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Abstract—The accurate prediction of the remaining useful life
(RUL) of components is a major concern in electronic circuits.
The RUL-based health diagnostics plays an important role in
the determination of time-of-failure of a device as an early
warning in industrial applications. In this paper, a Long Short
Term Memory (LSTM) based regression model is proposed for
the prediction of RUL of a Ring Oscillator (RO) circuit utilizing
the most essential extracted electrical features of the device.
LSTM networks are capable of capturing the temporal depen-
dencies in the time-series data and eliminating the vanishing
gradient problem encountered in the conventional recurrent
neural networks (RNNs). From Cadence simulations, utilizing
the 22 nm CMOS technology library, it has been demonstrated
that the RO frequency degradation essentially depends on three
major factors including the working temperature, voltage, and
most importantly, the device aging parameter. The results show
that more than 90% of the cases of the RUL prediction for the
13 and 21 stage constrained under the supply voltage variation
from 0.7 V to 0.9 V with the least prediction deviation of 2
days to 6 days.

KEYWORDS: Aging, Remaining Useful Life, Machine
Learning, Online Prediction, Reliability

I. I NTRODUCTION

With the rapidly decreasing size of the electronic circuits,
the remaining useful life (RUL) of the electronic devices is
becoming a major concern. The detection of RUL as an early
warning indicator is essential for preventive maintenance and
reliability of electronic systems [1]. The RUL indicator is
therefore, a useful parameter determining the durability of
the electronic components and systems [2].

With today’s miniaturization systems incorporating
nanometer technology, the RUL prediction problem has
become more critical. An important factor that is directly
related to the RUL degradation of the device is the ‘path
delay’ [3]. Therefore, determination of accurate RUL
parameter of these devices is critical. Due to the lack of
efficient RUL prediction methods, it cannot be determined as
for how much time the system would operate satisfactorily
without failure. This solicits the need to explore more
efficient methods for RUL prediction.

In the current literature, the most common indicator for
determining the health of electronic components and its reli-
ability is the Mean Time to Failure (MTTF). However, MTTF
cannot be utilized for estimating the reliability of lifetimes of
discrete electronic components. The RUL estimation based

on parametric estimation method such as Particle Filter (PF)
was also reported in the literature [4]. In this method, PF was
utilized for RUL monitoring of an Insulated Gate Bipolar
Transistor (IGBT). The RUL prediction variance with this
method was closer to 20%. The limitation of the method
was that the RMS error was found to be decreasing with
the increasing number of particles in Auxiliary Particle Filter
(APF). For the prediction of failure in electrolytic capacitors,
the models that were based on equivalent series resistance
and capacitance were developed by Long et. al. [5]. This
method utilized a hybrid scheme that was based on the
ARMA (Autoregressive Moving Average) model incorporat-
ing the Genetic Algorithm (GA) for parameter optimization.
The advantage is that the GA essentially requires lesser
information related to the problem at hand. However, for
efficient implementation of GA, the optimization function
needs to be effectively formulated. The RUL prediction
method for solder joints was developed based on an ARMA
prediction model using ‘resistivity’ as an input to the model
[6]. In a study by Lall et. al. [7], the RUL prediction based
on visual inspections was performed. A Radio Frequency
based RUL prediction strategy was designed utilizing the
Gaussian Regression (GR) technique [8]. The limitation of
the scheme was that the impact of GP model parameters such
as the covariance functions as well as the maximum look-
ahead time was not investigated. Liu et. al. [9] proposed
a generalized Cauchy degradation model with Long-Range
dependence and maximum Lyapunov exponent for RUL.
Duan et. al. [10] proposed product technical life prediction
based on multi-modes and fractional Levy stable motion.

Besides parametric approaches, methods based on machine
learning have also been reported for RUL estimation. A
method utilizing neural networks considering the deviations
in electronic resistor-capacitor (RC) signals was reported
[11], [12]. The essential features were extracted from the
RC signals information. The techniques based on neural
networks are good at non-linear function approximation
problems. However, these techniques encounter two major
problems which are (1) the network over-fitting issues and
(2) the neural network parameter selection for which there
are no standard methods for tuning the network parameters.
More recently, a device aging detection technique [13] was
proposed that utilizes the RO along-with the electronic chip
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Fig. 1. Flow Diagram of the Proposed LSTM-Based RUL Method.

