
1

Adaptive Lyapunov Function Method for Power
System Transient Stability Analysis

Zitian Qiu, Student Member, IEEE, Chao Duan, Member, IEEE, Wei Yao, Senior Member, IEEE, Pingliang
Zeng, Senior Member, IEEE, Lin Jiang, Member, IEEE

Abstract—Transient stability analysis is a crucial tool for
evaluating the stability and ensuring the safe operation of power
systems. Among existing methodologies for transient stability
analysis, direct methods show merits in performing fast con-
tingency screening and providing quantitative information for
the degree of stability. However, the inherent conservatism of
direct methods and their restriction on power system mod-
els still pose significant challenges for practical applications.
This paper is devoted to further developing direct methods by
proposing a novel adaptive Lyapunov function method, which
enables simulation-free estimation of critical clearing time with
drastically reduced conservatism. The novelties of the proposed
method lie in three aspects. First, we propose an adaptive sector
condition which bounds the nonlinearity of the power system
model in an adjustable neighborhood of a given equilibrium.
Second, we introduce an improved bounding technique for the
time derivative of the Lyapunov function. Third, by exploiting
the freedom of the adaptive sector condition and the adjustable
neighborhood, the construction of Lyapunov functions along with
the choice of the parameters in the sector conditions can be
co-optimized to achieve the tightest possible estimation of the
critical clearing time. The effectiveness of the proposed method
is validated on four benchmark systems.

Index Terms—Transient stability, direct method, adaptive Lya-
punov function, critical clearing time, semi-definite program

I. INTRODUCTION

TRANSIENT stability analysis (TSA) is one of the key
tools to ensure the stable operation of power systems [1]–

[3]. In normal conditions, a power system operates at a stable
equilibrium point (SEP) determined by load distribution and
generator dispatch. However, the normal operation is always
at the risk of being challenged by sporadic faults. Once a
fault occurs, the pre-fault equilibrium is no longer an SEP
of the electromechanical dynamics and the system goes into
transient. This fault-on transient process continues until the
fault is cleared, after which a post-fault SEP, either identical
or different from the pre-fault one, re-emerges. The system
may be able to converge to the post-fault SEP and return
to normal operation, or it may fail to do so and trigger
the desynchronization among generators, which can result
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in system degradation and large-scale blackouts. To avoid
these undesirable consequences and ensure system robustness
against possible faults, power system TSA thus aims at de-
termining the transient stability of the system, i.e., whether
or not it can safely converge to the post-fault SEP given the
information about pre-fault SEP, fault type and parameter, and
fault clearing time (the time between the fault is initiated and
cleared). The system is allowed to operate at a given SEP only
when the system is declared to be transiently stable with this
SEP under any faults in a pre-defined contingency set. The
results of TSA can also guide the configuration of protective
relay to ensure small enough clearing time under any faults in
the contingency set. Due to its crucial role in power system
operation, developing effective methods for TSA has been one
of a central research topic for decades [3]–[5].

A straightforward approach to assess the transient stability
of power systems is the time-domain simulation of the power
system dynamics [6]–[9]. With the advantage of almost having
no restriction on the complexity of the system model, time-
domain simulation is widely adopted by the system operators
as the main tool for power system TSA. Once the system
model is correctly given, accurate conclusions about the tran-
sient stability of the system at a given operation point followed
by any contingency can be visually drawn from the simulation
curves. However, the time-domain simulation also comes with
drawbacks. First, screening all possible contingencies on a
regular basis is expensive even for off-line calculation and is
prohibitive for on-line application. In fact, in practical power
systems, most of the faults correspond to failures of relatively
small and insignificant components, whose post-fault dynam-
ics are close to the SEP and are therefore transiently stable
[10]. Performing simulations for a huge amount of non-severe
faults is unnecessary. Second, the time-domain simulation
approach generally cannot reveal quantitative information on
system stability margin and provide systematic guidance for
the design of control and protection systems.

Complementary to the time-domain simulation is the direct
methods which build on certain theoretical characterization of
power system stability regions and avoid numerical integration
as much as possible. Through energy interpretation or topolog-
ical characterization of the region of stability, direct methods
offer mechanistic understanding and quantitative information
for transient stability, which can be useful to guide system
operation and control design. Direct methods with different
theoretical foundations have been applied to practical power
systems as a valid tool for contingency screening [11]–[13].
Generally, the direct methods can be classified into three
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groups according to their underlying theories and method-
ologies. The first group of methods are based on the equal
area criterion (EAC) [3] which is the well-known analytical
results for power system transient stability on the single-
machine-infinite-bus (SMIB) system, or equivalently, two-
machine systems. System equivalence or approximation is
needed to extend the EAC to multi-machine systems. In par-
ticular, the extended EAC (EEAC) method [14] decomposes
the generators into two groups, each of which is dynamically
approximated by an equivalent generator so that the EAC
can be applied. The accuracy of the EEAC method depends
critically on the correctness of grouping. To make an accurate
prediction for the separation among generators, numerical
integration of the fault-on or even the post-fault dynamics are
employed in some form, which makes the EEAC method a
hybrid integral-direct method [15]–[20].

The second group of direct methods rely on the construction
of global energy function V (x) and the associated topological
characterization of stability regions [1], [21]–[24]. When a
global energy function exists for the employed power system
model, the stability boundary of any SEP is formed by the
union of the stable manifolds of nearby unstable equilibrium
points (UEPs). Hence, the level set {V (x) ≤ ρ} with the
critical energy value ρ given by the closest UEP constitutes
an inner approximation of the stability region. This group
of direct methods still require numerical integration of the
fault-on dynamics to determine the fault-cleared state xcl and
then the transient stability of the system is determined by
comparing V (xcl) and the critical energy value ρ. To reduce
the conservative of this method, enormous effort has been
devoted to developing more informed ways to determine the
critical energy value ρ by further incorporating the trajectory
information, which leads to techniques such as the potential
energy surface (PES) method and the controlling UEP method.
In addition, the boundary-controlling UEP (BCU) method [13]
is an efficient numerical technique to compute the controlling
UEP. However, the assumption on the existence of a global
energy function poses a strong limitation on the power system
models employed and creates inconsistency with industrial
standards. Moreover, this group of methods still require the
numerical integration of the fault-on or even the post-fault
dynamics.

The third group of direct methods is the local Lyapunov
function (LLF) method [10], [25]–[28] which seeks to con-
struct a Lyapunov function V (x) in a neighbour of a given
(post-fault) SEP. Similar to the global energy function ap-
proach, the level set {V (x) ≤ ρ} for some critical value
ρ can be served as an inner approximation to the stability
region. Different from the global energy function method, the
critical function value ρ in the LLF method is not determined
by nearby UEPs. Instead, the critical value ρ is chosen to
ensure that the level set {V (x) ≤ ρ} is an invariant set of the
post-fault dynamics. With the theoretical and methodological
advances in convex optimization, computational tools for con-
structing local Lyapunov functions and estimating the stability
regions become available [27], [29], which stimulates recent
revival of this classic idea applied to power system TSA [27],
[30]. One prominent feature of the LLF method is that it is

possible to completely avoid numerical integration by prop-
erly bounding the time derivative of the Lyapunov function
along the fault-on trajectory [26], which makes this group
of methods more consistent with the original motivation of a
“direct method”. In addition, the existence of a local Lyapunov
function is always ensured by the converse Lyapunov function
theorem [31], so that it does not impose any restriction on the
power system model. However, the three major components
of the LLF methods, i.e., certifying the Lyapunov conditions
on V (x), establishing the invariance of level set {V (x) ≤ ρ},
and bounding the time derivative of V (x), all can introduce
excessively high degree of conservatism, which makes the
current LLF methods of limited practical value.

