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Abstract

As an important application scenario of deep learning, Natural Language Processing (NLP)
is receiving more and more attention and developing rapidly. Learning representation for
words or documents via neural networks is gradually replacing feature engineering in almost
all text-related applications. On the other hand, how to decode these representations or
encodings is also very vital for sequence-to-sequence text generation tasks such as Neural
Abstractive Summarization (NAS), Neural Machine Translation (NMT), etc. Towards a
more comprehensive representation and decoding strategy, this dissertation explores several
global perspectives that previous studies ignored. We treat global as a relative concept
that indicates higher-level knowledge conducive to enriching representation or improving
decoding. However, its specific definition may vary in different tasks.

In text representation or encoding, global refers to relatively higher-level context in-
formation. There usually are three natural contextual relationships for mapping words or
documents into latent space, namely (1) co-occurrence relationships between words, (2)
coherence relationships between sentences, and (3) subordinate relationships between doc-
uments/sentences and their words. Beyond these naturally occurring contexts, there are
possibly hidden context relationships between dependent documents from the perspective
of the whole corpus (i.e., the global perspective). Although we often assume that doc-
uments in a corpus are independent of each other, the assumption may not be valid for
some corpora like news corpora, since events reported by news documents interact in the
real world. To capture the global-contextual information, we construct a news network for
the whole corpus to model the latent relationships between news. A network embedding
algorithm is then designed to produce news representations based on the above-mentioned
subordinate relationship and news dependency. Besides, such a cross-document relation-
ship plays a vital role in some specific tasks which need to represent or encode a cluster of
multiple documents, e.g., Multi-document Summarization (MDS). Some studies concate-
nate all documents as a flat sequence, which is detrimental to modeling the cross-document
and long-term dependency. To alleviate the two problems, we design a Parallel Hierarchi-
cal Transformer (PHT), whose local and global attention mechanisms can simultaneously
capture cross-token and cross-document relationships.

On the other hand, global in text decoding refers to a higher-level optimum, i.e., the
global optimum relative to the local optimum. Under the fact that the neural text gener-
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ator is almost impossible to generate the whole sentence at once, the heuristic algorithm
– beam search has been the natural choice for text decoding. Inevitably, beam search
often gets stuck of local optimum as it decodes word-by-word. Although global optimum
is hard to touch directly, it is feasible to conduct a one-shot prediction of how the global
optimal hypothesis attends to the source tokens. A global scoring mechanism is then pro-
posed to evaluate generated sentences at each step based on the predicted global attention
distribution, thus calibrating beam search stepwise to return a hypothesis that can assign
attention distribution to the source in a more-near global optimal manner. Decoding with
global awareness improves the local optimum problem to enhance the generation quality
significantly, and it can be developed and used in various text generation fields.

Key Words: Text representation, Sequence-to-sequence generation, Decoding strat-
egy, Transformer, Global attention, Global context.
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Chapter 1

Introduction

Text encoding and decoding is the backbone of model sequence-to-sequence, which first

maps the sequence into a latent space and then decodes it as a different sequence. The

concept of encoding in NLP is similar to representation or embedding. In this thesis, all

of them mainly refer to the dense and continuous vectors, which represent unstructured

text data numerically by the neural networks to facilitate the subsequent mathematical

calculations. Moreover, encoding or representation can be regarded as points embedded in

an abstract and high-dimensional latent space, which is the origin of the name embedding.

This dissertation generally promotes distributional text representation and sequence-to-

sequence with global information, and their developments are introduced as follows.

To be exact, distributional representation denotes an approach to represent text relying

on the hypothesis that objects in the same contexts tend to have similar embeddings. It

should be mentioned that distributional representation is different from distributed rep-

resentation. The latter refers to a form of text representation (i.e., the continuous and

low-dimensional vectors), which is exactly opposite with discrete representation. In other

words, distributional representation could either be distributed or discrete. A typical dis-

tributional representation is the word co-occurrence matrix M ∈ N|VW |×|VC | where |VW |
and |VC | indicate the size of word vocabulary and context vocabulary, and contexts c ∈ VC
for word w ∈ VW are often defined as the words surrounding it in the window-sized L.

This matrix counts the number of occurrences of any word pair #(w, c). Each row could

be regarded as a distributional word representation that is sparse, high-dimensional, and

discrete. Its distributional attribution is not changed even though we transform these

sparse-and-discrete vectors to the dense-and-continuous vectors (i.e., distributed represen-

1



2 Ye Ma

tations) by means of dimension reduction such as well-known Latent Semantic Analysis

(LSA) and Latent Dirichlet Allocation (LDA). Besides, a fashionable way is to train a

neural network to estimate the distributed representations like GloVe [72] and Word2vec

[68]. Compared with traditional dimensionality reduction methods, the neural estimation

can stably achieve distributed vectors of higher quality with lower computational costs

[47]. Overall, the vector attributions of distributed and discrete representations are con-

trary, and these attributions are independent of whether they belong to the distributional

representation.

On the other hand, distributed and distributional representation has been the natural

choice for learning-based NLP tasks since they help deal with two major challenges for deep

networks. Firstly, it is much more efficient for the deep network to calculate distributed

vectors than discrete vectors. The co-occurrence matrix often has millions of dimensions

of sparse word vectors. It should be catastrophic to operate multiple linear or non-linear

transformations to such vectors. By comparison, the dimension-reduced distributed vectors

are more convenient to be computed. Secondly, the pre-trained distributional representa-

tion is high in solving text-related deep learning tasks because deep learning heavily relies

on large volumes of datasets. In contrast, distributional representation can be trained

on a large corpus in an unsupervised way. Since context relationships naturally exist in

documents, we can train distributional representations by unsupervised learning to mine

text knowledge as much as possible. This knowledge then improves downstream supervised

tasks where labeled examples are limited. This process is exactly the classical two-stage

learning paradigm in NLP: pre-training first and fine-tuning next. Many pre-training word

embeddings and models based on the distributional hypothesis have become landmark

researches in NLP including Word2vec [68], GloVe [72], ELMo [74], BERT [20], etc. In

Chapter 3, we train neural text embeddings on a huge news corpus to mine the latent-but-

valuable context information between news documents, which brings a new challenge: we

need to make these invisible contexts concrete in advance instead of leveraging the existing

contexts directly like word embeddings.

Text encoding or representation aims to understand text and map it in a latent space,

while text decoding converts these hidden vectors back to readable sentences which follow

different distributions from that of input sentences. Sequence-to-sequence model is often

composed of the encoder and decoder, and could be regarded as the conditional text

generation p(y|x). Two neural networks with different parameters serve as the encoder

and decoder to estimate the probabilities of target sequences y = (y1, · · · , yT ) based on
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the input sources x = (x1, · · · , xN ). Since it is unreasonable to assume that words are

independent, p(y|x) should be factorized as =
∏T
t=1 p(yt|x,y<t) where each p(yt|x,y<t) is

the probability over all words in the vocabulary.

Sequence to sequence learning with neural networks sprang up between 2013 - 2014. The

representative work [89] uses the multilayered Long Short-Term Memory (LSTM) to encode

the English sentences to fixed-sized vectors and then uses another deep LSTM to decode

French sentences from these vectors. Bahdanau et al. [3] argue that using a fixed vector to

represent the whole input limits the translation performance. They propose an attentive

mechanism to align the decoded token to the corresponding token in the input sentence

at each step. Instead of decoding the sentence from a fixed vector, the attention model

allows the decoder to obtain a dynamic vector as the generation proceeds. Meanwhile, the

learned attention weights can be used to explain the contribution of each input word to

output. Another bottleneck is the problem of out-of-vocabulary (OOV). Most time, the

encoder and the decoder share the same word vocabulary, whose size is limited. Otherwise,

the softmax operation would take up too much space to run. In this case, the words out

of vocabulary have to be replaced by a unified special token UNK, disabling the decoder

to generate these OOV words. Attention models could also deal with this problem by

treating the attention distribution of OOV words as their probability distribution so that

these OOV words have the chance to be generated together with words in the vocabulary

[95, 85]. It is like that OOV words in the input are copied to the output directly rather

than chosen from the original fixed-sized vocabulary. Though such treatment alleviates

the OOV problem to some extent, it reduces the instability and efficiency of training. The

more reasonable way is using a subword tokenizer, which splits OOV words into sub-words

stored in the vocabulary [86].

The attention mechanism has been an auxiliary module of the RNN family for a long

time, implying that this kind of model still suffers from the defects of RNN, including ex-

cessive time complexity in teacher forcing training and limited gains as the model deepens.

The emergence of Transformer [91] solves the problems above and marks that NLP has

officially entered a real era of deep learning. Transformer abandons any forms of recurrent

networks and adopts multilayered attention models to construct the backbone that allows

more parallelization and achieves a new state-of-the-art sequence-to-sequence (seq2seq)

translation. The intuitive advantage of Transformer over the RNN family is that it has

stronger representation and generalization ability as the model goes deeper. At the same

time, like RNN, Transformer is also designed based on two valuable prior knowledge of
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modeling sequential data. The first is the translation invariance, that is, the same set

of parameters is used to process the input of any time step. Besides, the model should

integrate sequential information into the final representation. That is why the recurrent

structure has become the natural choice in the past. To abandon recursion but preserve

the prior knowledge, the Transformer adds additional positional encodings into token em-

beddings.

Although Transformer has already been the mainstream architecture in modeling se-

quential data, it was questioned when it first came out. Specifically, compared with RNN,

the training of Transformer takes up more memory space and is not relatively stable. How-

ever, it is destined to be the preferred model framework in the era of pre-training thanks

to its strong representation ability and less sequential operations. Moreover, some studies

have improved the inherent disadvantages of Transformer. For example, OpenAi proposes

a sparse Transformer [13] to save the memory space required to run the model. Based on

this technique, they trained oversized auto-regressive language models (i.e., the family of

GPT [7, 78]) by stacking many layers of sparse Transformer. On the other hand, some

studies have found that the difficulty of transformer training lies in the normalization after

the residual connection, which inspires them to make some improvements there to improve

the stability of loss decline, including pre-normalization [104] and ReZero [2]. Generally,

the backbone of the sequence-to-sequence model has been changed from RNN to Trans-

former and then to pre-training Transformer. However, it should be mentioned that not

all pre-training Transformer models can be regarded as seq2seq models. Strictly speaking,

the seq2seq model should consist of both encoder and decoder. Still, some pre-training

models only adopt Transformer-encoder like BERT [20], or only use Transformer-decoder

like GPT [7, 78]. Since this thesis focuses on improving the seq2seq model (Chapter 4) and

its decoding strategy (Chapter 5) with global information, we mainly discuss pre-trained

Transformer encoder-decoder in Chapter 2 including T5 [79], BART [48], PEGASUS [109],

etc.

This dissertation intends to improve text representation (or encoding) and text decod-

ing from global perspectives. This global concept is a widely used improvement direction,

but actually, it has various meanings which depend on specific cases. In this thesis, we pro-

pose some novel global perspectives that few studies explored previously to alleviate some

problems of locality bias, such as local context problems in text representation (Chapter 3

& 4) or local optimum problem in text decoding (Chapter 5). Although there is no specific

definition of global information, it essentially reflects higher-level knowledge compared with
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the knowledge learned by the existing model. Taking the studied problem as an example,

the local context of a news document are often its inner words, which only include limited

information because they does not capture latent connections between news events. To ob-

tain more context knowledge than that located in a single document, we construct a news

network on the whole news corpus. These additional contexts, namely global contexts,

represent higher-level knowledge as it comes from relationships among news documents

instead of that inside the single document. The definition of global information is also

changed in text decoding. Firstly, since the decoding is a step-wise process, the local infor-

mation often refers to the generated tokens before the current decoding step, getting the

decoding stuck of the local optimum. Under this premise, we define global information as

many characteristics that can describe the complete generated sentences. In general, we

emphasize that the global perspective is a relative concept and is hard to give a unified

definition. Besides, since our global perspectives are inspired by the problems in the exist-

ing methods of text representation and text decoding, they will be the major discussions

in Chapter 2.

1.1 Summary of Remaining Chapters

Chapter 2 Background. This chapter is divided into four parts. We firstly introduce

LSTM [35] and Transformer [91], which are the most commonly-used sequential models

in many NLP fields, including but not limited to text representation and text generation.

Subsequently, we review text representation approaches, sequence-to-sequence models, and

decoding strategies. There are generally three kinds of representing text numerically ac-

cording to the divergences in techniques or purposes: discrete representation, distributional

representation, and distributed representation. These three representation forms are not

mutually exclusive, i.e., one text representation may belong to multiple forms. On the

other hand, sequence-to-sequence [89] was first proposed in 2013 - 2014 and is widely ap-

plied in many source-based text generation tasks, e.g., machine translation, abstractive

summarization, image captioning, etc. This thesis summarizes sequence-to-sequence de-

velopment and emphatically introduces the popular pre-trained seq2seq models. Finally,

the decoding strategy revolves around sampling search and deterministic search.

Chapter 3 News Network Embedding based on Local and Global Context.

This chapter introduces a novel distributed news representation based on the distributional

hypothesis that news with similar contexts should be represented as two adjacent points
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in the latent space, which is extended from Harris’s hypothesis that words occurring in the

same contexts tend to have similar meanings [32]. On the other hand, since representing

news could be considered as a document embedding task, we can use words within the

document as its contexts to train the document vector [45]. However, we argue that

this context fails to capture the latent relationships between news, making the final news

representation monotonous. To enrich news embedding, We treat key entities and actions

inside a news document as the local context and the hidden associations among news

as the global context. We construct a large graph for the whole news corpus to achieve

news embeddings based on both local and global contexts. Specifically, the news network

comprises two kinds of nodes: news nodes and entity or action nodes. News nodes are

not directly connected but only indirectly linked by their shared entity or action nodes.

Besides, the edge weights refer to the importance of entities or actions to the connected

news documents. We further enrich the news embedding with various label information,

including news type, sentiment, length, and so on, by decomposing a news node into

many subnodes. An inductive network embedding approach is then adopted to learn the

representations of subnodes which are later composed as the news embedding. We applied

the converged news embedding into downstream tasks and observed that this additional

information is conducive to financial prediction and news recommendation.

Chapter 4 Parallel Hierarchical Transformer with Local and Global Cross

Attention. This chapter introduces a hierarchical transformer encoder-decoder model,

which enjoys a distinct that there operate two cross attention mechanisms in parallel,

namely local cross attention and global cross attention. This design is to process long

text sequences or multi-documents with relatively lower memory usage and faster infer-

ence speed. Specifically, we split a long document or a large document cluster into many

chunks or paragraphs, and then we used a shared encoder to represent them respectively.

The shared encoder outputs the context-aware word embeddings for each paragraph and

fuses these dense word vectors as the paragraph embedding, which would also be fed into

the decoder. Subsequently, the decoder attends to the source locally and globally through

the cross attention models. The local cross attention is to model how the decoder pays

attention to the tokens of each paragraph. At the same time, the global one captures

the attention distribution given by the decoder to the paragraphs. To ensure the transla-

tion invariance (i.e., the parametric function is independent of the number of paragraphs)

and facilitate subsequent computation, we use these global attention weights as a pooling

function to integrate these local ones for all paragraphs. We applied the Parallel Hier-
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archical Transformer (PHT) in the Multi-document Summarization. Compared with Flat

Transformer, our architecture is more conducive to capturing cross-document relationships,

saving more memory, and enjoying faster inference speed.

Chapter 5 Decoding with Awareness of Global Attention Distribution. This

chapter develops a calibrated beam-based algorithm with awareness of the global attention

distribution for neural abstractive summarization, aiming to improve the local optimality

problem of the original beam search in a rigorous way. Specifically, a novel global pro-

tocol is proposed based on the attention distribution to stipulate how a global optimal

hypothesis should attend to the source. A global scoring mechanism is then developed to

regulate beam search by aligning the local attention distribution with the predicted global

attention distribution. This novel design enjoys a distinctive property, i.e., the global at-

tention distribution could be predicted before inference, enabling step-wise improvements

on the beam search through the global scoring mechanism. Extensive experiments on nine

datasets show that the global (attention)-aware inference significantly improves state-of-

the-art summarization models even using empirical hyper-parameters. The algorithm is

also proven robust as it remains to generate meaningful texts with corrupted attention

distributions. Although this chapter mainly focuses on the global-aware inference in sum-

marization, this decoding strategy can be generalized to more source-based text generation

tasks (not just text-to-text tasks), thanks to the fact that attention models are widely used

to represent various unstructured data [24, 92].

1.2 Contributions

This thesis takes three chapters (namely Chapter 3−5) to introduce how to use the global

concept to enrich distributional news embedding, restructure Flat Transformer [91] and

calibrate beam search. Our contributions are summarized as follows.

In Chapter 3, we propose a distributional news embedding approach News2vec whose

main advantages are threefold,

• This work explores novel context relationships for distributional news embedding,

that is, the latent connections between news. Previous works often assume each

news document as an independent individual and use contexts inside news to train

their embeddings, such as the subordinate relationships between news and their inner

words. We argue that this assumption may not be reasonable since news events
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should affect each other in the real world. Therefore, we treat the hidden connections

between news as global contexts, distinguished from local contexts which describe

the subordinate relationships between news and their inner words. To facilitate joint

modeling of both local and global contexts, we embrace the two contexts into a large

network constructed on the whole news corpus.

• Inspired by Subword [5] which can enrich word embeddings and solve out-of-vocabulary

(OOV) problems conveniently, we propose Subnode model for network embedding.

Subnode splits the news node into many news characteristics subnodes, which share

the same advantages as Subword. First, Subnode could enrich news embeddings with

subnode information such as news categories, news polarities, etc. Besides, it offers

an easy solution to create embeddings for unseen (news) nodes outside the trained

network.

• By visualizing our news embeddings and applying them to news-related downstream

tasks, we confirm that News2vec can integrate global contexts and many subnode

features into the final news vectors. Besides, this additional information beyond local

contexts can further promote news-based stock trend prediction and news recommen-

dation.

In Chapter 4, we restructure vanilla Transformer as Parallel Hierarchical Transformer

by introducing local and global cross attention.

• It is widely known that vanilla Transformer [91] has two main aspects worthy of

improvement. The first is that it is challenging to learn the long-term dependency

typically when the token length is over 2000 [60]. The second is that its training

takes up too much memory, especially when the input length becomes longer. These

two issues become particularly important in the large-scale multi-document summa-

rization, because we need to concatenate all documents as a flat sequence and then

feed it into the Transformer model. To deal with the two problems, the hierarchical

architecture with parallel cross attention mechanisms is designed to represent local

information (cross-token relationships in a document) and global information (cross-

paragraph relationships). The hierarchical structure uses a shared encoder to capture

many short-term dependencies truncated from the long-term dependency. Besides,

the parallel local and global cross attention are conductive to the inference speed.
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• The effectiveness of the Parallel Hierarchical Transformer model is investigated rel-

ative to a variety of aspects, in terms of the ability to capture cross-document rela-

tionships, computational efficiency, and improvements on the summarization quality.

Primarily, we design a simple and effective experiment to examine the model’s ca-

pacity to capture cross-document relationships.

In Chapter 5, we develop a decoding strategy named global-aware inference, which is

a calibrated beam-based algorithm with awareness of the global attention distribution. Its

contributions are presented as follows.

• We argue that the limitation of beam search roots from its defect in finding the

global optimal hypothesis. We improve the algorithm by proposing a global protocol

to regulate beam search step-by-step. This paper is the first to predict and deploy

the global attention distribution to calibrate the inference in a rigorous way, thus

returning a hypothesis that attends to source tokens in a more near-global optimal

manner. In contrast, previous works [102, 27, 55, 85, 56] try to use attention distri-

butions to improve beam search, but ignore that the global attention distribution is

predictable.

• A novel global scoring mechanism is designed to evaluate the generated sequences at

each step based on the local attention distribution and the predicted global attention

distribution. As theoretically justified, its major component can be elegantly inte-

grated into beam search in the form of a probability so that there is merely O(K)

time complexity increased in each step.

• The proposed algorithm with global awareness manifests a robust and plug-and-play

property in enhancing beam search for neural abstractive summarization. Without

requiring any model or parameter modification, the global-aware inference shows ex-

cellent performance in generating meaningful texts, even if the attention distribution

is corrupted or not of its own. Further, it is identified that summaries generated by

global-aware inference are both higher-quality and different from beam search hy-

potheses. More interestingly, we find that the generation style of a dataset could be

transferred by the designated global attention distribution. For instance, summaries

of higher abstractness for CNN/DM could be generated by only replacing its global

attention distribution with a highly abstractive distribution during inference.
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• On the empirical side, we show that the proposed global-aware inference can stably

and significantly boost two state-of-the-art summarization models BART [48] and

PEGASUS [109] to produce higher quality summaries on nine datasets, even if only

the empirical hyper-parameters are used.



Chapter 2

Background

This chapter introduces LSTMs and Transformers as the preliminaries before reviewing

text representation and sequence-to-sequence generation. This is because many studies in

the two fields are based on LSTM [35] and Transformer [91] or their variants.

2.1 Preliminaries

2.1.1 LSTM

Long short-term memory [35] is a significant variation of recurrent neural network (RNN)

[81] used in the field of deep learning. It is usually used to process sequences of data, such

as entire sentences or videos, instead of single data points like words and images. LSTMs

partially solve the vanishing gradient problem of the classical vanilla RNNs by introducing

memory cells, and it has dominated various sequential tasks until the emergence of Trans-

former [91]. In the following part, we will introduce the vanilla RNN, the long short-term

memory mechanism, and its variations such as Bidirectional-LSTM [84] and GRU [14].

Recurrent neural network

Recurrent neural network (RNN) is one of several basic neural networks. As shown in

Figure 2.1, it processes the sequential data recursively by keeping feeding the outputed

hidden states ht to the next time step. It is worth noting that RNN uses the same set

of parameters to estimate the probabilities of data of all time steps, which brings a big

advantage that it can easily deal with variable-length sequences of inputs. On the other

11
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Figure 2.1: Recurrent neural network.

hand, the recurrent mechanism is a sequential operation so that it has the natural choice

for modeling temporal data.

Sentences x = (x1, x2, · · · , xT ) are very common time series and the word xt indicates

the data point at the tth time step. Since words are unstructured data and we need to

represent them numerically, there is an embedding layer ahead of the RNN unit to convert

words into dense vectors. Normally, each word is firstly assigned with a unique position

index and is converted a vector et ∈ Rdin of the embedding matrix E ∈ R|V|×din by looking

up the corresponding index, where |V| is the vocabulary size and din the dimension of the

input vectors. The RNN unit could be formulated as:

ht = tanh(Whet +Uhht−1 + bh) (2.1)

zt = σ(Wzht + bz) (2.2)

where Wh ∈ Rdh×din , Uh ∈ Rdh×dh and bh ∈ Rdh are learnable parameter matrices and

vectors. Therefore, at each step, the input vector wt and the latest hidden states ht−1 are

firstly transformed linearly with the bias b. The transformed results are then projected

to a new vector space by the non-linear activation function (often use tanh(·) function)

to achieve the updated hidden vector ht ∈ Rdh . The hidden states are updated and

delivered iteratively, carrying the previous information to enrich the representation of the

local input. If we need the output zt at each step, these hidden vectors are required to

pass through a fully-connected layer with learnable parameters Wz and bz. The reason
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Figure 2.2: RNN unit versus LSTM unit.

why hidden vectors are not outputted directly is that hidden vectors and output vectors

should belong to different semantic spaces since they have different functions. Such an

operation could enhance the expressive ability of RNN significantly. Since the transmission

is unidirectional, the output of each step only incorporates partial information of the

current position and the left of that. This perceptual field is in line with the left-to-

right reading behaviors of humans. On the other hand, an equally common practice is

to output the vector only at the last step, which exactly represents the whole sequence.

This operation is often used to represent the whole sequence, such as sentence-level text

classification.

Long short-term memory mechanism

Although RNNs, in theory, can track any long-term dependency in the input sequence, it

suffers from the problem that the gradients of back-propagation would be vanished (i.e.,

they are zeros) or be exploded (i.e., they tend to infinite). Its variant model LSTMs can

solve the problem partially. We firstly introduce the detailed structure of LSTMs before

explaining why the long short-term memory could solve mathematically.

The differences between the RNN unit and LSTM unit are diagrammed in Figure 2.2.

Primarily, LSTMs still follow the recursive flow but are equipped with a memory cell, an

input gate, an output gate, and a forget gate. The cell preserves the long-term information,
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and the three gates work to regulate which part of information should be forgotten or

continued to be transmitted. Extended from the RNN unit, the detailed computational

process of the LSTM cell is described as follows,

ft = σ (Wfet +Ufht−1 + bf ) (2.3)

it = σ (Wiet +Uiht−1 + bi) (2.4)

ot = σ (Woet +Uoht−1 + bo) (2.5)

c̃t = tanh (Wcet +Ucht−1 + bc) (2.6)

ct = it ◦ c̃t + ft ◦ ct−1 (2.7)

ht = ot ◦ tanh(ct) (2.8)

where the initial states are ct = 0 and h0 = 0 and the operator ◦ indicates the element-wise

product. There are three sigmoid(·) activation functions for the gate vectors ft, it and ot

and their values are thus between 0 and 1, which can better indicate how much information

passes through. For example, a value of 0 means no information passed, and a value of 1

means all information passed. Besides, an output gate regulates the transformation from

the memory vectors to the hidden states. It should be mentioned that the output of LSTM

unit zt is the hidden vector ht equivalently. This is because the hidden states of LSTMs

have experienced multiple non-linear transformations and are enough to represent a variety

of information.

Why LSTM?

