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Abstract

A novel approximate approach is developed for determining, in
a computationally efficient manner, the peak response of nonlinear
structural systems with fractional derivative elements subject to a
given seismic design spectrum. Specifically, first, an excitation evolu-
tionary power spectrum is derived that is compatible with the design
spectrum in a stochastic sense. Next, relying on a combination of

∗Corresponding author: ikougioum@columbia.edu

1



statistical linearization and stochastic averaging yields an equivalent
linear system (ELS) with time-variant stiffness and damping elements.
Further, the values of the ELS elements at the most critical time in-
stant, i.e., the time instant associated with the highest degree of non-
linear/inelastic response behavior exhibited by the structural system,
are used in conjunction with the design spectrum for determining ap-
proximately the nonlinear system peak response displacement. The
herein developed approach can be construed as an extension of ear-
lier efforts in the literature to account for fractional derivative terms
in the governing equations of motion. Furthermore, the approach ex-
hibits the significant novelty of exploiting the localized time-dependent
information provided by the derived time-variant ELS elements. In-
deed, the values of the ELS stiffness and damping elements at the
most critical time instant capture the system dynamics better than
an alternative standard time-invariant statistical linearization treat-
ment. This leads to enhanced accuracy when determining nonlinear
system peak response estimates. An illustrative numerical example is
considered for assessing the performance of the approximate approach.
This pertains to a bilinear hysteretic structural system with fractional
derivative elements subject to a Eurocode 8 elastic design spectrum.
Comparisons with pertinent Monte Carlo simulation data are included
as well, demonstrating a high degree of accuracy.

1 Introduction
Contemporary seismic codes favor design spectrum based response analy-
ses of building structures. In this regard, the input seismic action is defined
through elastic design spectra that provide the peak response of linear single-
degree-of-freedom (SDOF) oscillators as a function of their natural period T
and damping ratio ζ (e.g., Chopra [2001]). These are developed, typically,
for a nominal damping ratio ζ = 0.05 and are complemented with damping
adjustment factors in case a different damping ratio needs to be considered
(e.g., Lin et al. [2005]). Nevertheless, seismic codes and regulatory agencies
allow ordinary structures to exhibit nonlinear/inelastic response behaviors
towards achieving cost-effective designs (e.g., CEN [2004]). In this setting,
the problem of estimating the peak nonlinear/inelastic system response sub-
ject to a given elastic design spectrum arises naturally in code-compliant
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structural design applications, and remains a persistent research challenge in
the field of earthquake engineering.

Irrespective of the nonlinearity type, the above problem can be addressed
by performing nonlinear system response time-history analyses in a Monte
Carlo simulation (MCS) context. Specifically, the nonlinear system is sub-
jected to an ensemble of ground motion records, whose average design spec-
trum matches approximately the target one provided by the codes (e.g.,
Katsanos et al. [2010]). Such design spectrum compatible excitation records
can comprise artificial accelerograms and/or judiciously selected records from
relevant databanks (e.g., Giaralis and Spanos [2009], Cacciola [2010], Araújo
et al. [2016]). In many cases, these records need to be further scaled and
modified to achieve the desired compatibility with the given design spec-
trum. Note, however, that the operation of scaling accelerograms has raised
significant concerns in the literature from a theoretical perspective (e.g., Grig-
oriu [2011]). Further, to reduce the variability of the peak response data
obtained based on the minimum number of accelerograms allowed by the
seismic codes (e.g., Beyer and Bommer [2007]), a relatively large number
of excitation records are required for the system response analysis. In this
manner, numerical integration of the nonlinear equations of motion needs to
be performed in MCS fashion; thus, rendering the approach computationally
demanding.

Obviously, the aforementioned computational cost becomes higher with
increasing complexity of the mathematical model representing the nonlin-
ear/hysteretic system under consideration. In this regard, the need for more
accurate modeling of viscoelastic material behavior has led recently to the
utilization of advanced mathematical tools such as fractional calculus (e.g.,
Makris [1997], Sabatier et al. [2007], Rossikhin and Shitikova [2010], Di Paola
et al. [2013]). Indeed, models based on fractional derivatives have exhibited
a high degree of accuracy compared with experimental viscoelastic response
data obtained via creep and relaxation tests. Notably, in contrast to tradi-
tional models that utilize combinations of Maxwell and/or Kelvin elements
and depend on several parameters, the fractional derivative model requires
the identification of two parameters only for capturing both relaxation and
creep tests (e.g., Di Paola et al. [2011]). Remarkably, structural engineer-
ing has benefited significantly from exploiting fractional calculus concepts.
In fact, several research efforts pertaining to seismic isolation and vibration
control applications have demonstrated the capability of fractional deriva-
tives to model successfully the response behavior of viscoelastic dampers,
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e.g., Koh and Kelly [1990], Makris and Constantinou [1991], Lee and Tsai
[1994], Shen and Soong [1995], Rüdinger [2006]. The interested reader is also
directed to Petromichelakis et al. [2021] for a recent paper referring to frac-
tional derivative modeling of the capacitance term in the governing equations
of a broad class of nonlinear electromechanical energy harvesters. It is noted
that solving numerically the corresponding fractional differential equation
of motion can be a highly demanding task computationally. This is due to
the need for treating numerically the convolution integral associated with the
fractional derivative operator in conjunction with complex nonlinearities and
hysteresis. In this context, various solution schemes have been developed for
determining the response of deterministically and/or stochastically excited
nonlinear oscillators with fractional derivative elements (e.g., Koh and Kelly
[1990], Spanos and Evangelatos [2010], Di Matteo et al. [2014], Fragkoulis
et al. [2019], Pirrotta et al. [2021], Kong et al. [2022a,b]).