In light of the limitations of the state-of-the-art approaches,
this paper further develops computational tools for power
system TSA based on local Lyapunov functions by introducing
several novel ideas that significantly reduce conservatism.
Relative to existing LLF methods [10], [25]–[27], our novelties
and contributions are four-fold:

1) The concepts of adjustable neighborhoods of equilibria
and adaptive sector bounds for nonlinearities are intro-
duced to reduce the conservatism originated from the
certifying the Lyapunov conditions and the invariance of
Lyapunov function level sets.

2) An improved bounding technique for the time derivative
of Lyapunov functions is proposed to significantly reduce
the conservatism coming from estimating the critical
value of the Lyapunov functions.

3) A problem formulation and its solution method are de-
veloped to co-optimize and simultaneously determine the
optimal estimation of the critical clearing time (CCT)
along with the construction of Lyapunov functions and
the adjustable neighborhoods of the post-fault equilib-
rium.

4) The proposed analysis approach can provide a systematic
and optimization-based guide for control design, for
which we exemplify in the context of virtual inertia and
damping optimization for transient stability enhancement.

Due to the fact that the Lyapunov function, the adjustable
neighborhood for certifying the Lyapunov conditions, and the
sector conditions for nonlinearities are all chosen adaptively
w.r.t. the system operation points and contingencies, we thus
refer to our new method as the adaptive Lyapunov function
(ALF) method. To validate the proposed ALF method, nu-
merical studies are carried out on four benchmark systems
in comparison to previous direct methods and time-domain
simulations.

II. GENERAL FRAMEWORK OF ADAPTIVE LYAPUNOV
FUNCTION METHOD

Before diving into the technicalities of power systems,
we present an abstract problem setup and outline a general
framework of what we mean by the ALF method for TSA.

A. Problem setup and general framework

Consider a nonlinear system

ẋ = Ax+Bφ(Cx), (1)
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Fig. 1. Uniform (blue horizontal line) and non-uniform (red curve, assuming
V0 = 0) upper bounds for the time derivative of the Lyapunov function.
For each bounding curve of V̇ (x(t)), the corresponding CCT estimation is
the time to which from t = 0 the integral of the bounding curve (the area
under the curve) reaches a given critical Lyapunov function value ρ. Here,
the estimated CCTs corresponding to uniform and non-uniform bounds are
respectively given by τ0 and τ1 with comparison to the exact CCT τ∗.

where x ∈ Rn is the state vector; A ∈ Rn×n represents the
linear part of the system dynamics; φ(·) ∈ Rl is a nonlinear
function capturing all the system nonlinearity; B ∈ Rn×l
and C ∈ Rp×n encode the coupling between nonlinearity
and system states. Without loss of generality, it is assumed
that x = 0 is the equilibrium of system (1) relevant to our
engineering applications. We are interested in the stability of
the equilibrium under transient structural changes. That is,
assume that the system stays at the equilibrium x(t) = 0 for
t ≤ 0; starting from t = 0, the system encounters a structural
change (e.g., a fault) that forces the matrix B to be switched
to a different matrix B′ and hence brings the system state into
transient. The incidence concludes (e.g., the fault is cleared)
and the matrix B′ is switched back to B at t = τ . TSA deals
with the question that whether the system state will return to
the equilibrium x = 0 after the transient and how the stability
depends on the clearing time τ . The maximum clearing time
τm under which the system remains stable is called the CCT.

The ALF method seeks to establish a rigorous mathematical
characterization for any τ ≤ τm given system information
(A,B,B′,C,φ(·)), which further leads to an algorithm to
compute the CCT. To this end, we first construct a parametric
set Ω(γ) ⊆ Rn which serves as a neighborhood of the
equilibrium x = 0. The size of the neighborhood Ω(γ) is
tunable by changing the parameter γ. Based on Ω(γ), we can
construct a local Lyapunov function V (x) of system (1), i.e.,

V (0) = 0, V (x) > 0, V̇ (x) < 0, ∀x ∈ Ω(γ)/{0}. (2)

Further exploiting the information of Ω(γ) and the structural
change B′, we derive an upper bound for the time derivative
of the Lyapunov function in the form

V̇ (x) ≤ η + αV (x), ∀x ∈ Ω(γ), (3)

during the period of the structural change. When inequality
(3) holds for some parameters η and α, due to the comparison
principle [31, p.126], we obtain

V (x(t)) ≤ eαtV0 +
η

α
(eαt − 1), (4)

where V0 = V (x(0)). When the pre-fault equilibrium is
identical to the post-fault equilibrium, we have V0 = 0. In
this paper, if not mentioned otherwise, we always assume
that V0 = 0 for simplicity though our theory framework can
be straightforwardly extended to the case where the post-
fault equilibrium differs from the pre-fault equilibrium (hence
V0 6= 0). Further note that, given a Lyapunov function V (x),
any level set inside the neighborhood Ω(γ), i.e.,

{V (x) ≤ ρ} ⊆ Ω(γ), (5)

is a subset of the domain of attraction for the equilibrium
x = 0. Therefore, a clearing time τ is less than τm if

η

α
(eατ − 1) ≤ ρ, (6)

which implies that 1
α ln(αρ+ηη ) is a lower approximation of

the critical clearing time τm. It is worth noting that, in stark
contrast to recent works [10], [26], where a uniform bound
is employed for the time derivative of the Lyapunov function,
we introduce a non-uniform bound in Eq. (3) for V̇ (x), which
results in tighter bounds for the value of the Lyapunov function
during the fault-on dynamics. As illustrated in Fig. 1, the
tighter bounds lead to less conservative CCT estimation given
the same critical Lyapunov function value ρ.

To approximate τm as tight as possible, theoretically speak-
ing, we can solve the following problem

max
V (·)∈C(Rn),γ,ρ,η,α

1

α
ln(
αρ+ η

η
), s.t. (2), (3), (5), (7)

where C(Rn) is the space of continuous functions on Rn. The
problem seeks to find the optimal Lyapunov function V (·),
adjustable neighborhood parameter γ, the level set parameter
ρ, and the time derivative bounding parameters η and α that
together achieve the least conservative estimation of the CCT
τm. In stark contrast to previous Lyapunov function methods,
in the proposed formulation (7), not only the Lyapunov
function V (·) but also the bounding neighborhood Ω(γ) are
adaptive to the information of the particular system and struc-
tural change, and the construction of the Lyapunov function
and the estimation of the CCT is done simultaneously. For
this reason, we call the proposed solution framework the ALF
method. By properly parameterizing the Lyapunov function
V (·) and reformulating the constraints (2)-(3), the problem
(7) can be cast into a finite-dimensional convex optimization
problem which is solvable by off-the-shelf solvers.