The advantage of LSTMs over RNNs, intuitively, is the former could regulate the infor-

mation transmission at each time step, which is a very important function for real-world

time series because events at different time nodes should have different importance. Tak-

ing sentences as an example, each work plays a different role in representing the sentence.
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When using the RNN unit to represent a useless word, its parameters are expected to be

trained to make ht+1 = ht. It is tough to obtain such parameters, especially since RNNs

need the same set of parameters to deal with all time steps. In contrast, the LSTM unit

is well qualified for the work by making the input gate it close to 0. In other words, this

advantage helps LSTMs to have a stronger representational ability.

Further, LSTMs alleviate the problem of gradient vanishment in RNNs training. Re-

viewing the RNNs formula Eq. 2.1, we define the error at step t as lt, then its gradient is

calculated as follows:
∂lt
∂U

=
i=t∑
i=0

∂lt
∂zt

∂zt
∂ht

∂ht
∂hi

∂hi
∂U

(2.9)

∂ht

∂hi
=

k=t∏
k=i+1

∂hk
∂hk−1

(2.10)

∂hk
∂hk−1

= tanh′(Whek +Uhhk−1 + bh)Uh (2.11)

It should be mentioned that tanh′(·) = 1 − tanh2(·) so that tanh′(·) ∈ [0, 1]. In this case,

if U is smaller than 1, the cumulative multiplication value ∂ht
∂hi

will tend to be zero as

i becomes far from t, namely gradient vanishment. In other words, it is very hard for

vanilla RNNs to learn the long-term dependencies. Gradient explosion, on the other hand,

appears when U is larger then 1.

Moving back to LSTMs, ∂ck
∂ck−1

can be simplified to ∆k + fk, whose value is case by

case. That is to say, gradients could be larger than 1 at some steps and less than 1 at

other steps, depending on whether the neural network wants to preserve or forget this part

of information. RNNs fail to do so since the gradient of each step depends on U , which

is shared by all time steps. Overall, LSTMs have two advantages over RNNs with respect

to backpropagation. The first is that its additive-updated strategy of memory-cell states

makes the gradient propagation more reasonable. Besides, The gating unit can decide

how many gradients to forget, and they can take different values at different times. These

values are learned through hidden states and input functions.

Bidirectional LSTMs

We often use RNNs or LSTMs to process left-to-right sequences because this order is in

line with human behaviors. However, when the machine creates a representation for the
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Figure 2.3: Bidirectional LSTM.

word at step t, this order means it can only represent the contextual relationships between

the current word and previous words. This limits the network to extract enough context

information to form strong representations. To allow the LSTMs output zt to know the

contexts after t, Bi-RNNs [84] are proposed to transmit hidden states in both left-to-right

and right-to-left order. Specifically, the output of a Bi-LSTM layer zt is concatenated by

the forward and reverse hidden states, namely −→z t and ←−z t, as shown in Figure 2.3

Bidirectional LSTMs can better understand and represent text, whether word-level or

document-level representations. It should be mentioned that when representing the whole

sentence using Bi-LSTMs, its final vector should be concatenated by the last hidden states

of the forward and reverse directions.

Gated Recurrent Unit (GRU)

Reviewing the LSTMs formula, it seems that ht is not needed to be transmitted to the

next time step because ct has included the optimized hidden states. Therefore, Cho et al.

propose GRU to simplify the LSTM unit [14].

ut = σ (Wuet +Uuht−1 + bu) (2.12)

rt = σ (Wret +Urht−1 + br) (2.13)
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h̃t = tanh (Wet +U [rt ◦ ht−1] + bc) (2.14)

ht = (1− ut) ◦ h̃t + ut ◦ ht−1 (2.15)

where ht is similar to the memory cell states ct of LSTMS and rt corresponds to the output

gate ot. The difference is that rt acts on the last hidden states ht−1 (i.e., a pre-filter) in

GRUs but on the current cell states ct (i.e., a post-filter). Besides, GRUs reduce the forget

gate ft and the input gate it to a single update gate ut which is a trade-off operation. This

is reasonable because the two gates are opposite exactly. Overall, GRU is an alternative

to LSTM, with a more concise structure and competitive performance.

2.1.2 Transformer

Before Transformer [91], gated RNNs such as LSTM and GRUs almost dominated the NLP

applications. Although the additional attention mechanism often appears in these models,

it only serves as an auxiliary module to promote the expressive ability and to provide some

explanations for feature importance, and RNN is still compulsory to represent the critical

sequential information. However, the emergency of Transformer highlights the fact that

the attention mechanism itself can also capture the sequential relationships and match the

performance of RNNs with attention, that is, Attention is all you need [91].

Transformer is not only an alternative to the RNN family but has actually increasingly

become the choice mode of NLP problems. The core reasons are that Transformers allow

more parallelization significantly and have stronger representational ability somehow. It

enjoys a very important distinct that it does not need to process sequential data in order

while still representing these sequential relationships. This is because Transformers add

additional positional embeddings to the word vectors so that words in the same position

could have some similarities in their vector forms. Then, the self-attention module models

the position-aware contexts for each word in parallel. It should be mentioned that par-

allelization is only achievable during teacher forcing training, where the whole sentence

could be predicted in one shot with gold sentences available. However, there still needs to

predict word by word from left to right in the Transformer decoding.

Benefiting from the parallelization and the powerful expressive ability as the layer

goes deeper, it becomes possible to train language models on larger datasets than before.
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Its emergence brings NLP to the era of pre-training, and many unsupervised pre-trained

Transformer models [20, 7] raise performances of almost all NLP downstream tasks to

unprecedented levels. In this paper, we mainly introduce the basic structure of Transformer

[91] and give details as to why choose self-attention and some interesting designs in the

far-reaching paper.1

Transformer encoder-decoder structure

Transformer was firstly introduced by the paper Attention is all you need in 2017, where it

follows the sequence-to-sequence architecture (i.e., encoder and decoder) and is applied into

the machine translation. As claimed in the paper title, it abandons the recurrent structure

to obtain more parallelization. To also represent the sequential relationships, it designs

a positional embedding pt to add into the token embedding et. This is to, for example,

make two different words have some vector similarities if they are at the same position of

sentences. Also, it can tell the decoder which position of the word should be generated

during inference. These position-aware token embeddings are then fed into Transformer.

The core component of both Transformer encoder-decoder is the Multi-head Atten-

tion, which is used to calculate three attention modules in Transformer, namely the (bi-

directional) self-attention, cross attention, and uni-directional (or auto-regressive) self-

attention. Firstly, the multi-head attention can be uniformly represented as:

headi = softmax

(
(QWQ)i(KW

K)>i√
dhead

)
(VW V )i (2.16)

MultiHead(Q,K,V ) = Concat(head1, · · · , headh)WC (2.17)

where Q,K,V ∈ Rn×d are complete query, key and value matrices. Each is stacked by a

set of word vectors. Therefore, the first dimension n is the sequence length, but note that

their lengths can be different. The multi-head module firstly uses three projection matrices

WQ,WK ,W V ∈ Rd×d to map them into corresponding semantic spaces. They are then

split on the second dimension, for example QWQ is split to several (QWQ)i ∈ Rn×dhead .
In this case, the context matrix on the ith head is denoted as headi, and each head can carry

different context semantics from each other. These context heads are then concatenated

and fused by the linear transformation. The aforementioned whole process is available in

1Figure 2.4 and 2.5 are copied from the original paper [91].
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Figure 2.4: Multi-head attention module.

Figure 2.4.

In the encoder, the model only uses self-attention. That is to say, the initial three input

matrices (Q,K,V ) of the multi-head attention are the same at each encoder layer, namely

the output of the last layer or the position-enriched token embeddings at the beginning.

Besides, the attention matrix here (i.e., the output after the softmax operation) is fully

connected, meaning each word can capture the complete context information from both

left-to-right and right-to-left. Its outputs are then fed into a feed-forward network to obtain

position-wise representations, which act on every position independently and identically.

Its inner structure is two linear transformations with the Relu activation function,

FFN(x) = max(0,xW1 + b1)W2 + b2 (2.18)

The output of the feed-forward function is then added up with the layer input to be

the output of that layer after the layer normalization. Transformer encoder is exactly a

recurrent operation of the computational flow mentioned above, as shown on the left side

of Figure 2.5

In the decoder, each layer mainly consists of two multi-head attention modules, namely

the auto-regressive multi-head attention (i.e., the masked multi-head attention in Figure

2.5) and the cross multi-head attention to connect the encoder and decoder. Specifically,

auto-regressive indicates that the decoder generates sentences word by word, and its output

of each step is a probability distribution over the vocabulary. Since every probability
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Figure 2.5: Transformer encode and decoder.
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distribution is calculated based on the words generated previously, the first multi-head

attention should be masked to make each word attend to previous information only. Similar

to the self-attention in the encoder, here Q,K,V are still the same and refer to the output

of the last layer or the position-enriched token embeddings at the beginning. The difference

is that its attention matrix is masked halfway along the diagonal. As to the hinder cross

multi-head attention, its query becomes different from the key and value. The query is

the output of the auto-regressive self-attention module, while both key and value are the

encoder output. This cross attention is to model how the decoder attends to the source

tokens at each time step.

Why self-attention

This part has been discussed in the original paper [91]. In general, there are three reasons

to choose attention as the model backbone.

• Lower time complexity for common NLP tasks. The computational flow of Eq. 2.16

can be simply formalized as (n × d)(d × n)(n × d) −→ n2 × d, so the complexity

per layer is O(n2 · d). By contrast, that of recurrent is O(n · d2) and convolution is

O(k · n · d2). For common NLP task, their sentence lengths n are often smaller than

256, while their dimensions d are usually set to greater to 512. Therefore, transformer

layer has lower complexity in most cases.

• None of the sequential operations during training. As described before, Transformer

leverages the positional encodings to make up sequential relationships lost due to

abandoning recurrent. Transformer still needs the recurrent operation during infer-

ence, where it takes the last predicted word as the following step input and uses the

same set of parameters to calculate them. The distinct of Transformer is that it

can disable this operation at the training stage when the gold targets are available.

It designs an interesting attention masking mechanism to model the recurrent op-

eration and can output the whole sentence at once during training. Therefore, the

sequential operation complexity of Transformer is only O(1), much smaller than the

O(n) complexity of conventional recurrent networks.

• Wider perceptual field. The original paper uses the Maximum Path Length to measure

the perceptual field. For example, the maximum path length of RNNs is On, which

means there need n steps to model the first token and the last token jointly. In other
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words, RNNs only process local information at each step and can not form global

modeling until the final step. Similar situations also exist in convolution networks,

but they form layer-wise rather than step-wise. By contrast, Transformer has a global

perceptual field at each layer. Moreover, its input data of each time step can directly

obtain the information from any other time step without step-by-step or layer-by-

layer propagation. Abstractly, Transformer regards input sentences as special graphs

which take words as nodes and are fully connected. In this case, any two words can

be adjacent nodes to each other, and the special graph network (i.e., Transformer)

aggregates the information of the whole graph at each layer.

Why scaled attention

A thoughtful design of Transformer self-attention is that it scales the attention logits before

softmax by dividing it by
√
d, as put in Eq. 2.16. This design has improved the training

stability of Transformer both theoretically and experimentally and has been the widely-

used mechanism in the dot-product attentive models. From a theoretical perspective, it

maintains the input vectors and output vectors of attention models in similar level of

variance and at the same time prevent gradient vanishment when appearing an extremely

high logit value.

Firstly, the dot-product attention can be simply denoted as:

ŷi = softmax(
exp(xi)∑
i exp(xi)

) (2.19)

Since the exponential function is a concave function, it is easy to prove that the final

attention distribution ŷ would be near a one-hot vector once the logit xi is larger than

others significantly. On the other hand, the gradient of softmax function ŷ = g(x) can be

calculated as
∂g(x)

∂x
= diag(ŷ)− ŷŷ> ∈ Rd×d (2.20)

∂g(x)

∂x
=


ŷ1 0 · · · 0

0 ŷ2 · · · 0
...

...
. . .

...

0 0 · · · ŷd

−


ŷ2
1 ŷ1ŷ2 · · · ŷ1ŷd

ŷ2ŷ1 ŷ2
2 · · · ŷ2ŷd

...
...

. . .
...

ŷdŷ1 ŷdŷ2 · · · ŷ2
d

 (2.21)

Then we assume ŷ ≈ [1, 0, · · · , 0, 0] where y1 is the extreme value. In this case, the above
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matrix becomes

∂g(x)

∂x
≈


1 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

−


1 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

 = 0 (2.22)

Therefore, the gradient disappears to 0 when a certain order of magnitude of the input is

large, making it difficult to update the parameters.

So far, we have explained why the scaling can help to alleviate gradient vanishment,

but it seems that we only need to allocate a positive value larger than 1 instead of a specific

scaled ratio like the sqrt of model dimension. This special ratio is actually to meet another

expectation to the neural network. That is, the input hidden states of each layer are better

to have a similar variance as their outputs, and this variance is often set to 1. According

to the assumption, the inputs of softmax function, namely elements q, k in the query and

key vector, respectively, should follow independent standard normal distributions N (0, 1).

Then the softmax function firstly calculates the sum of their element-wise products, i.e.,∑d
i qi ·vi. At this time, the variance is

∑d
i D(qi)D(vi) which is exactly equal to d when the

two random variables are independent and are of mean value 0. With the scaling operation

of
√
d, the output variance is reduced to the input variance 1 again. Finally, it is conducive

to reducing gradient vanishment and explosion that the variances of inputs and outputs are

kept at a similar level. In short, gradient explosion means that a small input disturbance

causes a large fluctuation of the output, and the gradient vanishing shows that even a

large input change can not cause the change of the output. Obviously, if the variance of

input and output can be maintained at the same and low level, these two extremes will be

greatly reduced.

2.2 Text Representation

This section includes two parts to review Discrete Representation and Distributional Rep-

resentation, respectively. We are not going to introduce Distributed Representation alone

because its definition is so broad (i.e., the dense, low dimensional continuous vector) that

almost all vectors produced by neural networks can be called distributed representation.

Since this thesis studies neural text embedding, the distributionally representing methods
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Table 2.1: Example of one hot representations.

I [1, 0, 0, 0, 0, 0, 0, 0]
Like [0, 1, 0, 0, 0, 0, 0, 0]
Natural [0, 0, 0, 0, 0, 0, 1, 0]
Language [0, 0, 0, 1, 0, 0, 0, 0]
Processing [0, 0, 0, 0, 0, 0, 0, 1]

presented next all belong to the distributed representation.

2.2.1 Discrete Representation

This is to represent text as a discrete vector, which is interpretable but often sparse and

high-dimensional.

One-hot representation

This is an extremely sparse vector and is the most straightforward way to represent words.

We firstly set a fixed-sized vocabulary where each word has a fixed index. The one-hot

word vector is the same length as the vocabulary, and all of its elements are zeros except

for the position of the corresponding word where the value is 1.

This is a very simple and straightforward word representation and is also the base

of many neural word embedding methods. However, as the word vector to use directly,

the information it contains is very limited. Specifically, any two one-hot word vectors

are always orthogonal so that it fails to capture the semantic similarity between words.

Besides, it reflects the information that is limited in whether the word appears and lacks

further insights, such as whether the word is important.

Table 2.1 provides an example for one-hot representations. We assume there are only

eight words in the demo vocabulary so that the lengths of one-hot vectors are also eight.

The vocabulary is ordered, and here I is the first word in the vocabulary, Like is the

second, and Processing is the last one. Normally, the vocabulary is sorted according to the

frequency of words in the whole corpus.

Bag of words (BOW)

BOW is essentially the summation of all one-hot vectors of the document and is thus the

document representation. In the BOW vector, each value denotes the frequency of the
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Table 2.2: BOW representations of I Like Natural Language Processing.

Word frequency BOW [1, 1, 0, 1, 0, 0, 1, 1]
TF-IDF BOW [0.2, 0.5, 0, 1.2, 0, 0, 1.5, 2]

corresponding word in the document. Therefore, it can partially reflect which words are

more important for the document, even though the word frequency may not be the best

measure for word importance. Besides, the pattern of word frequency enables the BOW

to measure the similarity between documents.

Actually, BOW is not limited to the word frequency. To form more reasonable repre-

sentations for documents, we often replace the word frequency with the term frequency-

inverse document frequency (tf-idf). Specifically, although word frequency can represent

word importance to some extent, it may mistakenly regard some high-frequency stop words

(e.g., the, a, etc.) as important words. TF-IDF, on the premise of considering the word

frequency, takes the frequency of the word in the whole corpus (i.e., idf) into the measure-

ment index. An important word for the document should first be highly-frequent and then

be lowly-frequent in other documents. For instance, the is often very common in every

document, which means that it is destined not to have a high tf-idf score. By contrast,

even if a proper noun does not frequently appear in a document, it may have a higher tf-idf

score because it is rare in other documents. Similar to one-hot representation, we provide

two examples for word frequency BOW and tf-idf BOW in Table 2.2.

Finally, there are still many limitations in BOW. Firstly, the sparse vector is not con-

ducive to saving and calculating the semantic information of the text. Besides, as a sentence

representation, BOW fails to capture the word order information and cross-word context

information, hindering it from representing semantic similarity sufficiently.

N-Gram

Each word is independent in the bag of words representation mentioned above, ignoring

the word order problem. Adding an n-gram feature can obtain local context information

to enrich text representation.

In short, traditional BOW splits documents into many words and combines them into

a vocabulary after removing repetitions, while N-gram splits documents using a sliding

window. For example, bi-gram would split the sentence I Like Natural Language Processing

into I Like, Like Natural, Natural Language and Language Processing . Similarly, these
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bi-grams are firstly sorted in a vocabulary and assigned with fixed indices. Bags of bi-

grams are then constructed by counting their frequencies of appearing in a document. Its

advantage is that these n-grams consider the word order information and local contexts.

Taking the word play as an example, traditional BOW only counts its number but ignores

that this word may have different meanings under different contexts such as play basketball

versus play piano. But what follows is the size explosion of the vocabulary, bringing much

computation burden to the input and output layer.

2.2.2 Distributional Representation

In the last part, we introduce the discrete text representation. We can see their construction

is straightforward and explainable, but it is not reasonable to mathematically model them

directly due to over-sparsity. More often than not, these words or n-grams of one-hot forms

are used as the original inputs to create the distributional representations, which are often

distributed and can be better to capture semantic similarities between words or sentences.

Word2vec

As mentioned before, the distributional hypothesis refers to that words with similar con-

texts should have similar word vectors. In other words, if we input two semantically similar

words into the context predictor, their outputs should be similar. Based on this, Mikolov

et al. [68] proposed two context classifiers of different architectures to obtain distributed

word vectors. Notably, these classifiers are not to predict the context words, really, but to

get the trained parametric matrix, i.e., the word embedding matrix.

The two context classifiers are CBOW (Continuous Bag-of-words) and Skip-gram,

which are presented in Figure 2.6 (it is copied from the original paper [68]). Both struc-

tures consist of a word embedding matrix and a context projection matrix, and they have

the same shapes normally. Multiplying the one-hot word vectors with the word embedding

matrix, these words are converted as dense and low-dimensional vectors. In the beginning,

these vectors are randomly initialized, and they are updated constantly by gradient descent

until they are able to predict contexts well. For CBOW, the more accurate description is

that it uses the context words to predict the ontology word. However, it is also reasonable

to explain its output word as the context word of the input words. Anyway, both CBOW

and skip-gram take the projection matrix in the input layer as the final word embeddings,

and that in the output layer is used to measure the similarity between the input words and
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their contexts. Since the context matrix often has the same shape as the embedding matrix

and there are usually nearly a million words in the embedding vocabulary, it is tough to

calculate the probability distribution over the common softmax function efficiently. To

reduce computational costs, Mikolov et al. adopted hierarchical softmax [68] firstly and

then proposed negative sampling. The latter is a more widely-used training approach when

it comes to Word2vec.

Figure 2.6: CBOW and Skip-gram

This thesis gives more details to the Skip-gram model with negative sampling (SGNS),

the most widely-used word embedding model. In the skip-gram model, there are a corpus

of words w ∈ VW and a set of context words c ∈ VC , where VW , VC refer to word vocabulary

and context vocabulary, respectively. It should be mentioned that both vocabularies often

have the same size and can be regarded as the same object. We distinguish them here in

order to explain its principle better. Subsequently, for a word wi in the corpus, its contexts

are the words surrounding it in a fixed-sized window wi−L, · · · , wi−1, wi+1, · · · , wi+L. We

collect all pairs (w, c) of observed words and corresponding contexts into the cluster D.

Next, we define #(w, c) as the number of times that one pair (w, c) appears in D, #c =
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∑
w′∈VW #(w′, c) and #w =

∑
c′∈VC #(w, c′) as the frequency of c and w appearing in D.

By the way, we can construct the co-occurrence matrix M with #(w, c).

As mentioned before, the skip-gram model is composed of a word embedding matrix

and a context projection matrix, and both are parametric. With them, the words and

contexts are converted to dense vectors w, c ∈ Rd. Under the distributional hypothesis, we

need to make words with similar contexts closer in the embedding space and farther when

their contexts are different. Then, we assume there are two words wj , wk, and the latter

has a context word c. To extend their vector distance, we need to maximize the distance

between dot-products wj · c and wk · c, where wj is the negative word of c. Identically,

the negative sampling approach needs to sample the in-context words and out-of-context

words as positive and negative samples for each word. Subsequently, it uses σ(w · c) to

calculate the probability scores for samples. The σ function scales the score into range

[0, 1], and normally SGNS trains parametric matrices to force the score of positive samples

to 1, and negative samples to 0. Overall, the objective of SGNS for single word pair (w, c)

is to maximize

log σ(w · c) + k · EcN∼PD [log σ (−w · cN )] (2.23)

where cN is the out-of-context words, and the function increases as w · c becomes larger

and w · cN becomes smaller. In practice, the expectation is calculated by the average

of negative pairs after k times samplings. These negative samples are drawn from D

based on the empirical unigram distribution PD(c) = #(c)
|D| , i.e., the distribution over word

frequencies. The total objective then sums over the single objectives of observed (w, c)

pairs in the corpus,

L =
∑
w∈VW

∑
c∈VC

#(w, c) (log σ(w · c) + k · EcN∼PD [log σ (−w · cN )]) (2.24)

This objective is trained over all observed pairs using stochastic gradient updates, finally

making different words with similar contexts can have similar semantic vectors.

There are some special processing in the algorithm stated in the original paper [68]. In

the beginning, the algorithm firstly traverses the whole corpus and randomly drops some

words according to the probability distribution over word frequency. These dropped words

are often some high-frequency stop words like a, the, he, etc.. In addition, the negative

pairs are exactly sampled according to the 3/4 power of word frequency distribution.
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Word2vec as implicit matrix factorization

The last part introduces a classical and common-used word2vec model, namely skip-gram

with negative sampling (SGNS). Although it is clear that the SGNS’s training objectives

follow the distributional hypothesis - maximizing the dot product between frequently oc-

curring word context pairs and minimizing the dot product between random word context

pairs. However, little is known about why it is expected to produce good word represen-

tation. Levy et al. [47] found that it implicitly decomposes a word co-occurrence matrix,

whose cell is the pointwise mutual information (PMI) of each word and context pair after

being shifted by a global constant. This interesting and far-reaching corollary provides a

reasonable explanation for why SGNS can produce high-quality word vectors and, at the

same time, inspires follow-up studies about word embeddings such as GloVe [72].

Following previous notations, the Eq. 2.24 can be rewritten as:

L =
∑
w∈VW

∑
c∈VC

#(w, c)(log σ(w · c)) +
∑
w∈VW

∑
c∈VC

#(w, c) (k · EcN∼PD [log σ (−w · cN )])

=
∑
w∈VW

∑
c∈VC

#(w, c)(log σ(w · c)) +
∑
w∈VW

#(w) (k · EcN∼PD [log σ (−w · cN )])

(2.25)

Then we extend the expectation term with the unigram distribution PD(c) = #(c)
|D| ,

EcN∼PD [log σ (−w · cN )] =
∑

cN∈VC
#(cN )
|D| log σ (−w · cN )

= #(c)
|D| log σ(−w · c) +

∑
cN∈VC\{c}

#(cN )
|D| log σ (−w · cN )

(2.26)

The last two equations indicate that the objective function ` for a specific (w, c) pair is:

` = #(w, c) log σ(w · c) + k ·#(w) · #(c)

|D|
log σ(−w · c) (2.27)

We then let x = w · c and calculate the partial derivative of the objective with respect to

x, i.e.,
∂`

∂x
= #(w, c) · σ(−x)− k ·#(w) · #(c)

|D|
· σ(x) (2.28)

We make the derivative equal to 0 to optimize the objective and can obtain:

e2x −

 #(w, c)

k ·#(w) · #(c)
|D|

− 1

 ex − #(w, c)

k ·#(w) · #(c)
|D|

= 0 (2.29)
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We then replace ex with y, and this equation can be regarded as an univariate quadratic

equation with respect to y. Its one solution is y = −1 which is incorrect obviously since

ex > 0, and another solution is:

y =
#(w, c)

k ·#(w) · #(c)
|D|

=
#(w, c) · |D|
#w ·#(c)

· 1

k
(2.30)

With y to ex and x to w · c, we can get

w · c = log

(
#(w, c) · |D|
#(w) ·#(c)

· 1

k

)
= log

(
#(w, c) · |D|
#(w) ·#(c)

)
− log k (2.31)

and log
(

#(w,c)·|D|
#(w)·#(c)

)
is exactly the point-wise mutual information (PMI) of the pair (w, c).

That is to say,

MSGNS
ij = wi · cj = PMI (wi, cj)− log k (2.32)

PMI is often used to measure the correlation between two objects, whose canonical

form is defined as

PMI(x, y) = log
P (x, y)

P (x)P (y)
(2.33)

Normally, it can be used to represent the association between two words using the joint

probability of their presence together (i.e., the two words are contextual to each other).

In practice, each element of the PMI matrix can be estimated by the observations in the

corpus.