It is readily seen that there is merit in developing alternative, more effi-
cient, approaches for treating the problem of estimating the peak response
of a nonlinear/hysteretic system with fractional derivative elements subject
to a given elastic design spectrum. In this regard, a rather popular class of
approaches relates to deriving an equivalent linear system (ELS) based on
various deterministic or stochastic linearization criteria (e.g., Iwan [1980],
Iwan and Gates [1979a], Jennings [1968], Iwan and Gates [1979b], Hadjian
[1982], Koliopulos et al. [1994], Giaralis and Spanos [2010], Mitseas et al.
[2018], Mitseas and Beer [2019]). Further, the ELS is characterized by ef-
fective stiffness and damping elements that can be used in conjunction with
the elastic design spectrum for estimating approximately the peak response
of the original system.

In this paper, an approximate stochastic dynamics approach is devel-
oped for determining the peak response displacement of nonlinear structural
systems with fractional derivative elements subject to a given seismic design
spectrum. This is done in a computationally efficient manner without resort-
ing to numerical integration of the governing equations of motion. Specifi-
cally, first, an approximate scheme by Cacciola [2010] is employed for deriving
an excitation evolutionary power spectrum (EPS) compatible in a stochastic
sense with the design spectrum. Note that the choice of utilizing the above
scheme is not restrictive, and other alternative approaches for deriving de-
sign spectrum compatible power spectra can be adopted. Further, a solution
treatment based on a combination of statistical linearization and stochastic
averaging is employed that yields an equivalent linear system (ELS) with
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time-variant stiffness and damping elements. Without loss of generality, sys-
tems with softening response behaviors reflecting structural degradation are
considered in the ensuing analysis. In this regard, the time instant cor-
responding to the global minimum and the global maximum of the time-
variant stiffness and damping elements, respectively, is treated as the most
critical time instant associated with the highest degree of nonlinear/inelastic
response behavior exhibited by the structural system. In passing, it is re-
marked that dos Santos et al. [2016] relied on a somewhat similar concept
to develop an efficient stochastic incremental dynamic analysis methodol-
ogy for circumventing computationally expensive nonlinear system response
analyses in a MCS context. Next, the stiffness and damping values at this
critical time instant are used in conjunction with the design spectrum for de-
termining approximately the nonlinear system peak response displacement.
Note that the peak response estimate is evaluated in an iterative manner till
convergence, which ensures that the damping ratio of the imposed design
spectrum matches the damping ratio of the ELS.

Compared to earlier relevant efforts in the literature (e.g., Giaralis and
Spanos [2010], Mitseas et al. [2018]), the herein developed approach can be
construed as an extension to treat structural systems with fractional deriva-
tive elements. Furthermore, its significant novel aspect of providing localized
time-dependent information via the derived time-variant ELS elements leads
to an enhanced accuracy degree when determining nonlinear system peak re-
sponse estimates. Indeed, it is shown that the values of the ELS stiffness and
damping elements at the most critical time instant capture the system dy-
namics better than an alternative standard statistical linearization solution
treatment yielding time-invariant (stationary) ELS stiffness and damping ele-
ments (e.g., Giaralis and Spanos [2010], Mitseas et al. [2018]). An illustrative
numerical example is considered pertaining to a bilinear hysteretic structural
system with fractional derivative elements subject to a Eurocode 8 elastic de-
sign spectrum. Comparisons with relevant MCS data are included as well for
assessing the accuracy of the approximate approach.
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2 Mathematical formulation

2.1 Auxiliary concepts: Equivalent linear system time-
dependent damping and stiffness elements, and stochas-
tic averaging solution treatment

The governing equation of motion describing the dynamics of a stochastically
excited nonlinear SDOF system with fractional derivative terms takes the
form

mẍ(t) + cDα
0,tx(t) + g(t, x, ẋ) = mag(t), (1)

where x represents the response displacement process, a dot over a variable
denotes differentiation with respect to time t, m is the mass and c is a
damping coefficient. Further, g(t, x, ẋ) is an arbitrary nonlinear function
that can account also for hysteretic response behaviors, and Dα