B. Quadratic Lyapunov Function

Here, we specialize the above general framework to the
simple yet powerful quadratic Lyapunov function. That is,
we parametrize the candidate Lyapunov function as V (x) =
xTPx for some matrix P ∈ Sn, where Sn denotes the set of
n× n real symmetric matrices.

In addition, by properly designing the structure of the
neighborhood Ω(γ), it facilitates the local bounding of the
system nonlinearity. That is, there exist two parametric ma-
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P ≥ 0,

ATP + PA− αP −CTG(γ)C PB +CTH(γ)Tdiag(λ) PS
BTP + diag(λ)H(γ)C −diag(λ) 0n×l

STP 0l×n −ηIn

 ≤ 0, λ ≥ 0, (9)

trices H ′(γ) ∈ Rl×p and H ′′(γ) ∈ Rl×p such that the
following adaptive sector condition holds(
φ(Cx)−H ′(γ)Cx

)T
Ek
(
φ(Cx)−H ′′(γ)Cx

)
≤ 0,

∀x ∈ Ω(γ), ∀1 ≤ k ≤ l,
(8)

where Ek denotes the matrix with the (k, k)th element being
1 and all other elements being 0. From an optimization
perspective, condition (8) can be considered a robust constraint
on the state x whose uncertainty set Ω(γ) is adjustable so
that a desirable trade-off between conservatism and region
of validness can be achieved by optimizing parameter γ.
Without loss of generality, we assume that the structural
change takes the form B′ = B+S∆, where S and ∆ are two
matrices of appropriate dimensions and the matrix ∆ satisfies
φT∆T∆φ ≤ 1. Using S-Lemma and Schur complement, the
Lyapunov function condition (2), the bounding inequality (3),
and the adaptive sector condition (8) hold simultaneously if
the robust linear matrix inequality (9) is satisfied, in which

H(γ) =
H ′(γ) +H ′′(γ)

2
, (10)

G(γ) =
H ′(γ)Tdiag(λ)H ′′(γ) +H ′′(γ)Tdiag(λ)H ′(γ)

2
,

(11)
and λ = (λi), 1 ≤ i ≤ l, are the auxiliary variables introduced
by S-Lemma.

To reformulate condition (5), we further assume that the
parametric neighborhood Ω(γ) is a polyhedron of the form

Ω(γ) = {x ∈ Rn | b(γ) ≤ Cx ≤ b(γ)}, (12)

where the lower bounds b(γ) ∈ Rp and upper bounds b(γ) ∈
Rp are linear functions of parameter γ. By further using S-
lemma, condition (5) holds if there exist auxiliary variables
µ ∈ Rp and µ ∈ Rp such that

µ ≥ 0,

[
P 1

2C
TEkµ

1
2µ

TEkC −ρ− µTEkb(γ)

]
≥ 0,∀1 ≤ k ≤ p,

(13a)

µ ≥ 0,

[
P − 1

2C
TEkµ

− 1
2µ

TEkC −ρ+ µTEkb(γ)

]
≥ 0,∀1 ≤ k ≤ p.

(13b)
Following above analysis, the functional optimization problem
(7) can be cast into the following semi-definite program (SDP)

max
P∈Sn,γ,ρ,η,λ,µ,µ,α

ρη−1 s.t. (9), (13). (14)

In the subsequent sections, we will specialize this general
framework to power system TSA, for which we show that the
nonlinear semi-definite program (14) can be solved by convex
solvers.

III. POWER SYSTEM TRANSIENT STABILITY ANALYSIS

Here, we show that the general method developed in the
previous Section is readily applicable to power system TSA.

A. System model

To formulate the power system electrical-mechanical dy-
namics in the form of Eq. (1), we adopt the structure-
preserving model [11], [32] in which the loads and the gen-
erators are represented by first- and second-order differential
equations, respectively. Without loss of generality, we assume
that the network has nb buses in total, among which the first
nc buses are pure load consumption buses and the rest ng ones
are generator buses. Here, we have nb = nc+ng . Let nl be the
number of transmission lines. We define a nl × nb matrix F
whose (k, i)th element is 1 if the kth transmission line takes
bus i as its ”from” end. Similarly, we define a nl×nb matrix
T whose (k, i)th element is 1 if the kth transmission line takes
bus i as its ”to” end. Other unspecified elements of F and T
are all zeros. We also define C̄ = F − T . For convenience,
we use vector c̄k to denote the kth row of matrix C̄. We also
use scalars fki and tki to denote the (k, i)th element of the
matrices F and T , respectively. In addition, the nl×1 complex
vector y represents the admittance of transmission lines, i.e.,
yk = |yk| ϕk is the admittance (with magnitude |yk| and phase
ϕk) of the kth line. We also define a coupling strength vector
σ ∈ Rnl×1 with the kth element σk = ViVj |yk| where Vi and
Vj are the voltage magnitudes of the “from” and “to” ends of
the kth transmission line, respectively.

The power system dynamics are described by

riδ̇i +

nl∑
k=1

σk
[
fki sin (c̄kδ + ϕk) + tki sin (−c̄kδ + ϕk)

]
= −Pdi, i = 1, 2, · · · , nc,

(15a)

miδ̈i + diδ̇i +

nl∑
k=1

σk
[
fki sin(c̄kδ + ϕk)+

tki sin(−c̄kδ + ϕk)
]

= Pmi, i = nc + 1, nc + 2, · · · , nb,
(15b)

where mi and di represent the inertia and damping coefficients
of the generator at bus i with Pmi being its mechanical power
input. The constant ri is the frequency coefficient and Pdi
represents the power consumption of the load at bus i. In the
steady state, the system operates at a given equilibrium δ∗ that
satisfies the power flow equations
nl∑
k=1

σk
[
fki sin (c̄kδ

∗ + ϕk) + tki sin (−c̄kδ∗ + ϕk)
]

= −Pdi,

i = 1, 2, · · · , nc,
(16a)

nl∑
k=1

σk
[
fki sin(c̄kδ

∗ + ϕk) + tki sin(−c̄kδ∗ + ϕk)
]

= Pmi,

i = nc + 1, nc + 2, · · · , nb.
(16b)

By subtracting Eq. (16) from Eq. (15) and re-defining state
variables x = [x1,x2,x3]T, where x1 = [δ1 − δ∗1 , δ2 −
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Fig. 2. Adaptive sector bounds for the nonlinearity corresponding to the
transmission line k which collects bus i and bus j, whose δ∗ij ≥ 0.
The nonlinearity is shown as the blue sinusoidal curve, which is locally
approximated by a quadratic function (in green) and bounded by two linear
functions (in red).

δ∗2 , · · · , δnc
− δ∗nc

], x2 = [δnc+1− δ∗nc+1, · · · , δnb
− δ∗nb

], and
x3 = [δ̇nc+1, · · · , δ̇nb

], we can rewrite dynamical system (15)
in the form of Eq. (1) with

A =

0nc×nc
0nc×ng

0nc×ng

0ng×nc 0ng×ng Ing

0ng×nc 0ng×ng −M−1D

 , (17)

B =

 R−1 0nc×ng

0ng×nc 0ng×ng

0ng×nc M−1

 [−F TΣ −T TΣ
]
, (18)

C =
[
C̄ 0nl×ng

]
(19)

φ(Cx) =

[
sin
(
C̄δ +ϕ

)
− sin

(
C̄δ∗ +ϕ

)
sin
(
−C̄δ +ϕ

)
− sin

(
−C̄δ∗ +ϕ

)] , (20)

where diagonal matrices D = diag(d1, d2, · · · , dng
), M =

diag(m1,m2, · · · ,mng
), R = diag(r1, r2, · · · , rnc

), and Σ =
diag(σ1, σ2, · · · , σnl

). The sin(·) function applies to the vector
argument element-wisely.

