. This review summarizes our current understanding of the regulation of MMP-13
expression and secretion and discusses the actions of MMP-13 in cancer progression and metastasis.
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1. Introduction

Matrix metalloproteinases (MMPs) are a family of 28 (so far) zinc-dependent en-
dopeptidases [1]. According to their substrate specificities, MMPs are divided into several
subfamilies of collagenases (MMP-1, MMP-8, MMP-13 and MMP-18), matrilysins (MMP-
7 and MMP-26), gelatinases (MMP-2 and MMP-9), stromelysins (MMP-3, MMP-10 and
MMP-11), membrane-type MMPs (MT-MMPs), glycosylphosphatidylinositol-anchored
MMPs (MMP-17 and MMP-25) and others (MMP-12, MMP19, MMP-20, MMP-21, MMP-22,
MMP-23, MMP-27 and MMP-28) [2–4]. All MMP family members share a conventional
structure of a catalytic domain and a pro-peptide domain. In all cases except MMP-7 and
MMP-26, the catalytic domain of MMPs contains a zinc-binding motif HEXXHXXGXXH [5]
and is linked to a hemopexin domain by a flexible hinge region. With the exception of
MMP-23, whose cysteine residue is located in a different amino acid sequence [6], the MMP
amino-terminal pro-peptide domain contains a consensus sequence PRCXXPD (also known
as cysteine switch). MMPs are produced in low amounts, and this is well-regulated under
normal physiological conditions by various factors, including endogenous MMP inhibitors
and tissue inhibitors of MMPs (TIMPs) [7]. Some MMP family members are, however,
overexpressed in pathological disorders, such as cancer [8–10]. They are considered to be
the primary contributors to the degradation of extracellular matrix (ECM) in tumour cell
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invasion. MMP family members have the ability to cleave ECM molecules with a wide
range of substrate specificities [11]. Most ECM components can be degraded by MMP-3, -7,
-10 and -11, while other MMPs, such as MMP-1, -8 and -13, preferentially digest collagen I,
II and III located near the cells.

MMP-13 is an interstitial collagenase (also known as collagenase 3) and is overex-
pressed in various cancers [12–14] and in cancer stromal cells [15]. As a collagenase,
MMP-13 can cleave not only collagens I, II and III, but also a wide range of ECM com-
ponents. The expression and secretion of MMP-13 are regulated at the transcriptional
and cellular levels [14,16–20]. Considerable evidence has shown that MMP-13-mediated
degradation and remodelling of ECM plays a very important role in cancer pathogenesis
and metastasis.

2. MMP-13 Structure

MMP-13 is a 53kDa protein that consists of four domains, namely, the N-terminal signal
sequence, basic pro-domain, catalytic domain and C-terminal hemopexin-like domain
(Figure 1). Its C-terminal hemopexin-like domain is linked to the catalytic domain by
a flexible hinge region. Its signal peptide domain controls the movement of the newly
synthesized molecule and guides it to the endoplasm reticulum, while its pro-domain,
which contains a zinc-interacting thiol (SH) group, keeps MMP-13 as an inactive zymogen
form of pro-MMP-13. The catalytic domain of MMP-13 is shielded by the pro-domain in
the inactive pro-MMP-13, and this prevents substrate access [21]. The MMP-13 catalytic
domain, which is highly conserved among MMPs, includes three α-helixes and five β-
sheets connected by eight loops [22]. The highly conserved catalytic domain of MMP-13,
like other MMP members, has an extended zinc-binding motif, which consists of three
zinc-binding histidines and a glutamate, a second structural zinc ion and three structural
calcium ions, which are essential for enzyme stability [23,24]. The MMP-13 C-terminal
hemopexin-like domain consists of four β-propeller elements and functions primarily
for substrate specificity [25], as well as for degradation of triple-helical collagens [26].
Activation of pro-MMP-13 is carried out by other MMPs, such as MT1-MMP or MMP-2,
on the cell surface [27], in which the cysteine residue is pulled out by conformational
change to generate a functional active site, and this, in turn, enables enzymes to remove
the pro-domain completely [28].