0,tx(t) denotes
the Caputo fractional derivative of order α defined as

Dα
0,tx(t) = 1

Γ(1 − α)

∫ t

0

ẋ(τ)
(t− τ)α

dτ, 0 < α < 1, (2)

where Γ(·) represents the Gamma function. Equivalently, Eq. (1) can be cast
in the form

ẍ(t) + βDα
0,tx(t) + g0(t, x, ẋ) = ag(t), (3)

where β = c/m and g0 = g/m. Furthermore, ag(t) is a non-stationary
stochastic excitation process with an EPS Sag(ω, t) that is compatible with a
prescribed design spectrum S(ω, ζ), where ω denotes the frequency in rad/s
and ζ is the damping ratio.

Note that various approaches have been developed in the literature over
the past few decades for deriving stochastic process power spectra that
are compatible in a statistical sense with design spectra provided by seis-
mic building codes; see Pfaffinger [1983], Spanos and Loli [1985], Christian
[1989], Park [1995], Gupta and Trifunac [1998], Cacciola [2010], Giaralis and
Spanos [2009], Shields [2015], Brewick et al. [2018] for some indicative refer-
ences. Without loss of generality, the approach proposed in Cacciola [2010]
is employed in the ensuing analysis for generating Sag(ω, t) based on a given
S(ω, ζ). The salient aspects of the approach are included in A for complete-
ness.

Next, the fundamental ingredients of a recently developed approximate
analytical technique for determining the stochastic response of oscillators
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governed by Eq. (3) are delineated. The interested reader is also directed to
Fragkoulis et al. [2019] for more details. Specifically, relying on a combination
of statistical linearization and stochastic averaging (see Roberts and Spanos
[1986, 2003] for a broad perspective), the technique in Fragkoulis et al. [2019]
yields the non-stationary response amplitude PDF of nonlinear/hysteretic
oscillators endowed with fractional derivative elements.

More specifically, considering relatively light damping, the system re-
sponse exhibits a pseudo-harmonic behavior described by the equations

x(t) = A(t) cos(ω(A)t+ ψ(t)) (4)

and
ẋ(t) = −ω(A)A(t) sin(ω(A)t+ ψ(t)), (5)

where the response amplitude A(t) and phase ψ(t) are considered to be
slowly-varying quantities with respect to time, and thus, approximately con-
stant over one cycle of oscillation. Next, manipulating Eqs. (4) and (5) yields

A2(t) = x2(t) +
(
ẋ(t)
ω(A)

)2

. (6)

Further, Eq. (3) is recast, equivalently, in the form

ẍ(t) + β0ẋ(t) + h(t, x,Dα
0,tx, ẋ) = ag(t), (7)

where
h(t, x,Dα

0,tx, ẋ) = βDα
0,tx+ g0(t, x, ẋ) − β0ẋ, (8)

with β0 = 2ζ0ω0 representing a damping coefficient, and ω0 and ζ0 denoting,
respectively, the natural frequency and damping ratio of the corresponding
linear oscillator (i.e., h(t, x,Dα

0,tx, ẋ) = ω2
0x(t)). Furthermore, an ELS is

defined as
ẍ(t) + (β0 + β(A)) ẋ(t) + ω2(A)x(t) = ag(t). (9)

In the following, applying a mean square error minimization between Eqs. (7)
and (9), and approximating the involved fractional derivatives according to
Spanos et al. [2016], Li et al. [2015], Di Matteo et al. [2018], yields the ELS
amplitude-dependent damping and stiffness coefficients in the form [Fragk-
oulis et al., 2019]

β(A) = ω2
0

Aω(A)S(A) + β

ω1−α(A) sin
(
απ

2

)
− β0 (10)
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and
ω2(A) = ω2

0
A
F (A) + βωα(A) cos

(
απ

2

)
, (11)

where
S(A) = − 1

π

∫ 2π

0
g0(A cosϕ,−Aω(A) sinϕ) sinϕdϕ, (12)

F (A) = 1
π

∫ 2π

0
g0(A cosϕ,−Aω(A) sinϕ) cosϕdϕ, (13)

and ϕ(t) = ω(A)t+ ψ(t).
Note that the ELS elements ω(A) and β(A) depend on the response non-

stationary amplitude A to account for the nonlinearities and the fractional
derivative terms of the original system. Thus, ω(A) and β(A) can be con-
strued as non-stationary stochastic processes, whose time-varying mean val-
ues are given by applying the expectation operator on Eqs. (10) and (11).
This yields

βeq(t) =
∫ ∞

0
β(A)p(A, t)dA (14)

and
ω2

eq(t) =
∫ ∞

0
ω2(A)p(A, t)dA, (15)

respectively. Further, Eqs. (14-15) can be associated with an alternative to
Eq. (9) ELS of the form