Overall, although we can not interpret the trained word vectors w and context vectors

c respectively, it is very interesting that their dot-products can be explained by the point-

wise mutual information. Meanwhile, since PMI is a widely-recognized method to measure

the association between words, it strongly confirms the superiority of the SGNS model

from a theoretical point of view.

Finally, since SGNS is to train the word and context vectors to reach a situation in

which their dot-products can equal the shifted PMI matrix, why not leverage it to deduce

the word vectors we expected directly. Given the corpus and the pre-set size of the context

window, we can achieve the word-context pairs (w, c) and construct the PMI matrix easily.

The matrix is huge because its length and width are equal to vocabulary size, but we can

use some dimensionality reductions to reduce its width and thus get word2vec embeddings

in a learning-free fashion. However, in practice, SVD suffers from many problems compared
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with learning methods, such as existing unobserved values [42] and being hard to weight

different (w, c) pairs differently [88]. Therefore, a more reasonable way is to use the neural

networks to directly learn the results of shifted PMI matrix, which is exactly the basic idea

used in GloVe [72].

GloVe

As mentioned above, although levy et al. [47] found the secret of why skip-gram models

perform well on creating word embeddings, it is still very hard to reproduce the result

when they tried to use the theoretically optimal solution to derive word vectors. The gap

lies at that the learning method performs more stably in estimating the dimension-reduced

results. On the other hand, the word2vec models represented by skip-gram belong to local

context window methods, which fail to take full advantage of global context information

(i.e., the co-occurrence matrix of corpus). Instead, they optimize their objective contexts

by contexts and thus often get stuck into the local optimum of partial contexts. Glove aims

at combining the two methods, namely the global context matrix and the neural estimator.

The motivation and operation of GloVe are both straightforward, that is to use word

vectors and context vectors to predict their co-occurrence probabilities. Similarly, let

#(w, c) be the number of times that the word c appears in the context of word w, and

#w =
∑

c #(w, c) be the total number of contexts of word w. Thus, the conditional

probability P (c|w) can be estimated by #(w,c)
#w , i.e., the probability of word c exits in its

context range give a word w. Subsequently, they train a neural regressions model to make

w ·c = log #(w,c)
#w where w, c are learnable word and context vectors. Since the term log #w

is independent of cm, the mapping function can be re-written as:

w · c+ bw + bc = log #(w, c) (2.34)

Distributed sentence representation

Before, we mainly introduced word embeddings, but actually, more NLP tasks require

sentence embeddings. There could be some straightforward ways from word representations

to the sentence or document representations. Given the trained word embeddings, the

most straightforward way is to average the word vectors to obtain the sentence vector

after removing the stop words. Another effective approach is to calculate the weighted

summation of word vectors, and the weights, for example, can be the normalized tf-idf
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scores or other importance scores. These means are so-called inductive sentence embedding

which only needs to learn representations of components and then reduce these vectors as

the final vector we expected.

Another is the transductive sentence embedding, which indicates that each sentence

or document is directly assigned with an independent vector. One typical operation is to

take the inner words of a sentence as its contexts [45]. That is to say, let the context pair

be (s, c) where s refers to a sentence or document and the context word c is exactly any

word in the sentence. Correspondingly, the context cN in the negative samples indicates

any word out of the sentence or document. Its objective function and subsequent training

process are similar to SGNS.

Compared with inductive learning, the disadvantages of transductive methods lie in

the over-sized vocabulary and being hard to expand. Transductive embedding is more

suitable for the small corpus where the size of document vocabulary (i.e., the number

of documents) is limited. However, it would be hard to train the model when the size

increases constantly. As to the inductive sentence embeddings, although there might be a

larger vocabulary when the number of documents is not too many, its increase is finite as

the number goes up because the total number of words is almost fixed in the real world.

Another problem is that transductive methods fail to calculate embeddings for out-of-

vocabulary sentences and often need to re-train the model on the new corpus. By contrast,

it is easy to obtain embeddings for any new sentence using inductive models because its

components have been represented. We only need to use or learn an aggregation function

to reduce these component vectors as the final document vector.

ELMo and GPT

Since word embeddings can be used to form sentence embeddings naturally, it makes more

sense to focus on the former. One main drawback of Word2vec and GloVe is that their

word vectors are fixed even when the words are under different contexts. For instance,

the word play should have different meanings in the two phrases play basketball and play

piano, namely the word should have different vectors as its contexts change. However, the

fact goes the opposite, and traditional neural word embeddings fail to catch the effects

of immediate contexts to words completely. ELMo [74] took the first step to solve the

problem systematically.

ELMo uses the bi-directional LSTM to represent words and their contexts. The two
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directions ensure the model captures both left-to-right and right-to-left contexts. This

operation seems to be used in many supervised NLP tasks, but note that ELMo leverages

an unsupervised way, namely auto-regressive language modeling. Thus it can mine the

contextual information sufficiently in a large corpus. When using the ELMo word embed-

dings, the two vectors trained in different directions are concatenated and fixed and then

serve as the initial input embeddings of the models of downstream tasks. On the surface,

ELMo just uses a common-used model to train a language model, but it indeed sends a

very important message that unsupervised pre-training is useful. At the same time, an-

other model, GPT [77] also sends a similar signal. GPT is very simple as it only uses a

Transformer-decoder to train the language model, and the difference is it is built on count-

less parameters and trained on a huge corpus. Researchers found that the fine-tuned GPT

model can be directed applied to NLP tasks by connecting an output layer. If we sum-

marised the two ideas and factorized them into some essential factors, then ELMo should

be pre-training and bi-directional modeling, and GPT be pre-training and Transformer.

Both prove that pre-training is very important, and they provide a reasonable motivation

to improve them, that is to combine all three factors.

BERT

To involve bi-direction and Transformer in the pre-training model, Transformer-encoder

is a natural choice. However, it can not be trained as a traditional language model in an

auto-regressive style. Hence, BERT [20] proposes a novel way to train a language model,

called the non-autoregressive or masked language model. BERT is a milestone model which

has achieved SOTA on multiple tasks. It marks that NLP has officially entered the era of

pre-training, and its pre-training and fine-tuning have become a paradigm for performing

NLP tasks.

BERT uses two pre-training objectives, namely masked language model (MLM) and

next sentence prediction, to jointly train Transformer-encoder on a huge corpus. During

training, it randomly masks 15% words in sentences and replaces them with special tokens.

The MLM objective is exactly to use context representations to predict masked tokens.

Every training sequence is composed of two partially-masked sentences. At 50% time,

the second sentence is the next sentence of the first one in the document, but they are

combined randomly for the rest of the time. BERT outputs not only context-aware word

embeddings but also a special token to represent the whole sentence. Therefore, it can
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be applied to word-level and sentence-level NLP classification tasks by concatenating an

output layer above BERT. To better preserve the pre-training knowledge, the learning rate

of BERT is often set up as a small value during fine-tuning.

2.3 Sequence-to-sequence Generation

2.3.1 Development of Sequence-to-sequence Models

The concept of sequence-to-sequence learning began to rise in 2014. Among them, the

most widely-know model is the LSTM-based seq-to-seq model proposed by Sutskever et

al. [89].

Figure 2.7: Architecture of seq-to-seq learning model.

Seq-to-seq model is to convert the input sequence to another different sequence. As

shown in Figure 2.7, its structure should consist of an encoder and a decoder to encode

inputs firstly and decode the encoding to the target sequences. Sutskever et al. [89] took

Bi-LSTM as the encoder to represent the English sentence as a fixed vector, which then

serves as the initial hidden states of the LSTM decoder to recover the encoded vector to

a readable France sentence. In other words, the seq-to-seq model aims to maximize the

probability of the target sequence y conditional on the source sentence x, i.e., max p(y|x).

And the model is an auto-regressive generation model as the decoder forms the target

sentences word by word. Therefore, the objective function can be further factorized as

max
∏
t p(yt|x,y<t), where y<t denotes the sentence having been generated before the

step t, and yt is the word generated at step t exactly. Such auto-regressive form fully

considers the dependency between sequence components, which is basically in line with

the physical truth. These dependency relationships are easily proved by some statistics

of word frequencies. For example, some words have a higher probability of appearing
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after some specific phrases like hamburger often after KFC and eat. This indicates that

there is a stronger dependency for hamburger than many other words when the pre-phrase

appears KFC and eat. Meanwhile, the left-to-right generation process is closer to the way

humans read or express. Therefore, it is generally natural to choose the auto-regressive

style to form sentences word by word instead of giving an additional assumption that all

words are independent, even though the latter may have some speed advantages. Since the

gold target sentences are known during training, it often inputs these gold words into the

decoder to serve as generated ones before step t. It is exactly to align the last-token-deleted

reference with the first-token-deleted reference and use the former to predict the latter.

This training method is so-called teacher forcing training.

After LSTM-based seq-to-seq models, the next impressive structure is attention-auxiliary

seq-to-seq model. One obvious disadvantage of LSTM seq-to-seq is that it always converts

the whole source as a fixed vector, and all decoding steps are based on the same vector.

Intuitively, different decoded words should depend on different parts of the source, namely

a dynamic vector to represent the source step-wise. Inspired by this, the attentive model

is exactly to assign weights to source words at different decoding steps dynamically. The

decoder can generate words based on different source representations by calculating the

weighted summation of source word vectors. This operation was first applied to the seq-to-

seq translation model, which is very similar to human translation habits. Normally, instead

of always attending to the whole source sentences, humans are more used to focusing on

the word and its surroundings that need to be translated at that time and keep moving

their attention constantly as the translation proceeds. To model the dynamic attention

distribution, the attentive sequence-to-sequence model takes the generated sentence as the

query to look up related parts in the source. In other words, it uses the neural network to

estimate the similarity between the query representation and each source word representa-

tion. These similarity scores are then normalized as the attention probabilities to weight

source words. The attentive mechanism has achieved great success and recognition, not

only because it is derived from reasonable motivation and promotes a lot in the seq-to-seq

tasks, but also because it provides partial interpretability for neural networks and can be

generalized to many other tasks.

Overall, the attention mechanism mainly enhances expressive ability in the original

attentive sequence-to-sequence model. However, it fails to solve inherent drawbacks of

traditional seq-to-seq models such as the UNK problem. This central problem limits the

piratical model effect in the early stage of seq-to-seq models. The reason that causes this
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is that the training set is impossible to include all real-world words, especially some proper

words like names, numbers, etc. Besides, the vocabulary size should not be too large so

that some rare words will be actively expressed with UNK special token. In this case, the

trained model may assign the highest probability to the UNK token at some decoding steps

when the suitable words do not appear in the fixed vocabulary. After the attention model

was proposed, researchers found that it can also be used to alleviate this problem except for

enhancing representational ability. The pointer seq-to-seq networks [95, 85] are designed

to copy the words in the source document as the generated words using an attention

probability distribution. Instead of equipping with a fixed vocabulary, pointer networks

have dynamic vocabulary whose extended parts are composed of words in the current

source sentences. These extended words can not be allocated probabilities together with

fixed-vocabulary words since the number of softmax units is fixed. Therefore, attention

weights become the natural choice to estimate the probability distribution of these copied

words. The pure pointer network can only copy words from the source sentence and can

fail to produce novel words like humans. Therefore, at more time, the attention probability

distribution should be combined with the original probability distribution. For the words

belonging to the fixed vocabulary, their final probabilities depend on weighted summations

of both probability distributions. As a branch of seq-to-seq models, Pointer networks

always have a place when the target sequences are more composed of source words and

do not require novelty. However, this network is difficult to be the mainstream seq-to-seq

model because the main problem it solves (i.e., the issue of rare words) is covered by a

highly efficient tokenizer system. Pointer network constructs a dynamic vocabulary, which

is not conducive to training stability and efficiency. Thus, it can not continuously improve

the generation quality even though it can avoid producing UNK token. By contrast, this

problem can be better solved by only changing the tokenizer mechanism. Traditional

tokenizer puts the complete words into the vocabulary set, and the vocabulary can easily

break through millions if the corpus is large enough. This is unacceptable because it places

a significant burden on computing and memory. Revisiting the inductive idea, words are

further split into smaller components. For example, many words share the same prefix or

suffix. Even if a rare word does not appear in the training corpus, its embedding is still

accessible because its sub-words are available in the preset vocabulary. Such tokenizer,

the so-called subword tokenizer [86, 5], can efficiently solve rare words and significantly

reduce vocabulary size simultaneously. The pointer family is not the mainstream seq-to-seq

model, and almost all pre-training seq-to-seq models do not use this structure. However,
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it is undeniable that the pointer mechanism is a very effective technique and has been

applied to many tasks such as edge pointer distribution in graph generation [112, 8].

Sequence-to-sequence models have been playing an important role in many generative

tasks, especially translation and summarization. Besides, it has promoted the development

of many new fields like image caption [96] which model structure is exactly derived from

seq-to-seq but uses a convolution network as the encoder. Compared with transitional

approaches like statistical translation or extractive summarization, such a neural generation

model is generally considered more creative and produces more coherent sentences. At the

same time, attentive models have been proved to have strong representation ability in

multiple tasks such as classifications [106]. However, with available paired samples more

and more, the researcher found that the existing attentive LSTM-based seq-to-seq models

have two bottlenecks that are difficult to break through, making the marginal benefit of

increasing data lower and lower. The first bottleneck is that even with teacher forcing

training, LSTM still can not predict the whole target sequence at once, making efficient

training impossible. Another is that the benefit of increasing the number of layers is

insignificant compared with the additional burden it brings to training and inference. The

emergence of Transformer [91] breaks through these two bottlenecks by replacing LSTM

cells with the attention module completely.

Transformer, as introduced before, allows more parallelization during training. In short,

it can output whole target sequences at once during teacher force training. Even if Trans-

former is superimposed continuously, its training speed is still guaranteed. A deep structure

indicates more parameters, which means it has the ability to represent more various in-

formation. Meanwhile, it can process the global information at each layer. Therefore, it

is reasonable that Transformer has a stronger representative ability than RNNs or some

convolution networks, which can only capture local information to form a global view grad-

ually. Without Transformer, NLP is difficult to really enter the era of pre-training. This is

because we need pre-training models that can process a large amount of data efficiently and

reliably. Two inherent bottlenecks of RNN make them destined to be the infrastructure of

the pre-training model.

In the era of pre-training, model structures are dominated by Transformer and its

variants. At most times, the vanilla Transformer encoder and decoder are good enough

to deal with all situations. For instance, the vanilla Transformer-encoder often serves

as the non-autoregressive language model structure, and vanilla Transformer-decoder or

encoder-decoder is the first choice of generative pre-training models. Generally, we need
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some Transformer variants to reduce the computational costs when the model is very large

or the input sequences are very long. Common-used variants are sparse Transformer [13],

restricted Transformer and linear Transformer. Compared with the changes in the model

architecture, more changes come from pre-training objectives. The next part will give more

details about the pre-training objectives of different seq-to-seq pre-training models.

2.3.2 Pre-trained Sequence-to-sequence Models

This part will introduce three notable Seq-to-seq Pre-training Models (PTMs), namely

BART [48], T5 [79] and PEGASUS [109]. The three PTMs all use standard Transformer

encoder-decoder and teacher forcing training. The differences lie in pre-training objectives

and applied tasks.

BART

Before introducing BART, we firstly review BERT [20] and GPT [77] from the perspective

o of generative models. BERT is widely known as non-autoregressive, which means it is not

easily used for a generation because masked tokens are predicted independently. On the

other hand, the model structure of GPT is the pure auto-regressive language model so that

it can be applied to generative tasks straightforwardly. However, its obvious disadvantage

is that its pre-training objective can not learn bi-directional interactions because words

in GPT are only conditional on leftward contexts. Therefore, BART can be regarded as

the generative model pre-trained with bi-directional contexts. Its pre-training schema has

been shown in Figure 2.8 (intercepted from the original paper). The encoder input is

the noised sentence, and the general objective is to recover the sentence. We can see its

training objective fuses the features of both BERT and GPT. Compared with BERT, it

adds a decoder to train sequences in the auto-regressive style. Thus it can serve as a text

generator naturally. Compared with GPT, when predicting the missing tokens such as

C, the dependencies include leftward contexts in the decoder inputs and the unmasked

rightward context in the encoder inputs. It should be mentioned that masking tokens is

not the sole way to noise sentences. There are totally five transformations for nosing inputs

(see Figure 2.9), and they can be compose together.

As to the relevant fields, BART can not only do the same classification tasks as Bert but

also seq-to-seq generation tasks, including summarization, generative QA, and dialogue.

Besides, it can also be applied to the translation by replacing the pre-trained encoder
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Figure 2.8: BART pre-training schema.

Figure 2.9: Five transformations for nosing BART inputs.

embedding layer with a new randomly initialized encoder. Generally, the final word repre-

sentations of BART are the outputs of the decoder, and the final sentence representations

are embeddings of the special ending token. The whole decoder inputs are known for the

classification tasks, namely the input sentences without the last token. The initial decoder

input is only the special start token for generation tasks. Newly generated words are then

concatenated to the decoder input to promote the generation continuously.

T5

Before we introduced BART, we can see it can be applied to almost all NLP tasks re-

gardless of classifications or generations. T5 (Text-to-Text Transfer Transformer) can do

the same, but their ways are essentially different. BART maps different tasks into differ-

ent distributions. BART needs to use different output layers (e.g., the number of softmax

units are often different), loss functions, and hyper-parameters to deal with different down-

stream tasks. By contrast, T5 uses the same system to deal with all tasks, even including
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regression tasks. This is because T5 transforms all tasks as the mode of text-to-text tasks.

For example, the sentiment classification can be equivalent to using the text-to-text model

to generate the word good or bad. Since T5 uses the same set of parameters to process

multi-tasks, it needs a trigger to tell the model which task it needs to conduct. Figure 2.10

shows how T5 designs these triggers and puts them into the inputs. Notice that the figure

is copied from the original paper.

Figure 2.10: Examples of T5 applying to different tasks.

Overall, T5 is a combination of pre-training and multi-task learning. During training,

T5 lets the decoder predict the masked tokens of encoder inputs, which is unsupervised

similar to other PTMs. The difference is that T5 also adopts multi-task supervised learning

in the pre-training stage. Moving to the fine-tuning stage, T5 also uses multi-task mode

to concatenate all downstream tasks into a single task to conduct fine-tuning.

PEGASUS

Unlike the previous two seq-to-seq PTMs, PEGASUS [109] only focuses on one downstream

task, namely text summarization. However, it provides a simple pre-training canonical form

for almost all source-based text generation. PEGASUS firstly leverages an unsupervised

way to extract important sentences from the source documents. Then it pre-trains the

transformer encoder-decoder by using the source document to predict its important com-

ponents. The key point of PEGASUS lies in de-noising, and this concept is very important

in many tasks like image captioning or paraphrasing, etc. Generally, most source-based

text generations do not need the target sentences to cover all source information in addition

to the translation. Besides, many texts crawled from the Internet contain a lot of noise,

so this pre-training objective for de-noising is very practical.
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2.4 Decoding Strategies

Unlike classification tasks, there are many places worth exploring in the inference stage of

generation tasks. We refer to these techniques to improve generation quality at inference

time as decoding strategies. According to different generation objectives, we can roughly

divide the decoding (search) strategy into two categories, namely sampling search and

deterministic search. The former is a decoding method with randomness. It is suitable for

generating creative text such as story generation, where there may be multiple optimums

as long as the story is fluent and logical. By contrast, the latter is more common in source-

based text generation like sequence-to-sequence generations, where the content described

by these generated sentences can not be separated from the source. Therefore, sampling

search is not favored here because its randomness may lead to content bias. In this case,

we prefer to reduce randomness to generate sentences that are less likely to make mistakes.

Overall, the deterministic search will return the sentence with the highest probability, i.e.,

to find the most likely sentence to be a pair with the given source document.

2.4.1 Sampling Search

Vanilla sampling search

At each decoding step, the decoder will output a probability distribution p(y|x,y<t) whose

length is equal to the vocabulary size. The vanilla sampling is to randomly choose a word

based on the probability distribution and then treat the selected word as the next-step

input to predict the next probability distribution.

Top-k sampling search

It is possible that vanilla sampling selects a corrupted word with low probability because it

is a completely random process. Since the subsequent generation depends on the corrupted

word, the errors will accumulate constantly. In general, any failed choice may make the

whole generated sentence unsatisfactory. Therefore, although the probability of choosing

corrupted words every time is very low, the total probability of not extracting corrupted

words in all steps is not low.

To solve the problem mentioned above, one straightforward way is to firstly select top

k candidates from vocabulary according to the probability distribution. The candidates’
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probabilities are then re-scaled to a new distribution, and the final successor is sampled

from these candidates based on the new distribution.

Top-p sampling search

The defect of top-k sampling is that the number of candidates is fixed for any probability

distributions. This often leads to some corrupted words being still selected as candidates,

especially when the probability distribution is mainly concentrated on the head words.

Given a distribution p(yt|x,y<t) , we define its top-p vocabulary as V(p) ⊂ V which should

meet the following condition: ∑
yt∈V(p)

p(yt|x,y<t) ≥ p (2.35)

. In other words, p is a threshold in the probability distribution, and words with probabil-

ities larger than the threshold are candidates from which the final word is sampled, while

other words have no chance to be selected. In this case, the number of candidates is dy-

namic rather than fixed in top-k samplings. For example, if the majority of the probability

mass is clustered in the head words, we need a smaller candidate set to exclude more tail

words. Top-p samplings can do this easily by assigning a higher value to p.

2.4.2 Deterministic Search

Greedy search

Greedy search always chooses the word with the highest probability at each decoding step

and stops when the selected word is the preset end token. Theoretically, when the global

optimal solution is factorized to each step, it should be the local optimal solution, namely

the word with the highest probability. This is actually in line with the way of teacher

force training. However, although it enjoys lower O(|V|) complexity, it often performs

worse among all deterministic decoding strategies because it suffers from exposure bias

most. The exposure bias [100, 80, 110] reveals the gap between teacher force training

and decoding. Especially, teacher forcing training only needs to ensure local optimality

because it is based on reference tokens, which means the compacted local optimal solutions

are the global optimality exactly. By contrast, the local optimality in the greedy search is

dependent on the previously generated words. Obviously, these local optimal solutions are
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unreliable, and these errors will continue to accumulate. As long as there is a deviation in

any step, it will eventually deviate from the global optimal solution.

Viterbi algorithm

Since the final objective of the greedy search is to find the sentence with the highest

probability, the straightforward way is to construct all possible sentences whose number

is the square of vocabulary size. Then the sentence with the highest probability will be

the successor. The biggest problem is that this method has extremely high complexity

O(N × |V| × |V|) and is hard to apply in practice text generation.

Beam search

Beam search is an eclectic approach between greedy and Viterbi. Simplified speaking, it

only preserves K sentences with the highest probabilities at each generation step. Com-

pared with Viterbi, its complexity is significantly reduced to O(N × |K| × |K|). At the

same, it provides a buffer for the selections of local optimums. With the beam size in-

creased to the vocabulary, beam search is exactly the Viterbi algorithm. However, studies

found that the generation quality is degraded instead as the beam size goes up [16, 70, 67].

There is no standard explanation for this phenomenon. Still, it can be determined that

there exists an inherent bias in teacher forcing training such that the global optimum

learned by it may not be completely reliable. As a result of this phenomenon, we usually

use smaller beam sizes to conduct beam search to guarantee both efficiency and quality.

We will give more details about the procedure of beam search in Chapter 5.



Chapter 3

News Network Embedding based

on Local and Global Context

3.1 Introduction

News, carrying a large amount of information, can often guide public opinions, affect

people’s behavior and drive the evolution of social events. In the era of information, news

text is considered to be a part of big data that is continuously updated. In order to facilitate

the performance of downstream NLP tasks, it is rather essential to find an efficient way to

represent news as continuous vectors that contain the collective information of its inherited

features and the inter-textual knowledge between different news.

The most straightforward approach to embed news is to directly treat it as textual

data and apply text/sentence embedding models. To represent texts/sentences as vectors,

one of the classic techniques is to perform numerical operations on the word vectors [45],

which is recognized as a simple but powerful baseline [18]. SDAE [94] uses an auto-

encoder to compress texts into a low-dimensional vector. Paragraph Vector [45] learns

the distributed representation of sentences and documents by predicting their contexts,

i.e., words in the sentence/document. Additionally, Skip-Thought [50], FastSent [34] and

Quick-Though [63] learn distributed sentence-level representations through the coherence

between sentences. BERT [20] proposes a powerful pre-trained sentence encoder which is

trained on unsupervised datasets based on the masked language model and next sentence

prediction. The major limitation of embedding approaches discussed above is that they

produce representations and features that solely describe the local contextual information

44
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at the document level. In the case of news representation, the connection between different

news events (i.e., global contextual information) is also considered as crucial information

that should be incorporated into the news embedding, as well as other labeled features

such as the topic category and the polarity of the news.

With the argument that news stories describe events, news event embedding models

are developed to offer an alternative solution for the vector representation of news. It is

suggested to extract event tuples E = (Actor, Predicate,Object) from headlines and learn

vector representations by scoring the correct tuples higher than the corrupted ones [21, 22].

Event2vec [87] is constructed on a classified news event database from Wikipedia1, where

an event network is created by considering events, entities, event types and years as nodes

of different types. The Event2vec model thus produces distributed vector representations

of news events based on the network embedding mechanisms, which lacks the flexibility of

generating vectors for nodes outside the trained network. In addition, the weights of some

edges in the event network are determined by objective assumptions since types and years

are not comparable.

In this study, the News2vec model is proposed to learn distributed representations

of news, with the embedded vectors containing not only the semantic and labeled in-

formation, but also both local contexts (between the news event and its components)

and global contexts (between different news events). We start by building the news net-

work that connects the news nodes with their corresponding event element nodes in or-

der to create the aggregated news context that describes both the semantic information

and the background linkages between different news events (See Figure 3.1 for a sim-

plified example of the news network). According to Figure 3.1, the two pieces of news

Alibaba reinvested Suning after three years and Suning′s second−half profit rose by 5%

are connected by sharing the same contextual element Suning. The verbal keywords

reinvest and rise of the two different news are thus connected through their common

node Suning and become the latent contextual element of the other news. Based on the

constructed news network, the biased random walk approach [29] is adopted to generate

adequate number of connected node sequences which are later used in the network em-

bedding. Inspired by the Subword model [4], we further represent each news node as a

bag of news features including semantic features, categorical features, time features, etc..