Fig. 2. Flow of RUL Simulation Process

ID (ECID). The RO frequency measurement was stored in
the RFID tag. Furthermore, the high standard applications
require electronic systems to operate under different tem-
perature conditions. Therefore, another factor that should
be considered is the device in-use time, more commonly
known as the ‘stress’ parameter which depends on the
workload of the device. Other notable factors for device
aging include the Hot Carrier Injection (HCI) and the Bias
Temperature Instability (BTI) introducing the delays in the
circuit. Studies have highlighted the path delays, temperature,
and the drifts in frequencies inherent in the operation of the
Ring Oscillators. The use of support vector regression (SVR)
was reported in Martinez et. al. [14], which evaluated the
impact of SVR on the 13 and 21 RO circuits.

The current study is part of an ongoing work on runtime
estimation of aging and predicting failure of CMOS designs
with the aid of light weight semi-autonomous sensor and
machine learning algorithm. The sensor can be activated
at any time during the lifetime of the device and may be
used for estimating its remaining useful lifetime (RUL) and
improve upon the MTTF (Mean Time to Failure) parameter
that is currently used. This aspect is discussed in a wider
context in several previous studies [14], [15], [16], [17] by
the third author.

Citing the limitations of several previous studies men-
tioned above, the present study utilizes a special class of
RNNs called the Long-Short-Term-Memory (LSTM) net-
works to build a regression model for the RUL prediction,
which was previously solved using SVR [14]. The method
utilizes essential features from the 13 and 21 RO circuit.
The trained LSTM network aims to provide early warnings
for the device failure conditions based on RUL predictions.
The system would also fundamentally provide an easy online
inspection of electronic devices with reduced cost of testing.

The rest of the paper is structured as follows. In Section
II, the proposed methodology for RUL is presented. Section

III provides details of the data organization consisting of pre-
processing stage and the restructuring of data before creating
the learned LSTM RUL regression model. The background
on LSTM networks is given in Section IV. In Section V, the
results of the RUL prediction under different temperature and
voltage conditions are presented for the 13 and 21 stage ROs.
Finally, concluding remarks are presented in Section VI.

II. PROPOSEDMETHODOLOGY FORRUL PREDICTION

The proposed scheme is depicted in Fig. 1. The raw
information from the 22 nm technology based on CMOS
device (based on Cadence simulation using aging models)
was introduced to the data acquisition block. This data was
further structured in the form of a matrix. For training the
LSTM network, the data was further arranged in cell arrays.
In the next block, the LSTM network is trained and the
learned regression model for RUL is developed.

A. CMOS Parameterization

In this work, a 22 nm CMOS-based technology is con-
sidered. The frequency of the Ring Oscillator circuits is
extracted for different conditions of temperature as well as
voltages. The objective is to investigate whether the RO
frequency parameters have a strong relationship with the
device aging, operating temperature, and voltage. The CMOS
data utilized in this research was taken from a previous study
[14]. This dataset was generated through the Cadence ADE-
L software utilizing the CMOS models based on the tem-
perature and voltage variations and device aging phenomena
due to BTI and HCI. This data was generated using 22 nm
CMOS library provided by GlobalFoundries (GF).

B. Characteristics of Dataset

The dataset utilized in this work comprises of data of
20 years of device degradation considering the various
conditions of temperature and voltage. The characteristics
of the data utilized in this study are described in Fig. 2.
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The data was collected considering the various models for
device aging including NBTI, HCI and aging phenomena.
The data consisted of 630 samples (considering 20 years of
degradation) for various operating temperatures (0◦C, 5◦C,
10◦C,....,100◦C) and voltages betweenV = 0.7 V andV =
0.9 V, with a step size ofV = 0.05 V.