ẍ(t) + (β0 + βeq(t)) ẋ(t) + ω2
eq(t)x(t) = ag(t). (16)

In passing, note that the potent concept of a time-dependent ELS natural
frequency, such as the one defined in Eq. (15), has been of considerable im-
portance in the field of structural dynamics. Indicative applications include
damage detection (e.g., Spanos et al. [2007]) and identification of moving res-
onance phenomena (e.g., Beck and Papadimitriou [1993], Tubaldi and Kou-
gioumtzoglou [2015]). The latter can occur, for example, during a seismic
event when the decrease of the fundamental system frequency due to yield-
ing tends to track the decrease of the predominant frequency of the ground
motion. As a result, nonlinear systems can exhibit significant response am-
plifications.

Next, it is readily seen that the evaluation of the ELS time-dependent
damping βeq(t) and stiffness ω2

eq(t) elements via Eqs. (14-15) requires knowl-
edge of the non-stationary response amplitude PDF p(A, t). In this regard,
the stationary response amplitude PDF corresponding to a linear oscillator
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with fractional derivative terms and subjected to Gaussian white noise was
obtained in closed-form in Spanos et al. [2018] based on stochastic averag-
ing. Motivated by this analytical solution, a generalized form of this PDF
was considered in Fragkoulis et al. [2019] for modeling the non-stationary
response amplitude PDF of the nonlinear oscillator governed by Eq. (3), or
equivalently, by Eq. (7). This takes the form

p(A, t) =
sin

(
απ
2

)
A

ω1−α
0 c(t)

exp
sin

(
απ
2

)
ω1−α

0

A2

2c(t)

 , (17)

where c(t) is a time-dependent coefficient to be determined. Further, based
on a stochastic averaging solution treatment of Eq. (16), it was shown in
Fragkoulis et al. [2019] that substituting Eq. (17) into the associated Fokker-
Planck partial differential equation governing the evolution in time of the
response amplitude PDF, i.e.,

∂p(A, t)
∂t

= − ∂

∂A

{(
−1

2(β0 + βeq(t))A+ πSag(ωeq(t), t)
2ω2

eq(t)A

)
p(A, t)

}

+ 1
4
∂

∂A

{
πSag(ωeq(t), t)

ω2
eq(t)

∂p(A, t)
∂A

+ ∂

∂A

(
πSag(ωeq(t), t)

ω2
eq(t)

p(A, t)
)}

(18)

and manipulating, leads to

ċ(t) = −(β0 + βeq(c(t)))c(t) +
sin

(
απ
2

)
ω1−α

0

 πSag(ωeq(c(t)), t)
ω2

eq(c(t))
. (19)

Eq. (19) constitutes a deterministic first-order nonlinear ordinary differential
equation. This can be solved readily by any standard numerical integra-
tion scheme, such as the Runge–Kutta, for determining the time-dependent
coefficient c(t). Furthermore, c(t) can be used for evaluating the ELS time-
dependent damping and stiffness elements by employing Eqs. (14) and (15).
Note that the ELS elements are expressed in Eq. (19) as βeq(t) = βeq(c(t))
and ωeq(t) = ωeq(c(t)) to highlight the explicit dependence of βeq(t) and ωeq(t)
on the time-varying coefficient c(t) via Eqs. (14-15).

It is remarked that various approaches have been proposed in the lit-
erature for nonlinear system peak response estimation based on deriving a
stationary power spectrum compatible with the provided design spectrum
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(e.g., Giaralis and Spanos [2010], Mitseas et al. [2018]). In other words,
ag(t) in Eq. (3) is modeled as a stationary process with a power spectrum
Sag(ω) compatible with the design spectrum S(ω, ζ). In this case, it can
be readily seen that employing the technique developed in Fragkoulis et al.
[2019] for a stationary excitation process, i.e., Sag(ω, t) = Sag(ω), leads to a
time-invariant stationary PDF for the response amplitude. In fact, Eq. (17)
becomes

p(A) =
sin

(
απ
2

)
A

ω1−α
0 c(t∞)

exp
sin

(
απ
2

)
ω1−α

0

A2

2c(t∞)

 , (20)

where c(t∞) is the stationary constant value of c(t) as t → ∞, and thus,
Eqs. (14) and (15) degenerate to

βeq =
∫ ∞

0
β(A)p(A)dA (21)

and
ω2

eq =
∫ ∞

0
ω(A)p(A)dA, (22)

respectively. Obviously, Eqs. (21-22) represent the stationary mean values of
the damping and stiffness elements corresponding to the time-invariant, in
this case, ELS of Eq. (16).