The vector representation of the news feature is thus obtained based on the skip-gram

1https://en.wikipedia.org/wiki/Portal:Currentevents

https://en.wikipedia.org/wiki/Portal:Currentevents
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architecture [68], and the news vectors are computed as the sum of its feature embeddings.

Figure 3.1: Simplified sample of the news network

The advantages of the proposed News2vec model are twofold. First, the News2vec

embeddings capture both the semantic features and the potential connections between

news by constructing the news network. Second, the Subnode model offers an easy solution

to create embeddings for unseen (news) nodes outside the trained network, at the same

time enriches the node vector with its node attributes (news features). As the experiments

suggest, the News2vec model achieves state-of-the-art performance on the news-related

downstream tasks, namely the stock movement prediction and news recommendation.
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3.2 News2vec Model

In this section, the formation of the News2vec model is discussed in terms of the news

network construction and news embedding based on the Subnode model. According to

Figure 3.2, news elements including entities, actions and nouns, are first extracted from the

news titles and texts. Based on these elements and their term frequency–inverse document

frequency (tf-idf), the news network is built and sequences of nodes are sampled by the

biased random walk. News nodes in these sequences are then represented as bags of

extracted news features. The associated vector is thus assigned to each feature by the

Subnode model.

Figure 3.2: Flow chart of creating news embeddings with News2vec

3.2.1 News Network

The News2vec model creates news embeddings based on the news network that connects

news with their elements. With the argument that a piece of news often describes one or
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several events which could be represented as a collection of elements, this study extracts

news elements as entities, actions and nouns from news titles and texts, with respect to

their tf-idf scores. Specifically, the tf-idf is a well recognized tool to measure the importance

of a word/phrase inside the document and to extract the representative elements at the

document level. The tf-idf score is formulated as:

tfidfk,e =
nk,e∑
w nw,e

× log
|D|

|e : k ∈ de|
, (3.1)

where nk,e denotes the number of the news element k in the news story e, whereas its

denominator is the total number of words/phrases in the news document. |D| is the total

number of documents, the denominator represents the number of stories containing the

element k. In a nutshell, the tf-idf assigns a higher score to the element which appears

more frequently in the news story than in others.

After determining the elements of news, the news network is hence constructed by

connecting the news nodes e ∈ Ve of the news title and published time with its element

nodes k ∈ Vk. The weights of connective edges (e, k) are computed based on the importance

of the element to the news, which is determined by their tf-idf scores. The weight of an

edge (e, k) is computed as:

We,k =
tfidfk,e(title)

Z1
+
tfidfk,e(content)

Z2
, (3.2)

where Z is a normalization constant.

3.2.2 Network Embedding with Subnode Information

Network embedding

The New2vec network embedding is based on the Node2vec [29] model, with the objective

to learn a latent feature vector F (v) for each node v ∈ V that maximizes the probability

of predicting the node v′s network neighborhood N(v). The objective function is written

as:

max
∑
v∈V

log p(N(v)|F (v)). (3.3)
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Given the feature vector of node v, it is assumed that the prediction probabilities of its

neighborhoods are independent from each other, which leads to:

p (N(v)|F (v)) =
∏

u∈N(v)

p(u|F (v)). (3.4)

To solve the objective function and obtain the optimized node representations, the skip-

gram architecture [68] is adopted on the basis of network neighboring sequences sampled

by the biased random walk. To reduce the computational cost, negative sampling [45] is

used to replace the softmax classifier by multiple logistic binary classifiers. The optimizer

is the Stochastic Gradient Descent (SGD).

Different from the uniform random walk of DeepWalk [73], News2vec uses the Breadth-

first Search (BFS) and the Depth-first Search (DFS) as its search strategies. Suppose that

the walk just transitioned from t to v and is now walking to its next step node x, BFS

determines the next step with a greater chance of revisiting t, i.e., dtx = 0, whilst DFS

drives the walk to go deeper and further away from the node t, i.e., dtx = 2. In line with

the Node2vec model, News2vec defines a search bias α to control the search preference.

αvx =

{
1
p , if dtx = 0
1
q , if dtx = 2

(3.5)

Next, the transition probability of edge (v, x) is defined as the product of the weight of the

edge and the bias, i.e., αvx×wvx
Z where Z is a normalization constant. Explicitly, if p < q,

the walk is width-first which indicates that there is a greater chance to revisit the original

node and sample the nodes around it, that is, local contexts and semantically similar news.

If p > q, the walk is depth-first and tends to go to nodes that are not passed before, which

leads to the exploration of news with latent relations (i.e., global contexts). During the

random walk, each node is used as a starting vertex for a fixed-length walk to produce a

group of sequences. Based on the skip-gram model, we can train vector representations of

nodes on these sequences.

Subnode model

Classic skip-gram model assigns a distinct vector to each word, neglecting the morphology

information of words. With the purpose of addressing this problem, the Subword [4] model

represents each word using a bag of character n−grams, and the word vector is thus the
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summation of its character n−grams. The major advantage of the Subword model is that

it allows the computation of word vectors that are not in the trained corpus by using their

character n−gram vectors. Inspired by the Subword model, we introduce the Subnode

model to solve network embedding problems by offering a solution to create inferential

vectors of unseen news nodes outside the trained network, at the same time incorporate

node attributes to the node vectors.

The biased random walk produces sequences of news and event element nodes from

the news network. The proposed Subnode model expresses each of the news node as a

bag of subnode information of its associated features including semantic features such as

event elements with high tf-idf scores, text structure features such as words count and

paragraphs count, and side information such as published date, news type and emotion.

As a result, each news vertex e ∈ Ve is represented as:

G =< entityA, entityB, action, · · · ,

words count, paragraph count,

month, day, week, type, sentiment, · · · >

where word count, paragraph count and sentiment are ordinal data rather than real values.

Further, the Subnode model represents a news node as the sum of its features, instead of

a distinct vector obtained from the other network embedding models. Therefore, the

objective function of news network embedding is expressed as:

max
∑
e∈Ve

log p(N(e)|
∑
g∈Ge

f(g)) (3.6)

where f(g) denotes the vector representation of a news feature. In addition, we remove

nodes with only one edge to reduce the sparsity of the network. As it is mentioned in the

previous section, the Subnode vector representations of news features are learned based on

the skip-gram architecture by optimizing the updated objective function using SGD with

negative sampling [45]. With an adequately large news network that contains a wide range

of features, the Subnode mechanism of News2vec allows the vector representation of an

unseen news node directly computed by extracting news features and summing up their

corresponding vectors according to the feature to vector dictionary. See Github2 for the

2https://github.com/yema2018/News2vec

https://github.com/yema2018/News2vec
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codes and examples of News2vec.

Algorithm 1: Subnode

Input: S, the node sequence S = [k1, e1, k2, e2, · · · ] generated by random walks
Output: F , the embedding matrix with respect to news feature g

1 Rewrite the sequence as S
′

= [(g1, g2, · · · ), e1, (g3, g4, · · · ), e2, · · · ];
2 Initialize F ;
3 for s in S′, s 6= e do
4 for u in Context(s) do
5 NegativeSampling u′ from S′/{s};
6 J(F ) = − log p(u|

∑
g∈Gs F (g));

7 F := F − η ∗ tialJ
tialF

8 end

9 end
10 Return F

3.3 Experiments

Four experiments are implemented and explored in this section. In particular, we first vi-

sualize the News2vec embeddings in terms of the news vectors and feature vectors with the

dimension reduction plot and the correlation heat maps. Two downstream experiments, i.e.

the stock movement prediction and news recommendation, are then conducted to examine

the News2vec model in comparison with other established text/sentence embedding mod-

els. Overall, News2vec achieves state-of-the-art performances in these news-related tasks

which demonstrates its validity of addressing potential relevance of news via the network,

as well as the integrated consideration of the news features.

3.3.1 Visualization of News Vectors

In this section, the THUCTC3 (THU Chinese Text Classification) news data set is used

to train the vectors of news features, including the semantic features and four additional

features, namely type, words count, paragraph count and sentiment. We determine the

sentiment by counting positive words over negative words. There are 14 types of news in

the news corpus and we randomly take 6,000 pieces of news from each type as the training

3http://thuctc.thunlp.org

http://thuctc.thunlp.org
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set. In the test set, we additionally extract 1,000 pieces of news from each type. Based

on these 84,000 pieces of news in the training set, we learn a vector representation of 128

dimensions for each news feature. The news vectors in the test set are then computed,

whereas their dimension reduction plots are produced using the t-Distributed Stochastic

Neighbor Embedding (t-SNE).

Figure 3.3: Dimension reduction plots of test set news without and with the type feature

Figure 3.3 shows the dimension reduction results of news vectors in the test set. Ac-

cording to the right panel, a high level of clustering is observed, indicating that News2vec

allows the embedding of type information into news vectors after incorporating the type fea-

ture. Moreover, the distance between two clusters is in-line with the relevancy between the

clustered topics in reality. In particular, neighboring relationships are exhibited between

similar topics such as sports & lottery ticket, current affairs & society, stock & finance,

and fashion & entertainment, whilst the distance between less relevant clusters, such as

constellation & finance, game & education, is relatively larger. Nevertheless, the left panel

of Figure 3.3 shows that news embeddings significantly lose classification information once

vectors of the type feature are removed from the news vector, which shows that News2vec

enriches the news vector representation by the news network and the Subnode information.

3.3.2 Correlations of News Features

In this section, we further investigate the vector correlation between three news features,

namely the type, the words count and the sentiment. The correlation coefficients (i.e.,
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normalized cosine similarity) heat maps for each feature are displayed in Figure 3.4.

Figure 3.4: Correlations of news features (Upper panel: news type. Lower left: word count.
Lower right: sentiment.

The correlation heat map of news type features (upper panel) supports the conclusion

in Section 3.1. It is observed that vector pairs of close topics such as type : Stock and

type : Finance are highly correlated, indicating stock news and financial news share sim-

ilar contextual elements. Other highly correlated pairs include sports and lottery ticket

news, game and technology news, fashion and entertainment news, etc., whilst less relevant

topics show low correlations, such as real estate and constellation, sports and real estate.

According to the bottom left panel of Figure 3.4, a significant number of dark blocks are
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observed in the area from wc200 to wc3000 (wc200 means the news is less than 200 words

and wc2000 means the news is between 1000 and 2000 words), and there is a clear reduc-

tion of correlation once the news exceeds 3,000 words. As it is indicated by the word count

correlation heat map, news that has similar numbers of words is more likely to have similar

content. The correlation reduction from wc3000 to wc5000 suggests that there is a group

of news with specific content, that is often discussed in long articles. Meanwhile, the right

bottom of Figure 3.4 shows that news with close sentiment levels tends to have higher

correlations. As the sentiment moves from more positive to more negative, the correlation

decreases. Overall, the correlation heat maps show that the News2vec feature vectors are

reliable in terms of expressing Subnode information.

3.3.3 Stock Movement Prediction

Experimental settings

We use financial news (2009.10.19 to 2016.10.31) from Sohu 4 to predict the daily movement

of Shanghai securities composite index. The news feature vectors are trained based on

news from 2009.10.19 to 2015.12.31 and news vectors are computed by summing up these

feature vectors. There are five additional news features, namely month, week, sentiment,

words count and day.

The length of the walk is fixed at 100, the context size is 10, return hyper-parameter

(p in Equation (5)) and input hyper-parameter (q in Equation (5)) are both set to 1.

Predictive model

The predictive model is the long short term memory (LSTM) network [35] with self-

attention mechanism [106]. As shown in 3.5, the LSTM model has T time steps (i.e.,

T days) in total. At each time step, the input is the weighted average of news vectors in

that day. Weights are initialized at the beginning and updated by the gradient descent.

Based on the attention model, news that is closely related to the stock price movement is

assigned with higher weights.

In this paper, we use the previous 20 days’ (T = 20) news to predict the next day’s stock

index movement. The output layer is a Softmax classfier that indicates whether the index

goes UP (rise percent > 0.33%), DOWN (rise percent < −0.29%) or PRESERVE (−0.29%

4https://www.jianshu.com/p/370d3e67a18f

https://www.jianshu.com/p/370d3e67a18f
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< rise percent < 0.33%). We employ a rolling window with size = 20 and strider = 1 to

augment the sample. News before 2016 is used as the training set, whilst news after 2016

is used as the test-validation set.

Figure 3.5: LSTM model with attention mechanism

Results

As for the baseline models, we include several established embedding approaches to com-

pute news vectors in the experiment of the stock movement prediction:

Average BOW: News embedding is represented as the average of word vectors in

the news titles and bodies [37]. Word embedding is obtained by training the skip-gram

Word2vec model [68].

Doc2vec: Paragraph Vector [45]: News texts are represented as dense vectors by

the Paragraph Vector model[1].

Event embedding [21, 22]: Event tuples are extracted from headlines and represented

as vector representations by scoring the correct tuples higher than the corrupted tuples.
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In addition, we apply a sentence-level encoder BERT to encode news headlines as

another baseline model:

BERT [20]: Average pooling is used to get a fixed representation of a headline based

on the Chinese pre-trained model5.

The proposed News2vec model is implemented separately with and without the five

additional features (i.e. month, week, sentiment, words count and day):

News2vec-: News vectors are the summation of solely the semantic features (i.e.,

event elements).

News2vec+: News vectors are the summation of all news features including the se-

mantic and the five additional features.

Table 3.1: Acc and MCC Results of stock movements in the test set

Acc MCC

Average BOW(d = 128) 41.91% 0.1137
Doc2vec(d = 128) 43.90% 0.1484
Event embedding(d = 128) 43.76% 0.1439
BERT(d = 764) 45.83% 0.1442
News2vec-(d = 128) 44.68% 0.1664
News2vec+(d = 128) 46.24% 0.1936

In Table 3.1, test results are presented according to two measurements, namely the

accuracy (Acc) and the Matthews Correlation Coefficient (MCC). We find the News2vec

model outperforms BERT and all the other baseline models both in terms of the Acc and

MCC, with a lower dimension of 128 (The dimension of BERT embeddings is 764). As the

MCC suggests, Doc2vec, Event embedding and BERT produce stock movement predictions

of similar qualities as the news vectors generated by the three approaches uniformly limit

to the semantic information of news articles. As for news-driven stock price prediction, it

is more reasonable to take global contexts into account, such as having similar background

story or leading to the same event, and reflect the connection by embed similar values

in certain dimensions of the news vectors. In the case of the New2vec+ model, we find

that extra features contribute to the improvement of the MCC, indicating the New2vec

representations are able to capture the latent connections between news events. After

considering all news features, the results are improved by 0.028, showing their positive

5https://github.com/google-research/bert#pre-trained-models

https://github.com/google-research/bert#pre-trained-models
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effect on stock movement predictions. It is worth-mentioning that the New2vec model is

performed in an unsupervised manner as all features are extracted from common news text

without any artificial label or trained classifier. We believe that there is a large chance to

further improve the result once artificial labels such as the polarity are incorporated.

3.3.4 News Recommendation

Experiment settings

In this section, a news recommendation task is implemented based on the data of news

browsing records (2014.2 to 2014.3) using the news embedding models 6. The obtained

data set contains 16214 news browsing sequences in total, which is split into halfs for

testing and fine-tuning, respectively. The overall objective is to recommend news based on

the content by computing the cosine similarities of the news vectors.

News recommendations are made for each news by selecting the top ten news with the

highest vector similarities. The recommendation is considered to be successful as long as

the next browse in the sequence belongs to the ten news articles selected. We compute

the success rate for each sequence. The average success rate of all sequences is the final

evaluation result for the embedding model.

Since the news titles are absent in the data set, event elements are only extracted from

news bodies. As a result, we only use the text-level embedding models (i.e., Paragraph

Vector and Average BOW) as the baselines to compare with the News2vec model. We use

the trained news feature vectors in the previous section as the initial inputs of the new news

network (Sohu+rec). Moreover, half of the news sequences are employed to fine-tune these

vectors (Sohu+rec+seq). Due to the lack of information, only sentiment and word counts

are included as the extra news features together with the existing semantic features.

Evaluation of news recommendation

From Table 3.2, it is observed that the success rate improves significantly after fine-tuning

the news vectors with respect to the news browsing sequences. In comparison with Para-

graph Vector, News2vec (Sohu+rec) demonstrates no significant advantage without se-

quence fine-tuning (Sohu+rec+seq), indicating potential connections between news have

limited effect on this task. Nonetheless, News2vec achieves state-of-art performance after

6https://github.com/YLonely/web-data-mining

https://github.com/YLonely/web-data-mining
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Table 3.2: Evaluation results of news recommendation

Success rate

Paragraph Vector 4.31%
Average BOW 3.09%
Sohu (no extra features) 3.36%
Sohu+rec (no extra features) 3.69%
Sohu+rec+seq (no extra features) 6.73%
Sohu 2.95%
Sohu+rec 3.61%
Sohu+rec+seq 7.53%

sequence fine-tuning. On the other hand, the result of Paragraph Vector cannot be fur-

ther improved by fine-tuning. A possible explanation is that the Paragraph Vector model

assigns a distinct vector to each of the news articles, thus inconsistency between news in dif-

ferent news browsing sequences is easily created by the sequence-level fine-tuning. On the

other hand, fine-tuned News2vec embeddings carry the information of both the news net-

work and the browsing sequences by treating the browsing sequence as a special sequence

generated by the biased random walk. In addition, it is found that with fine-tuning, the

additional features tend to have positive effects on the recommendation task (see Sohu to

Sohu+rec+seq without extra features and Sohu to Sohu+rec+seq with extra features). As

a matter of fact, additional news features, such as the release time and type, are considered

to contain important information for news recommendation tasks. Unfortunately, due to

the lack of data, only two extra features are included in this experiment.

3.4 Related Works

To represent news articles as vectors, two possible ways are emerged. As news articles are

essentially textual data, one could use directly text/sentence embedding models to embed

news. Alternatively, news event embedding models are developed with the argument that

news stories describe events.

In terms of Text/Sentence Embedding, one of the simplest but robust baseline

model [18] is to perform numerical operations on the existing contextual word vectors [45].

SDAE [94] uses an auto-encoder to project text into a low-dimensional vector space, whilst

Paragraph Vector [45] learns the distributed representation of sentences and documents by
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predicting their contexts, i.e., words in the sentence/document. Other unsupervised models

include Skip-Thought [50], FastSent [34] and Quick-Though [63] and learn distributed

sentence-level representations regarding to the coherence among sentences across the text.

BERT [20] is a powerful pre-trained sentence encoder trained on unsupervised data sets

based on the masked language model and next-sentence prediction. As for supervised

learning models, most studies use a sentence encoder such as LSTM or Transformer [91] to

convert word vectors to sentence vectors. The sentence encoder is usually trained on NLP

tasks, which could be a single supervised learning task, such as InferSent [17] which uses

only the language inference data, or multiple tasks [11] which involve both unsupervised

and labeled corpus.

On the other hand, Event Embedding models emphasize the mining of event tuples

and their projections onto the vector space. Ding et al.’s Event Embedding model [21,

22] extracts event tuples E = (Actor, Predicate,Object) from headlines and learn dense

vector representations by scoring correct tuples higher than corrupted tuples. Basically,

the event embedding model is built on the knowledge graph embedding after decomposing

the knowledge graph into tuples of entities, relations, etc. Following Ding et al.’s idea,

news events could then be embedded with other knowledge graph embedding models such

as TransE [6], which exploits scoring functions based on the distance between h + r and

t. In addition to knowledge graph embedding, Event2vec [87] employs network embedding

to learn distributed representations of summarized news events by proposing an event

network where each news event node is connected to the associated entities, the event

type and the year of the event. The major limitations of Event2vec are threefold. First,

it only works for artificially organized database of already extracted events. Second, the

heterogeneous network it constructs raises difficulties in determining the weights of element

nodes of different types which leads to further imposed assumptions on the importance of

the elements. Third, it lacks a solution to represent unseen events based on the trained

network.

In addition to converting news into continuous vectors, structured Event Extraction

from news also allows statistical analysis based on the event type [31, 64]. In the early

studies of news data mining, the textual information of news is often regarded as high-

dimensional term vectors [83, 98, 103], which are then considered to lead to a great loss of

information [53].
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3.5 Conclusions

In this paper, we develop the News2vec model that learns the vector representation of news

articles by constructing a news network. The Subnode model is further proposed to allow

the embedding of unseen (news) nodes outside the existing network, at the same time to

enrich the news vector with its associated feature vectors. Compared to other established

text embedding models, the News2vec embedding contains not only the information of the

contextual relationship between news and its event elements, but also potential connections

as the network goes deeper. According to the dimension reduction plots and correlation

heat-maps, it is suggested that the news/feature vectors contain adequate information as

expected. Two downstream tasks, the news-driven stock movement prediction and news

recommendation, show the News2vec embeddings demonstrate the latent connections be-

tween news articles, and the integration of news features enhances the model’s performance

in comparison to the baseline models.



Chapter 4

Parallel Hierarchical Transformer

with Local and Global Cross

Attention

4.1 Introduction

Since [89] propose the sequence-to-sequence (seq2seq) model for machine translation, the

development of NLP applications has been almost inseparable from this framework. In

the field of abstractive summarization, the seq2seq model is first applied by [82] to sum-

marize sentences. With respect to the recent bloom of the attention mechanism and pre-

trained models, great effort has been made to improve neural machine summarization

upon extensions of seq2seq [27, 85, 111]. With the promising results on single documents

[85, 27, 48, 75, 58, 57], there are increasing recent attempts to study abstractive multi-

document summarization (MDS) in the seq2seq framework [60, 46, 26, 61, 65].

This study makes an exploratory attempt to improve the established abstractive sum-

marization models for multi-document summarization (MDS) utilizing the Transformer

[91] architecture. In comparison to single-document summarization, MDS brings chal-

lenges on the representation and coverage of its lengthy and linked sources. [60] propose a

two-stage model to first extractively select the important paragraphs, then train the con-

catenated flat sequences using the Transformer-decoder with memory compressed attention

(T-DMCA). Although the two-stage approach effectively reduces redundant information of

61
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source documents and retains salient information as inputs, it fails to take into account the

cross-document relationship in its summaries. On the other hand, [61] propose a Hierar-

chical Transformer (HT) with local and global encoder layers to represent cross-token and

cross-document information. Summaries are then generated based on a vanilla Transformer

[91] by concatenating document-information-enriched token embeddings to a flat sequence.

The essentially flat nature of the model leads to restrictions on learning dependencies of

input sequences longer than 2000 tokens [60].

As a solution to better process the long-term dependency and cross-document relation-

ship in MDS, this study develops a novel Parallel Hierarchical Transformer (PHT) with

the paragraph-level attention alignment. Operationally, PHT first creates the word- and

paragraph-level context vectors from a shared encoder, then generates summaries by the

the word- and paragraph-level multi-head attentions parallel to each other in the decoder.

In this way, PHT allows a pure hierarchical learning structure extended from the vanilla

Transformer [91] to learn both cross-token and cross-document relationships. The word-

and paragraph-level context vectors are then jointly used to generate target sequences in

order to address the long-dependency problem of the flat structure, thus to permit ex-

tended length of input document. Our experiments show the sole PHT model has already

the capacity to outperform other strong Transformer-based summarization models.

To address the coverage of the multi-document summaries, the decoding inference is

further modified according to the proposed attention-alignment algorithm. As the origi-

nal beam search prefers to generate typical and dull sentences to avoid making mistakes

[36], the paragraph-level attention alignment mechanism is designed to regulate generated

summaries to attend to source contents with the optimal coverage of salient information.

Inspired by Google’s Neural Machine Translation (NMT) [102], attention alignment taps

into the determination of the optimal attention distribution of source paragraphs on sum-

maries, by predicting the reference attention from the source. The score function of the

beam search is then refined in order to select summaries closest to the predicted opti-

mal attention distribution. With significantly elevated ROUGE scores, it is evident that

incorporating the attention-alignment mechanism further enhances the quality of gener-

ated summaries with minor computational cost-added from a shallow attention-prediction

model, of which inputs and labels are both extracted from the PHT model.

With regards to the core target of developing an enhanced paradigm for multi-document

summarization based on Transformer, the contribution of this study is twofold. First, the

hierarchical architecture with parallel multi-head attentions is designed to represent and
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exchange token- and document-level information for the generation of summaries based on

the lengthy inputs. The effectiveness of the PHT model is investigated relative to a variety

of summarization models, in terms of the ability to capture cross-document relationship,

computational efficiency and improvements on the summarization quality. Second, the

paragraph-level attention-alignment mechanism is proposed to guide the generated sum-

maries in the decoding stage to calibrate the original beam search according to the learned

attention distribution. The merits of attention alignment are not only reflected by pro-

moting the optimal coverage of the generated summary to the source, but also its practical

value of low computational cost and potential to be adopted by other attention-based

summarization models.

The remaining of the paper is organized as follows. Section § 4.8 discusses the related

work. Section § 4.2 and § 4.3 introduce the methodology associated with the Parallel

Hierarchical Transformer and the attention-alignment mechanism. Section § 4.5 and § 4.6

describe the experimental setups and analyze the results. Section § 4.9 concludes.

4.2 Parallel Hierarchical Transformer

This section discusses the design of the Parallel Hierarchical Transformer for MDS. Figure

4.1 graphically presents the architecture of the proposed PHT. The encoder and decoder

are displayed the second and third blocks on the left (highlighted in purple), respectively.

The process of generating summaries is described as follows.

