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Abstract—Electronic systems life is an essential aspect of
ensuring reliability and safety. An accurate age estimation could
assimilate, which is helpful for any electronics system. It would
also positively impact the minimisation of electronics waste and
support the endeavour of green computing. In this paper, we
propose a methodology for age estimation using the Gaussian
Process Regression (GPR) model. Our methodology requires an
RO sensor, temperature sensor, and trained GPR model for the
age prediction. The Ring Oscillator (RO) output frequency relies
on the trackable path, temperature, voltage and ageing. These
dependencies are utilized for the training of the GPR model. We
exhibit the output frequency degradation of the ring oscillator
through the Synopsys PrimeSim Hspice tool with the 32nm
Predictive Technology Model (PTM). We consider variations
from 0 ◦C to 100 ◦C in temperature and 0.8V to 1.05V in
the voltage. Our methodology predicts age precisely, showing
average prediction accuracy in 85.35% cases with a deviation of
one month for 13-stage RO and 90.42% cases in 21-stage RO.
Our proposed methodology is more accurate than the state-of-
the-art techniques in terms of prediction accuracy as well as age
estimation deviation. The prediction accuracy improvement got
9.59% for 13-stage and 9.17% for 21-stage RO on our data-
set than the state-of-the-art technique with a month deviation,
respectively, as opposed to 2.4 months for the state-of-the-art
method.

Index Terms—Ring Oscillator (RO), Integrated Circuit (IC),
MOS Reliability Analysis (MOSRA)

I. INTRODUCTION

The age of ICs provides the condition of the ICs, which
is essential information to know the system’s reliability and
also ensure the safety of the electronic systems. From the
age, we can identify the ICs that have a shorter life span.
We know that shorter life span ICs affect users’ expectations
and increase failure probability with lower performance. The
poor performance makes the system less reliable, which causes
negative and menacing impacts in critical areas such as secu-
rity issues in defence, aerospace electronics, safety issues in
health care, etc [1]. Some standards are available to detect
whether the electronic parts are new or not. These Counterfeit
electronic parts; detection, avoidance and prevention globally
recognised standards (AS6496 [2], ARP6178 [3] and AS6081
[4] ) have been recommended for detection. However, these
conventional testing suffer from excessive time, cost and lower
rate of the detection. These standards only provide information
about whether the chip is new or old. But, we need a solution
to predict the age of the ICs for reliability concerns. Many of

the systems require a monitoring mechanism of the device to
indicate the warning of the failure.

In [5], the authors provide a supportive solution for reducing
the prediction error by correlating the internal and environ-
mental conditions with the learned data. It only enhances the
prediction accuracy of the remaining useful lifetime (RUL) of
the electronic components. However, the mean time to failure
(MTTF) is the average time the system runs until it fails
[6], so it cannot predict the age of individual components.
A methodology proposed in [7] used voltage drops across the
protection diode present in IO pads to detect the recycled ICs.
The voltage drop of the protection diode compared with the
stored reference data and compare the voltage drop value with
the stored reference value if values are the same as in NVM,
which means the chip is new. Mechanical and thermal stress
are damaged the soldered joints. In [8], monitoring solder
joints using the RF (Radio Frequency) impedance for the
early detection of the failure. The author applied the Gaussian
Process (GP) model to the RF impedance obtained from the
fatigue test for the estimate of the RUL. The solder joint RUL
is not equivalent to IC RUL. In [9], RUL is estimated using the
particle filter (PF) by monitoring the components and insulated
gate bipolar transistor (IGBT) conditions. Non-linearity in the
IC degradation shows a high variance which means the RUL
estimation is inaccurate. In [10] has a set of tests that provide
insight into the degradation due to temperature. Some other
researcher has addressed path delay and frequency drift over
time [10] [11].

The fore-mentioned methods [5] [6] have a limitation; they
can not predict the age of the individual components. In [8], it
only provided the predicted age of the solder joints, not of the
ICs. A methodology presented in [9] predicts inaccurate RUL
because of non-linearity in the age degradation.The state-of-
the-art technique [12] have scope to improve the prediction
accuracy. [12] contains the exponential sampling rate for the
data-set generation that drawback for the accuracy because the
exponential sampling rate provides a large gap at the higher
index value. On the other hand, electronics waste has increased
every year because the chip is discarded before its end of life
[13]. The proposed age estimation methodology could help
reduce e-waste and emphasise green computing.

It also contributes to the energy-efficient field, improving
resource utilisation and innovating eco-friendly technologies.
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Fig. 1. Flow diagram of the proposed age prediction methodology

Our methodology also provides the framework for detecting
the recycled ICs in the global semiconductor supply chain.

Motivated by the limitations mentioned above of the existing
techniques, we propose a methodology to estimate the age of
ICs using the GPR model. The proposed methodology predicts
the age accurately using the GPR model. A GPR model can
make predictions comprising prior learning (kernels) and pro-
vide uncertainty measures over predictions. This algorithm can
predict unseen data and works accurately on small datasets.
Our proposed methodology has high confidence in estimating
the age of the ICs, validated over 20 years of degradation. The
13-stage RO prediction accuracy is 85.35% with a deviation
of one month. Respectively, 90.42% age prediction of the 21-
stage RO under the same conditions. Furthermore, a detailed
explanation of the results is given in Section III.