2.2 A novel approximate approach for nonlinear sys-
tem peak response estimation exhibiting enhanced
accuracy and accounting for fractional derivative
modeling

In this section, a novel approximate approach is developed for determin-
ing, in a computationally efficient manner, the peak response of nonlinear
structural systems with fractional derivative elements subject to a design
spectrum S(ω, ζ) provided by seismic building codes. The approach can be
construed as an extension of the work in Mitseas et al. [2018] to account for
systems with fractional derivative terms. Further, compared to the scheme
proposed in Mitseas et al. [2018], the herein developed approach exhibits an
enhanced accuracy degree in determining nonlinear system peak response
estimates. This is primarily due to the novel aspect of exploiting the local-
ized time-dependent information provided by the derived ELS elements of
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Eqs. (14-15). In this regard, the proposed approach is capable of identifying
the critical time instant where the nonlinear/inelastic behavior of the sys-
tem response is most prevalent. Clearly, the values of the ELS elements of
Eqs. (14-15) corresponding to this specific time instant capture the localized
system dynamics better than the time-invariant (stationary) ELS elements
derived in Mitseas et al. [2018] based on a standard statistical linearization
treatment. In fact, it is shown that more accurate estimates are obtained for
the nonlinear system peak response by employing Eqs. (14-15) compared to
their stationary counterparts in Eqs. (21-22).

Specifically, the mechanization of the proposed approach comprises the
following steps:

i) Derivation of an excitation EPS Sag(ω, t) compatible with the provided
elastic design spectrum S(ω, ζ); see Cacciola [2010] and A for more
details.

ii) Stochastic averaging/linearization solution treatment of the nonlin-
ear/hysteretic oscillator with fractional derivative terms, and deter-
mination of ELS time-dependent stiffness ωeq(t) and damping βeq(t)
elements via Eqs. (14-15).

iii) Identification of the most critical time instant tcr corresponding to the
global maximum and global minimum of βeq(t) and ωeq(t), respectively.
This time instant is treated as being associated with the highest degree
of nonlinear/inelastic response behavior exhibited by the oscillator.

iv) Evaluation of ωeq(tcr) and ζeq(tcr) = β0+βeq(tcr)
2ωeq(tcr) . If |ζ−ζeq(tcr)|

ζ
< ε, then

go to step v), otherwise set ζ = ζeq(tcr) and repeat steps i)-iv) until
convergence. This iterative scheme ensures that the damping ratio of
the imposed design spectrum matches the damping ratio of the ELS;
see also Mitseas et al. [2018] for more details.

v) Peak response estimation by employing the updated design spectrum
S(ω, ζeq(tcr)) and considering the ELS natural frequency value ωeq(tcr).

The mechanization of the proposed approach is depicted graphically in
Fig. 1, where it is also compared with the original approach in Mitseas et al.
[2018]. The novel aspects of the herein developed approach are highlighted in
bold red. Clearly, not only the approach in Mitseas et al. [2018] is extended to
treat systems with fractional derivative terms, but it also exploits localized
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time-dependent information for evaluating the ELS elements ωeq(tcr) and
ζeq(tcr). This leads to enhanced accuracy when determining peak response
estimates.

Fig. 1. Nonlinear system peak response estimation: (a) Approach in Mit-
seas et al. [2018], (b) Proposed approach exhibiting enhanced accuracy and
accounting for fractional derivative modeling.

3 Illustrative application
In this section, a bilinear hysteretic structural system with fractional deriva-
tive terms subject to a Eurocode 8 elastic design spectrum is considered as an
illustrative numerical example for demonstrating the reliability of the devel-
oped approach. The achieved accuracy of the predicted peak displacements
is quantified by comparison with pertinent results derived from nonlinear re-
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sponse history analyses for an ensemble of time-histories compatible with the
considered Eurocode 8 design spectrum. B includes details on the definition
of the imposed Eurocode 8 elastic design spectrum.

3.1 Governing equations of a bilinear hysteretic struc-
tural system with fractional derivative elements,
and ELS time-dependent elements

The governing equation of the bilinear hysteretic oscillator, which has been
widely utilized in earthquake engineering applications (e.g., Caughey [1960],
Roberts and Spanos [2003]), takes the form of Eq.(3) with

g0(t, x, ẋ) = γω2
0x+ (1 − γ)ω2

0xyz (23)

and
xyż = ẋ{1 −H(ẋ)H(z − 1) −H(−ẋ)H(−z − 1)}. (24)

In Eqs. (23-24), H(·) denotes the Heaviside step function, γ is the post- to
pre-yield stiffness ratio, z is the hysteretic force corresponding to the elasto-
plastic characteristic, and xy is the critical value of the displacement at which
the yield occurs.