4.2.1 Encoder

As shown in Figure 4.1, the PHT encoder is shared by all paragraphs and consist of two

major units, i.e. the Transformer encoder and the additional Multi-head Attention Pooling

layer, to obtain the token- and paragraph-embeddings, respectively. To be specific, context-

aware word embeddings Cp ∈ Rn×d in the paragraph p of length n are first produced as the

output of the Transformer encoder TransE(·) based on the summation of word embeddings

Wp ∈ Rn×d in the paragraph and their fixed positional encodings E ∈ Rn×d [91].

Cp = TransE(Wp +E) (4.1)

The context-aware word embedding is then used to compute paragraph embeddings as well

as being a part of inputs to the PHT decoder to calculate word-level cross attention.
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Figure 4.1: Model flowchart with two input paragraphs. Middle and right: PHT encoder
and decoder (See Section § 4.2). Left: prediction model of the optimal attention distribu-
tion (See Section § 4.3).

At the second step, PHT achieves paragraph embeddings based on Cp using Multi-head

Attention Pooling:

headhp = HeadSplit (CpW1) (4.2)

φhp =
(

Softmax(headhpW2)
)>
headhp (4.3)

φp = W3

(
heads

‖
h=1

φhp

)
(4.4)

φp := LayerNorm (φp + FFN(φp)) (4.5)

where ‖ represents concatenation, and W1 ∈ Rd×d, W2 ∈ Rdhead×1, W3 ∈ Rd×d are

linear transformation parameters. Besides, headhp ∈ Rn×dhead denotes the hth attention

head, and φhp ∈ Rdhead is paragraph embedding of the head. These head embeddings are

concatenated and fed to a two-layer feed forward network (FFN) with Relu activation

function after linear transformation. The paragraph embedding is another input to the
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decoder for obtaining paragraph-level cross attention, together with the context-aware

word embedding.

4.2.2 Decoder

The PHT decoder accepts three classes of inputs, namely the target summary, context-

aware word embeddings in the pth paragraph Cp ∈ Rn×d where n is the length of the

paragraph, and paragraph embeddings Φ ∈ Rm×d where m is the number of paragraphs.

Let X(I) ∈ Rk×d denote the output of decoder part I, where k is the length of target

sequence or the number of time steps. Note that both the word embedding and vocabulary

in the decoder part are shared with the encoder.

Different from the token-level ranking encoding [61], we intend to incorporate the in-

formation of paragraph importance to their embeddings. Specifically, ranking encoding1

R ∈ Rm×d created by the positional encoding function [91] are added to the original

paragraph embeddings:

Φ := Φ +R (4.6)

PHT decoder consists of three parts. Similar to a vanilla Transformer [91], the first and

last parts of the PHT decoder are the masked multi-head attention and the feed forward

network, whereas the second part includes two parallel-computing cross attention models

to respectively capture the mutual information the target summary shares with source

paragraphs and source words.

Paragraph-level cross attention (global cross attention). This cross attention

model is to calculate the attention distribution that the decoder assigns to the para-

graphs at each step, and at the same time represents the cross-paragraph relationships

as paragraph-level context vectors. The query is the output of part I: X(I) ∈ Rk×d where

k is the length of the target sequence. The key and value are context-aware paragraph

embeddings Φ.

X〈para〉,A〈para〉 = MultiHead
(
X(I),Φ,Φ

)
(4.7)

where X〈para〉 ∈ Rk×d is the weighted summation of paragraph embeddings, and A〈para〉 ∈
Rk×m is the paragraphs attention weights 2.

Word-level cross attention (local cross attention). This cross attention mech-

1We directly use the ranked paragraphs provided by [61].
2In this paper, average pooling is adopted to obtain the final attention from multi-head attention.
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anism aims at modeling how the decoder attends to source tokens of the paragraph. It

could be considered as the local cross attention of each paragraph since their calculations

of different paragraphs are independent. By comparison, paragraph-level cross attention

refers to the global cross attention which captures the dependencies among paragraphs.

Since the calculations of the two cross attention are based on different encoder outputs,

they are non-interfering and parallel. Finally, the mechanism produces the word-level con-

text vectors for each paragraphs. The query of the self attention is X(I), whilst the key

and value are context-aware word embeddings Cp.

X〈word〉
p = MultiHead

(
X(I),Cp,Cp

)
(4.8)

where X
〈word〉
p ∈ Rk×d denotes the word-level context vectors of all time steps in the pth

paragraph.

Multi-level attention fusion. Since the word-level cross attention model need to

be implemented for each paragraph independently, there are totally m word-level con-

text vectors X
〈word〉
p , equivalently denoted as X 〈word〉 ∈ Rk×d×m. To fuse it with the

paragraph-level context vectors X〈para〉 ∈ Rk×d and part I hidden states X(I) ∈ Rk×d, we

need to integrate m groups of context vectors X 〈word〉 to one group. The straightforward

way is to use mean pooling or max pooling, but both may cause loss of context infor-

mation. An alternative approach is the adaptive attention pooling but not conductive to

the computational efficiency. To handle the two problems, we directly integrate X 〈word〉

with knowledge learned by the paragraph-level cross attention model, i.e., using paragraph

attention A〈para〉 to weight the context vectors X
〈word〉
p of the corresponding paragraph.

The related matrix calculation process is as follows:

X〈int〉 = X 〈word〉A〈para〉, (4.9)

where X 〈word〉 ∈ Rk×d×m, A〈para〉 ∈ Rk×m×1, and matrices are multiplied in the last two

dimensions. The output of part II X(II) is expressed as:

X(II) = LayerNorm
(
X(I) +X〈para〉 +X〈int〉

)
. (4.10)

With the outputs of part II, we are able to proceed to part III and compute the final

probability distributions.
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4.3 Attention-Alignment Mechanism

To further enhance the coverage of multi-document summarization, this section introduces

the attention-alignment mechanism to guide the text decoding. The algorithm first predicts

the optimal attention distribution of source paragraphs, then regulates the beam search

according to the scoring function derived from the predicted attention distribution. Note

that the attention-alignment mechanism is implemented after the training of PHT, in order

to allow the extraction of the attention distribution from the trained parameters.

4.3.1 Learn from Neural Machine Translation (NMT)

The idea of the Attention-Alignment is inspired by Google’s NMT [102], where candidates

in the beam search are re-ranked according to a refined score function with the length

normalization and coverage penalty. The penalty function is based on the assumption

of one-to-one alignment in the translation so that
∑T

t=1 αt,i = 1, where αt,i indicates the

attention weight of the tth translated word on the ith source word. To penalize the situation

that source words are not fully covered, i.e. the sum of attention weights is less than one,

the coverage penalty is defined as:

cp =
n∑
i=1

log

(
min

(
T∑
t=1

αt,i, 1

))
(4.11)

This assumption is not tenable for summarization as uniform coverage is no longer

required. Pointer-generator [85] re-defines the coverage loss for summarization as:

cpt =
∑
i

min

(
αt,i,

∑
t′<t

αt′,i

)
(4.12)

where αt,i is the word-level attention distribution and
∑

t′<t αt′,i is the coverage vector. In

this way, repeated attention is penalized according to the overlap between the attention

distribution and the coverage til time step t.

[55] further corporate this concept to their structural-coverage regularization, forcing

the generation to focus on different source sentences to raise the diversity of the summary.
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In detail, the structural-coverage is defined as:

strCov(αt) = 1−
∑
i

min

(
αt,i,

∑
t′<t

αt′,i

)
(4.13)

which is rather similar to the coverage function of Pointer-generator [85] except that [55]

consider the sentence-level attention αt,i .

In summary, both the Pointer-generator [85] and structural-coverage regularization [55]

build their models based on the principle of searching for words/sentences that have pre-

viously attracted less attention to avoid repetition, thus to increase coverage. Comparing

NMT’s coverage penalty with the coverage functions in the aforementioned models [85, 55],

the restriction of summarization is rooted in the absence of the optimal attention distribu-

tion of contents, that maps a holistic layout of the summary with comprehensive coverage.

This motivates us to develop the attention-alignment inference to address this matter.

4.4 Paragraph-level Attention Alignment

4.4.1 Optimal Attention Distribution

To explicitly express the coverage of source content, the first step of attention alignment is

to use the encoded paragraph embeddings to predict the optimal attention distribution of

input paragraphs. Specifically, the attention prediction model is trained from the label of

paragraph-level attention distribution η ∈ Rm (m is the number of paragraphs) calculated

from paragraph attention weights A〈para〉 in Eq. 4.7 and

A〈para〉 =


α1,1 . . . α1,m

. . .
...

αk,1 αk,m

 (4.14)

where αt,p ∈ A〈para〉 denotes the attention weight of the tth summary word on the pth

source paragraph3.

ηp =

∑k
t=1 αt,p∑m

p=1

∑k
t=1 αt,p

(4.15)

3In the case of multiple decoder layers, the final paragraph attention are the summation of paragraph
attentions in each layer.
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η = [η1, · · · , ηp, · · · , ηm] (4.16)

Since the reference summary is known for training data, η is regarded as the optimal

attention distribution and serves as the training label of the attention-prediction model.

In other words, the labelling process only utilizes paragraph attention weights from the

already-trained PHT parameters. Besides, the inputs of the attention-prediction model

are extracted from the PHT, which are paragraph embeddings Φ in Eq. 4.6. The training

process is displayed in Figure 4.1.

As for the construction of the attention prediction model, paragraph embeddings are

first input to a Transformer-encoder to obtain the context-aware paragraph embeddings in

order to make full usage of the context information between paragraphs. The context-aware

paragraph embeddings are then linearly transformed and converted to m (i.e. the number

of paragraphs) units before normalized by softmax. Given the nature of the prediction is

regression, mean square error (MSE) is used as the loss function.

During inference, the source paragraphs are first fed to the PHT encoder to obtain the

paragraph embeddings Φ, based on which the trained attention-prediction model predicts

the optimal attention distribution η̂.

4.4.2 Attention Alignment Score

In line with NMT, the score function of the pure beam-search is modified taking into

account the predicted optimal attention distribution. With length normalization and the

attention-alignment score, the score of each candidate hypothesis is given by:

score(y) =
log (p(y|x))

|y|
+ β ∗ attAlign(y) (4.17)

attAlign(y) =

m∑
p=1

log
(

min
(
η(y)
p , η̂p

))
(4.18)

where x denotes the source, y refers to a candidate hypothesis, and η̂p ∈ η̂. Notably,

different from the ηp of reference, η
(y)
p is obtained from the generated candidate summary.

This predicted optimal paragraph attention η̂p is compared with the paragraph atten-

tion η
(y)
p in the real-time generation. Given any deviation between the real and optimal

attention distributions, paragraphs that are assigned with underestimated attention place

negative impacts on the overall scoring, whereas those with overestimated attention re-
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ceive a constant score of η̂p. Regarding the length normalization, we direct use the length

|y|, rather than lengtha [102], as it is empirically proven to be more suitable for longer

summaries.

4.4.3 Why Paragraph Attention?

An alternative way to obtain the optimal attention distribution is to use the paragraph

ranking generated by an extractive model that predicts the probability each source sen-

tence/paragraph appears in the final summary. However, the prediction of extractive

probabilities is a separate unit from the summarization model which results in problematic

inconsistency with the paragraph attention during the decoding process.

Figure 4.2: Box plot of paragraph attention with different initial rankings.

To support this argument with empirical evidence, Figure 4.2 randomly selects 10,000

training samples to compare the paragraph rankings [61] with the corresponding normalized

paragraph attention by the trained HT decoder. In general, the decoder assigns higher

attention to paragraphs with higher rankings. However, the outliers suggest that there

are several cases of different judgements by the two approaches, which lead to potential
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conflicts during the inference given the inconsistent measures between the optimal and real

attention. Therefore, we make our prediction model to learn paragraph attention from the

trained decoder directly. These attentions are considered optimal as the training targets are

gold summaries. The prediction model maps the connection between source documents and

optimal attention distributions, to allow the predicted attention distribution to maximally

approach the optimal attention distribution if the target is unknown.

In addition to the inconsistency problem, it is easier to acquire the attention weight

since attention exists in almost all neural abstractive summarization models, among which

many (especially single-document summarization) do not require extractive probabilities.

Besides, the attention-prediction model directly extracts input vectors and labels from the

summarization model, whereas the extractive method requires extra effort on representing

inputs and making labels.

4.5 Experiment Setup

4.5.1 WikiSum Dataset

Data sparsity has been the bottleneck of neural MDS models til WikiSum [60] came along.

In this study, we use the ranked version of WikiSum provided by [61]. Each sample contains

a short title, 40 ranked paragraphs with a maximum length of 100 tokens as source inputs,

and a target summary with an average length of 140 tokens. Consistent with [61], the

dataset is split with 1, 579, 360 samples for training, 38, 144 for validation and 38, 205 for

test. Subword tokenization [5] is adopted to tokenize our vocabulary to 32, 000 subword

units to better represent unseen words.

4.5.2 Configuration

The proposed PHT is trained on a single 2080ti with 0.3 dropout rate and an Adam

optimizer of 16,000 warm-up steps. We stack 3-layer encoder-decoder of the PHT with

256 hidden units, 1024 FFN units and 4 headers, top 3000 tokens (30 paragraphs, 100

tokens) are used to train the PHT for approximately 600, 000 steps. Checkpoints are saved

every 20, 000 steps and the best result on the validation set is used to generate the final

summary. All parameters are randomly initialized including token embeddings. In the

decoding process, we take 3000 tokens as inputs of PHT to generate summaries. Since the

fixed positional encodings are used, so the attention-prediction model can accept inputs
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of dynamic length. We set the beam size to 5 and terminate the inference til the length

exceeds 200. In addition, we disallow the repetition of trigrams, at the same time block

two tokens (except commas) before the current step to prevent degeneration situations.

For the attention prediction model, we construct a two-layer Transformer encoder with

dropout rate 0.5. The complete set of the training data is used to train the attention

prediction for approximately 100, 000 steps.

4.5.3 Baselines

Summarization model

• Lead [69] is an extractive model that extracts the top K tokens from the concate-

nated sequence. In MDS, we combine paragraphs in order and place the title at the

beginning of the concatenated sequence.

• LexRank [25] is a widely-used graph-based extractive summarizer.

• Flat Transformer (FT) is the vanilla Transformer encoder-decoder model [91]. We

adopt a 3-layer Transformer in this study.

• T-DMCA [60] is a Transformer-decoder model that splits a concatenated sequence

into segments, and uses a Memory Compressed Attention to exchange information

among them.

• Transformer-XL [19] is a language model that excels in handling excessively long

sequences. This model improves the vanilla Transformer-decoder with the recurrent

mechanism and relative positional encoding.

• Liu’s Hierarchical Transformer (Liu’s HT) [61] uses a hierarchical structure to

enrich tokens with information from other paragraphs before inputting to the Flat

Transformer.

• GraphSum [54] is an graph-based hierarchical transformer, where graph neural

network is used to capture cross-document relationships.

• Parallel Hierarchical Transformer (PHT) is the model proposed in this paper.

Different from Liu’s HT, our hierarchical structure could compute token-level and

paragraph-level dependencies, thus not requiring FT.
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Decoding strategy

• PHT with vanilla beam search. Beam search is a well-established baseline that

is popularly-used in text generation tasks of all sorts.

• PHT with the structural-coverage (strCov). As the original study [55] summa-

rizes single document using a hierarchical decoding algorithm to first decode sentence

by sentence then realize the sentence word by word, we need to modify the regular-

ization to adjust to the word-by-word inference. Therefore, we re-define αt,i (in

Eq. 4.13) from the attention of the tth generated sentence on the ith source sentence

to the tth generated word on the ith source paragraph. To obtain an independent ob-

servation on the effect of the structural coverage, we skip the structural-compression

regularization and other modifications on the loss function as discussed in [55].

• PHT with extractive probability (extProb) also adopts attention alignment

mechanism but replaces the learned optimal attention distribution η̂ by the normal-

ized extractive probabilities of paragraphs. We use the extractive method in Liu’s

HT to calculate these probabilities.

• PHT with the attention alignment mechanism (attAlign) is PHT combined

with the proposed attention-alignment mechanism. We probe the optimal value

of the attention-alignment coefficient β in Eq. 4.17 by a numerical comparison for

β ∈ [0.2 : 0.2 : 1] on ROUGE. The result of development set suggests the optimal

value of β is approximately 0.8 for the Wikisum dataset.

4.6 Results

4.6.1 Automatic Evaluation

In this section, we adopt a group of widely-used evaluation metrics ROUGE [59] to evaluate

the MDS models. ROUGE-1 & -2 and ROUGE-L F1 scores are reported in Table 4.1

assessing the informativeness and fluency of the summaries, respectively.

As shown in Table 4.1, the extractive model Lead exhibits overall inferior performance

in comparison to the abstractive models, except that it produces a 0.11-higher ROUGE-L

than the Flat Transformer. Although Liu’s HT improves FT with a hierarchical structure,

it fails to outperform the two extended flat models, i.e. T-DMCA and Transformer-XL,
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Table 4.1: Average ROUGE F1 scores of different summarization models.

Model ROUGE-1 ROUGE-2 ROUGE-L

Lead 36.40 16.66 32.95

FT 40.30 18.67 32.84
T-DMCA 41.09 19.78 33.31
Transformer-XL 41.11 19.81 33.72

Liu’s HT 40.83 19.41 33.26
1-layer PHT 41.02 19.82 33.28
PHT 41.99 20.44 34.50
PHT + attAlign 42.58 20.84 35.66

that are developed to learn lengthier inputs. Moreover, T-DMCA and Transformer-XL

report comparable results in terms of the informativeness (ROUGE-1 & -2), whilst the

latter outperforms the former by 0.41 in terms of the fluency (ROUGE-L).

Further, the proposed PHT model shows promising ROUGE results. Benefited from

the pure hierarchical structure that allows prolonged token inputs, PHT outperforms Liu’s

HT in all domains of the ROUGE test. Moreover, the models’ potential to be deepened

is suggested by enhanced results of the 3-layer architecture over the 1-layer architecture.

The ultimate 3-layer PHT stably surpasses T-DMCA and Transformer-XL, that are also

tailored to handle long input sequences of 3,000 tokens, due to its hierarchical processing

of token and document-level information.

Table 4.2: Average ROUGE F1 scores of different decoding strategies.

Parallel HT ROUGE-1 ROUGE-2 ROUGE-L

+ vanilla beam search 41.99 20.44 34.50
+ strCov [55] 41.74 20.25 33.88
+ extProb 42.17 20.46 34.79
+ attAlign 42.58 20.84 35.66

Table 4.2 shows the average ROUGE F1 scores of all model combinations investigated.

The attention-alignment mechanism promotes the quality of summaries by raising ROUGE-

1 by 0.59, ROUGE-2 by 0.4, ROUGE-L by 1.16 for PHT with beam search. Technically,

the attention alignment mechanism could be applied to all hierarchical models with an

attention mechanism. Further, Table 4.2 provides empirical evidence to Section § 4.4.3,
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suggesting that extractive probabilities (extProb) are not as good protocols as the para-

graph attention for the optimal attention distribution, given the marked decline in the

ROUGE scores in comparison to the proposed attention-alignment mechanism.

Besides, the structural-coverage mechanism hinders the performance of MDS with re-

duced ROUGE scores. We print its beam-search scores and find consecutive zeros as

the generated sequences get longer, resulted from the tth word attention on the ith para-

graph (αt,i) remains lower than the its cumulative attention (
∑

t′<t αt′,i). Therefore, it is

concluded that the structural coverage regularization is not particularly suitable for word-

by-word summarization with lengthy inputs, that come along with multiple documents.

4.6.2 Human Evaluation

Table 4.3: Human evaluation results.

Model Informativeness Fluency Conciseness Factual consistency

T-DMCA 3.69 3.66 3.82 3.04
Transformer-XL 3.57 3.71 3.77 2.88

Liu’s HT 3.34 3.76 3.75 2.82
PHT 4.11 3.97 3.81 3.11
PHT with attAlign 4.39 4.22 3.95 3.35

Average 3.77 3.89 3.84 3.05

To provide a better comparison between the MDS models, we select 4 representa-

tive summarization models with the best ROUGE performances in the human evaluation,

namely T-DMCA & Transformer-XL (flat structure), and Liu’s HT & PHT (hierarchical

structure), and two decoding strategies including the original Beam search and attention

alignment.

In the survey, multi-document summaries are scored from four perspectives, includ-

ing (A) Informativeness (Does the summary include important information in the gold

summary), (B) Fluency (Is the summary fluent and grammatically-correct), (C) Con-

ciseness (Does the summary avoid repetition and redundancy), (D) Factual consistency

(Does the summary avoid common sense mistakes such as wrong date, wrong location, or

anything else against facts). We specify five ratings from Very poor (1) to Very good (5)

to assess criteria (A)-(C), and three ratings of Much better (2), Better (1), and Hard to
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score (0) to assess criterion (D). Twenty examples are randomly selected from generated

summaries. Fifteen human evaluators participated in the experiment.

The results are displayed in Table 4.3. The general observation is twofold. A) Discrep-

ancy exists in the ROUGE and human evaluations. For instance, T-DMCA tends to yield

higher human scores relative to Transformer-XL although ROUGE suggests the opposite.

Given the merits and weaknesses of the different metrics, we focus on discussing results

that exhibit consistency in different parts of evaluation. B) Given the lowest average mark,

factual consistency appears to be the bottleneck of abstractive summarization models that

hinders human experience on the machine generated summaries.

As far as the summarization models are concerned, PHT achieves the highest human

evaluation scores in all four areas investigated. On the other hand, the other hierarchical

baseline, Liu’s HT, turns to be less competitive than the flat structures in terms of infor-

mativeness, conciseness and factual consistency, possibly due to its length limit of input.

With regards to the optimal attention distribution of summaries, attention-alignment is

proven effective in improving the hierarchical model.

4.7 Analysis

Through the preliminary analysis on PHT, we intend to obtain an initial understanding of

the hierarchical model on its capacity to better express the cross-document relationship,

as well as the associated computational cost.

4.7.1 Cross-document Relationship

Cross-document relationships could be reflected by the distribution of paragraph atten-

tions. If a model assigns higher attention weights to more important paragraphs and vice

versa, the model is believed to have greater capacity of capturing cross-document relation-

ships. To analytically assess the models’ performance in this aspect, we use paragraph

attentions of reference summaries as the gold attention distribution, and its cosine similar-

ity to the attention distribution of generated summaries as the evaluation metric. To model

the paragraph attention of the reference, we compute the normalized tf-idf similarities be-

tween the gold summary and each input paragraph as the gold attention distribution. For

the baseline models, the summation of token weights in each paragraph are computed to

indicate each paragraph’s attention, whilst PHT returns the paragraph attention distribu-
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tion directly from its paragraph-level multi-head attention.

Table 4.4: Average cosine similarities between attention distributions of generated sum-
maries and the reference.

Model Cosine similarity

Lead 0.8098

Flat Transformer 0.8143
T-DMCA 0.8654
Transformer-XL 0.8447

Liu’s HT 0.8769
PHT 0.8936

As suggested by Table 4.4, hierarchical structures place significant improvements on

the flat models in learning cross-document dependencies by assigning paragraph attentions

in a way that is closer to the gold summaries. Moreover, PHT generates summaries of the

greatest similarity 89.36% with the gold summaries, most likely due to its paragraph-level

multi-head attention in addition to the token-level one, allowing the exchanging of cross-

document information.

4.7.2 Computational Efficiency

This section assesses the computational efficiency of PHT comparing to other neural ab-

stractive models in three aspects, i.e. the memory usage, parameter size and validation

speed. We uniformly hire the 3-layer architecture and 1600 input tokens in this part to

ensure fairness. During the experiment, we increase the batch size until out of memory in

a 2080ti GPU, and the model with the maximum batch size occupies the lowest memory

space. To measure the parameter size, we count the number of parameters in the neural

network. Finally, we run each trained model in the validation set (38,144 samples), and

the average time consumed in each checkpoint is used to evaluate the speed of forward-

propagating in the model.

As indicated by higher batch sizes in Table 4.5, models in the hierarchical structure

(second panel) appears to be overall more memory-saving than those in the flat struc-

ture (first panel), with higher requirements on the parameters. In particular, models

based on the Transformer-decoder, i.e. T-DMCA and Transformer-XL, demonstrate abso-

lute superiority in reducing the parameter size. As for the speed of forward-propagating,
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Table 4.5: Computational efficiency.

Model Max Batch Size Parameters (MB) Validation Speed (s)

Flat Transformer 11 165.0 634
T-DMCA 10 131.1 656
Transformer-XL 8 130.4 489

Liu’s HT 11 190.8 639
PHT 17 182.4 601

Transformer-XL dominates due to its recurrent mechanism, whereas others share close

performance in the inference speed. Between the two hierarchical models, PHT is proven

to outperform Liu’s HT in all three aspects, due to its parallel, rather than sequential,

computation of the word & paragraph-level attention mechanisms.

4.8 Related Works

In general, hierarchical models are designed with strengthened capacity to handle lengthy

inputs, which have been widely used in document classification [106] or large-document

summariztion [55] tasks. In the filed of MDS, hierarchical structures allow not only to

represent massive source inputs, but also to capture cross-document relationships. [26]

use a hierarchical RNN structure with Maximal Marginal Relevance [10] to better select

salient paragraphs and reduce repetitions in the summary. [111] pre-train a hierarchical

BERT [20] by masking a sentence and using other sentences to generate the masked one.

[61] propose a Hierarchical Transformer for multi-document summarization to enrich token

embeddings with cross-document relationships. A vanilla Transformer [91] is then used to

conduct summarization after combining the enriched token embeddings in a flat sequence

[60].