MMP-13 substrate specificity is largely controlled by its S pockets in the catalytic
domain. There are multiple S pockets sitting on two sides of the catalytic zinc ion: (1) on
the left side are pockets without a prime: S1, S2, S3 . . . Sn; (2) on the right side are pockets
with a prime: S1′, S2′, S3′ . . . Sn’ [29]. The substances or inhibitors, in correspondence with
the specific pockets, are named P1, P2 . . . . Pn and P1′, P2′ . . . Pn’, respectively [30]. It is
believed that the S1′ pocket is the key contributor to establish MMP binding specificity,
possibly because it is the most variable in depth among all the pockets [31]. While all
MMPs contain the S1′ pocket, the volume and shape of each S1′ pocket varies [31]. MMP-13
possesses an exceptionally large S1′ pocket made of residues 245–253 [20]. However, given
that MMP-13, MMP-8 and MMP-1 are all collagenases, but MMP-1 has only a small shallow
pocket, the S1′ pocket of these MMP members may not be the only determining factor for
their collagenase activity.
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Figure 1. MMP-13 structure: MMP-13 consists of a highly conserved signal peptide, a pro-domain, a
catalytic domain, a proline-rich hinge region and a C-terminal hemopexin-like domain (top panel).
The cysteine residue (Cys 77) shown in grey within the pro-domain is linked to the catalytic zinc ion
within the catalytic domain in pro-active MMP-13. The bottom panel shows the MMP-13 catalytic
domain (PDB 2OW9). The structural zinc ion is in blue, the catalytic zinc ion is in green, and the three
calcium ions are in orange. Three histidine residues, which bind to the catalytic zinc ion, are shown
as hexagons.

3. Regulation of MMP-13 Expression and Secretion

Due to its destructive nature as a protease towards a wide range of ECM proteins,
MMP-13 was initially thought to be absent or to lack steady production in normal tis-
sues [32,33]. However, subsequent studies revealed that MMP-13 is expressed in human
chondrocytes and other healthy human connective tissues, such as cartilage and developing
bone [34]. MMP-13 is also detected in normal epithelial and neuronal cells [35]. However,
the expression and secretion of MMP-13 in normal human tissues are low and are tightly
controlled at multiple levels by multiple factors.

The promoter of the human MMP-13 gene contains several binding sites for transcrip-
tion factors. This includes a PEA-3 binding site and an AP-1 consensus sequence [36]. The
combination of PEA-3/AP-1 acts as a responsive unit to growth factors, oncogenes and
tumour promoters [36]. The human MMP-13 promoter also contains an osteoblast-specific
element (OSE-2) binding site, ACCACA, which can be bound by transcription factor Cb-
fal [37]. The more distal region of the MMP-13 promoter also contains a Transforming
growth factor-beta inhibitory element (TIE) binding site [38]. A conserved forkhead re-
sponse element (FHRE) consensus sequence for FOXO3a has also been reported in the
MMP-13 promoters in humans, mice and rats [39]. Although the precise mechanisms of
MMP-13 regulation at the transcriptional level remain largely unknown, the presence of
multiple bindings sites in its promoter for several transcription factors clearly indicates the
importance of MMP-13 regulation at the transcriptional level. Indeed, several transcription
factors have been reported to regulate MMP-13 expression. For example, the binding of
ETS variant transcription factor 4 (ETV4) to the AP-1 binding site in the MMP-13 promoter
region induced MMP-13 expression in breast cancer [40]. The binding of Small leucine
zipper protein (sLZIP) to MMP-13 promoter increased MMP-13 expression in prostate
cancer cells [41].

Various hormones, cytokines and growth factors regulate MMP-13 expression in
human tissues. Interleukin-1 (IL-1), Interleukin-6 (IL-6) and Tumour necrosis factor alpha
(TNF-α) can induce MMP-13 expression in primary chondrocytes [42]. This process is
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reported to involve nuclear translocation of nuclear factor kappa B (NF-κB) [43]. Growth
factors, such as insulin-like growth factors (IGF)-I and -II, can inhibit MMP-13 expression
in chondrocytes [44], while transforming growth factor-β1 (TGF-β1) has been shown to
induce MMP-13 expression in human KMST fibroblasts [45].