Next, taking into account Eq. (23), Eqs. (10-11) become (e.g., Fragkoulis
et al. [2019])

β(A) = (1 − γ)ω2
0S(A)

Aω(A) + β

ω1−α(A) sin
(
απ

2

)
− β0 (25)

and
ω2(A) = ω2

0

[
γ + (1 − γ)F (A)

A
+ βωα(A) cos

(
απ

2

)]
, (26)

respectively, where

S(A) =
{ 4xy

π

(
1 − xy

A

)
, A > xy

0, A ≤ xy

(27)

F (A) =
{

A
π

[
Λ − 1

2 sin(2Λ)
]
, A > xy

A, A ≤ xy

(28)

and
cos(Λ) = 1 − 2xy

A
. (29)
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Further, substituting Eqs. (25) and (26) into Eqs. (14) and (15), respec-
tively, yields

βeq(t) = − β0 +
β sin2(απ

2 )
ω1−α

0 c(t)
×
∫ ∞

0

A

ω1−α(A) exp
(

−
sin(απ

2 )
ω1−α

0

A2

2c(t)

)
dA

+
4xyω

2
0(1 − γ) sin(απ

2 )
πω1−α

0 c(t)
×
∫ ∞

1

1 − xy

A

ω(A) exp
(

−
sin(απ

2 )
ω1−α

0

A2

2c(t)

)
dA

(30)

and

ω2
eq(t) =ω2

0 − (1 − γ)ω2
0

{
exp

(
−
xy

2 sin(απ
2 )

2c(t)ω1−α
0

)
−

sin(απ
2 )

πω1−α
0 c(t)

×
∫ ∞

1
(Λ − 1

2 sin(2Λ))A× exp
(

−
sin(απ

2 )
ω1−α

0

A2

2c(t)

)
dA
}

+
β sin(απ

2 ) cos(απ
2 )

ω1−α
0 c(t)

×
∫ ∞

0
ωα(A)A exp

(
−

sin(απ
2 )

ω1−α
0

A2

2c(t)

)
dA. (31)

3.2 Peak inelastic response determination and com-
parisons with Monte Carlo simulation data

First, following the approach by Cacciola [2010] described succinctly in A,
the excitation EPS Sag(ω, t) compatible with the Eurocode 8 design spec-
trum S(ω, ζ = 0.05) (see B) is determined. Specifically, Fig. 2(a) shows the
aR

g (t) component of Eq. (32) referring to a recorded time history at El Cen-
tro site of the Imperial Valley earthquake of May 18, 1940. Fig. 2(b) shows
a joint time-frequency analysis of the recorded time history at El Centro
based on the short-time Thompson’s multiple window spectrum estimation
scheme proposed in Conte and Peng [1997]. It is readily seen that not only
the intensity, but also the frequency content of the time history changes with
time. In Fig. 2(c), the power spectrum GS(ω) is plotted corresponding to
the stationary component aS

g (t) of Eq. (32). This is determined based on the
iterative scheme of Eq. (43). Further, Fig. 2(d) shows the calculated excita-
tion EPS Sag(ω, t) compatible with the Eurocode 8 design spectrum. This is
used in the ensuing analysis as the input EPS for evaluating the ELS time-
dependent elements via Eqs. (30-31). Furthermore, to compare the herein

14



developed approach shown graphically in Fig. 1(b) with the approach in Mit-
seas et al. [2018] shown in Fig. 1(a), a design spectrum compatible stationary
power spectrum is also determined. Specifically, setting α = 0 and φ(t) = 1
in Eq. (32) yields Sag(ω, t) = Sag(ω) = GS(ω), which is computed based on
Eq. (43) and plotted in Fig. 3. Clearly, the GS(ω) in Fig. 3 corresponds to
a larger variance than the GS(ω) in Fig. 2(c). This is anticipated since the
additional component of aR

g (t) in Eq. (32) is omitted in this case, and thus,
the intensity of aS

g (t) needs to increase to counteract the absence of aR
g (t).

(a) (b)

(c) (d)

Fig. 2. (a) The recorded time history at El Centro site; (b) EPS estimate of
the recorded time history at El Centro site; (c) Calculated power spectrum
GS(ω) corresponding to the stationary process aS

g (t); (d) Excitation EPS
Sag(ω, t) compatible with a Eurocode 8 type B design spectrum S(ω, ζ =
0.05).
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Fig. 3. Calculated stationary power spectrum Sag(ω, t) = Sag(ω) = GS(ω)
compatible with a Eurocode 8 type B design spectrum S(ω, ζ = 0.05).

Further, the parameter values ω0 = 5.48 rad/sec, β0 = 0.7, γ = 0.4,
xy = 7 cm and α = 0.5 are used in conjunction with the bilinear hysteretic
oscillator with fractional derivative elements described by Eqs. (23-24). The
herein developed approach for nonlinear system peak response estimation
is applied next. Specifically, considering the excitation EPS in Fig. 2(d)
and utilizing Eqs. (30-31), Eq. (19) is solved numerically for c(t). This is
substituted into Eqs. (30-31) and the ELS time-variant stiffness ωeq(t) and
damping ζeq(t) elements are evaluated. Also, the most critical time instant
tcr is identified corresponding to the global minimum and global maximum
of ωeq(t) and ζeq(t), respectively.