With the aim to improve the quality of seq2seq summaries, existing studies tend to

focus on the coverage of salient contents. [60] use a text-ranking mechanism to extract

important paragraphs, which are later input to the neural abstractive model. [27] train a

selector to predict the phrases ought to appear in the final summaries and use them as sum-

marization inputs. [12] select and compress salient sentences that are later re-organized in

the summaries. In addition to the two-stage extraction-abstraction approaches, attempts

are made to build hybrid summarization models by incorporating the sentence-level atten-
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tion [66, 15, 108], graph neural networks [90, 57, 54], Maximal Marginal Relevance [46, 26]

or reinforcement learning [107]. Additionally, [49] add representations of key words to

the summarizaiton model. [38] use an abstractive summarization model to concatenate ex-

tracted key phrases. Moreover, some studies suggest to improve the summarizaiton quality

by modifying the objective function to encourage salient words [71] or to penalize repet-

itive generations [85, 99]. More details on representative methods of this sort and their

differences with attention alignment have been discussed in Section § 4.3.1.

4.9 Conclusions

This study develops a Parallel Hierarchical Transformer with attention alignment inference

for multi-document summarization. Using the Wikisum dataset, we empirically show that

the proposed hierarchical architecture with token- and paragraph-level multi-head atten-

tions excels in capturing the cross-document relationship of lengthy sources, and generates

summaries of greater quality than other existing Transformer-based models. Further, the

paragraph-level attention-alignment algorithm is designed to address the coverage issue by

predicting the optimal attention distribution according to the multi-document sources. In

theory, the decoding strategy has the potential to accommodate all seq2seq summarization

models in the presence of the attention mechanism. Our experiment shows that atten-

tion alignment places significant improvements on the summaries generated by the original

beam search.

Given the fact that the attention mechanism is nowadays almost a necessity in the

seq2seq architecture, the authors target at investigating the capacity of word-level attention-

alignment in the future study. The application of word-level attention alignment is no

longer confined to the hierarchical architecture and can be adopted to all attention-based

seq2seq models including the pre-trained model BART [48]. Different from paragraph-level

attention alignment, word-level attention alignment though requires the processing of nu-

merous attention units, bringing challenges in obtaining the optimal attention distribution

where a dynamic scoring function might be developed for text decoding.
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Decoding with Awareness of

Global Attention Distribution

5.1 Introduction

As the barriers exist from the auto-regressive design of neural probabilistic text generators

to predicting the global optimum directly [89], the heuristic algorithm beam search that

factorizes global optimization to multiple local optimizations, has been popularly used for

text decoding [67]. In the original beam search setting, the global optimum is a hypothesis g

of the highest probability among all possible sentences, and consists of words in vocabulary

V. Given the global optimum at step t denoted as g≤t, the local optimums l≤t refer to K
candidate sequences with the highest probabilities at each step. While it is necessary to

compromise on the beam size K � V to ensure text quality [16, 70, 67] and search efficiency,

beam search suffers from a major limitation due to its local property. Concretely, assuming

that the global optimal hypothesis is within the K local optimal hypotheses of the highest

probabilities, i.e. p(g≤t) ≥ p(l≤t), for all t until the termination T , it operates solely with

the local information available at each step. In practice, such assumption may however

fail in the case that the probability of the global optimum at step τ < T is less than those

of the local optimums, i.e. p(g≤τ ) < p(l≤τ ), but is adjusted to a higher level in the later

steps, p(g>τ |g≤τ ) > p(l>τ |l≤τ ) and p(g≤τ )p(g>τ |g≤τ ) > p(l≤τ )p(l>τ |l≤τ ). This often leads

beam search to get stuck in the local optimum from step τ onward in generating texts.

To cope with this limitation, this study proposes a calibrated beam-based algorithm

with global awareness at all searching steps. Generally, our novel algorithm is imple-

80
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Figure 5.1: (a) Attention distribution is composed of the summation of cross attention
on the same-colored lines, distinguished from that of different-colored lines which always
equals 1 due to softmax. (b) Local attention gradually increases as the decoding proceeds.
(c) Desired situation: growing local attention has been lower than global attention during
decoding and exactly reaches it at the end.

mented in two phases. Before the beam search (Phase I), the global attention distribution

is predicted in order to be included as a protocol to calibrate beam search at each step,

encouraging the generated hypotheses to attend to the source in a more near-global opti-

mal way. Specifically, the global attention distribution describes how all reference tokens

should assign the attention to each source token (illustrated in Figure 5.1.a), which could

be predicted from the source by training an attention-prediction model. The training is

fairly straightforward and resembles a sequence tagging task [39], except that the pre-

dicted attention distribution from the source is a regression result. There are several

advantages of using the attention distribution as the global protocol. 1) Attention distri-

butions are sensitive to the decoder input, suggesting that any input to the decoder leads

to a unique attention distribution with fixed model parameters; 2) attention distributions

are accessible for almost all text generation tasks thanks to the recent advances in atten-

tion models [78, 20, 91]; 3) relying on the source only, the global attention distribution

can be predicted before beam search, thus offering a rigorous mechanism to calibrate a

global-aware beam search.

During beam search (Phase II), we develop a novel global scoring mechanism composed

of attention scores and length rewards to guide beam search based on the predicted global
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attention distribution. As one main theoretical result, we show that the attention score

can be considered as the probability that generated texts attend to sources in line with

the predicted global attention distribution. Specifically, the generated tokens in each step

update the local attention distribution to source tokens dynamically, where the attention

values grow monotonically as the generation proceeds (see Figure 5.1.b). Since the desired

situation is that the local distribution reaches exactly the global distribution at the ter-

minal step, we regulate the inference by discouraging local attention from exceeding their

corresponding predicted global attention at all steps.

With regards to the core target to investigate the possible paradigm that improves beam

search with global awareness during decoding, contributions of this study are summarized

as follows:

• We argue that the limitation of beam search roots from its defect in finding the

global optimal hypothesis. We improve the algorithm by proposing a global protocol

to regulate beam search step-by-step. This paper is the first to predict and deploy

the global attention distribution to calibrate the inference in a rigorous way, thus

returning a hypothesis that attends to source tokens in a more near-global optimal

manner. In contrast, previous works [102, 27, 55, 85, 56] try to use attention distri-

butions to improve beam search, but ignore that the global attention distribution is

predictable.

• A novel global scoring mechanism is designed to evaluate the generated sequences at

each step based on the desired situation described in Figure 5.1.c. As theoretically

justified, its major component can be elegantly integrated into beam search in the

form of a probability so that merely O(K) of the time complexity is increased in each

step (see Section § 5.3.1 for more details).

• The proposed algorithm with global awareness manifests a robust and plug-and-play

property in enhancing beam search for neural abstractive summarization. Without

requiring any model or parameter modification, the global-aware inference shows ex-

cellent performance in generating meaningful texts, even if the attention distribution

is corrupted or not of its own. Further, it is identified that summaries generated

by global-aware inference are both higher-quality and different from beam search

hypotheses (see Global-aware in Table 5.1). More interestingly, we find that the gen-

eration style of a dataset could be transferred by the designated global attention
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distribution. For instance, summaries of higher abstractness for CNN/DM could be

generated by only replacing its global attention distribution with a highly abstractive

distribution during inference, as presented in Global-aware† of Table 5.1.

• On the empirical side, we show that the proposed global-aware inference can stably

and significantly boost two state-of-the-art summarization models BART [48] and

PEGASUS [109] to produce higher quality summaries on nine datasets, even if only

the empirical hyper-parameters are used.

Table 5.1: Use BART [48] fine-tuned in CNN/DM to generate summaries. Global-aware
uses the attention distribution learned from CNN/DM, while Global-aware† takes the at-
tention distribution learned from XSUM.

Beam search President Obama says climate change is a public health issue that affects all of us . Obama:
”No challenge poses more of a public threat than climate change” Obama: ”Millions of people
would lose their health insurance” if Affordable Care Act is not upheld . Obama: ”I am not
anticipating the Supreme Court would make such a bad decision”

Global-aware President Obama says climate change is a public health issue that affects all of us . He says
the average American can do their part to reduce their own carbon footprint . Obama did not
appear particularly concerned about the Supreme Court challenge to the Affordable Care Act
.

Global-
aware†

President Barack Obama says climate change is a public health issue . He says the average
American can do their part to reduce their carbon footprint .

5.2 Preliminaries

The proposed decoding strategy is applied in BART [48] and PEGASUS [109] to perform

summarization. BART is a pre-trained seq-to-seq model whose structure essentially follows

a vanilla Transformer encoder-decoder [91]. PEGASUS has a similar structure but is pre-

trained on a larger dataset differently. Notably, the fine-tuned parameters of both models

are downloaded from HuggingFace Models1 and are fixed in all subsequent operations,

where “fine-tuned” means the pre-trained model has been fine-tuned on a specific dataset.

5.2.1 Beam Search

Since the decoder of the seq-to-seq model is an auto-regressive model, the probability of a

target sequence y = (y0, · · · , yt, · · · , yT ) can be factorized to the probabilities conditional

1https://huggingface.co/models
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on the source x = (x1, · · · , xi, · · · , xn) and y<t = (y0, · · · , yt−1), i.e.,

p(y|x) =
T∏
t=1

p(yt|x,y<t), T ≥ 1 (5.1)

When T = 0, y = (y0) and p(y0|x) = 1 because y0 is a fixed start token. Beam search

[28] is a decoding strategy to predict a target sequence by maximizing this factorization.

Given a vocabulary set V, at each inference step t, beam search selects a candidate beam

set BKt = {bkt }Kk=1 (where each beam bkt = (bk0, · · · , bkt ) is a candidate sequence) from an

all-possible beam set Bt of size K × |V|, namely,

Bt =
{
bkt−1 ◦ v | bkt−1 ∈ BKt−1, v ∈ V

}
(5.2)

BKt =
{
bkt | bkt = argtopk (log p(bt|x)) , bt ∈ Bt

}
, t ≥ 1 (5.3)

where argtopk(·) outputs K beams with the highest conditional probability, and ◦ is the

concatenation operation. Besides, BK0 = {bk0}Kk=1 where bk0 is the start token. By Eq. 5.1,

log p(bt|x) is an accumulated value. Its calculation can be simplified as:

log p(bt|x) =

{
log p(bkt−1|x) + log p(v|x, bkt−1), t ≥ 2

log p(v|x, bk0), t = 1
(5.4)

where the value of log p(bkt−1|x) is computed from the previous step. Therefore, at each

step, we only need calculate the condition probability of each token in the vocabulary set.

A beam is terminated after it generates an ending token, and the beam set of K termi-

nated beams is defined as Y. The final hypothesis y∗ is chosen from Y based on the beam

probability normalized by lengtha where a is a hyper-parameter of length [102]:

y∗ = argmax
yk∈Y

log p(yk | x)

(|yk| − 1)a
(5.5)

where yk = (yk0 , · · · , ykT ). |yk| − 1 is used since the start token is not considered in

calculating the length.
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5.2.2 Attention Distribution

Attention distribution is a continuous vector whose element indicates the degree of atten-

tion paid to a source token. The element is formed by the accumulation of cross attention,

i.e.,
∑

t αt,i, where αt,i refers to the cross attention that the tth token in the target sequence

gives to the ith source token.2 Specially, cross attention is a scaled dot-product [91] of hid-

den states of the source x and the target sequence y. Notably, since Transformer-decoder

is an auto-regressive model, the cross attention assigned by tth target token is actually

calculated by y<t = (y0, · · · , yt−1).

Global Attention Distribution. The global attention distribution g = [g1, · · · , gi, · · · , gn] ∈
Rn is the attention distribution given by the reference, where global attention gi refers to

the total attention that the reference attends to the ith source token, and n is the source

length.

Optimal Length. The summation of g, namely
∑n

i=1 gi, is equal to
∑n

i=1

∑T
t=1 αt,i =

T due to
∑n

i=1 αt,i = 1 in softmax operation, where T is the reference length, or equivalently

the optimal length Z.

Local Attention Distribution. The local attention distribution lkt = [lkt,1, · · · , lkt,i, · · · , lkt,n] ∈
Rn is the attention distribution of the kth generated sequence and updated at each decoding

step t. Thereinto, the local attention lkt,i denotes the total attention paid to the ith source

token by the kth beam sequence (bk1, · · · , bkt ) and is dependent on the sequence generated

before t, i.e., bkt−1 = (bk0, · · · , bkt−1).

5.3 Proposed Global-aware Inference

5.3.1 Global Scoring Mechanism

The global scoring mechanism consists of an attention scoring function and a length reward

function. Given the global attention distribution g, the attention scoring function A(·) at

the step t depends on bkt−1,

A(bkt−1) =

∑n
i=1 min(lkt,i, gi)

ζkt
, ζkt =

n∑
i=1

lkt,i, t ≥ 1 (5.6)

2Mean pooling is used for multi-layers and multi-heads
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where ζkt indicates the total attention that the generated sequence (bk1, · · · , bkt ) gives to the

source, and ζkt = |bkt−1| = t because the assignable attention for each generated token is 1.

Notably, Eq. 5.6 attains the maximum score provided that each lt,i ≤ gi. As mentioned

in Section § 5.1, the reason for this design is that we desire the local attention lT,i at

the termination is exactly gi, since the final hypothesis is expected to attend to source

tokens in the global-optimal manner. Meanwhile, we have lT,i > lt,i for t < T because lt,i

monotonically increases on t with αlm,i > 0. Therefore, at any step, the local attention

lt,i should not surpass gi. Otherwise, the attention score will decline, and the penalty

depends on the total amount by which these lt,i exceed gi (see Theorem 1). Further, the

attention score could be considered as the proportion of correctly assigned attention to the

total attention given by the generated sequence, where correct assignment indicates that

all parts of lt,i do not exceed gi. Also, it could be interpreted as the correct allocation

probability of local attention against the global attention distribution (see Corollary 1.1).

In this case, the total attention score can be expressed as the same multiplicative form as

Eq. 5.1 to be elegantly integrated into beam search.

Theorem 1. Let M =
{
s : lkt,s > gs

}
and ∆k

t =
{
δ | ∀s ∈M, δ = lkt,s − gs

}
. Given

∆ =
∑

δ∈∆k
t
δ where ∆ ≥ 0, then A(bkt−1) decreases as ∆ increases.

Proof. By the formula derivation, Eq. 5.6 can be converted to:

A(bkt−1) =

∑n
i=1 min(lkt,i, gi)

ζkt

=
n∑
i=1

min

(
lkt,i

ζkt
,
gi

ζkt

)

=

n∑
i=1

min

(
0,
gi − lkt,i
ζkt

)
+

n∑
i=1

lkt,i

ζkt

(5.7)

Since ζkt =
∑n

i=1 l
k
t,i, we have

∑n
i=1

lkt,i
ζkt

= 1. Besides, with ζkt > 0,

∀s ∈M, min

(
0,
gs − lkt,s
ζkt

)
=
gs − lkt,s
ζkt

=
−δ
ζkt

(5.8)
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Thus Eq. 5.7 is equal to:

A(bkt−1) = 0 +
∑
δ∈∆k

t

−δ
ζkt

+ 1

= 1− ∆

ζkt

(5.9)

Then it is easy to prove that A(bkt−1) goes down as ∆ goes up.

Corollary 1.1. The bound of A(bkt−1) is between 0 and 1.

Proof. Since we have achieved A(bkt−1) = 1 − ∆
ζkt

where A(bkt−1) decreases monotonically

on ∆ and ∆ ≥ 0, A(bkt−1) reaches the maximum 1 when ∆ = 0. Next, we assume a beam

can be generated indefinitely. In this case, there must be a situation that each lkt,i > gi.

Therefore we have

A(bkt−1) = 1−
∑n

i=1(lkt,i − gi)
ζkt

= 1−
∑n

i=1 l
k
t,i −

∑n
i=1 gi

ζkt

= 1−
ζkt −

∑n
i=1 gi

ζkt

=

∑n
i=1 gi

ζkt

(5.10)

where lim
ζkt→∞

A(bkt−1) = 0. Therefore, the bound of A(bkt−1) is proven to be between 0 and

1.

In addition to the constraint for lt,i, we still desire lT,i = gi for each token. An ideal

hypothesis should have two characteristics simultaneously. Namely, its attention score at

the termination is the maximum 1, and its length equals the optimal length. Therefore,

we introduce a length reward function to cooperate with the attention score to penalize

the situation lT,i 6= gi, which will be discussed at the end of this subsection.

As mentioned before, the total attention score at the decoding step t is defined as:

A(bkt−1) =

t∏
m=1

A(bkm−1) (5.11)
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Thus, the joint scoring function J(·) is modified from Eq. 5.4:

J(bt,x) = log p(bkt−1|x) + β logA(bkt−1) + log p(v|x, bkt−1)

=
t−1∑
m=1

(
log p(bm|x, (bkt−1)<m) + β logA(bkm−1)

)
+ log p(v|x, bkt−1) + β logA(bkt−1)

= J(bkt−1,x) + log p(v|x, bkt−1) + β logA(bkt−1), t ≥ 2

(5.12)

and J(b1,x) = log p(v|x, bk0) + β logA(bk0), where β is a hyper-parameter to trade-off be-

tween the probability and attention score. Similar to log p(bt|x) in Eq. 5.4, J(bt,x) is also

an accumulative score. Consequently, at each step t, we only need compute p(v|x, bkt−1)

and A(bkt−1). Compared with Eq. 5.4, the time complexity of each step is only increased

by O(K) as there are K attention scores. Replacing log p(bt|x) in Eq. 5.3 by J(bt,x), we

can select the top K beams of each decoding step according to not only the probability

distribution conditional on local information bkt−1 but also the score conditional on global

information g.

Considering the length reward function, the final hypothesis is thus defined as:

y∗ = argmax
yk∈Y

(
J(yk,x)

|yk| − 1
+ βγR(ζkT , Z)

)
(5.13)

where R(·) is the length reward function dependent on the optimal length Z and the can-

didate hypothesis length ζkT . Exactly, ζkT is the total attention that a candidate hypothesis

(yk1 , · · · , ykT ) pays to the source and equals |yk|−1. Besides, the attention score and length

reward are weighted by a hyper-parameter γ, and the role of β is to ensure that the two

are at the same level relative to the probability. We remove a in Eq. 5.5 as it only adjusts

the length preference without really controlling the length.

The design of R(·) could be straightforward – one only need ensure that it increases as

ζkT approaches Z, and reaches the maximum only at ζkT = Z. In this paper, we design a

step-wise length reward function R(ζkt , Z) to better balance the relationship between the

attention score and the length reward and make the whole searching process as succinct

as beam search. We put the design details of the step-wise length reward in § 5.4, and we

regard Eq. 5.13 as the general scoring formulation of global-aware inference.
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5.3.2 Predict the Global Attention Distribution

Since the reference is unknown practically, the global attention distribution could only

be predicted from the source. We construct an attention-prediction model to learn the

relationship between the source tokens and the global attention distribution.

The input of the attention-prediction model is the fixed encoder output E ∈ Rn×d

of BART or PEGASUS plus learnable positional encodings P ∈ Rn×d, where d is the

dimension of hidden states. The input is fed to a learnable Transformer-encoder to ob-

tain Ẽ ∈ Rn×d that is encoded with additional context information, followed by a linear

transformation with an exponential function:

ĝ = exp
(
ẼWg + bg

)
(5.14)

where ĝ ∈ Rn refers to the prediction of g, Wg ∈ Rd×1 and bg ∈ Rn are the learnable

weights and biases. The exponential function is imposed to ensure ĝ > 0. We choose

the exponential function for this operation because it is shown stable in the training and

testing stage. Given the objective of minimizing the distance between ĝ and g, the loss is

defined as their Euclidean distance:

L = ‖ĝ − g‖2 (5.15)

The predicted optimal length Ẑ is the sum of elements in ĝ. Note that the length reward

function is not affected no matter whether Ẑ is an integer or not.

5.4 Length Reward

In the first subsection, we will introduce our step-wise length reward function and how it

works. In the second part, we will discuss in details how it is designed.

5.4.1 Our Step-wise Length Reward

Our length reward function R(ζkt , Z) is to give a length score to a beam at each decoding

step, so that its cumulative score R(ζkT , Z) for a terminated beam could approach the

maximum as its length ζkT gets closer to the optimal length Z. Our designed length reward
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function is as follows:

R(ζkt , Z) = −

∣∣∣ζkt − Z√
2
− 0.5

∣∣∣
Z

(5.16)

Eq. 5.12 is thus expanded to:

J(bt,x) = log p(bkt−1|x) + β

(
logA(bkt−1) + γ

t∑
m=1

R(ζkm, Z)

)
+ log p(v|x, bkt−1)

= J(bkt−1,x) + log p(v|x, bkt−1) + β
(

logA(bkt−1) + γR(ζkt , Z)
)
, t ≥ 2

(5.17)

In this case, the final score of yk is re-defined as

y∗ = argmax
yk∈Y

J(yk,x)

|yk| − 1
(5.18)

The original R(ζkT , Z) in Eq. 5.13 has been integrated to J(yk,x), and exactly equals∑T
t=1R(ζkt ,Z)

|yk|−1
=

∑ζkT
t=1R(t,Z)

ζkT
which gets the maximum at ζkT = Z. Related theorem and proof

are presented in the next subsection.

5.4.2 How It Is Designed

Intuitively, if we want to give a score to the beam length at each step, the score should

reach the maximum when the beam length gets the optimality. Accordingly it can be

defined as:

R(ζkt , Z) = −
∣∣ζkt − Z∣∣

Z
, Z =

n∑
i=1

gi (5.19)

Since ζkt = t, it is represented as:

Rt = −|t− Z|
Z

(5.20)

Then, we test whether its cumulative value at the terminated step R(ζkT , Z) reaches the

maximum when ζkT = Z. The cumulative length reward is defined as

R(ζkT , Z) =

∑ζkT
t=1Rt
ζkT

(5.21)
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Figure 5.2: Difference between length reward and adjusted length reward.

If we replace ζkT by j, it can be represented as:

Rj =

∑j
t=1Rt
j

(5.22)

Unfortunately, when we plot the curve of Rj as the orange dummy line in Figure 5.2, we

find that it reaches the maximum at a length longer than the optimal length. This prompts

us to translate Rt from the green dummy line to the green full line, and the adjusted length

reward is designed as:

Rt = −

∣∣∣t− Z√
2
− 0.5

∣∣∣
Z

(5.23)

which is the same as Eq. 5.16. After the adjustment, the normalized cumulative length

reward Rj (the orange solid line in Figure 5.2) peaks right at the optimal length.

Theorem 2. Given Rt = − |t+D−Z|Z (t ≥ 1) and Rj =
∑j
t=1Rt
j reaches the maximum when

j = Z, then D is approximate to − Z√
2
− 0.5 + Z.

Proof. Since t ≥ 1 and t ∈ Z+, Rt can be regarded as two arithmetic sequences with

difference of 1
Z and − 1

Z , so that it is easy to calculate
∑j

t=1Rt. Then Rj could be computed
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by:

Rj = −1

j

[
(Z −D − 1)(Z −D)

2Z
+

(j +D − Z)(j +D − Z + 1)

2Z

]
(5.24)

Hence the derivative of Raj is:

∂Rj
∂j

=

2(Z−D)2−2(Z−D)
j2

− 1

2Z
(5.25)

In addition, when j = Z, letting
∂Rj
∂j = 0, we have:

2D2 − (4Z − 2)D + Z(Z − 2) = 0 (5.26)

If we solve this equation, we can get:

D =
4Z − 2−

√
8Z2 + 4

4
(5.27)

Omitting the constant item in the radical due to 8Z2 � 4 under normal conditions, we

can get:

D = Z − 0.5− Z√
2

(5.28)

If we further take D into Rt, we can get Eq. 5.23.

5.5 Experiments

5.5.1 Setup

Datasets. We evaluate the performance on totally 9 summarization datasets, where 2

datasets (CNN/DM [33], XSUM [23]) with BART [48] and 8 datasets (XSUM [23], BillSum

[43], Multi-News [26], NewsRoom [30], WikiHow [44], Reddit TIFU [97], arXiv and PubMed

[15]) with PEGASUS [109]. Thereinto, XSUM [23] is a highly abstractive dataset whose

summaries are all expressed in a short sentence.

Implementation Details. We adopt a randomly initialized 2-layer transformer-

encoder in the attention-prediction model wherethe structure of each layer is the same as

the BART-encoder layer. The optimizer is the Adabelief-optimizer [113] with eps 1e− 16,

betas (0.9, 0.999), weight decay 1e− 4 and learning rate 2e− 5. The attention-prediction

model is trained on the training set for about 50, 000 steps, and checkpoints are saved per



Chapter 5. Decoding with Awareness of Global Attention Distribution 93

10, 000 steps to select the best checkpoints on the development set. Since the attention

prediction is slightly different from common sequence tagging tasks, we have summarized

two notable points after several attempts – the dropout rate should be 0, and a small

learning rate is preferred. All experiments are conducted on 3 RTX 6000. We include the

global-aware inference in the generation code of HuggingFace transformers [101]. At the

time of evaluation, ROUGE-1, ROUGE-2 & ROUGE-L (R-1, R-2 & R-L) scores [59] are

computed from the ROUGE code3 used by BART [48].

Hyper-parameter Selection. Although the global-aware inference requires two new

hyper-parameters γ and β, some original hyper-parameters of beam search, namely length

penalty, minimum and maximum length, are omitted. The searching scopes of β and γ

are in {2, 4, 6, 10, 12, 15, 18, 20} and {0, 0.5, 1, 1.5, 2}, respectively. According to the numer-

ical tests on the development set, we finally choose β = 12, γ = 1.5 for CNN/DM and

β = 4, γ = 0 for XSUM. As limited improvement could be observed from larger γ’s, we

recommend γ = 1 for normal or longer targets. When testing the global-aware inference

with PEGASUS [109], we directly use empirical hyper-parameters for each dataset,

namely β = 4, γ = 0 for XSUM and β = 12, γ = 1 for other 7 datasets. The beam size K
follows the setups in BART [48] and PEGASUS [109].