MMP-13 is normally secreted as an inactive pro-MMP-13 form by cells. Its activation
is carried out through proteolytic cleavage of its pro-peptide domain by MT1-MMP and
MMP-2 [27,46,47] (Figure 2). MMP-13 can also be activated by MMP-3 [27] and the major
isoenzyme of human tumour-associated trypsinogen, trypsin-2 [48]. The activity of MMP-
13 is controlled by TIMPs. Four TIMPs (TIMP1, TIMP2, TIMP3 and TIMP4) are known
to exist in human tissues [49]. Each TIMP contains an N-terminal ‘wedge-shaped’ ridge
domain, which binds to the MMP’s active site, and a C-terminal hemopexin interaction
domain [50]. The function of TIMPs is to block substrate access to MMPs. In addition to the
tight control of its expression and activity in normal physiological conditions, the secretion
of MMP-13 to the outside of cells is also regulated by endocytosis. Low-density lipoprotein
receptor-related protein 1 (LRP1) can bind to secreted MMP-13 (both pro- and activated
forms) through its hemopexin domain and induce MMP-13 endocytosis and subsequent
degradation in lysosomes in healthy human chondrocytes [34].
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Figure 2. Regulation of MMP-13 expression and secretion in pathophysiology: MMP-13 expression
and secretion in physiological conditions are tightly controlled by transcription factors and TIMPs.
Various transcription factors bind directly to the MMP-13 promoter region. In cancer, the tight
control of MMP-13 expression is disrupted by intrinsic and extrinsic mechanisms. Intrinsic mecha-
nisms include changes of expression of oncogenes (e.g., Ror2) and tumour suppressor genes (e.g.,
p53). Extrinsic mechanisms include hypoxia and inflammation-induced secretion of cytokines and
chemokines that activate downstream MARK signalling and NF-κB nuclear translocation to regulate
MMP-13 expression. MMP-13 secretion is regulated by endocytosis through endocytic receptor LRP1
and subsequent degradation in lysosomes.
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In cancer, the tight control of MMP-13 production and activity is disrupted by in-
trinsic or extrinsic mechanisms. The intrinsic mechanisms include changes of expression
of oncogenes (e.g., Ror2) or proto-oncogenes (e.g., c-fos) and tumour suppressor genes
(e.g., p53), which directly activate MMP-13 expression [51]. Suppression of oncogene Ror2
expression downregulated MMP-13 expression in osteosarcoma SaOS-2 cells [52]. Sup-
pression of oncogene Golgi membrane protein 1 (GOLM1) inhibited MMP-13 expression
in breast cancer [53], while suppression of tumour suppressor p53 increased MMP-13 ex-
pression in squamous cell carcinomas [54]. The extrinsic mechanisms involved in MMP-13
regulation include hypoxia and inflammation. The hypoxic microenvironment inside a
tumour, created by a restricted oxygen supply from the increasing tumour size, induces
cell necrosis [55]. This triggers inflammation and attracts leukocytes to the area to produce
cytokines such as IL-1, IL-6 and TNF-α [56]. As discussed above, cytokines such as IL-1,
IL-6 and TNF-α, β are important MMP-13 expression enhancers [42,51,57]. The secretion of
these cytokines leads to an increase in MMP-13 expression [58–60]. Tumour hypoxia can
also trigger the expression of hypoxia-inducible transcription factor (HIF)-1, which directly
promotes MMP-13 gene expression by binding to the MMP-13 promotor or indirectly
through promotion of the expression of the growth factors or cytokines [61] that regulate
MMP-13 expression.

Recent studies have also reported the regulation of MMP-13 expression in cancer by
other effectors, such as chemokines and endogenous enzymes. The binding of chemokine
CCL17 to its receptor CCR4 was shown to enhance MMP-13 expression in bladder cancer
through the activation of extracellular signal-regulated kinase (ERK) 1/2 signalling [62],
and in colorectal cancer through the activation of ERK/NF-κB signalling [63]. The upregu-
lation of ERK/NF-κB signalling enhanced the binding of NF-κB to Inhibitor of growth 2
(ING2) promoter, leading to the activation of ING2, which subsequently increased MMP-13
expression in colon cancer [64]. Small ubiquitin related modifier (SUMO)-specific pro-
tease 2 (SENP2) altered SUMOylation of the MMP-13 promoter and enhanced MMP-13
expression in bladder cancer [65]. FTO, a demethylase for N6-methyladenosine modifi-
cation, was also shown to upregulate MMP-13 expression in oesophageal squamous cell
carcinoma [66]. Overall, the expression, secretion and activation of MMP-13 in cancer is
regulated at multiple levels and by many molecules, including cytokines, growth factors
and proteases.