The paper is organized as follows. Section II presents
the proposed methodology for age estimation, explaining the
setup of the RO and variables involved in Synopsys MOSRA
simulations, describes the data acquisition, pre-processing and
training of GPR model. Section III shows results & analysis
in various voltage and temperature conditions, exhibiting that
the proposed methodology is accurate and suitable for age
prediction. Finally, Section IV concludes the paper.

II. PROPOSED METHODOLOGY

The 13-stage and 21-stage RO have been designed using
the 32nm Predictive Technology Model [14] and we kept 21
temperature levels from 0 °C to 100 °C with step 5 °C and
voltage variation from 0.8V to 1.05V with step 0.05V for
the data collection. Fig. 1 shows the flow of the proposed
age estimation methodology. In the training phase, the first
block of the flow diagram is the CMOS model that allows
collecting the raw data in the data acquisition process. As
mentioned in Section II(C), the linear sampling rate has been
set during the data acquisition process. This concept provides
uniform distribution of the data points, which is beneficial in
predicting the age of ICs. This raw data is formatted in a
specific manner for the training of the GPR model.We have
constructed a matrix in a stairs fashion through the raw data as
described in Section II(C). Next is the algorithm for training
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Fig. 2. Output frequency of 13-stage RO for all temperatures (0 ◦C to 100
◦C) when voltage varies from 0.80 V to 1.05 V (with steps of 0.05 V).

which is the GPR model. After that, we optimized the GPR
model by changing the GPR parameters for less than a month
deviation. The training and testing process has been explained
in Section II(E). In the prediction phase, eventually, we get
the optimized model from the training phase. We deployed
this model for the age estimation of the ICs with fed new
frequency, voltage and temperature.
A. Effect of ageing on the ring oscillator

Fig. 2 illustrates degradation of the output frequency of the
13-stage. A similar output obtains for 21-stage RO, which is
not shown due to the paucity of pages.

Bias Temperature Instability (BTI) and Hot Carrier Injection
(HCI) ageing mechanisms affect the RO during its operational
mode and degrade the output frequency of RO. The trapped
charge increases over time in the oxide-semiconductor bound-
ary underneath the MOSFET gate because of the BTI effect.

BTI mechanism has two phases one is stress, and the other
is relaxation. The trapped charge increase due to the breaking
of the Si-H bond in the stress phase and the annealing process
reduces this charge during the relaxation phase. The interface
trapped charge increases the threshold voltage, consequently
increasing the gate delay. In [15], the gate delay dependency
is illustrated in term of the threshold voltage. The charge
injected in the gate dielectric is known as HCI and occurs due
to the high electric field, which affects the device parameter,
including switching activity and threshold voltage.

B. Data Acquisition Assessing Voltage and Temperature Vari-
ations
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Fig. 3. Data collection flow diagram of the ring oscillator
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We collected raw data from the CMOS model using the
Synopsys PrimeSim HSPICE tool in this phase. Fig. 3 demon-
strates the data collection flow of the CMOS circuit. Data
generation is undertaken through Synopsys software using
MOS reliability analysis (MOSRA) tool with advised parame-
ters of CMOS circuit model and ageing model card; which
provide a realistic ageing scenario of the circuit. The RO
output frequency is generated under various stress conditions,
i.e. voltage and temperature for the 20 years of ageing. Here,
we consider 20 years of ageing degradation because it is the
lifetime of aerospace, automotive and industrial applications.

C. Data Pre-processing

RO output frequencies fetched with the associated age for
various stress conditions, i.e. voltage and temperature. In this
stage, using fetched data, built a matrix for the training of the
GPR model. Fig. 4 shows constructed data matrix that contains
frequency for all temperatures, voltage and associated age. In
the matrix, stairs fashion frequency is allocated for grouping
all temperatures taken at the same age. Matrix dimension
is 23x1680, columns containing 21 temperature levels, one
voltage and another for associated age; the number of rows is
equivalent to 80 frequency samples per operating temperature
multiplied by 21 operating temperatures. The sampling rate is
given in equation 1 for the construction of the matrix.

s = lz ×
T

N
(1)

Where s is sampling rate, lz is index, z = {1, 2, ..., N}, T
is total time to do estimation and N is the total number of
sample. The first 21 columns represent the output frequencies
assigned for the different temperatures of 0 to 100◦C (with step
size 5◦C), 22nd column represents the corresponding operating
voltage, and the 23rd column is the associated age of RO.

We consider training dataset Dtr = {{Xj,k, Agek}, k =
1, 2, ..., t}, where Xj,kϵ{freqj,j′ , V oltagei} is the frequency
values of RO at given temperature j, j′ = 0, 5, ..., 100 till k

timestamp with corresponding voltage, AgekϵR is the corre-
sponding age of ro after k timestamp and freqj,j′ϵR.