The dataset used in this study reflects the dependency of
RO frequency degradation with respect to the temperature
effects of BTI and HCI [18], [19], [20], [21]. In various
studies, it has been shown that the changes in the threshold
voltages in the CMOS transistors due to above factors of
BTI and HCI are responsible for path delays in the CMOS
gates. The degradation trend of the RO frequency variation
with respect to the circuit lifetime has a strong relationship.
This relationship is depicted in Fig. 3 and Fig. 4. The non-
linear decrease of RO frequency with respect to time can be
easily observed from the figures and is therefore utilized as
a pseudo-signal to train the LSTM regression network. The
ROs were designed to output same frequency using internal
capacitance and output load capacitances. This allowed direct
degradation comparison between the ROs over the aging
period. The numerical values for the frequency degradation
of 13-RO are additionally reported in Table I with respect to
the operating time (i.e., described for a period of 20 years).
Similar observations were made for the 21-RO circuit as seen
in Table II.

Fig. 3. Frequency Degradation Trend for 20 Years for the RO-13 Circuit
(for 0.9 V). Temperature is in centigrade

TABLE I
FREQUENCY DEGRADATION (13-RO).

Working 5 Years 10 Years 15 Years 20 Years
Temperature

(◦C)

25 18.62% 23.12% 25.88% 28.03%
50 22.73% 27.60% 31.54% 34.57%
75 26.77% 32.46% 36.41% 39.71%
100 31.51% 37.88% 41.95% 45.38%

Fig. 4. Frequency Degradation Trend for 20 Years for the RO-21 Circuit
(for 0.9 V). Temperature is in centigrade

TABLE II
FREQUENCYDEGRADATION (21-RO).

Working 5 Years 10 Years 15 Years 20 Years
Temperature

(◦C)

25 21.37% 25.57% 28.55% 30.96%
50 25.31% 29.98% 34.00% 37.15%
75 28.95% 34.35% 38.37% 41.79%
100 33.12% 39.03% 43.55% 47.42%

I II. DATA ORGANIZATION

In order to utilize data for empirical analysis, the data need
to be prepared in a proper structure. This is done via the data
pre-processing and data restructuring. Details of these two
stages are given below.

A. Data Pre-processing

Fundamentally, the data extracted from the dataset con-
sisted of a matrix consisting of the output frequencies of
the Ring Oscillator. In order to train the LSTM Regression
Network, the data was restructured from matrix into the
cell arrays of separate training and testing sets. The dataset
consisted of Ring Oscillator data collected for different fre-
quencies under various operating conditions of temperatures
and voltages. Furthermore, the data essentially highlights the
dependence of a ring oscillator circuit frequency on four
major factors. These factors include the working tempera-
ture, voltage, circuit load capacitance (Ck), and aging time
(considering duration of 20 years). The format of data matrix
that was structured in the original dataset is shown in Eq. 1

Fm(Tm, Vt)= {freqm1, freqm2, freqm3, . . . , freqmn} (1)

In the above equation,Tm represents the working tempera-
ture, where ‘m = 21’. Furthermore,Vt represents the number
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of different operating voltages with ‘t= 5’, ranging fromV =
0.7 V toV = 0.9 V. The symbol ‘n’ represents the number of
samples where ‘n= 30’, and the load capacitance is assigned
a constant value ofC = 200 fF. Thus, the total number of data
samples was 630. Note that these were simulation samples
taken from aging degradation simulated using EDA tools.
The corresponding data structure is illustrated in Figure 5.

In Fig. 6, the data processing stage shows how the data
was obtained considering variations in the various electrical
variables such as the operating voltage and the working
temperature. The continuous workload conditions degrade
the operating frequencies of the Ring Oscillators. This effect
was then captured using the Cadence based simulation in the
form of ’Remaining Useful Life (RUL)’ predictions. This
data was finally trained using the Long-Short-Term-Memory
(LSTM) model.
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Fig. 5. Data matrix consisting of ring oscillator output frequencies.