We consider a symmetrical line-tripping fault of the kth
transmission line. The fault is cleared and the line is success-
fully re-closed after a certain period of time. Following the
framework developed in Section-II-B, the fault is modelled as
the switching of matrix B to B′ = B + S∆. Here,

S =

 R−1 0nc×ng

0ng×nc 0ng×ng

0ng×nc
M−1

 [F TΣĒk T TΣĒk
]
, (21)

and ∆ = I2nl
, where Ēk is the nl×nl matrix with its (k, k)th

element being 1 and all other elements being zeros. Note that
here we take the line tripping fault as an example to illustrate
how the structure changes. The proposed approach can also be
extended to short-circuit faults. The way to construct structure
change matrix S̃ accordingly is thoroughly given in Section-
V-B.

B. Adaptive sector conditions for nonlinearity

The nonlinearity of the model defined by Eq. (1) and
Eqs. (17)-(20) is entirely captured by the nonlinear function
φ(Cx). Here, we derive sector conditions for the nonlinear
term φ(Cx) by specifying the structures of the neighborhood
Ω(γ) and the matrices H ′(γ) and H ′′(γ).

Given the steady-state power flow solution δ∗, the neigh-
borhood Ω(γ) is constructed as the following parametric
polyhedron

Ω(γ) = {x ∈ Rnc+2ng
∣∣ − γ ≤ Cx ≤ γ}, (22)

where γ ∈ Rnl is a non-negative vector whose kth element γk
encodes the allowable deviation of the rotor angle difference
δi−δj from δ∗i −δ∗j , where bus i and bus j are the ”from” and
”to” ends of the kth transmission line, respectively. With this
simple structure of Ω(γ), we can then derive sector bounds
for the nonlinear term φ(Cx) in Eq. (20). To achieve this, we
first consider the kth element of φ, i.e.,

φk(c̄kδ) = sin (c̄kδ + ϕk)− sin (c̄kδ
∗ + ϕk) (23)

for some 1 ≤ k ≤ nl. Within the neighborhood Ω(γ) defined
in (22), |c̄k(δ − δ∗)| ≤ γk, we seek to find two parametric
scalars h′k and h′′k , possibly depending on γk, such that(

φk − h′kc̄k(δ − δ∗)
)(
φk − h′′k c̄k(δ − δ∗)

)
≤ 0 (24)

holds for all δ that satisfies |c̄k(δ − δ∗)| ≤ γk.
The method to determine scalars h′k and h′′k is illustrated in

Fig. 2. We start the analysis by assuming that c̄kδ∗ ≥ 0. In
this case, on the c̄kδ v.s. φk plane, the scalar h′k can be chosen
as the slope of the line (the red line in Fig. 2) that crosses the
equilibrium c̄kδ

∗ while being tangent to the graph of function
φk(c̄kδ) (the blue sine curve in Fig. 2). The tangent point
always lies in the orthant of φk ≤ 0 with x-coordinate zk
satisfying

cos(zk +ϕk) · (zk − c̄kδ∗) = sin(zk +ϕk)− sin(c̄kδ
∗+ϕk).

(25)
By solving the above equation, we obtain

h′k(c̄kδ
∗) = cos(zk + ϕk). (26)

With this choice of h′k, we have h′kc̄k(δ − δ∗) ≥ φ(c̄kδ) for
c̄kδ
∗ ≤ c̄kδ ≤ c̄kδ∗ + γk, whereas h′kc̄k(δ − δ∗) ≤ φ(c̄kδ)

for c̄kδ∗ − γk ≤ c̄kδ ≤ c̄kδ∗.
To derive the scalar h′′k , we introduce a quadratic function

that provides the tightest lower bound for the nonlinear func-
tion φk(c̄kδ) in the region of c̄kδ ≥ c̄kδ∗, as illustrated by the
green curve in Fig. 2. It is obvious that the quadratic function
crosses the points (c̄kδ

∗, 0) and (π − c̄kδ∗ − 2ϕk, 0) thus
taking the form

gk(c̄kδ) = −ak
(
c̄kδ− c̄kδ∗

)(
c̄kδ−(π− c̄kδ∗−2ϕk)

)
(27)

for some scalar ak > 0. In order for gk(c̄kδ) to be the tightest
possible quadratic lower bound, the curve for gk(c̄kδ) must
be tangent to that for the nonlinear function φk(c̄kδ) at the
equilibrium point (c̄kδ

∗, 0), leading to the following optimal
choice of parameter

ak =
cos(c̄kδ∗ + ϕk)

π − 2c̄kδ∗ − 2ϕk
. (28)
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Due to the concavity of the function gk(c̄kδ), given any scalar
0 ≤ γk ≤ π − 2c̄kδ

∗ − 2ϕk, the secant that passes through
(c̄kδ

∗, 0) and (c̄kδ
∗+γk, gk(c̄kδ

∗+γk)) also provide a lower
bound for the function φk(c̄kδ) in the interval c̄kδ∗ ≤ c̄kδ ≤
c̄kδ
∗ + γk. See the inset of Fig. 2 for a clear illustration.

Obviously, the same secant provides an upper bound for
function φk(c̄kδ) in the interval c̄kδ∗ − γk ≤ c̄kδ ≤ c̄kδ∗.
Therefore, by choosing h′′k to be the slope of the secant, i.e.,

h′′k(γk, c̄kδ
∗) =

gk(c̄kδ
∗ + γk)

γk

=
cos(c̄kδ∗ + ϕk)

π − 2c̄kδ∗ − 2ϕk
(π − 2c̄kδ

∗ − 2ϕk − γk),

(29)
we have h′′k(γk, c̄kδ

∗) · (c̄kδ − c̄kδ∗) ≤ φ(c̄kδ) for c̄kδ∗ ≤
c̄kδ ≤ c̄kδ

∗ + γk, whereas h′′k(γk, c̄kδ
∗) · (c̄kδ − c̄kδ∗) ≥

φ(c̄kδ) for c̄kδ∗ − γk ≤ c̄kδ ≤ c̄kδ∗. The above choices for
h′k and h′′k ensure the sector condition (24) hold for all c̄kδ
that satisfies |c̄kδ − c̄kδ∗| ≤ γk.

The above analysis extends analogously to the case where
c̄kδ
∗ ≤ 0. The only difference in this case is that

h′′k(γk, c̄kδ
∗) =

cos(c̄kδ∗ + ϕk)

π + 2c̄kδ∗ + 2ϕk
(π + 2c̄kδ

∗ + 2ϕk − γk).