Next, to ensure that the input design spectrum S(ω, ζ) and the ELS of
Eq. (16) share the same value of damping ratio ζ, an iterative scheme till
convergence is applied, where the design spectrum is updated at each step
by setting S(ω, ζ = ζeq(tcr)); see also Mitseas et al. [2018] for more details.
In this regard, Fig. 4 shows the computed time-variant elements ωeq(t) and
ζeq(t) corresponding to the 4-th iteration when convergence has been reached.
These are compared with time-invariant (stationary) elements ωeq and ζeq

obtained by Eqs. (21-22). It is readily seen that ωeq(t) and ζeq(t) are capable
of capturing time-localized dynamics of the nonlinear system response. In
fact, the value of the ELS natural frequency at the most critical time instant
tcr, i.e., ωeq(tcr), is considerably smaller than the time-invariant value ωeq. In
other words, ωeq(tcr) reflects a higher degree of nonlinear/inelastic response
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behavior than ωeq. In a similar manner, and in agreement with the above
argument, ζeq(tcr) is larger than the time-invariant value ζeq; thus, reflecting
a higher degree of system nonlinearity. Further, the calculated ELS elements
ωeq(tcr) and ζeq(tcr) are plotted in Fig. 4 corresponding to successive iterations
of the scheme, and compared with stationary ωeq and ζeq estimates. It is seen
that convergence has been achieved practically after 4 iterations.

(a) (b)

Fig. 4. ELS time-variant elements and most critical time instant tcr based
on Eqs. (14-15) and corresponding to the 4-th iteration when convergence of
the scheme has been reached: (a) natural frequency ωeq(t), and (b) damping
ratio ζeq(t). Comparisons with stationary estimates based on Eqs. (21-22).

Following convergence of the scheme, i.e., |ζ−ζeq(tcr)|/ζ < ε, the obtained
ELS elements ωeq(tcr) and ζeq(tcr) for k = 4 in Fig. 5 are used to estimate the
nonlinear system peak response in conjunction with the Eurocode 8 elastic
design spectrum. This procedure is shown schematically in Fig. 6 where
the Eurocode 8 design spectrum is plotted against the natural period T =
2π/ω, in terms of spectral acceleration S(ω, ζeq(tcr)), left vertical axis, and
in terms of spectral displacement S(ω, ζeq(tcr))/ω2, right vertical axis. Next,
the peak inelastic displacement is read on the right vertical axis using the
pair (Teq(tcr) = 2π/ωeq(tcr), ζeq(tcr)) indicated on the figure.

Further, to assess the accuracy of the herein developed approach for non-
linear system peak response estimation, comparisons with pertinent MCS
data are included as well. In this regard, an ensemble of 1000 acceleration
time-histories are generated compatible with the Eurocode 8 design spec-
trum S(ω, ζ = 0.05) based on Eq. (44) of A. Furthermore, the governing
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(a) (b)

Fig. 5. ELS time-variant elements based on Eqs. (14-15) corresponding to
successive iterations and evaluated at the most critical time instant tcr: (a)
natural frequency ωeq(tcr), and (b) damping ratio ζeq(tcr). Comparisons with
stationary estimates based on Eqs. (21-22).

Fig. 6. Nonlinear system peak response displacement determination using
the ELS elements ωeq(tcr) and ζeq(tcr) for k = 4 in Fig. 5 in conjunction with
the design spectrum of B.
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Eq. (1) is numerically integrated for the above ensemble by resorting to an
L1-algorithm (e.g., Koh and Kelly [1990]), and the mean peak response esti-
mate is obtained based on statistical analysis of the response time-histories.
In passing, note that the nonlinearity degree exhibited by the oscillator is sig-
nificant as shown by the MCS-based average ductility demand estimate. This
is calculated as xmax/xy = 0.1965/0.07 = 2.8, indicating that the oscillator
enters well into the inelastic range.

Table 1 compares the MCS-based estimate with peak displacements ob-
tained by using both the time-variant elements (ωeq(tcr), ζeq(tcr)) and the
stationary elements (ωeq, ζeq), reported in Fig. (5) for k = 4, in conjunction
with the Eurocode 8 design spectrum as illustrated in Fig. (6). Also, results
corresponding to various values of the fractional derivative order α and of
the nonlinearity parameter γ are included in Table 1 as well. In all cases, it
is seen that the peak response obtained by the proposed approach not only
agrees well with the MCS-based estimate, but it also consistently exhibits a
higher accuracy degree compared with the results obtained by a stationary
treatment of the ELS elements.

Table 1. Peak response displacement of bilinear/hysteretic oscillator with
fractional derivative elements using the ELS elements ωeq(tcr) and ζeq(tcr)
for various values of the fractional derivative order α and of the nonlinearity
parameter γ. Comparisons with stationary estimates based on Eqs. (21-22),
and with MCS data.