4. MMP-13 Expression in Cancer

Given its powerful and destructive action toward ECM, it is not surprising that higher
MMP-13 expression frequently occurs in cancer. MMP-13 overexpression in cancer was
first reported in breast cancer [12] and has subsequently been observed in many other
cancers, such as colorectal [67,68], prostate [69], oesophageal [70,71], thyroid [72] and
gastric cancers [73], as well as multiple myeloma (MM) [74] (Table 1). Over 50% higher
MMP-13 expression is seen in bladder and non-small cell lung cancers [75], particularly at
the invading front of the tumours [14]. A high level of MMP-13 expression was not only
detected in primary breast cancers but also in metastatic lymph nodes that are associated
with cancer aggressiveness [13,76]. Moreover, even higher MMP-13 expression is seen in the
stromal cells surrounding the tumour [15]. Aggressive cancers have been shown to express
higher levels of MMP-13 than less aggressive ones in prostate [77], breast [78] and head and
neck cancers (HNSCC) [14,79]. Higher MMP-13 expression is also associated with lymph
node metastasis and poor prognosis in bladder and non-small cell lung cancers [75,80]
and with poorer patient survival in breast, prostate and head and neck cancers [14,78,79].
Overall, MMP-13 overexpression occurs in various cancers, including many common cancer
types, and is often associated with tumour aggressiveness, poorer prognosis and reduced
patient survival.
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Table 1. MMP-13 expression in common cancer and its function and clinical significance.

Cancer Type Expression Level Function and Clinical Significance References

Breast cancer Increased
Increased tumour growth, invasion
and metastasis; potential diagnostic

biomarker
[13]

Prostate cancer Increased
Increased tumour differentiation,

invasion and metastasis; diagnostic
biomarker; poor prognosis

[69,81,82]

Bladder cancer Increased Increased tumour invasion and
metastasis; poor prognosis [75]

Colorectal cancer Increased Increased tumour growth, invasion
and metastasis; poor prognosis [47,68]

Oesophageal cancer Increased Promoted cancer aggressiveness;
poor prognosis [70,71]

Head and neck
cancer Increased Increased tumour invasion and

metastasis; poor prognosis [14]

Lung cancer Increased Promoted lymph node metastasis;
poor survival [80]

Oesophageal cancer Increased Promoted cancer aggressiveness;
poor prognosis [70]

Gastric cancer Increased Increased tumour invasion and
metastasis; poor prognosis [73]

Thyroid cancer Increased Increased tumour invasion and
metastasis; poor prognosis [72]

Multiple Myeloma Increased
Promoted tumour growth and
MM-induced osteolysis; poor

prognosis
[74]

5. MMP-13 in Tumour Growth

The ECM contains multiple complex macromolecule components, such as collagens,
proteoglycans and glycoproteins, and provides the scaffold support to tissues and or-
gans [83]. ECM also helps to create an adequate environment for cell adhesion and tissue
development. ECM generally consists of an architecture of fibrous polymers (e.g., colla-
gens, elastins and resilins) [84] embedded in an undefined-shaped mixture of nonfibrous
components (e.g., proteoglycans) [85]. ECM also includes basement membranes that are
comprised of glycoproteins, such as laminin, fibronectin and entactin [86,87]. ECM compo-
nent proteins are large multifunctional molecules with multiple domains. These domains
are responsible for various functions, such as molecular recognition by cell surface re-
ceptors, predisposition to oligomerize and recognition by MMPs [88]. ECM serves as a
general reservoir for growth factors and normally sequesters them in non-bioavailable
forms. It also provides binding sites to cell surface adhesion molecules, such as integrins,
for cell attachment and adhesion [89]. ECM degradation by MMPs such as MMP-13 re-
leases sequestered growth factors, such as fibroblast growth factors (FGF) and TGF, which
aid tumour cell proliferation [90]. MMP-mediated ECM degradation can also reveal the
survival-associated hidden binding sites on ECM to enable ECM interaction with integrins
on the tumour cell surface [91]. Although MMP-13 as a protease predominately degrades
types I, II and III collagens, it can also cleave a range of other ECM components, such as
gelatins [92], large tenascin C, fibronectin [93], aggrecan [94], fibrillin-1 [95], osteonectin [96]
and perlecan. Increased expression of MMP-13 in tumour or stromal cells alters the collagen
concentration in ECM and creates a more favourable environment for tumour growth [97].
MMP-13 can also deactivate non-matrix proteins, such as MCP-3 and SDF-1, by proteolytic
actions [98–100] and reduce immune cell infiltration into the tumour and promote tumour
growth [101].