(30)
Combining the formula for both cases, we conclude that the
scalar h′k(c̄kδ

∗) is given by Eq. (26) with zk from the solution
of Eq. (25), and the scalar h′′(γk, c̄kδ∗) is computed from

h′′k(γk, c̄kδ
∗) =

cos
(
|c̄kδ∗|+ sgn(c̄kδ

∗)ϕk
)

π − 2|c̄kδ∗| − 2sgn(c̄kδ∗)ϕk
(31)

×
(
π − 2|c̄kδ∗| − 2sgn(c̄kδ

∗)ϕk − γk
)
,

where the function sgn(z) returns the sign of its argument z.
Note that both h′k and h′′k are chosen adaptively according to
the steady-state power flow solution c̄kδ∗, and h′′k depends
linearly on the adjustable parameter γk of the neighborhood
Ω(γ). Hence, the equation (24) with our choices of h′k and
h′′k in the adaptive sector condition provide extra degrees of
freedom in constructing Lyapunov functions and certifying
transient stability.

Based on the above discussion, the parametric matrices
H ′(γ) ∈ R2nl×nl and H ′′(γ) ∈ R2nl×nl of Eq. (8) in the
context of power system TSA are given by

H ′ =



h′1(c̄1δ
∗)

. . .
h′nl

(c̄nl
δ∗)

−h′1(−c̄1δ∗)
. . .

−h′nl
(−c̄nl

δ∗)


, (32)

H ′′(γ) =



h′′1(γ1, c̄1δ
∗)

. . .
h′′nl

(γk, c̄nl
δ∗)

−h′′1(γ1,−c̄1δ∗)
. . .

−h′′nl
(γnl

,−c̄nl
δ∗)


.

(33)

Here, we suppress the notional dependence of H ′ and H ′′(γ)
on the given equilibrium δ∗ for simplicity.

C. Solution method

Up to this point, we have instantiated the general opti-
mization problem (14) for power system TSA by specifying
matrices A, B, C, S, H ′, and H ′′(γ) in Eqs. (17)-(19), (21),
(32), and (33), respectively. To develop an efficient solution
method for this nonlinear semi-definite optimization problem,
we next discuss several ways to exploit the special problem
structure.

First, due to the symmetric structure of the polyhedron Ω(γ)
in (22), we have b(γ) = −γ and b(γ) = γ. By setting µ =
µ = µ, the matrix inequalities (13a) and (13b) are equivalent
to each other. Hence, the constraints (13a) and (13b) reduce
to a single matrix inequality

µ ≥ 0,

[
P − 1

2C
TEkµ

− 1
2µ

TEkC −ρ+ µTEkγ

]
≥ 0,∀1 ≤ k ≤ nl.

(34)
In addition, the nonlinearity in matrix inequality (9) comes

from the product term diag(λ)H ′′(γ), where H ′′(γ) is a
linear matrix function in γ, and the term αP . Moreover, the
only nonlinearity in matrix inequality (34) lies in the term
µTEkγ. Noticing the special structure of H ′′(γ) defined
through Eqs. (31) and (33), we introduce three auxiliary
decision vectors ν ∈ Rnl , κ ∈ Rnl , and χ ∈ Rnl , and then
let λ = [νTνT]T, µ = diag(κ)ν, and χ = diag(ν)γ. Based
on this reparameterization, we have

diag(λ)H ′′(γ) =

h′′1(ν1, χ1, c̄1δ
∗)

. . .
h′′nl

(νnl
, χnl

, c̄nl
δ∗)

−h′′1(ν1, χ1,−c̄1δ∗)
. . .

−h′′nl
(νnl

, χnl
,−c̄nl

δ∗)


,

(35)
where

h′′k(νk, χk, c̄kδ
∗)

=
cos
(
|c̄kδ∗|+ sgn(c̄kδ

∗)ϕk
)

π − 2|c̄kδ∗| − 2sgn(c̄kδ∗)ϕk

×
(
πνk − 2|c̄kδ∗|νk − 2sgn(c̄kδ

∗)ϕkνk − χk
)
.

In addition,
µTEkγ = κkχk. (36)

By substituting Eqs. (35) and (36) into (9) and (34), both
matrix inequalities (9) and (34) become linear in P , ν, χ,
η, ρ given any fixed vector κ and scalar α. Further note
that if (P ,ν,χ, η, ρ) is a feasible solution to the optimization
problem (14), any c · (P ,ν,χ, η, ρ) is also a feasible solution
given any positive constant c, and the value of the objective
function in (14) stays unchanged. Therefore, without loss of
generality, we can set η = 1 and then the objective function
in (14) also becomes a linear function in ρ.

Based on the above analysis, we employ a two-stage ap-
proach to obtain an optimal estimation of the CCT. First, given
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a fixed initial guess of vector κ = κ∗, we solve the following
linear SDP

max
P∈Sn,ν∈Rnl ,χ∈Rnl ,ρ∈R

ρ, s.t. (9), (34),κ = κ∗, α = α∗,

(37)
and obtain the optimal vectors ν∗ and χ∗. We then fix the
values for ν and χ and further solve the following SDP

max
P∈Sn,κ∈Rnl ,ρ∈R

ρ, s.t. (9), (34),ν = ν∗,χ = χ∗, α = α∗,

(38)
to obtain an improved estimation of the CCT. In principle, the
above two problems (37) and (38) can be solved iteratively to
further improve the CCT estimation accuracy.

D. Trajectory-exploited ALF method

Note that the aforementioned method is totally simulation-
free since we use a linear function to bound the time derivative
V̇ (x) from above along the fault-on trajectory. This upper
bound is generally not tight thus bringing conservatism. If the
fault-on trajectory is available, as assumed by previous energy
function based direct methods, the proposed method has the
flexibility to take advantage of the trajectory information to
further reduce conservatism. To do this, we check every point
along the trajectory until at one point xF (tcl) the Lyapunov
function value reaches the critical level value V (xF (tcl)) = ρ.
The corresponding fault clearing time tcl is then the estimated
CCT.

In summary, the steps of trajectory information based TSA
are given as follows:
Step 1: Solve two SDP problems (37) and (38) iteratively to
obtain an matrix P for a given fault.
Step 2: Carry out time-domain simulation of the faulted
system to acquire the fault-on trajectory xF (t).
Step 3: Calculate the energy of points along xF (t) until
V (xF (tcl)) = ρ. Then, we regard tcl as the estimated CCT.

As the trajectory-exploited ALF method makes full use of
fault-on trajectories, it is always less conservative than the
simulation-free one.

IV. STABILITY ENHANCEMENT CONTROL

One prominent feature of the developed method is the fact
that it establishes an analytic relation between the estimated
CCT (or, equivalently, the transient stability certificate), the
operation points, and the system control parameters in the form
of matrix inequalities (9) and (34). This can enable systematic
and optimization-based guidance for system operation and
control design. To illustrate this point, we consider a situation
where the inertia and damping parameters of generators are
tunable during the transient so that they can be controlled to
enhance the transient stability of the system. This scenario can
be realized through virtual synchronous generators in which
power-electronic converters are designed to mimic the behav-
ior of synchronous generators and the inertia and damping
are both tunable parameters. We thus seek a minimal change
of inertia and damping parameters to stabilize an otherwise
transiently unstable system.