B. Dataset Restructuring

To generate an LSTM-based regression model, first the
dataset is prepared in the pre-processing stage that is in
suitable format for training the LSTM regression model. The
sparsity in the dataset was removed by adding small Gaussian
noise to the data. The Gaussian noise model employed for
this purpose is given in Eq. 2.
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Fig. 6. Data Preprocessing Stage

G = a ∗ rand(n) + b (2)

where ‘a’ is the standard deviation and ‘b’ is the mean
value. This random noise is added to each sample to remove
sparsity in the data.

IV. L EARNING WITH LONG-SHORT TERM MEMORY

(LSTM) NETWORKS

This section discusses the motivation to use the LSTM
networks for the underlying problem. The section further
discusses the details of LSTM structure as well as training
of LSTM networks.

A. Motivation

The Recurrent Neural Networks (RNNs) are a class of
deep-learning methods that have been shown to have a great
potential in capturing both the long-term and the short-
term temporal dependencies within the time-series data. The
LSTMs are a particular class of RNNs that utilize their
inherent memory capabilities, and use the past information
to make efficient predictions.

The LSTM structure was first introduced in 1997 by
Reiter and Schmidhuber [22]. The structure fundamentally
is comprised of the memory units. The flow of information
through the LSTM network is controlled by the network’s
internal gating mechanism. One major advantage of the
LSTM network is that it overcomes the vanishing as well as
the exploding gradient problem inherent in the conventional
RNNs. An LSTM network accepts a sequential time-series
data as input.
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B. LSTM Structure Details

The basic LSTM cell structure is shown in Fig. 7. The
LSTM architecture resembles RNNs. However, the LSTM
networks include the memory block instead of the summation
blocks in RNNs. The architecture of an LSTM network
comprises of the input layer, forget gate, output gate, memory
cell, and memory state. The memory cells hold the past
information which is further utilized in the training of the
LSTM network when the present samples are available for
training. The forget gate handles the amount of the past
information for training the LSTM network. For a specific
time t, the LSTM equations are represented as:

it = σ(Wixt + Uiht−1 + bi) (3)

ft = σ(Wfxt + Ufht−1 + bf ) (4)

ot = σ(Woxt + Uoht−1 + bo) (5)

zt = tanh(Wzxt + Uzht−1 + bz) (6)

ct = it ⊗ zt + ft ⊗ ct−1 (7)

ht = ot ⊗ tanh ct (8)

The performance of the LSTM network is governed by
the three gates, i.e., the input gatei, the forget gatef,
and the output gateo. Equations (3) to (7) are the update
equations for the LSTM. In the above equations, the operator
⊗ represents element-wise multiplication, and the variableht

represents the hidden state. At any time instancet, the forget
gate is equipped with the inputx as well as the hidden state
ht−1 . Furthermore,zt represents the candidate for cell state
(memory) at timet, while ct defines the memory at timet.

C. Training the LSTM Network and Performance Evaluation

In this section, the LSTM parameter optimization process
is briefly described with respect to the 13-RO Ring oscillator.
The similar process applies for the 21-RO circuit. For training
the regression model, the LSTMs with different number
of hidden units are considered. After proper tuning, the
LSTM with 30 hidden units were selected based on the
goal to achieve minimum errors in the RUL prediction. The
training pattern of the LSTM network is depicted in Fig. 8.
For training the LSTM network, various experiments were
performed. Fig. 8 shows the decreasing trend of the ’loss
function’ and the decreasing ’RMSE’ values while training
of the LSTM model.

To determine the effectiveness of the regression model,
the prediction results are evaluated using three different
metrics. These metrics are the Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE), and Mean Squared
Error (MSE). These metrics are the most widely used metrics
for the evaluation of the regression models according to

several studies [14]. The mathematical representation of these
metrics is given below.

RMSE =
√

1
n

Σn
i=1

(di − fi

σi

)2

(9)

MAE = (
1
n

)
n∑

i=1

|yi − xi| (10)

MSE =
n∑

i=1

(xi − yi)2 (11)

�

Fig. 9. LSTM Training Algorithm Flow.