Overexpression of MMP-13 mediated by GOLM1, C1r and Leptin has been shown to
increase tumour growth in breast cancer [53], cutaneous squamous cell carcinoma [102] and
pancreatic cancer [103]. The inhibition of MMP-13 expression by hammerhead ribozyme
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suppresses squamous cell carcinoma tumour growth and reduces the number of proliferat-
ing cells within the tumours [104]. Oral administration of an MMP-13 inhibitor, CMPD-1,
twice a day, markedly delayed the growth of breast tumours in syngeneic mice [105]. Sup-
pression of MMP-13 expression by antisense ribozyme reduced squamous cell carcinoma
growth and led to the inhibition of cell invasion and induction of cell apoptosis [104]. The
inhibition of MMP-13 expression by interferon gamma (IFN-γ) via activation of ERK1,2 and
STAT1 in human cutaneous SCC cells (UT-SCC-7) and Ras-transformed human epidermal
keratinocytes (A-5 cells) reduced cell proliferation and induced apoptosis [106]. MMP-
13 suppression, mediated by p53 in malignantly transformed squamous epithelial cells,
displayed an initial anti-invasive effect and was followed by induction of cell death [54].
Together, these studies indicate that overexpression of MMP-13 in cancer, either by tumour
cells or stromal cells in the tumour microenvironment, makes important contributions to
tumour growth.

6. MMP-13 in Cancer Cell Invasion and Metastasis

Tumour cell infiltration into ECM is a critical early step during cancer invasion and
metastasis. Degradation of ECM by proteases such as MMPs creates the pathway for
tumour cell infiltration and plays a key role in this process. Each MMP family member
has its own substrate specificities towards ECM components. For example, MMP-1 tar-
gets primarily collagen III, while MMP-3 and -10 preferentially degrade proteoglycans,
fibronectin and laminin [107]. MMP-13 has a relatively broad target specificity and can
degrade collagens I, II and III, as well as a range of other ECM components [93–95,108].
For example, MMP-13 can cleave ECM component Laminin-5, which is mostly expressed
in the basement membrane and is responsible for static adhesion of the epidermis and
dermis for hemidesmosome formation [109–111]. Laminin-5 cleavage can reveal cryptic
sites and increase mobility of epithelial cancer cells in tumour cell invasion and tissue
remodelling [112–114]. MMP-13 is also involved in the activation of other MMPs, such as
MMP-2 and MMP-9, by cleavage of the inactive pro-MMP-2 and pro-MMP-9 forms [19,115].
Proteolytic activation of MMP-9 by MMP-13 occurs in osteoarthritic chondrocytes [116] and
chronic periodontitis [117]. It is possible that such an MMP-13/MMP-9 activation cascade
may also exist in cancer.

MMP-13 also contributes to Epithelial-to-mesenchymal transition (EMT) in the tu-
morigenesis of epithelial cancer [118]. EMT confers epithelial cells with the metastatic
properties of increased mobility and invasion, as well as an ability to escape apoptosis [119].
A primary EMT inducer is TGF-β [120]. The release of active TGF-β is normally carried out
through proteolytical cleavage of the TGF-β-complex by MMP-28 [121]. Similar TGF-β acti-
vation has been reported by MMP-13 with chondrocytes in matrix vesicles, where secreted
MMP-13 activated latent TGF-β in the progress of mineralization of growth plate carti-
lage [122]. The inhibition of MMP-13 expression in breast cancer cells at the tumour–bone
interface significantly reduced TGF-β signalling, leading to a decrease in tumour-induced
osteolysis [123].