Now assume that for a given fault, the fault clearing time τe
of a system is larger than the CCT τD of the original system,

so the system is transiently unstable under the given fault.
Hence, we need to take control actions during the fault-on
stage to guarantee the CCT τC of the controlled system is
greater or equal to the fault clearing time τe, i.e., τC ≥ τe.
We denote the inertia and damping of the ith generator for
the controlled system as mC,i and dC,i, respectively. Then,
we can mathematically formulate the stability enhancement
control problem as an optimization problem:

min
mC,i≥0,dC,i≥0,τC∈R

ng∑
i=1

(|mC,i −mi|+ |dC,i − di|),

s.t. (9), (34), τC ≥ τe.
(39)

We now present a method to solve problem (39) to obtained
the desired control strategy. Recall that if (P ,ν,χ, η, ρ) is
a feasible solution to the optimization problem (14), any
c · (P ,ν,χ, η, ρ) is also a feasible solution given any positive
constant c, and the value of the objective function in (14)
stays unchanged. Hence, we can naturally set ρ = 1 and
make η a decision variable. Then, the SDPs (37) and (38)
are respectively equivalent to

min
P∈Sn,ν∈Rnl ,χ∈Rnl ,η∈R

η, s.t. (9), (34),κ = κ∗, α = α∗,

(40)
min

P∈Sn,κ∈Rnl ,η∈R
η, s.t. (9), (34),ν = ν∗,χ = χ∗, α = α∗.

(41)
We first assign matrix PC and multipliers νC and χC the

same as the results obtained by solving SDPs (40) and (41).
Then, as variables mC,i and dC,i appears in matrices A, B,
and S in inequality (9), all these matrices need to be modified
accordingly. We further introduce two new matrices MC =

diag( 1
mC,1

, . . . , 1
mC,ng

) and DC = diag(
dC,1

mC,1
, . . . ,

dC,ng

mC,ng
).

Hence, to modify A, B, and S, we can replace matrix M−1

with MC and M−1D with DC . Based on (5), inequality
τC ≥ τe is equivalent to the condition

η ≤ αρ

eατe − 1
. (42)

Note that since we fix the matrix PC , multipliers νC and
χC , inequalities (34) are always satisfied. Hence, we can solve
the following optimization problem

min
MC∈Rng ,DC∈Rng ,η∈R

tr(‖MC −M‖2 + ‖DC −D‖2),

s.t. (9), (42),P = PC ,ν = νC ,χ = χC ,

MC > 0,DC > 0, α = α∗,
(43)

where tr(·) denotes the trace of a matrix, to obtain the inertia
and damping adjustment scheme.

We now summarize the steps for stability enhancement
control design:
Step 1: Given a fault and the associated clearing time τe.
Step 2: Solve SDPs (40) and (41) iteratively to obtain an
matrix PC , and multipliers νC and χC .
Step 3: Solve problem (43) to obtain the inertia and damping
adjustment scheme for generators.

Note that constraint (42) is related to the estimated CCT τC
of the controlled system. Due to the inherent conservatism of
the direct method, if τC ≥ τe, the exact CCT of the controlled
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TABLE I
OPTIMAL PARAMETERS AND CCTS OF TWO ALF METHODS UNDER DIFFERENT SEPS WITH THE SAME INITIAL VALUE α = 1 AND κ = 1 COMPARED

WITH THE CCTS OBTAINED BY THE METHOD IN [10], THE ENERGY FUNCTION METHOD, AND TIME-DOMAIN SIMULATION

δ∗ (rad) γ h′ h′′(γ)
CCT (s)

Simulation-free
CCT (s)

Trajectory-exploited
CCT (s)

[10]
CCT (s)

Energy function
CCT (s)

Time-domain
−0.253 2.118 0.992 0.190 1.422 4.790 0.824 7.439 8.125
0.253 2.118 0.992 0.190 1.422 4.790 0.824 7.439 8.125
0.524 1.816 0.966 0.115 1.131 2.448 0.541 2.776 3.310
0.848 1.446 0.913 0.000 0.751 1.308 0.248 0.911 1.600
1.120 0.902 0.852 0.000 0.387 0.556 0.097 0.182 0.825
1.430 0.283 0.768 0.000 0.024 0.100 0.010 0.020 0.225

system is definitely greater than τe. Hence, the controlled
system is guaranteed to meet the stability requirement.

V. NUMERICAL RESULTS

Here, we demonstrate the effectiveness and performance
of the proposed TSA method on several IEEE benchmark
systems. The generators are modeled with the second-order
classical model in which the excitation voltage is assumed
to stay constant during the transient. The loads are modeled
as first-order systems. The numerical results of the proposed
method are obtained by solving the two SDPs (37) and (38)
only once, and comparative studies are conducted between
the proposed ALF method and the LLF method recently
introduced in [10]. Both methods are implemented in MAT-
LAB with the modeling tool YALMIP and optimization solver
Mosek.

A. Single-machine-infinite-bus (SMIB) system

For an illustrative example, we first analyze the working
mechanism and performance of the proposed method on the
SMIB system described by

mδ̈ + dδ̇ + σ sin(δ)− p = 0, (44)

where m, d, σ, and p are inertia, damping, coupling strength,
and power mismatch, respectively. The SEP of the system is
given by [δ∗; 0] where δ∗ = arcsin (p/σ). In this system, the
parameters m = 0.1, d = 0.15, and σ = 0.2.

By choosing different power mismatch parameters p, the
system can operate at different SEPs. Table I compares the
estimated CCTs by the proposed methods with those by the
method in [10], the energy function method, and time-domain
simulation, under four different SEPs. It is shown that the
proposed method increases the CCT estimation by 1.97 times
on average compared with the previous method, indicating
a significant reduction in conservatism. Such improvement
largely comes from the novel techniques proposed in this
paper, including the non-uniform bound for the time derivative
of the Lyapunov function (3), the adjustable neighborhoods
(12), and the adaptive sector conditions (8). As shown in
columns 2–4 of TableI, the neighborhood parameter γ and the
slopes of the sector conditions h′ and h′′ are adaptive to the
change of the SEPs. Fig. 3a–3c visualize the neighborhood and
sector conditions under different SEPs. Due to the adaptiveness

(e)

(f)

(d)(a)

(b)

(c)

Fig. 3. Numerical results of the proposed method on the SMIB system.
(a)–(c) The adaptive sector bounds for the nonlinear term at different SEPs
δ∗ = −0.253, δ∗ = 0.524, and δ∗ = 0.848 with α = 1 and κ = 1.
The two vertical dashed lines indicate the boundary of Ω(γ). (d) The mesh
plot of the estimated CCT with different initial values of α ∈ [10−3, 103]
and κ ∈ [0, 200]. (e) The dependence of the estimated CCT on κ with fixed
α = 1.585. (f) The dependence of the estimated CCT on α with κ = 3.300.

of neighborhood Ω(γ) and the sector conditions, the proposed
method gains extra degrees of freedom to construct superior
Lyapunov functions that enables tighter CCT estimation.