5.5.2 Results

Comparison with Beam Search. Beam search is a hard-to-beat baseline which has

stood the test of time and proven its superiority in practice for long [67]. In Table 5.2, we

compare our global-aware inference to beam search with length regularizations (i.e., α in

Eq. 5.5, accompanied with two hard constraints, namely minimum length and maximum

length). We strictly follow the hyper-parameter setups of PEGASUS [109] in terms of

beam search, while we only adopt empirical hyper-parameters for our method. Even so,

significant improvements can be observed on all the data sets, especially when the summary

is of normal or longer length.

Comparison with Other Attention Approaches. In this part, we focus on com-

paring other approaches which also exploit certain attention distributions to improve beam

search. The first is the coverage penalty [102, 56]. To enhance its performance in summa-

rization, we replace its preset attention distribution with our predicted global attention dis-

tribution. Note that the coverage function can only evaluate the generated sentences at the

3https://github.com/pltrdy/files2rouge
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Table 5.3: Comparison with other methods.

CNN/DM
K = 4 R-1 R-2 R-L

Beam search [48] 44.12 21.21 40.89
+ Our coverage 44.74 21.69 41.48
+ Repetition penalty [40] 44.11 21.14 40.87
+ Attention masking [9] 45.54 22.24 42.44

Global-aware 45.13 21.77 42.04

XSUM
K = 6 R-1 R-2 R-L

Beam search [48] 45.38 22.32 37.15
+ Our coverage 44.54 21.82 36.97
+ Repetition penalty [40] 45.40 22.31 37.13
+ Attention masking [9] 45.35 22.31 37.15

Global-aware 45.57 22.60 37.61

Table 5.4: ORACLE and ablation results.

CNN/DM
R-1 R-2 R-L

ORACLE global-aware 51.85 28.13 48.68
-w/o length reward 50.46 27.53 47.43

Global-aware 45.13 21.77 42.04
-w/o length reward 44.39 21.58 41.41
-w/o attention score 44.12 21.29 40.91

XSUM
R-1 R-2 R-L

ORACLE global-aware 49.50 26.24 41.13
-w/o length reward 48.92 26.48 41.45

Global-aware (γ = 1) 45.44 22.15 37.11
-w/o length reward 45.57 22.60 37.61
-w/o attention score 45.23 21.88 36.73
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Table 5.5: Improvements of attention head masking and global-aware on beam search [109]
in terms of ROUGE-L F1 score. Both use empirical setups.

XSUM BillSum Multi-News WikiH

Attention head masking [9] -0.31 0.23 0.34 0.10
Global-aware 0.17 1.26 0.62 1.03

Reddit NewsRoom PubMed arXiv

Attention head masking [9] -0.16 1.24 0.35 0.21
Global-aware 1.18 2.58 1.51 1.03

terminal step. Instead of comparing the global-aware inference to the methods [85, 55, 27]

that aim to reduce repetition using the dynamic attention distribution, we compare our

algorithm with the CTRL repetition penalty [40] which has similar motivation but is more

systematical and independent of training. Table 5.3 lists the comparison results against

different algorithms. It can be observed that our global-aware approach can improve the

performance of beam search stably and fundamentally. We also observe that the attention

head masking [9] appears to outperform the global-aware approach on CNN/DM, but it

fails to gain any improvement on XSUM. To further show the advantage of the proposed

approach, we will take a closer examination on the attention head masking [9] and our

proposed approach in the next part.

Further Comparison with Attention Head Masking. First, one should bear in

mind that the attention head masking [9] acts on the model instead of beam search, which

is opposite to us. Specifically, it selects contents during decoding by disabling partial at-

tention heads for unimportant tokens to decrease the attention to these tokens. According

to the reported results presented in Table 5.3, we can see that although attention mask-

ing achieves amazing results on CNN/DM, it does fail completely on XSUM. Since hiding

unimportant tokens from some heads results in the loss of context information of salient

tokens, this would lead to its instability. Thus, it could be ineffective for tasks that require

contextual information of the whole source such as XSUM. Taking a further comparison,

we deploy the attention head combinations selected for CNN/DM and XSUM to examine

its effect on PEGASUS [109]. These comparison results are shown in Table 5.5. Evidently,

our method enjoys a robust feature that is able to boost summary inference on various

datasets and models even with the same set of hyper-parameters. In contrast, attention

masking [9] behaves much sensitive to the changes of models and datasets. Besides, at-
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Table 5.6: Generate CNN/DM summaries with XSUM’s style.

R1/R2/RL Shorter beam search Global-aware†

F1 score 43.6/20.9/40.4 43.6/20.4/40.6
Recall 48.9/23.4/45.2 40.4/18.8/37.6
Precision 41.4/19.9/38.3 50.5/23.8/47.0

Table 5.7: Generate summaries with corrupted attention distributions.

R-1 R-2 R-L

Beam search 27.00 12.21 23.88
Global-aware (10K) 28.78 12.82 25.51
Global-aware (100K) 29.59 13.72 26.30

tention masking has to construct its training saliency labels based on the longest common

subsequences between a reference summary and the source. This may be hardly achieved

in some text generation tasks (e.g. translation) where no common subsequence exists at

all. Such drawback presents one main limitation for attention masking.

ORACLE Results and Ablation Study. ORACLE refers to the global-aware infer-

ence combined with (true) global attention distribution instead of predicted global atten-

tion distribution. The related results have been presented in Table 5.4, and the significant

boosting certifies that the proposed method could improve beam search with the global

attention distribution. On the other hand, we conduct ablation experiments on ORACLE

and global-aware. Both results indicate that length reward plays an important role in

generating normal-length text but causes adverse effect on generating text of very short

length. Besides, the performance declines significantly when only length reward is applied,

due to the fact that sole length reward cannot calibrate beam search step-wise.

Robustness. We intend to examine the robustness of our proposed global-aware algo-

rithm in this and next part. To do so, we substitute the parameters in CNN/DM’s attention

prediction model to XSUM’s to create more abstractive summaries for CNN/DM. For com-

parison, we set the minimum length of beam search as 0 to allow it to generate shorter

summaries. Table 5.6 shows the F1 score, recall and precision of the shorter beam search

and global-aware†. It is surprising that even by using the attention distribution from a dif-

ferent dataset with distinct properties, the proposed global-aware mechanism still manages

to generate meaningful summaries with competitive F1 scores, proving the robustness of
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Figure 5.3: Sensitive analysis in the test set.
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this algorithm. Moreover, the higher Precision and lower Recall of the global-aware suggest

that although information is partially lost, the algorithm still summarizes core information

in a concise format, compared to the standard beam search. On the other hand, we exploit

a BART model fine-tuned on CNN/DM to generate summaries of NewsRoom directly, and

the ROUGE scores of beam search are shown in Table 5.7. Next, we randomly select 10K

and 100K samples from the training set and use them to fine-tune the attention-prediction

model, where the global-aware improves beam search substantially. The experiment once

again validates the robustness of the proposed inference algorithm, as it maintains a rea-

sonably good performance even from learning a corrupted attention distribution from a

BART without fine-tuning.

Sensitive Analysis. We further examine the performance robustness with respect

to the hyper-parameters. From Figure 5.3, we could see the global-aware inference is

always better than beam search in CNN/DM, no matter how its hyper-parameters change.

Besides, the performance is less sensitive to the hyper-parameters when β ≥ 10 or γ ≥ 1.

While in XSUM, the global-aware could improve beam search stably with γ = 0, but

there is a significant decline when applying length reward. In fact, the attention score
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Figure 5.4: Predicted and ORACLE global attention in BART. There are attention dis-
tributions of (a) the whole source, (b) the source without the start & end tokens, (c) the
source without the start & end tokens and full stops.

favors shorter hypotheses, and the length reward could alleviate the bias. However, if the

references of a dataset are already very short such as XSUM, the length reward may lead

to a counterproductive effect. Since the setup of CNN/DM is applicable to most datasets,

we argue that the global-aware inference is robust to both hyper-parameters in most cases.

5.6 Analysis on Global Attention Distribution

5.6.1 Distribution Law

The distribution law of global attention in BART [48] is shown in Figure 5.4. It is observed

that most attention is assigned to the start token and full stops which are not semantically

salient, and most of the remaining attention is unevenly allocated to (semantically) over-

lapped tokens between the source and the reference (i.e., important words). It is worth

mentioning that the importance here is no longer a simple binary classification like in

[27, 9], but a continuous numerical value decided by the model knowledge learned from

data. In general, one should not simply equate the global attention with the word impor-

tance, but should be clear that it essentially reflects knowledge learned by the attention

model such as the syntactic and semantic structure of sentences. Meanwhile, the distribu-

tion law indicates that attention distributions in pre-trained models may not be relevant

with the uniform distribution at all. That is to say, it is not reasonable to still use an uni-

form attention threshold (like the threshold 1 preset in [102, 27]) to regulate the decoding

of pre-trained models. Last but not least, our general motivation is to alleviate locality bias

by aligning the attention distribution of reference and hypothesis, which does not really

care how the global attention is distributed only if it is predictable. However, the proposed
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Figure 5.5: Changes of the attention distribution when (a) one word in the reference is
replaced by a similar word (s1) and a random word (s2), (b) the sentence order of the
reference is shuffled, (c) a factual knowledge in the reference is distorted.

penalty mechanism is indeed insensitive to some distributions, and we will provide more

thinking about this in § 5.7 by applying the global-aware inference to translation.

5.6.2 Why It can be Predicted from Source?

Since the ORACLE experiments indicated that the global attention is helpful for decoding,

the concern remains if it is predictable using only source. In App. 5.8.1 we will show the

predictability empirically, while here we just provide an interesting explanation. In our

opinion, the global attention distribution is an interpretable representation of reference

which not only has the characteristics of hidden representation but also can be explained

by the source tokens. First of all, given the source, the global attention is calculated by

the input reference and trained neural network parameters; this is similar to achieving

hidden representation. Moreover, like hidden representation, the global attention distri-

bution could also capture the semantic similarity, e.g., replacing a reference word with

a semantically similar word leads to slighter attention changes than that with a random

word (see Figure 5.5.a). Besides, it is observed from Figure 5.5.b and Figure 5.5.c that

global attention is able to represent the sentence order and factual knowledge. On the

other hand, the global attention distribution enjoys a distinct characteristic that each of

its features can be explained as the degree of attention paid to a source token, which means

changes of such representation are regular to some extent. For example, in Figure 5.5.c,

we distort a numerical number in the reference to violate the fact stated in the source, and

then find that the attention assigned to the actual number originally is most transferred

to the special tokens and punctuation. Overall, similar sources should have similar global

attention distributions, since similar sources often have similar references and global at-
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tention distribution is a representation of reference. Moreover, the global attention and

source tokens are in an one-to-one correspondence. Thereby, we argue that it is convenient

to use the source to predict the global attention distribution.

5.7 Global-aware Inference in Neural Machine Translation

Though the focus of this paper is Neural Abstractive Summarization, we will share how to

enable global-aware inference to improve beam search significantly in NMT using a simple

variation.

The gap between NMT and NAS is that NAS is a more-to-less generation task where the

global attention values of many words are very low, which makes it relatively easy to trigger

punishment at the beginning. As one can see in App. 5.8.4 and the examples provided,

many global-aware summaries are different from that of beam search from scratch, implying

that the global scoring mechanism is activated in the very early stage. Since translation is a

nearly one-to-one task, it is more likely to ignore some locality biases during the beginning

stage when the local attention is generally low. Notably, although there is no very low

global attention in translation tasks, their global attention distributions are still irrelevant

with uniform distributions (here we only consider pre-trained translation models).

Table 5.8: BELU results of WMT16. We perform the blocked global-aware inference with
the block length of 10.

K = 5 BELU

beam search 37.6

ORACLE global-aware 39.2
+ Blocking 41.6

Global-aware 37.8
+ Blocking 38.1

To alleviate the gap, a straightforward-but-effective approach is to transform the one-

to-one generation task to several more-to-less tasks. We divide the reference into several

blocks of equal length and predict the global attention distribution of each block. Taking

a reference of 25 tokens as an example, if we set the block length as 10, then there will be

three blocks, namely the block of 1− 10 tokens, 11− 20 tokens, and the last 5 tokens. We

use the special token b1 to denote the first block, b2 to denote the segment composed of the
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first and second block, and b0 to denote the whole reference. When we train the attention-

prediction model, these special tokens are concatenated before the source document to

tell the predictor which segment it should predict. During inference, we first predict the

global attention distribution of b0 and calculate the optimal length, e.g. 32, then we can

figure out there are three more global attention distributions that need be predicted, i.e.,

b1, b2 and b3. We apply the predicted attention distribution of b1 to guide the inference at

the beginning, and the attention distribution is transformed to that of b2 when the length

of generated sequence is larger than 10 and so on. When the decoding step reaches 30,

the attention distribution of b0 is deployed until all candidate sequences are terminated.

Although this blocking operation would increase the difficulty of training and inference,

these negative effects are controllable by adjusting the block length.

We use mBART [62] as the neural translation model to examine the blocking operation

on WMT16 en-ro sentence-level translation dataset, and related results are presented in

Table 5.8. Compared with beam search, our proposed global-aware elevates the BELU

score from 37.6 to 37.8, and ORACLE global-aware improves the result to 39.2. The

blocking operation further improves global-aware to 38.1, and ORACLE global-aware to

41.6. We also experiment this operation on summarization tasks where minor improvement

is observed.

Finally, since the blocking operation would inevitably increase the difficulty of training

and inference and is not conducive to the robustness, it may not be the most reasonable

direction for improving the global-aware inference in one-to-one tasks. We think there are

three following issues that might be worth exploring in the future. 1) Whether the pro-

posed global-aware inference has already been able to improve document-level translation

significantly; 2) intuitively, we averaged the global attention distributions of all layers, but

it is possible that the global attention in a single layer or a combination of several layers

can better guide decoding; 3) whether a more comprehensive global protocol can be found

to regulate beam search in a more detailed way.

5.8 Discussions

5.8.1 Predictability of Global Attention

We plot the decline trend of training loss and validation loss on CNN/DM and XSUM to

Figure 5.6. It is observed that training loss has been falling significantly, while validation
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loss has an upward trend at later epochs.

On the other hand, we randomly select 1, 000 test samples from each dataset and plot

their average R2 scores of the predicted optimal attention distributions in Figure 5.7. For

each sample, its R2 score is equal to 1 −
∑n
i=1(oi−ôi)2∑n
i=1(oi−ō)2 , where R2 ∈ [−∞, 1]. A higher R2

signifies better model fitting, while R2 < 0 means the model is entirely invalid.
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Figure 5.6: Loss trend.

5.8.2 Degradation of Beam Search

It is widely known that text quality generally degrades with increased beam size [16, 70, 67].

The degradation originates from the gap between training and inference, where teacher

forcing training only need ensure the local optimality, but beam search pursues the global

optimality [100, 80, 110]. The proposed algorithm reduces the gap by informing beam

search how the global optimal hypothesis attends to the source so that beam search can be

calibrated to pursue a more reasonable global optimum instead of that obtained by teacher

forcing training. We enlarge the beam size and find that the global attention distribution

can guide beam search to overcome degradation, though the practical improvement might

not be significant due to the prediction bias. According to Figure 5.8, the average ROUGE
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Figure 5.7: Fitting of att-prediction model.

F1 score of beam search summaries declines sharply as beam size increases. Even if there

is a prediction bias, the global-aware inference manages to resist degradation effectively

with increased beam sizes. Moreover, a significant boosting in ROUGE scores is observed

as beam size increases in the ORACLE global-aware inference, where the true potential of

the algorithm is reflected.
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Figure 5.8: Degradation of beam search.
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5.8.3 Length Comparison

As shown in Table 5.9, even with empirical hyper-parameters, our method often leads to

more concise summary with its length closer to the reference length on many datasets. By

contrast, beam search, which conducts searching for length penalty and length constraints,

generates many lengthy summaries on some datasets. For example, In CNN/DM, Reddit,

and NewsRoom datasets, beam search must extend summaries to obtain higher ROUGE

scores, making the generated text more bloated. Overall, in most cases, the global-aware

inference could produce summaries of higher quality in a more concise way.

5.8.4 Are the Outputs Different from Beam Search from the Beginning?

One may question whether these hypotheses are just the subsets or extensions of beam

search hypotheses. The answer lies in the selection of β. Specifically, the global-aware

with a greater β (such as β = 12 for CNN/DM) generates quite different summaries. We

plot the count distribution of discrepancy positions between beam search and global-aware

inference in Figure 5.9. It is interesting to find that about one-third of CNN/DM test

samples (total count: 11, 490) start to differ at the first word, and most start to differ

at the first 5 words. In other words, the global-aware inference generates texts in a way

different from beam search that leads to higher scores.

5.8.5 Newly Generated Words

Table 5.10 shows that summaries generated by our method appear more creative. Gener-

ally, a greater proportion of novel words implies that the generated text resembles more

human-writing, at the same time increases the risk of deviating from reference.

5.8.6 Inference Speed

As presented in Table 5.11, the speed of the global-aware inference is comparable with

beam search.

5.8.7 Our Advantages over Predicting Future Rewards

A previous study [51] guides inference by predicting the future automatic matrix score

at each decoding step. There are two main disadvantages of training such predictor, (a)

there are too many training samples especially when the target sequence is long, making it
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Figure 5.9: The position that the summary starts to differ from the beam search summary.

Table 5.10: The percentage of words in
the summary but not in the source.

CNN/DM %Novel

reference 14.8
beam search 4.5
global-aware 6.7

Table 5.11: Inference speed

CNN/DM Tokens/s

beam search 25.6
global-aware 23.2
repetition penalty 19.1
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hard to train; (b) this method forces us to predict every decoding step, greatly slowing the

inference speed. By contrast, one appealing benefit of our approach is its high efficiency,

since our method only need predict once but can calibrate beam search at each step, which

improves beam search from scratch with very little burden of training and inference.

5.8.8 Can Our Method Work Together with Attention Head Masking?

There is no doubt that the answer is yes because the attention head masking [9] still need

beam search to generate summaries, and our approach is an alternative to beam search.

However, we do not recommend the joint usage of the two due to the following three

reasons. First, the roles of the two overlap; second, the loss of context information due

to masking will negatively affect the global-aware inference; third, adding attention head

masking will impose additional burden on training and hyper-parameter searching.

5.8.9 Can Predicted Attention Distribution still Lead to the Same The-

oretical Result?

Through explaining that the global attention and the predicted attention have the same

value range, we will simply prove that the predicted attention distribution is also applicable

to the theory in the paper. Since each attention value in the global attention distribution

is a cumulative value of the attention probability ∈ [0, 1] given by the reference tokens,

the lower bound tends to be 0 and the upper bound is 1 ∗ the number of reference tokens.

When the reference is infinite, the upper bound is ∞. Therefore, we only need ensure that

the predicted attention value is larger than 0 which is constrained by exp.

5.9 Flow Chart: Global-aware vs. Beam Search

-
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5.10 Related Works

In the field of text generation, efforts have been made to boost beam search with regards

to the attention distribution. For instance, some studies engage the attention distribution

to penalize the situation where sources fail to be fully covered in translation tasks [102, 56],

while others [27, 85, 55] incorporate dynamic attention distributions to evade tokens that

have been highly regarded to reduce repetition. However, none of the aforementioned

studies attempts to apply the global attention distribution to acquire the knowledge that

the level of attention should be allocated to each token from the reference. Further, the

existing score functions used by those studies are rather different from the proposed global

scoring mechanism.

We summarize the characteristics of each score function in Table 5.12, where αt,i refers

to the cross attention that the tth generated token pays to the ith source token. Previous

works [102, 56, 85, 55, 27] design the score function based on some assumptions which may

be invalid. Specifically, [102], [56] and [27] use the same constant (1 or β) to constrain all

source tokens, based on the assumption that the minimum/maximum attention allocated

to each token is the same. [85] and [55] assume the attention assigned before t should be

lower than the attention of t. Obviously, both assumptions may often not hold in practice.

By contrast, our global scoring mechanism does not depend on any assumption but follows

the nature of generation, i.e., the growing local attention should not surpass the global

attention during inference and exactly reach it at the termination.

In addition to the attention distribution, other techniques are developed to improve

beam search in terms of length bias [105], diversity-less [93], vapidity [36] and degrada-

tion [70, 16]. These methods are not included for comparison because they are not suitable

for summarization [105, 36], or do not aim to enhance beam search as the main pur-

pose [93, 70, 16]. Besides, we argue that these patches to beam search are supposed to be

hard for improving the performance stably and fundamentally (as shown in Table 5.3 given

by our global-aware method) because they fail to specify what a final hypothesis should

look like and are easy to trap into local optimums.

5.11 Conclusions

Beam search tends to fall into local optimums due to the lack of global information during

inference. To calibrate beam search on the premise of global awareness, this study proposes
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a predictable protocol to stipulate how a global optimal hypothesis should attend to source

tokens. By training a simple prediction model of the global attention distribution, a

novel global scoring mechanism is then developed to regulate the inference on a step-

wise basis. Our experiment shows that the proposed global-aware beam search generates

higher-quality summaries, relative to beam search and other counterparts of the similar

nature. Besides, the proposed algorithm is proven robust in generating meaningful texts

even with corrupted attention distributions, implying its potential to cooperate with user-

defined global attention distributions. We plan to focus our future study on generalizing

the global-aware inference to a broader range of text generation tasks, including not only

text2text but also image caption [96], multimodal summarization [52], graph2text [41] and

data2text [76].
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5.12 Generation Examples

Examples are presented in the following pages. We sample some good cases and some bad

cases of global-aware inference by the ROUGE-1 F1 score.

Table 5.13: Generated summaries on CNN/DM sampled by ROUGE-1 F1 score.

Reference The ramp agent fell asleep in the plane’s cargo hold . He can no longer work on Alaska Airlines
flights .

Beam search
(R-1: 25.05)

”Iḿ inside a plane and I feel like itś up moving in the air,” the caller says . ”There could be
a person in there so weŕe going to come back around,” the pilot tells air traffic control . The
ramp agent is an employee of Menzies Aviation, a contractor for Alaska Airlines . The airline
says the man has been permanently banned from working on planes .

Global-aware
(R-1: 43.29)

A ramp agent fell asleep in the cargo hold of an Alaska Airlines flight . The crew and passengers
reported unusual banging from the belly of the Boeing 737 . The pilot radioed air traffic control
and said he would make an emergency landing .

Global-
aware† (R-1:
50.81)

A ramp agent falls asleep in the cargo hold of an Alaska Airlines plane . The plane makes an
emergency landing in Seattle . The man has been banned from working on Alaska Airlines
planes .

Reference Three people killed; five wounded in attack on attorney general’s office in Balkh province .
Staff and civilians have been rescued as gunmen engaged Afghan security forces .

Beam search
(R-1: 38.78)

A group of armed assailants stormed into the attorney general’s office in Balkh province, north-
ern Afghanistan . Two police officers and a security guard of the provincial attorney general’s
office were among the dead . Most staff members and civilians have been rescued, but an
exchange of fire between Afghan security forces and the assailants is ongoing .

Global-aware
(R-1: 54.00)

Three people were killed and five others were wounded in an attack on the attorney general’s
office . An exchange of fire between security forces and the assailants is ongoing .”

Global-
aware† (R-1:
44.00)

Gunmen storm attorney general’s office in northern Afghanistan . Three people killed, five
others wounded .

Reference Six young Minnesotans conspired to sneak into Syria and join ISIS ”by any means necessary,”
prosecutors say . The men, ages 19 to 21, were arrested Sunday . They plotted for 10 months,
the U.S. attorney for the District of Minnesota says .

Beam search
(R-1: 47.68)

The group of friends, ages 19 to 21, were arrested Sunday . They plotted for 10 months, U .S
. Attorney Andrew M . Luger says . Recruiting for the ISIS terrorist network is a problem in
Minnesota’s Somali community . Four of the men who were arrested appeared in federal court
on Monday but did not enter a plea .

Global-aware
(R-1: 61.97)

Six men, ages 19 to 21, were arrested Sunday . They plotted for 10 months, U .S . attorney
says . Recruiting for the ISIS terrorist network is a problem in Minnesota’s Somali community
.

Global-
aware† (R-1:
38.92)

The six men were arrested Sunday . They are accused of plotting to join ISIS in Syria .
Recruiting for ISIS is a problem in Minnesota’s Somali community .
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Reference Raul Reyes: In seeking Latino vote, Marco Rubio his own worst enemy on two key issues:
immigration reform, Cuba relations . He says on health care, climate change and other issues,
he breaks from Latinos’ positions. Polls show they don’t favor him .

Beam search
(R-1: 35.71)

Ruben Navarrette: Marco Rubio has been his own worst enemy on immigration and Cuba .
Navarrette: Rubio has embraced a typical conservative approach to immigration . He says
Rubio’s political philosophy will be a tough sell to Hispanics . Navarrette: Unless he can offer
new ideas, his climb to the Republinomination will be steep .

Global-aware
(R-1: 36.50)

Ruben Navarrette: Marco Rubio is running for the GOP presidential nomination . Navarrette:
Rubio has been his own worst enemy on immigration reform and Cuba relations . He says
Rubio has embraced a typical conservative approach to immigration . Navarrette: Rubio’s
political philosophy will be a tough sell to Hispanics .

Global-
aware† (R-1:
40.11)

Ruben Navarrette: Marco Rubio is running for the GOP presidential nomination . Navarrette:
Rubio has been his own worst enemy on immigration reform and Cuba relations . He says
Rubio has embraced a typical conservative approach to immigration .

Reference Police: Yuhei Takashima, 64, says he had sex with girls as young as 14 in Philippines . Officers
seize nearly 150,000 photos that the former principal kept of his activities .

Beam search
(R-1: 52.48)

Yuhei Takashima, 64, says he paid for sex with more than 12,000 women in the Philippines .
Police seized 147,600 photos that Takashima took of his activities over the years . The ages of
the prostitutes he hired ranged from 14 to over 70, he says .