In Fig. 9, the major steps of the LSTM algorithm flow
are highlighted. Starting from the data acquisition and the
pre-processing stage towards the model evaluation, the six
main steps are presented. First, the data is restructured in the
form in which the LSTM model can be learned. The LSTM
network is then structured by defining different number of
layers and optimizers. Finally, the model is evaluated based
on regression metrics MSE, RMSE and MAE. These metrics
are known as the ’primary metrics’. Also, for the model
evaluation, other metrics known as secondary metrics can
also be used.

In Fig. 10, the optimization process of the LSTM network
is presented. The LSTM parameters include the number
of hidden layers and parameters such as the other hyper-
parameters for the optimization. In this study, the ’Adam
Optimizer’ is used for training the LSTM model. It should
be noted that the LSTM training is an iterative process based
on achieving a certain criterion for the prediction accuracies.

V. RESULTS AND DISCUSSION

In this section, the simulation results of 13-RO and
the 21-RO circuits for RUL prediction are presented. The
training was performed utilizing the LSTM network. While
setting the parameters, it should be noted that the LSTM
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Fig. 7. Basic LSTM cell structure [2]

�

Fig. 8. LSTM Training Pattern.

�

Fig. 10. LSTM Parameter Optimization.

performance depends upon multiple factors including (1) the
method of data sampling (2) the time duration (intervals)
between the individual samples and (3) the missing samples
in the existing dataset. Based on the above factors, the data
utilized in this work was restructured as detailed in Section
III-B.

A. RUL Prediction for 13 and 21 Ring Oscillator Circuits

For simulations, the circuits of 13-RO and 21-RO utilizing
the 22 nm CMOS technology were built incorporating the
Global Foundries (GF)-based aging model. Furthermore, the
extreme condition of 100% stress was considered where
each circuit was kept operational for its complete duration
of the life-time. More specifically, we considered a normal
waveform with 50% duty cycle and fully stressed the ROs by
exercising them over the aging duration of 20 years. Data was
generated using Cadence EDA tools and 22-nm GF design
library. Duty cycle can be altered, however 50% duty cycle
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was considered a good representation for this study. From the
various electrical parameters of the Ring Oscillator, the RO
frequency degradation has been selected as the main proxy
for the determination of the RUL for the two circuits.

The experiments using the LSTM network are performed
in an off-line mode by training the network. However, it has
been shown that on average, the testing-time of the network is
less than 1 second. Therefore, once trained, the model can be
effectively utilized for real-time on-line testing by deploying
on the actual hardware. The major parameter considered
here is the RO working temperature. It was found in a
previous study that the similar measurements of the output
frequencies are produced even with different variations in
the temperature [23]. Furthermore, in the online testing,
the prediction of the RUL-based prediction can be made
using the information of the temperature, the device lifetime,
and the voltage irrespective of the operating condition of
the RO as described in [24]. In this work, the generated
model on the LSTM network is based not on the failure
condition but on the information regarding the failure-time,
i.e., in this case, is the cut-off frequency parameter of the
Ring-Oscillator. Furthermore, the time-series generated from
the operating conditions of the RO (considering 20 years
of degradation) for various operating temperatures (0◦C,
5◦C, 10◦C,...., 100◦C) are considered. It has been shown
in previous studies [25][26][15] that the RUL prediction of a
Ring-Oscillator is dependent on parameters such as voltage,
temperature and the device aging phenomenon. Therefore,
the variations in these variables have been exploited to create
the LSTM-based regression model and can be proved to be
effective set of features for training any regression model.