Next, we reveal the dependence of the estimated CCTs on
parameters α and κ of the proposed algorithm, as illustrated
in Fig. 3d–3f. For this purpose, the power mismatch is set
to p = 0.1 and hence the SEP is [π/6; 0]. Fig. 3d illustrates
the CCT estimation results using different parameters α ∈
[10−3, 103] and κ ∈ [0, 200]. It is shown that the estimated
CCT reaches its peak which is 1.87 s when α = 1.585 and κ =
3.300. Note that the proposed method is still conservative (the
exact CCT from the time-domain simulation is 3.31 s), but the
conservatism of the proposed method is much lower compared
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Fig. 4. Comparison of the estimated stability boundary based on the proposed ALF method, the LLF method [10], and the energy function method when (a)
δ∗ = 0.524, and (b) δ∗ = 0.848. Sub-figure (c) presents the comparison of the CCT estimation results (in logarithmic scale) for different δ∗ by using the
trajectory-exploited ALF method and energy function method.

with the existing LLF methods (0.54 s in [10] and 1.06 s in
[26]). Moreover, it can be concluded that, as either α or κ
increases, the estimated CCT becomes almost independent to
the variation of the other parameter. On the other hand, when α
(or κ) is fixed at a relatively small value, the estimated CCT is
sensitive to the value of κ (or α). This is clearly demonstrated
in Fig. 3e and 3f which are cross-sections of Fig. 3d at the
point where the largest CCT estimation is attained. According
to our experiences, to obtain reasonably tight CCT estimation,
the initial value of parameter α can be chosen in the interval
[1, 10], and the initial choice of parameter κ should not exceed
10 and should be smaller when the system scale increases.

Going further, we use the actual fault-on trajectory in-
formation to amend V̇ (x) along the trajectory. As V̇ (x)
is exactly known, the trajectory-exploited ALF is less con-
servative than the simulation-free one. We make a compar-
ison between the trajectory-exploited ALF method and the
classical energy function method as the latter also exploits
fault-on trajectory information so the comparison is fair and
meaningful. Columns 6 and 8 in Table I lists the numerical
results corresponding to the method discussed in Section-III-
D and the energy function method using controlling UEP
[1]. It is shown in Table I and Fig. 4c that, the proposed
method is initially more conservative than the energy function
based method when the operation equilibrium is far away
from the static limit. However, as the system loading further
increases, the proposed ALF method actually becomes less
conservative than the controlling UEP based global energy
function method at a relatively higher load level when the
transient stability problem is more relevant. Fig. 4a–4b vi-
sualize the stability boundary of three different approaches
under different SEPs. For the case of δ∗ = 0.524 (Fig.
4a), the fault-on trajectory (black dashed curve) intersects
the ALF-based stability boundary before going through the
energy function based boundary. Hence, the ALF-based CCT
estimation is relatively small. This phenomenon coincides with
the numerical results shown in Table I. On the contrary, in Fig.
4b, i.e., δ∗ = 0.848, the fault-on trajectory intersects the ALF-
based boundary after the energy function based one, resulting
in a larger CCT estimation by using the ALF method. To

reveal the trend of the CCT estimation for different SEPs, Fig.
4c illustrates the comparison of the CCT estimation results (in
logarithmic scale) for different δ∗ by using trajectory-exploited
ALF method and energy function method. It is clear that
the proposed ALF method is a little conservative when the
system operates far away from the boundary π/2. However,
for systems operating in stressful conditions, e.g., the operating
point nears π/2, the ALF method has better estimation results.

B. IEEE benchmark systems

To demonstrate the effectiveness of the proposed TSA
method for multi-machine systems, extensive numerical stud-
ies are carried out on three benchmark systems, i.e., the New
England 10-generator 39-bus system (NE 39-bus system) [35],
the IEEE 68-bus system [36], and the IEEE 118-bus system
[37]. For each test system, the damping coefficients di are
set uniformly to be min{mi} with the inertia parameters mi

directly available from the dataset. In the implementation of
the proposed method, we set the initial values of parameters
α = 10 and κ = 0.1. The faults considered in this study are the
tripping of transmission lines which are then automatically re-
closed by protection systems. When the reclosure is successful,
the post-fault SEP of the system is identical to the pre-fault
SEP. In this setting, the CCT for each line is the maximum
amount of time between the tripping and re-closing of the
transmission line such that the system remains stable.

Implementing both the proposed simulation-free method
and the previous method [10] to estimate the CCT corre-
sponding to each line, we conduct comparative research for
the two methods on the three benchmark systems. The results
are demonstrated in Fig. 5. For the NE 39-bus system, as
illustrated in Fig. 5a, our method has improved the CCT esti-
mation by about 21 times on average compared with the results
from the previous method [10]. Among all the 46 lines in this
system, the CCT for line 14 (between buses 7 and 8) shows the
least improvement of about 2.84 times, whereas the CCT for
line 46 (between buses 31 and 6) has the largest improvement
of about 97 times. For the IEEE 68-bus system, the proposed
method increases the CCT estimation by about 26 times on
average, as shown in Fig.5b. Note that, under the current
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Fig. 5. Comparison results (in logarithmic scale) of the estimated CCT based on the proposed simulation-free ALF method and the LLF method [10] for
each line on the (a) NE 39-bus, (b) IEEE 68-bus, and (c) IEEE 118-bus systems.

TABLE II
COMPARISONS OF CCTS OBTAINED BY THE METHOD IN [10], SIMULATION-FREE ALF METHOD, TRAJECTORY-EXPLOITED ALF METHOD, AND THE

TIME-DOMAIN SIMULATION UNDER LINE TRIPPING FAULTS (UNIT: SECOND)

System Line [10]
Proposed

simulation-free
Proposed

trajectory-exploited
Time-domain

simulation

39-bus
4
38
46

0.010
0.007
0.006

0.313
0.518
0.583

2.173
1.328
1.643

6.152
16.234
15.201

68-bus
11
27
53

0.007
0.008
0.018

0.425
0.335
0.039

1.000
0.403
0.381

9.505
6.512
1.656

118-bus
3
50

117

-
-
-

0.025
0.023
0.038

0.100
0.063
0.060

0.803
0.942
0.371

algorithm parameter α = 10, there is one line (i.e., line 83)
whose corresponding estimated CCT by our method is slightly
lower than that from the previous method [10]. However, if
we decrease the parameter α from 10 to 1, we obtain the
estimated CCT of the proposed method is 5.77 s, which is
about 4 times higher than that of method in [10] (1.18 s). For
the IEEE 118-bus system, the proposed method still works
well and provide an estimation of the CCT corresponding to
each transmission line. In stark contrast, the method in [10]
fails to find feasible solutions for the problem of constructing
Lyapunov functions, resulting in the estimated CCTs being
zeros for all transmission lines. The results are visualized
in Fig. 5c. From the above comparative studies, relative to
the previous LLF method [10], the proposed ALF method
significantly reduces the conservatism of stability certificate
and CCT estimation and also broaden the applicability of LLF
methods to larger systems that were otherwise intractable.

Admittedly, the numerical scalability of the proposed ALF
method still poses limitations on its practical applicability.
In particular, the average computation time to obtain the
CCT estimations using a Intel Xeon E7-8867v4 processor are
about 1 minute, 20 minutes, and 12 hours for the 39-, 68-,
and 118-bus systems, respectively. The major computational
burden lies in solving the SDPs whose sizes increase with
the number of buses and lines in the network. Nevertheless,
the solid theoretical foundation and reduced conservatism of

the proposed ALF indicates that this general framework is
promising and worth for more systematic and application-
oriented research. It can be expected that, by further exploiting
special problem structures, e.g., sparsity, locality, and sym-
metry, the computational burden can be significantly reduced,
which could lead to more practical variant of the proposed
method.