Global-aware
(R-1: 37.33)

Police say Yuhei Takashima, 64, paid for sex with more than 12,000 women . He took 147,600
photos of his activities over more than a quarter of a century, police say .

Global-
aware† (R-1:
49.28)

Police: Yuhei Takashima, 64, paid for sex with more than 12,000 women in the Philippines .
He took 147,600 photos of his activities, police say .

Reference Kabul faces uncertain future as NATO presence – and the money that came with it – fades
away . Interpreters are out of work, NATO trucks sit idle on roads, restaurants are empty .

Beam search
(R-1: 21.95)

Kabul is a city swollen in size but shrunken in scope, anxiously awaiting what comes next .
Vast supply chains once kept 120,000 troops fed and watered . Now the bases are gone, and
the trucks that once supplied millions sit still . One road, forever pot-holed in the past decade,
is now being covered over by Afghans .

Global-aware
(R-1: 16.12)

Afghanistan’s capital, Kabul, has been transformed since NATO arrived in 2001 . The city’s
population has swelled to five times what it was when the U .S . arrived . But the city has also
shrunk in scope, with many waiting to see what comes next .

Global-
aware† (R-1:
20.39)

”Kabul, the capital of Afghanistan, has been transformed by the U .S . troop withdrawal .
Roads are lined with the detritus of America’s war here . Vast supply chains once kept 120,000
troops fed and watered .
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Table 5.14: Generated summaries on BillSum sampled by ROUGE-1 F1 score.

Reference Directs the Secretary of Health and Human Services to establish a process under which a
physician may request, in writing from a carrier, assistance in addressing questionable codes
and procedures under the medicare program. Sets forth provisions concerning: (1) policy
development regarding evaluation and management guidelines; and (2) medicare overpayments.

Beam search
(R-1: 27.61)

Prohibits the Health Care Financing Administration (HCFA) from implementing any new eval-
uation and management guidelines under the Medicare program unless HCFA: (1) has provided
for an assessment of the proposed guidelines by physicians; (2) has established a plan for im-
proving participation of physicians; (3) has carried out a minimum of four pilot projects in at
least four different HCFA regions to test such guidelines; and (4) finds that the objectives will
be met in the implementation of such guidelines . Requires each pilot project to: (1) be of
sufficient length to allow for preparatory physician and carrier education, analysis, and use and
assessment of potential E&M guidelines; and (2) be conducted, throughout the planning and
operational stages of the project, in consultation with national and State medical societies .

Global-aware
(R-1: 40.00)

Directs the Secretary of Health and Human Services to establish a process under which a
physician may request, in writing from a carrier, assistance in addressing questionable codes
and procedures under the Medicare program . Requires the carrier to respond in writing
within 30 business days and allows a written statement to be used as proof against a future
audit or overpayment under the Medicare program . Requires the Administrator of the Health
Care Financing Administration to restore the toll-free telephone hotline so that physicians may
call for information and questions about the Medicare program .Prohibits the Secretary from
implementing any new evaluation and management guidelines under the Medicare program,
unless the Health Care Financing Administration: (1) has provided for an assessment of the
proposed guidelines by physicians; (2) has established a plan for improving participation of
physicians; (3) . . .

Reference Medicare Part D Drug Class Protection Act of 2007 - Amends part D (Voluntary Prescription
Drug Benefit Program) of title XVIII (Medicare) of the Social Security Act to require that
Medicare prescription drug plans using formularies cover all drugs included in six specified
therapeutic categories. Sets forth special requirements for reconsideration of coverage determi-
nations, and appeals for drugs included in such categories. Establishes reporting requirements
for drugs in these categories.

Beam search
(R-1: 73.59)

Amends part D (Voluntary Prescription Drug Benefit Program) of title XVIII (Medicare) of the
Social Security Act to require prescription drug formularies to cover all drugs in six specified
therapeutic categories and classes .

Global-aware
(R-1: 68.45)

Amends part D (Voluntary Prescription Drug Benefit Program) of title XVIII (Medicare) of the
Social Security Act to require that the prescription drug formulary include, subject to specified
requirements, all or substantially all drugs in each of six specified therapeutic categories of cov-
ered Medicare part D drugs: (1) Immunosupessants; (2) Antidepressants; (3) Anticonvulsants;
and (4) Antiretrovias . Provides for special coverage of drugs included in specified therapeutic
categories during determinations, reconsiderations, and appeals .
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Reference Reduce Expenditures in Nuclear Infrastructure Now Act or the REIN-IN Act - Prohibits the
obligation or expenditure of funds authorized to be appropriated to the Department of De-
fense (DOD) for FY2014-FY2023: (1) for the research, development, test, and evaluation
(RDT&amp;E) or procurement of a long-range penetrating bomber aircraft; (2) to procure
an SSBN-X submarine (and prohibits the use of such funds for FY2024 and thereafter to pro-
cure more than eight such submarines); or (3) for the RDT&amp;E or procurement of a new
intercontinental ballistic missile (ICBM). Prohibits the obligation or expenditure of funds au-
thorized to be appropriated for FY2014 or thereafter for DOD or the Department of Energy
(DOE): (1) to make the F-35 Joint Strike Fighter aircraft capable of carrying nuclear weapons;
(2) until the Secretary of Defense and the Secretary of Energy jointly certify that the total
cost of the B61 life extension program has been reduced to not more than $5 billion; (3) for
the W78 life extension program; (4) for the mixed oxide fuel fabrication facility project; (5) to
replace the chemistry and metallurgy research building at Los Alamos National Laboratory, Los
Alamos, New Mexico; or (6) for the uranium processing facility at the Y-12 National Security
Complex, Oak Ridge, Tennessee. Prohibits Navy forces, beginning in FY2020, from including
more than eight operational ballistic-missile submarines available for deployment . Prohibits
the . . .

Beam search
(R-1: 56.48)

Reduce Expenditures in Nuclear Infrastructure Now Act or the REIN-IN Act Prohibits using
funds appropriated to the Department of Defense (DOD) for FY2014-FY2023: (1) for the
research, development, test, and evaluation or procurement of a long-range penetrating bomber
aircraft; (2) to make the F-35 Joint Strike Fighter aircraft capable of carrying nuclear weapons;
(3) until the Secretary of Defense and the Secretary of Energy jointly certify that the total cost
of the B61 life extension program has been reduced to not more than $5 billion; (4) for the
W78 life extension program; (5) for the reduction of nuclear-armed submarines, beginning in
FY2020; or (6) for the National Nuclear Security Administration for FY2024 .

Global-aware
(R-1: 67.03)

Reduce Expenditures in Nuclear Infrastructure Now Act or the REIN-IN Act Prohibits the
obligation or expenditure of funds authorized to be appropriated to the Department of De-
fense (DOD) for FY2014-FY2023: (1) for the research, development, test, and evaluation or
procurement of a long-range penetrating bomber aircraft; (2) to make the F-35 Joint Strike
Fighter aircraft capable of carrying nuclear weapons; (3) until the Secretary of Defense and
the Secretary of Energy jointly certify that the total cost of the B61 life extension program
has been reduced to not more than $5 billion; (4) for the W78 life extension program; (5) for
the reduction of Nuclear-Armed Submarines, beginning in FY2020; (6) for the SSBN-X sub-
marines; or (7) for the mixed oxide fuel fabrication facility project . Prohibits the obligation or
expenditure of funds authorized to be appropriated for FY2014-FY2023 for DOD: (1) to main-
tain more than 200 intercontinental ballistic missiles (ICBMs), (2) to maintain more than 250
submarine-launched ballistic missiles, (3) for the research, development, test, and evaluation or
procurement of a new ICBM, or (4) for the uranium processing facility at the Y-12 National
Security Complex, Oak Ridge, Tennessee . Prohibits the . . .
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Table 5.15: Generated summaries on arXiv sampled by ROUGE-1 F1 score.

Reference in this paper , we develop a structure - preserving discretization of the lagrangian framework for
electromagnetism , combining techniques from variational integrators and discrete differential
forms . this leads to a general family of variational , multisymplectic numerical methods for
solving maxwell s equations that automatically preserve key symmetries and invariants . in
doing so , we demonstrate several new results , which apply both to some well - established
numerical methods and to new methods introduced here . first , we show that yee s finite
- difference time - domain ( fdtd ) scheme , along with a number of related methods , are
multisymplectic and derive from a discrete lagrangian variational principle . second , we gen-
eralize the yee scheme to unstructured meshes , not just in space but in @xmath0-dimensional
spacetime . this relaxes the need to take uniform time steps , or even to have a preferred
time coordinate at all . finally , as an example of the type of methods that can be developed
within this general framework , we introduce a new asynchronous variational integrator ( avi )
for solving maxwell s equations . these results are illustrated with some prototype simulations
that show excellent energy and conservation behavior and lack of spurious modes , even for an
irregular mesh with asynchronous time stepping .

Beam search
(R-1: 37.82)

the yee scheme is one of the most successful numerical methods used in the field of computational
electromagnetics , particularly in the area of microwave problems . although it is not a high
- order ” method , it is still preferred for many applications because it preserves important
structural features of maxwell s equations that other methods fail to capture . in this paper ,
we show that these desirable properties are direct consequences of the variational and discrete
differential structure of the yee scheme , which mirrors the geometry of maxwell s equations .
moreover , we show how to construct other variational methods that , as a result , share these
same numerical properties , while at the same time applying to more general domains .

Global-aware
(R-1: 45.96)

the yee ( finite - difference time - domain ) scheme is one of the most successful numerical meth-
ods used in the field of computational electromagnetics , particularly in the area of microwave
problems . in this paper , we show that these desirable properties are direct consequences of the
variational and discrete differential structure of the yee scheme , which mirrors the geometry
of maxwell s equations . moreover , we show how to construct other variational methods that
, as a result , share these same numerical properties , while at the same time applying to more
general domains . the key symmetry of maxwell s equations is not rotational or translational
symmetry , as in mechanics , but a differential gauge symmetry . without taking additional care
to preserve this gauge structure , even variational integrators can not be expected to capture
the geometry of maxwell s equations . this differential / gauge structure also turns out to be
important for the numerical performance of the method , and is one of the hallmarks of the yee
scheme . this differential / gauge structure also turns out to be important for the numerical
performance of the method , and is one of the hallmarks of the ye . . .
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Reference we present a new general mechanism to generate curvature perturbations after the end of the
slow - roll phase of inflation . our model is based on the simple assumption that the potential
driving inflation is characterized by an underlying global symmetry which is slightly broken .

Beam search
(R-1: 36.88)

most inflationary models assume that there is only one scalar field involved in the dynamics of
inflation . in this work we point out a qualitatively new effect that might arise if one relaxes
the assumption of a single dynamical field . in a multi - field scenario in which the inflationary
potential is characterized by a broken symmetry , the quantum fluctuations generated during
the inflationary stage represent fluctuations in the initial conditions for the dynamics of the
inflaton in the subsequent stage , thus implying that the background dynamics after the slow
- roll phase has ended will differ in different regions of the universe . since the background
fields are coupled to the other fields into which they decay , the fluctuations generated during
the slow - roll phase will affect the subsequent decay process . the present work , assuming
that the inflaton decay into other fields through the non - perturbative process of preheating ,
is then aimed to understand whether isocurvature inflaton fluctuations , generated during the
slow - roll stage , can lead to perturbations of the background metric through variations of
the preheating efficiency . while the generation of curvature perturbations during the stages
following the slow - roll phase has already been considered in some works , the . . .

Global-aware
(R-1: 53.46)

we show that in a multi - field scenario in which the inflationary potential is characterized by
a broken symmetry , quantum fluctuations generated during the slow - roll stage of inflation
may affect the efficiency of the subsequent preheating process . we obtain a general formula for
the curvature perturbations generated from an inhomogeneous preheating efficiency related to
the quantum fluctuations produced during inflation . the present work is then applied to the
case of a broken @xmath0 symmetry .

Reference in this work we investigate an influence of decoherence effects on quantum states generated
as a result of the cross - kerr nonlinear interaction between two modes . for markovian losses
( both photon loss and dephasing ) , a region of parameters when losses still do not lead to
destruction of non - classicality is identified . we emphasize the difference in impact of losses
in the process of state generation as opposed to those occurring in propagation channel . we
show moreover , that correlated losses in modern realizations of schemes of large cross - kerr
nonlinearity might lead to enhancement of non - classicality .

Beam search
(R-1: 47.48)

decoherence due to losses is a main obstacle to implementations of schemes using kerr and
cross - kerr nonlinearities . in our work we discuss an aspect of the decoherence which has
been seldom discussed when considering an influence of losses on states generated via kerr
nonlinearity . namely , we address losses arising in the process of generation and not due
to propagation of the generated state via lossy channels . we concentrate our attention on a
feature that might be quite significantly pronounced in modern schemes of generating large
kerr nonlinearity : the modal loss can be strongly correlated . indeed , the modes occupy the
same volume and interact with the same physical systems which form the reservoirs . also , if
the kerr - nonlinearity scheme implies a sufficiently strong dispersive coupling of light modes
to emitters , then coupling of these emitters to dissipative reservoirs might also appear to be
quite strong . as a result , this would mean strongly correlated modal losses . on a number
of examples we show how the correlated loss enhances and creates intermodal correlations and
even entanglement , and might lead to generation of entangled states quite . . .

Global-aware
(R-1: 41.50)

decoherence of quantum states generated via kerr and cross - kerr nonlinearities is discussed . it
is shown that modal loss can be strongly correlated , i .e . , it can be decoupled from uncorrelated
reservoirs . this strongly correlated loss enhances and creates intermodal correlations and even
entanglement , and might lead to generation of entangled states quite different from those
generated in the same scheme without loss . the strongly correlated loss can result in the
significantly enhanced robustness of the generation scheme .
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Table 5.16: Generated summaries on Multi-News sampled by ROUGE-1 F1 score.

Reference – Joy Milne noticed a small difference in her husband just before he turned 40 . ”His smell
changed,” the Scottish woman tells the BBC . ”It wasnt́ all of a sudden . It was very subtle—a
musky smell .” He was diagnosed with Parkinsonś disease six years later and died in June at
age 65 . Milne found herself supporting the Parkinsonś UK charity, where she noticed others
had the same distinct smell . She happened to mention her observation to scientists at a
talk, and they later put her to the test, presenting her with T-shirts worn by six people with
Parkinsonś and six without . ”She got the six Parkinsonś, but then she was adamant one of
the ćontroĺsubjects had Parkinsonś,” says a scientist . Researchers were impressed and dubbed
her a ”super-smeller,” per AFP . Then eight months later, that one control subject returned to
tell scientists he had just been diagnosed with Parkinsonś . Because of Milneś sniffer, scientists
now theorize . . .

Beam search
(R-1: 48.93)

– Joy Milneś husband, Les, was diagnosed with Parkinsonś disease at age 45—six years before
he died in June . ”His smell changed and it seemed difficult to describe . It wasnt́ all of a
sudden . It was very subtle—a musky smell,” the Australian woman, who lives in Perth, tells
the BBC . ”I got an occasional smell .” After joining the charity Parkinsonś UK, she met people
with the same odor, and researchers at Edinburgh University decided to test Milneś ability to
detect the disease using t-shirts worn by six people with Parkinsonś and six without . ”Her job
was to tell us who had Parkinsonś and who didnt́,” says Dr . Tilo Kunath . ”Her accuracy was
11 out of 12 . We were quite impressed .” Six of the Parkinsonś patients wore the shirts for a
day, while the other six wore them for a week . Milne correctly identified six of the Parkinsonś
patients and six of the non- Parkinsonś patients, but she was ”adamant” that one of the non-
Parkinsonś subjects had the disease, Kunath says . Eight months later, he told Kunath hed́
been diagnosed with Parkinsonś . . .

Global-aware
(R-1: 55.18)

– When Joy Milneś husband was diagnosed with Parkinsonś disease six years before his death
in June, her sense of smell told her something was amiss . ”His smell changed and it seemed
difficult to describe . It wasnt́ all of a sudden . It was very subtle—a musky smell,” she tells
the BBC . After joining the charity Parkinsonś UK, she met people with the same odor . She
mentioned it to scientists at the University of Edinburgh, and they decided to test her—and
were ”quite impressed,” says one of the scientists . Milne correctly identified six people with
Parkinsonś and six without it using T-shirts that had been worn by six people with Parkinsonś
and six without it . Her accuracy was 11 out of 12 . ”She got the . . .
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Reference – President Obama devoted his weekly radio address today to the Connecticut school shooting,
asking Americans to pray for the victims and their families . ”Most of those who died were
just young children with their whole lives ahead of them,” he said, echoing yesterdayś news
conference . ”And every parent in America has a heart heavy with hurt .” Obama reiterated
that itś time to ”come together to take meaningful action” to prevent future shootings, thought
he stopped short of specifics, reports Reuters . (USA Today has the full transcript here .)
Advocates of stricter gun control already have begun to step up pressure, including New York
City Mayor Michael Bloomberg . ”We have heard all the rhetoric before,” he said yesterday
. ”What we have not seen is leadership—not from the White House and not from Congress .
That must end today .”

Beam search
(R-1: 59.23)

– ”Most of those who died were just young children with their whole lives ahead of them .
And every parent in America has a heart heavy with hurt,” President Obama said today in his
weekly radio address, reports USA Today . ”There are families in Connecticut who cant́ do
that today . And they need all of us now . All of us can extend a hand to those in need—to
remind them that we are there for them, that we are praying for them .” Obama again stopped
short of calling for tougher gun laws, reports Reuters . ”We grieve for the families of those we
lost,” he said . ”And we keep in our prayers the parents of those who survived .”

Global-aware
(R-1: 48.81)

– President Obama today repeated his call for ”meaningful action” to reduce gun violence in
the wake of the Connecticut school shooting, reports Reuters . ”We grieve for the families of
those we lost,” he said in his weekly radio address . ”And we keep in our prayers the parents of
those who survived .” Obama didnt́ call for stricter gun laws, notes USA Today, but he did urge
a national conversation . ”This weekend, Michelle and I are doing what I know every parent is
doing—holding our children as close as we can and reminding them how much we love them,”
he said . ”There are families in Connecticut who cant́ do that today . And they need all of us
now .”

Reference – Jesse Jackson Jr . wept in court today, apologized for using $750,000 in campaign funds
as his personal piggy bank, and then took his lumps: 30 months in federal prison and three
yearsṕrobation, reports the Chicago Tribune . “I am the example for the whole Congress,” he
said . “I understand that . I didn’t separate my personal life from my political activities, and I
couldn’t have been more wrong .” The former Illinois congressman added an unusual request:
He wants to serve his time in Alabama because ”I want to make it a little inconvenient for
everybody to get to me .” His wife, Sandi, then got sentenced to 12 months in prison for filing
false tax returns about their income, reports AP . She wept, too . “My heart breaks every day
with the pain this has caused my babies,” she said, referring to their two children, ages 9 and
13 . Because of the kids, the judge will . . .

Beam search
(R-1: 52.74)

– Former congressman Jesse Jackson Jr . and his wife, former Chicago alderman Sandi Jackson,
were sentenced to prison today, reports the Chicago Sun-Times . Jesse Jackson Jr . got 2 1/2
years for using campaign funds for personal expenses, while his wife got one year for filing false
tax returns . The Jacksons had pleaded for mercy for each other in court . Jesse Jackson Jr
. ”I didn’t separate my personal life from my political life, and I couldn’t be more wrong,” he
said . ”I take responsibility for my actions .” Sandi Jackson said she needed to be with her
children . ”I ask to continue to provide for my children,” she said . ”To take the mother away
. . . would be an unbearable burden on these two children .”

Global-aware
(R-1: 47.29)

– Former congressman Jesse Jackson Jr . and his wife, former Chicago alderman Sandi Jackson,
were sentenced to prison today, reports the Chicago Sun-Times . Jackson was sentenced to 2
1/2 years for using campaign funds for personal expenses, while his wife got a year for filing
false tax returns . The Jacksons had pleaded for mercy for each other in court, but the judge
didnt́ seem swayed, reports AP . “There may be blurred lines for congressmen to follow when
their lives are political . This case did not come near those areas,” said Judge Amy Berman
Jackson . “I cannot do it and I will not do it .” She rejected Jackson Jr .́s defense that his
bipolar disorder played a role, saying his string of accomplishments—” propped up by a political
family dynasty”—”points to only one conclusion, and that is that you knew better .” She also
rejected . . .



Chapter 6

Conclusions

6.1 Research Summary

This thesis studies two primary fields in NLP. Among them, text encoding (or text rep-

resentation) is very general and is almost a necessary step for deep learning NLP. By

contrast, text decoding can be regarded as one of the downstream tasks of the former, and

its objective is to recover these encoded hidden states to readable text sequences. In gen-

eral, our contributions can be divided into two parts, namely, to improve generalized text

representation and sequence-to-sequence generation. In Chapter 3, we focus on promoting

the distributional representations of documents with potential connections to others in the

cluster. And in Chapters 4 and 5, we improve sequence-to-sequence generation, which is

a widespread application composed of both encoding and decoding. We improve it from

both the encoder (Chapter 4) and the decoding strategy (Chapter 5). Besides, these im-

provement methods are all designed based on the global perspective to explore higher-level

knowledge to complete or guide the original operations of encoding and decoding.

The specific definitions of global information are different, summarized as follows:

• In Chapter 3, global information is the contextual relationships between news doc-

uments. This global context is often ignored because it is implicit and required to

be constructed first. Instead, local contexts, such as inner words in the document,

are explicit and exist naturally. Thus, they become the natural choices to extend the

distributional assumption from the words to documents that documents with similar

words inside should have similar representations. However, this assumption fails to

capture the dependencies across documents, so it is incomplete for news embeddings.
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In our proposed news network embedding model, the distributional assumptions are

amended so that documents with similar inner components and potentially connected

news events should have similar vectors. We define that two news events have latent

relationships when they are close in position in the news network. In other words,

news nodes with similar topological structures will have similar embeddings. Its

first-order neighbors are equal to the local contexts, consisting of inner components.

In contrast, its second-order neighbors refer to global contexts, i.e., the potentially

linked news documents. Compared with traditional document embedding methods

using local contexts only, our representations are enriched with additional knowledge,

thus benefiting some downstream tasks where document dependencies work.

• In Chapter 4, the global information indicates the interaction relationships across

documents or paragraphs, and the local information, namely the interaction rela-

tionships across words in the same document. We leverage the multi-head attention

module to capture. When generating one word at inference time, the global cross at-

tention model will decide which document the new word is from, and the local cross

attention will choose the possible word from the document. The proposed model

transforms the semantic information of multi-documents into two different levels of

knowledge and learns them simultaneously in a parallel way. It enjoys the train-

ing efficiency and takes up lower memory because it uses the shared encoder and

does not need to calculate the dependencies between words of different documents

directly, which suffers from high complexity. By comparison, the traditional methods

ignore the hierarchical information and concatenate all documents as a flat sequence.

However, as the concatenated sequence becomes longer and longer, there is a bur-

den on training speed and the difficulties of finding a reasonable model to capture

such a long dependency. Overall, our text generator does not introduce additional

knowledge and is still based on source documents completely. Our contribution is to

divide the existing knowledge into two levels to learn (namely the global and local

levels), thus capturing the cross-document relationships explicitly. We designed a

new experiment to verify that the proposed hierarchical structure is easier to learn

such relationships and thus explain why the generation quality is improved. Besides,

the model uses the source content to predict how the reference attends to source

documents and then uses the predicted attention distribution to guide the decoding.

This is actually the embryonic form of the model proposed in Chapter 5 and inspires
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our future work.

• In Chapter 5, the global information is defined as the global (optimal) attention

distribution, i.e., how the optimal target sequence (namely the reference) attends to

the source sentence. This study develops a calibrated beam-based algorithm with

awareness of the global attention distribution for neural abstractive summarization,

aiming to improve the local optimality problem of the original beam search in a

rigorous way. Specifically, a novel global protocol is proposed based on the attention

distribution to stipulate how a global optimal hypothesis should attend to the source.

A global scoring mechanism is then developed to regulate beam search to generate

summaries in a near-global optimal fashion. This novel design enjoys a distinctive

property, i.e., the global attention distribution could be predicted before inference,

enabling step-wise improvements on the beam search through the global scoring

mechanism. Extensive experiments on nine datasets show that the global (attention)-

aware inference significantly improves state-of-the-art summarization models even

using empirical hyper-parameters. The algorithm is also proven robust as it remains

to generate meaningful texts with corrupted attention distributions.

6.2 Future Research

My future work will focus on sequence-to-sequence generations, which is, as mentioned

before, the most widely-known task that combines both encoding and decoding strategies.

All our current work can be applied to this field. For instance, the proposed models in-

troduced in Chapters 3 and 4 respectively indicate that we can use the graph networks

or hierarchical structures to represent cross-document dependencies, thus benefiting the

encoding of multi-document sources. On the other hand, our global-aware beam search

can be generalized to almost all sequence-to-sequence models as long as they adopt the

cross-attention mechanism. It should be mentioned that attention models have been the

mainstream representation models in almost all fields, not only in NLP, but also in com-

puter vision, speech, etc. That is to say, our improved decoding strategy can be applied

to anything-to-text tasks instead of text-to-text only. Therefore, one of the future works

is to adapt the global-aware beam search to improve other source-based text generations,

where the source could be the image, video, data table, etc. The other future work is to

explore more general source-based sequence generations. Not limited to text generations,
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different generations like graph generations and image generations can also be conducted

in a similar autoregressive way. Now I am working on the study of text-to-graph gener-

ations, which brings more challenges than text generations. Similar to text generations,

graphs are also generated components by components conditional on source documents.

However, the difference is that components in text generations are isomorphic and all refer

to vocabulary words. Still, graphs are composed of heterogeneous components following

different distributions, namely nodes and edges. Besides, there exist some difficulties in

graph generations, like the diversity of topological orders, the sparsity of edge connections

and the high complexity when generating edges autoregressively.
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