In order to train the LSTM model, the data was structured
in the form of Fig. 5 similar to the one by Martinez et.
al. [14]. However, based on the requirements of the LSTM
model, variations to the existing data have been made to
make it compatible for the LSTM training. The RUL data to
be predicted for 20 years of degradation is shown in Figs.
11 and 12 for 13-RO and 21-RO, respectively. These RUL
values were generated considering the operating temperature
ranges from0◦C to 100◦C. The data used for simulation
was captured with a temperature difference of5◦C. For each
case, the RUL curve is plotted in order to observe the RUL
degradation trend for each case. From the plots, it can be
clearly inferred that the RUL of the RO depends upon the
amount of stress applied. That is, the curve for100◦C shows
less value of RUL for the period of 20 years as compared to
the curve at0◦C. It can also be noticed further that as the
working temperature increases, the slope of the RUL curve
also increases. Note that Fig. 11 shows one of 630 data points
using voltage and temperature variations.

In the graphs shown in Figures 11 and 12, the RUL values
initiate from 20 years. The time-scale is defined by the
following exponential equation:

Time Scale = 0.068e(0.189×sample) (12)

The sampling rate in the above equation is used as obtained

�

Fig. 11. RUL Data to be Predicted (Shown for 13-RO Oscillator Circuit).

�

Fig. 12. RUL Data to be Predicted (Shown for 21-RO Oscillator Circuit).

by Martinez et. al. [14] using the Cadence based simulation.
The values of the parameter samples are in the range 0 - 30
with a step-size of 0.0475. From the above equation, it can be
inferred, for instance, that the RO frequency degradation for
a working temperature of5◦C is faster as compared to0◦C
and the same is true when other temperatures are compared.
The efficacy of the proposed method is that the strategy based
on ROs is effective according to other previous studies [27],
[28], [29].

The results of RUL prediction for the 13-RO ring oscillator
are presented in Table III below for the training data and for
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testingdata in IV respectively.

TABLE III
RESULTS ON TRAINING DATA FOR13-RO

Error No. of hidden Epochs Error
Metric units values
RMSE 20 10 9.95940
MAE 20 10 50.1892
MSE 20 10 8.44930

TABLE IV
RESULTS ON TESTING DATA FOR13-RO

Error No. of hidden Epochs Error
Metric units values
RMSE 20 10 11.0071
MAE 20 10 53.1841
MSE 20 10 9.24130

The performance of the LSTM regression algorithm was
studied for different number of hidden layers in the archi-
tecture as well as the different number of training sessions
(epochs). With large number of experiments, an optimal
number of the hidden architectural layers for the regression
model were selected to be 20. Similarly, the optimal number
of epochs for which the model was trained is 20 epochs. Fur-
thermore, a learning rate of 0.001 was selected for training
the model. In general, it was observed that increasing the
number of training epochs increases the values in the error.

Another important aspect affecting the performance of
a deep learning strategy is the choice of an appropriate
optimization algorithm. The Adam optimizer [30] is selected
for the scheme developed in this paper using the LSTM.
The Adam optimization approach is fundamentally an ex-
tension of the stochastic gradient descent algorithm and has
been widely adopted for the optimization of deep-learning
methodologies. The Adam optimizer is utilized in this study
due to several advantages including (1) the optimization is
computationally efficient (2) it is easy to implement (3)
little requirements for hyper-parameter tuning and (4) good
suitability for problems with sparse and noisy gradients. The
settings for the training options for the Adam optimizer are
listed in Table V which provided the best results in terms of
RUL prediction errors.

In Fig. 13, the improvement can be observed in the RUL
deviation of -0.005 years over the 0.02 years of deviation in
the RUL. The worst case deviation observed is approximately
0.015 years.

Tables VI and VII give the results of 21 RO circuit
with respect to training and testing data, respectively. The
performance is reported in terms of RMSE, MSE, and MAE.
The optimal number of hidden units was set at 30 and
the number of epochs were set at 20. It can be observed
from the results that the error values in the training phase
are consistent with that of the testing phase. The graph
for the remaining useful life prediction for the 20 years of
degradation is depicted in Fig. 14.

TABLE V
ADAM OPTIMIZER TUNING PARAMETERS

Adam Optimizer Option Value
GradientDecay Factor 0.900

Squared Gradient Decay Factor 0.999
Epsilon 1.0e-08

Initial Learn Rate 1.0e-03
Learn Rate Drop Factor 0.1000

L2 Regularization 1.0e-04
Learn Rate Drop Period 10.00

Gradient Threshold 1.000

�

�
�
�
�
��
�
�
�

Fig. 13. Comparison to Normal Distribution Curve for LSTM Network
for 13-RO (N=40; E = 20, Learning Rate = 0.001).