To make a comprehensive comparison of the results ob-
tained via different approaches, we present some quantitative
results in Table II. It is obvious that the proposed simulation-
free approach is less conservative compared to the method
in [10] due to three major techniques introduced in this
paper: the adaptive sector bound for nonlinearities, the non-
uniform upper bound for the time derivative of the Lyapunov
function along the fault-on trajectory, and the co-optimization
of the construction of Lyapunov functions and the lower bound
estimation of CCT. The simulation-free ALF method does not
assume the knowledge of fault-on trajectory information. If
the fault-on trajectory is available, the value of the Lyapunov
function along the trajectory can be exactly calculated. Then,
by locating the time when the value of the Lyapunov function
is equal to the critical value ρ, a less conservative trajectory-
exploited estimation of the CCT can be obtained as shown in
the fifth column in Table II.

It is worth noting that the proposed ALF method can also
be used to analyze the stability of a system suffering a short-
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TABLE III
COMPARISONS OF CCTS OBTAINED BY THE METHOD IN [10], SIMULATION-FREE ALF METHOD, TRAJECTORY-EXPLOITED ALF METHOD, AND THE

TIME-DOMAIN SIMULATION UNDER SHORT CIRCUIT FAULTS (UNIT: SECOND)

System Bus [10]
Proposed

simulation-free
Proposed

trajectory-exploited
Time-domain

simulation

39-bus
12
20
28

0.002
0.002
0.002

0.087
0.223
0.108

0.093
0.253
0.119

0.482
0.850
0.694

68-bus
12
39
48

0.001
0.001
0.001

0.053
0.046
0.084

0.070
0.060
0.100

0.444
0.463
0.721

118-bus
20
45
64

-
-
-

9e-4
7e-4
0.008

0.003
0.003
0.008

0.030
0.020
0.032

circuit fault. In this paper, we use a large load PS = 102 p.u.
connecting to a bus i to simulate the short-circuit fault. To
consider short-circuit faults in the ALF method, we need to
modify the matrix S to be a column vector S̃ of dimension
(nb + ng)× 1 which can be obtained via

S̃ =

 R−1 0nc×ng

0ng×nc 0ng×ng

0ng×nc M−1

 · Ẽi · 1 · PS , i = 1, · · · , nb,

where Ẽi is a (nb + ng)-dimension square matrix whose
(i, i)th element is 1 and all other elements are zeros; 1 is
a column vector of proper dimension with all elements being
1. In addition, the third column and the third row in LMI (9)
should be modified to the appropriate dimension. After these
modifications, by solving SDPs (37) and (38) iteratively, we
can obtain the TSA results of short-circuit faults for different
benchmark systems. The results of the NE 39-bus, IEEE 68-
bus, and IEEE 118-bus systems are listed in Table III. It can be
found that the estimation of the CCT obtained by the proposed
ALF method are less conservative than those from the method
developed in [10]. In addition, the use of fault-on trajectory
information helps further reduce conservatism. Admittedly, all
the direct methods suffer from a certain degree of conservatism
so the CCT estimations provided by direct methods are always
conservative compared with the exact CCT given by time-
domain simulation.

C. Stability enhancement control

Here, we demonstrate the effectiveness of the control design
approach proposed in Section-IV using the three IEEE bench-
mark systems. Fig. 6 shows the comparative time-domain
simulations of NE 39-bus, IEEE 68-bus, and IEEE 118-bus
systems without (Fig. 6 (a), (c), (e)) and with (Fig. 6 (b), (d),
(f)) the obtained control strategies. Fig. 6a–6b demonstrates
the angular difference of NE 39-bus system under a short-
circuit fault at bus 12. From Table III, the system is judged
to be unstable if the fault is cleared after 0.5 seconds, which
is visualized in the sub-figure Fig. 6a. By implementing the
obtained control strategy during the fault-on stage, the system
becomes stable given the same fault clearing time 0.5 seconds
(as shown in the sub-figure Fig. 6b). Similar results are

observed for short-circuit fault at bus 39 in IEEE 68-bus
system. The original system is unstable if the fault clearing
time is larger than 0.5 seconds (as shown in Fig. 6c). After
controlling the system parameter during the fault-on stage, the
system maintains stability under the same fault clearing time
(as shown in Fig. 6d). Similarly, for the IEEE 118-bus system,
a short-circuit fault occurs at bus 45, and the original system
is unstable if the fault persists for 0.02 seconds (as shown in
Fig. 6e). By taking the obtained control actions, the system can
withstand the fault for 0.02 seconds without losing stability (as
shown in Fig. 6f).

VI. DISCUSSION

This paper proposes an ALF method to systematically
perform TSA with reduced conservatism. An adaptive sector
condition in an adjustable neighborhood of the post-fault
SEP is proposed to bound the nonlinearities of the power
system model, which provides extra degrees of freedom for the
construction of a Lyapunov function. An improved simulation-
free bounding technique is introduced to provide tighter esti-
mation for the time derivative of the Lyapunov function during
the fault-on dynamics. By integrating above novel ideas, the
parameters in the candidate Lyapunov functions along with
those in the sector conditions are co-optimized to obtain the
tightest possible estimation of the CCT. Preliminary numerical
results show that the proposed adaptive Lyapunov function
approach reduces the conservatism in CCT estimation by about
one order of magnitude compared with the existing methods
using local Lyapunov functions.

Admittedly, the proposed method involves solving compu-
tationally expensive SDPs and thus is currently not suitable
for online transient stability assessment because solving large-
scale SDPs in real-time is still not feasible for the state-of-the-
art solvers. To enable online TSA, some computations have
to be done offline and problem structures need to be further
exploited in numerical methods to accelerate calculations.
However, the rigorous theoretical foundation and the reduced
conservatism of the proposed method indicate that it is promis-
ing for future research and industrial applications. To make
the proposed basic framework of ALF method applicable to
TSA for practical power systems, extensions of this work that
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Fig. 6. Stability enhancement control results of the proposed ALF method. In which (a) and (b) illustrate the stability of the NE 39-bus system before and
after control actions, (c) and (d) illustrate the stability of the IEEE 68-bus system before and after control actions, while (e) and (f) illustrate the stability of
the IEEE 118-bus system before and after control actions.

warrant further research include 1) the consideration of more
detailed power system models and renewable generation units
based on differential-algebraic equations [38], 2) systematic
approaches to treat general nonlinearities in power system
models using robust [39] or polynomial [40] optimization
methods, 3) the development of sparsity-exploiting techniques
in solving transient stability certificate to improve numerical
scalability [41], and 4) the construction of more general
forms of Lyapunov functions that exploits special structures
of detailed power system models.

More importantly, going beyond solving the analysis prob-
lems of power system transient stability, this general frame-
work of ALF method also has great potential for providing sys-
tematic solutions to the synthesis problems. The proposed ALF
method establishes an analytic relationship between transient
stability certificate, operation points, and control parameters in
the form of matrix inequalities (9) and (13), which can pro-
vide systematic and optimization-based guidance for operation
scheduling and control design. We have exemplified how the
proposed framework can be used to design virtual inertia and
damping controllers to stabilize a previously unstable system
under a given fault. A similar idea can be applied to the
scheduling of operation points, which would create a new
paradigm for transient stability constrained OPF to be explored
in our future research.
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