MMP-13 also participates in the process of tumour cell infiltration into the blood or
lymphatic vessels during metastasis. The blood capillaries are composed of an endoluminal
side formed by endothelial cells and an abluminal side containing a basement membrane
and vascular smooth muscle cells [124]. MMPs assist tumour cell penetration into blood
capillaries by degrading the vascular basement membrane. MMP-9 is the primary con-
tributor to vascular basement membrane degradation [125]. As MMP-13 is capable of
activating MMP-9 by cleavage of the inactive pro-MMP-9 form [115,126,127], its action on
MMP-9 activation can therefore promote tumour cell infiltration into the blood/lymphatic
vessels at primary tumour sites, as well as the extravasation of invaded tumour cells from
blood/lymphatic vessels at remote organs. The discovery that the inhibition of MMP-13
expression in MC38 colon cancer cells decreased the number of tumour cells extravasated
from the hepatic vasculature in an experimental metastasis model is in line with this
possibility [128].
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Bone is one of the preferential metastasis sites of cancers such as breast cancer [129].
The bone ECM is rich with type I collagens [130]. MMP-13 is believed to be the primary
protease to degrade type I collagen and aids breast cancer bone metastasis [131,132]. A
higher MMP-13 level occurs at the tumour–bone interface of breast cancer [133]. Soluble
factors, such as IL-6, produced by breast cancer cells induce MMP-13 expression in os-
teoblasts [134]. Tumour cells also produce parathyroid hormone-related protein (PTHrP)
to induce MMP-13 expression through the activation of protein kinase C (PKC)-ERK1/2
signalling [135]. Inflammatory cells or osteoblasts could also produce PTHrP to stimu-
late MMP-13 secretion to promote breast cancer bone metastasis [136]. MMP-13 is also
detected at the MM and bone marrow interface, and its presence is shown to promote
MM cell bone marrow infiltration [137] and induce osteoclast [138]. Injection of MMP-
13-selective inhibitor Zn2+-chelating compound, which targets the catalytic domain of
MMP-13 [139], significantly reduced the level of bone destruction and delayed MM growth
in an immunocompetent syngeneic mouse model with multiple myeloma [74].

The arrival of tumour cells at distant organs, which is an alien microenvironment from
the primary tumour sites, is often unfavourable for tumour cells to survive and grow. This
can lead the tumour cell to die from apoptosis or enter a ‘silent’ mode without proliferation
or death. The successful establishment of a metastasis at the distant organs/sites requires
the build-up of a permissive environment, known as a pre-metastatic niche. Pre-metastatic
niche formation is driven by many factors, including primary tumour-derived factors,
tumour-mobilized bone marrow-derived cells (BMDC), hypoxia, ECM remodelling and
exosomes [140]. The formation of a pre-metastatic niche is triggered by the release from the
primary tumour of factors such as growth factors (e.g., TGF-α and -β) or cytokines (e.g.,
TNF-α). These, in turn, induce the expression and secretion of chemoattractants (e.g., S100
proteins) by the endothelium [141] and the production of fibronectin by fibroblasts at the
niche site [142]. The expression of S100 can lead to the activation of NF-κB signalling [143]
and the subsequent production of MMPs, including MMP-13, by stromal cells [144]. The
structure of the new site’s intrinsic ECM is often less ideal for attachment, metabolism
and migration of the recruited BMDC and immune cells. The production and action of
the new MMPs, including MMP-13, cause ECM remodelling and aid the formation of
the pre-metastatic niche. BMDCs and several immune cells are also recruited to the site
to assist in the establishment of the pre-metastatic niche. These immune cells secrete
inflammatory cytokines, growth factors and proangiogenic molecules to create a favourable
local microenvironment for the extravasated tumour cells [145]. MMP-9 is responsible for
the recruitment of BMDCs to the niche site via releasing soluble factors, such as Kit-ligand
from BM stromal cells [146], and can be activated by MMP-13 through proteolytic cleavage
of pro-MMP-9.

Lysl Oxidase (LOX) is another key regulator involved in the recruitment of BMDCs
and is often released by primary tumours during hypoxia [147]. LOX cross-links collagen IV
in the basement membrane and allows CD11b+ myeloid cells to adhere and release MMPs
at the niche site [147]. The release of these MMPs further degrades collagen fibres and
releases collagen IV peptides, which act as chemoattractants to aid recruitment of BMDCs
to the niche site. As the inhibition of LOX by licofelone can reduce MMP-13 expression in
human osteoarthritic chondrocytes [148], LOX-mediated MMP-13 expression can therefore
contribute to pre-metastatic niche formation by aiding BMDC recruitment to niche sites.