D. Gaussian Process Regression

A Gaussian process is a collection of random variables. The
property of GP is that any finite collection of these random
variables follows a gaussian distribution. The gaussian process
written in equation 2.

f(t) ∼ GP(µ, σ2) (2)

Where f(t) is the estimated probability density of the process
t, µ is the mean and σ2 is covariance.

Gaussian process regression [16] is a non-parametric
bayesian approach for regression and we choose this method
because it works well on small dataset and provides predic-
tions based on prior knowledge (kernel). We consider GPR
with Matern 5/2 kernel [17] for age estimation.The Matern
5/2 covariance function is defined in the equation 3.

k( ti, tj ) = σ2
f

(
1 +

√
5 d

σl
+

5 d2

3 σ2
l

)
exp

(
−
√
5 d

σl

)
(3)

Where d is Euclidean distance between ti and tj data points,
σf is standard deviation and σl is the characteristic length
scale.

E. Training and Testing of GPR Model

We have a data matrix for training and testing, and it
randomly splits into 70% and 30% ratios. The GPR model is
trained through the data matrix that is shown in Fig. 4. GPR
implementation is done on MATLAB, and once it has been
trained, it is ready for age prediction. We used Matern 5/2
kernel and optimized the model using Bayesian optimization
with a maximum number of 30 evaluations. For 13-stage
RO, beta 441.16, sigma 0.69 and LogLikelihood -5.42e+03
is optimized parameter for GPR model and similarly, beta
420.39, sigma 0.69 and LogLikelihood -5.26e+03 for 21-stage
RO.

III. RESULTS AND ANALYSIS

We used 32nm Predictive Technology Model [14] to imple-
ment the ring oscillator circuits. Ageing simulation performed
at 0.80V to 1.05V supply and 0°C to 100°C temperature with
the help of Synopsys PrimeSim HSPICE tool. We used the
32nm PTM CMOS model with the Synopsys built-in Level 1
MOSRA Model for the MOS Reliability Analysis.

A. Age Estimation on Voltage and Temperature Variations

We stress RO over the 20 years with various temperature and
voltage levels. The goal of our methodology is to predict age
accurately. We apply temperature and voltage levels differently
because stress conditions are not always the same, so we
consider temperature from 0 °C to 100 °C and voltage from
0.8V to 1.05V. The deviation of predicted age from the actual
age of 13-stage RO and 21-stage RO is shown in Fig. 5 and
Fig. 6 for five temperature levels ( 0°C, 25°C, 50°C, 75°C,
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Fig. 5. Deviation of 13-stage RO using GPR for five representative temperatures (0°C, 25°C, 50°C, 75°C and 100°C) .

TABLE I
COMPARISON WITH STATE-OF-THE-ART TECHNIQUE

Voltage Level Prediction Accuracy
13-Stage RO 21-Stage RO

Proposed Methodology State-of-the-art [12] Improvement Proposed Methodology State-of-the-art [12] Improvement
1.05V 80.36% 73.04% 9.10% 87.20% 78.51% 9.96%
1.0V 84.46% 75.77% 10.28% 90.35% 81.43% 9.87%
0.95V 83.21% 74.76% 10.15% 90.29% 80.06% 11.33%
0.90V 81.31% 74.17% 8.78% 88.39% 79.82% 9.69%
0.85V 88.93% 80.95% 8.97% 89.34% 85.54% 4.25%
0.80V 93.86% 84.23% 10.25% 96.96% 87.32% 9.94%

100°C). Maximum number of deviation points exist between
the red lines, and these red lines represent the deviation range
of less than a month. Hence, the predicted age is near to the
actual age. The Table I shows the comparison with the State-
of-the-art technique [12] results of the age prediction for both
RO. The results show prediction accuracy for temperatures
0 °C to 100 °C with different voltage levels. State-of-the-
art techniques [12] and proposed methodology models have
been trained with the same data, but the average accuracy
improvement is 9.59% for the 13-stage and 9.17% for the
21-stage RO. The reason for accuracy improvement is the
data set and the model. We have taken the linear sampling
rate instead of the exponential sampling rate. This concept
provides uniform distribution of data points that are beneficial
in predicting the age of ICs. The exponential sampling rate
has a big gap between two data points at high index value,

affecting prediction accuracy.

IV. CONCLUSION

In this paper, we presented a methodology to predict the
age of ICs using the GPR model. The output frequency
of the RO is appropriate for training the GPR model. The
Output frequency of RO is a reliable proxy for age estimation.
Our work’s main aim is to improve the electronic systems’
reliability awareness. It also helps to reduce the e-waste and
unlawful approaches to reusing ICs. This paper shows age
prediction results of 13-stage and 21-stage RO. The voltage
variation from 0.8V to 1.05V and the temperature variation
from 0 °C to 100 °C. The average prediction accuracy of 13-
stage RO has 85.35%; respectively, 90.42% for 21-stage RO
with deviation of one month.
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Fig. 6. Deviation of 21-stage RO using GPR for five representative temperatures (0°C, 25°C, 50°C, 75°C and 100°C) .
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