B. Discussion

The performance of the proposed RUL prediction method
based on the LSTM network is evaluated using MSE, RMSE
and MAE metrics. Tables III to VII presented the training
and testing results for the 13-RO and 21-RO circuits. From
the tables, the consistencies of the predicted values for
the training and testing data can be clearly observed. The
execution time for training and testing the LSTM network
was also calculated. The training time (averaged over the
13-Stage and 21-Stage) was found to be 140 s while the

TABLE VI
RESULTS ON TRAINING DATA FOR21-RO

Error No. of hidden Epochs Error
Metric units values
RMSE 30 20 6.9744
MAE 30 20 48.6426
MSE 30 20 5.8537

TABLE VII
RESULTS ON TESTING DATA FOR21-RO

Error No. of hidden Epochs Error
Metric units values
RMSE 30 20 7.0144
MAE 30 20 50.120
MSE 30 20 6.2001
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Fig. 14. Comparison to Normal Distribution Curve for LSTM Network
for 21-RO (N=40; E = 20, Learning Rate = 0.001).

testing time was 0.79 s. It can be inferred from these values
that since the LSTM model is a deep-learning technique, it
requires more time for training compared to other methods.
However, once trained, the testing time is low. For our case,
the testing of 0.79 s made the LSTM model suitable for real-
time applications.

VI. CONCLUDING REMARKS

The reliability of micro-electronic circuits is becoming
a major issue with the rapid decrease in the size and the
scaling of the circuits. This paper addressed this issue with
respect to the 22 nm CMOS technology, and a Long-Short-
Term-Memory (LSTM)-based RUL prediction solution is
proposed utilizing the output frequency of the Ring Oscilla-
tor. Additionally, the RUL-based aging prediction of discrete
components is made by the proposed method which is not
effectively addressed by the MTTF indicator. The method
utilizes a special class of RNNs called the Long-Short-Term-
Memory (LSTM) networks to build a regression model for
the Remaining Useful Life prediction. The LSTM is capable
of overcoming the exploding as well as the vanishing gra-
dient problem inherent in the conventional RNN-based deep
learning approaches. A notable advantage is that despite the
limited number of training samples, the LSTM model shows
significant improvement in the prediction of RUL estimates
for the Ring Oscillator incorporating a simple technique for
Data Augmentation. The training of the regression model
is conducted under the different scenarios of voltage and
temperature. A Ring Oscillator aging dataset was used com-
prising of CMOS model which incorporates major factors
for the device including voltage, temperature, and the BTI
and HCI models. It was proven that the approach utilizing the
output frequency parameter of the Ring Oscillator is effective
in predicting the RUL estimate. The method introduced in

this research can be used in systems that are critical to
reliability issues. Furthermore, the results of 13 and 21 stage
RO have also been presented in this paper. The testing
is performed from the 13 and 21 stage RO circuit, under
temperature variations from0◦C to 100◦C with a supply
voltage of 0.9 V. Finally, the above method can prove to
be useful for detecting the recycled ICs in highly critical
industrial applications enabling the manufacturing of reliable
electronic systems.
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L IST OF ABBREVIATIONS

RUL Remaining Useful Life
LSTM Long Short Term Memory
RO Ring Oscillator
RNN Recurrent Neural Network
MTTF Mean Time To Failure
PF Particle Filter
IGBT Insulated Gate Bipolar Transistor
APF Auxiliary Particle Filter
ARMA Autoregressive Moving Average
GA Genetic Algorithm
GR Gaussian Regression
ECID Electronic Chip Identity
HCI Hot Carrier Injection
BTI Bias Temperature Instability
SVR Support Vector Regression
Ck Circuit load capacitance
Tm Working Temperature
Vc Number of different voltages
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