Exosomes are small vesicles that contain proteins, mRNAs, microRNAs, small
RNAs and DNA fragments [149]. Tumour-associated exosomes can assist pre-metastatic
niche formation and aid tumour cell communication by transportation of regulatory
molecules [150,151]. MMP-13 occurs in primary tumour cell-derived exosomes under
hypoxic conditions [152]. It is later released into the circulation to modulate ECM compo-
nents and helps the establishment of pre-metastasis sites [152]. Overall, MMP-13 makes
important contributions to tumour cell invasion at primary tumour sites, as well as the
establishment of tumour cells at remote organs in metastasis through the degradation and
remodelling of ECM and the activation of other MMPs.
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7. MMP-13 in Angiogenesis

Angiogenesis is an important process during cancer pathogenesis. It provides essen-
tial nutrients and a blood supply for sustained tumour growth and development [153].
The multiple-stepped process of angiogenesis consists of: (1) degradation of basement
membrane and ECM around the blood vessels; (2) activation of endothelial cells for mi-
gration and proliferation; (3) transformation of endothelial cells into capillary tubes [154].
Angiogenesis is tightly regulated in normal tissues, but this tight control is disrupted in
cancer [155] by a group of angiogenic factors released by endothelial cells, tumour cells,
stromal cells and ECM [156–160]. These angiogenic factors can be either pro- or anti-
angiogenic [161]. Pro-angiogenetic regulators include vascular endothelial growth factor
(VEGF), basic fibroblast growth factor (bFGF), TGF-α and -β, epidermal growth factor
(EGF), platelet-derived growth factor (PDGF), placental-derived growth factor and an-
giopoietin -1 and -2 [162], while anti-angiogenic regulators include angiostatin, endostatin,
tumstatin, platelet factor-4, interleukin-12, thrombospondin-1, TIMPs and interferon-α, -β
and -γ [154].

Many MMP family members are known to take part in the process of angiogenesis.
Their primary action is to degrade ECM components. This leads to the release of ECM-
bound angiogenic factors that enable endothelial cells to invade the tumour stroma leading
to new blood vessel formation [163]. Interstitial collagens are the major proteins in the
vascular tissue milieu [164]. The structural triple-helical, fibrillar collagen in vascular tissue
is highly resistant to many proteolytic enzymes, such as trypsin, plasmin, extracellular
serine proteases and many MMP members [165]. Only a limited number of MMPs can
cleave the highly structured fibrillar collagens. MMP-2 and -9 can cleave fibrillar type
I collagen and release ECM-bound angiogenic growth factors [88] to aid blood vessel
formation and endothelial cell invasion [166,167]. MMP-13 is one of the proteases that can
digest well-structured fibrillar collagens in ECM around the blood vessel and contribute
to the release of ECM-bound angiogenic regulators [168]. MMP-13 has been shown to
efficiently and specifically cleave interstitial collagens to initiate ECM remodelling and
promote new blood vessel formation in the chorioallantoic membrane in a chicken embryo
model [164]. MMP-13 expression in stromal fibroblasts was shown to enhance VEGF
and VEGFR-2 concentrations in the tumour cell invasive areas around blood vessels and
promote angiogenesis in skin carcinoma [169]. MMP-13-mediated release of VEGF-C
increased cancer cell spreading through lymphatic vascular systems in paediatric multiple
myeloma [170]. Higher MMP-13 expression correlates closely with a higher number of
blood vessels in human head and neck cancer [168]. Overall, the expression and presence
of MMP-13 in cancer and stromal cells is actively involved in promoting angiogenesis in
tumour cell metastatic spreading.

8. Concluding Remarks

As an interstitial collagenase that can cleave not only collagens but also a range of other
ECM components, MMP-13 is overexpressed in various cancers and plays multiple roles
in cancer development, progression and metastasis. Its proteolytic action leads to ECM
remodelling and release of ECM-sequestered growth factors, cytokines and angiogenic
factors that promote tumour cell proliferation, EMT, invasion and angiogenesis. MMP-
13-mediated ECM remodelling and release of growth factors also aids the recruitment
of immune cells to the pre-metastatic niche and helps the establishment of secondary
metastasis sites in distant organs (Figure 3). Despite the critical involvement of MMP-13 in
cancer progression and metastasis, the precise mechanisms of its regulation and actions are
still not fully understood. Much also remains unknown about the possible coordination
of MMP-13 action with other MMP family members during cancer pathogenesis. Little is
known about whether MMP-13 appearance/overexpression in cancer and stromal cells
influences the activity or function of cell surface molecules, such as cell adhesion and
signalling proteins. Future research will help to gain further insights into the role and
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actions of MMP-13 in cancer and determine whether MMP-13 represents an effective
therapeutic target for this disease.
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