Peak displacement estimates

(α, γ) MCS Time-invariant
(stationary)

elements
ωeq , ζeq

error
(based on

MCS)

Time-variant
elements

ωeq(tcr), ζeq(tcr)

error
(based on

MCS)

(0.5, 0.4) 0.1965 0.1939 1.3% 0.1977 0.6%

(0.75, 0.4) 0.1623 0.1587 2.2% 0.1618 0.3%

(0.5, 0.2) 0.1941 0.1852 4.6% 0.1901 2.1%

(0.75, 0.2) 0.1675 0.1585 5.4% 0.1630 2.7%
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4 Concluding remarks
In this paper, an approximate approach has been developed for determining
the peak response displacement of nonlinear structural systems with frac-
tional derivative elements subject to a given seismic design spectrum. This
has been done in a computationally efficient manner without resorting to nu-
merical integration of the governing equations of motion. Specifically, first,
an approximate scheme has been utilized for deriving an excitation EPS
compatible in a stochastic sense with the design spectrum. Further, employ-
ing a solution treatment based on a combination of statistical linearization
and stochastic averaging has yielded an ELS with time-variant stiffness and
damping elements. Without loss of generality, systems with softening re-
sponse behaviors reflecting structural degradation have been considered. In
this setting, it has been shown that the global minimum and the global
maximum of the time-variant stiffness and damping elements, respectively,
correspond to the time instant associated with the highest degree of nonlin-
ear/inelastic response behavior exhibited by the oscillator. In this regard,
the stiffness and damping values at this critical time instant have been used
in conjunction with the design spectrum for determining approximately the
nonlinear oscillator peak response displacement. Compared to earlier rele-
vant efforts in the literature (e.g., Giaralis and Spanos [2010], Mitseas et al.
[2018]), the herein developed approach can be construed as an extension to
treat systems with fractional derivative elements. Furthermore, its significant
novel aspect of providing localized time-dependent information via the de-
rived time-variant ELS elements leads to an enhanced accuracy degree when
determining nonlinear system peak response estimates. Indeed, it has been
shown that the values of the ELS stiffness and damping elements at the most
critical time instant capture the system dynamics better than an alternative
standard statistical linearization solution treatment yielding time-invariant
(stationary) ELS stiffness and damping elements. An illustrative numerical
example has been considered for assessing the performance of the approxi-
mate approach, pertaining to a bilinear hysteretic oscillator with fractional
derivative elements subject to a Eurocode 8 elastic design spectrum. Com-
parisons with relevant Monte Carlo simulation data have demonstrated a
high degree of accuracy.
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A Derivation of design spectrum compatible
excitation evolutionary power spectrum

Following Cacciola [2010], the non-stationary excitation stochastic process
ag(t) comprises a fully non-stationary component aR

g (t) modeled by a recorded
earthquake time-history, and a time-modulated stationary zero-mean Gaus-
sian process aS

g (t), i.e.,

ag(t) = αaR
g (t) + φ(t)aS

g (t). (32)

In Eq. (32), both the scaling factor α and the power spectrum GS(ω) of
the stationary process aS

g (t) are unknowns to be determined, and the time-
modulating function φ(t) is given as

φ(t) =


(

t
t1

)2
, t < t1

1, t1 ≤ t ≤ t2
exp [−β(t− t2)] , t > t2

(33)

where t2 = t1 + Ts, with Ts representing the time window during which
stationarity is assumed. Next, an approximate relationship can be derived
for the corresponding design spectra; that is,

S(ω, ζ) =
√
α2SR(ω, ζ)2 + SS(ω, ζ)2, (34)

where SR(ω, ζ) and SS(ω, ζ) are the design spectra referring to the response a
linear oscillator subject to aR

g (t) and aS
g (t), respectively. Taking into account

Eq. (34), the value of α lies in the range (0, 1] and is estimated as

α = min
{
S(ω, ζ)
SR(ω, ζ)

}
. (35)
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Next, attention is directed to determining GS(ω). This is done by rely-
ing on an approximate solution treatment of the first-passage time problem
according to Vanmarcke [1976], and to an iterative scheme proposed by Cac-
ciola et al. [2004]. Specifically, consider the n-th order stationary response
spectral moment of a linear SDOF oscillator

λn =
∫ ∞

0
ωn 1

(ω2
0 − ω2)2 + (2ζ0ω0ω)2G

S(ω)dω, (36)

where ω0 and ζ0 are the natural frequency and the damping ratio of the
oscillator. Further, assuming a sufficiently long duration of Ts ≥ 15 s, GS(ω)
can be related to SS(ω0, ζ0) in a statistical manner via the concept of the
“peak factor” η. That is,

SS(ω0, ζ0) = ω2
0η
√
λ0(ω0, ζ), (37)

where the peak factor can be estimated by the semi-empirical expression
[Vanmarcke, 1976]

η =
√

2 ln(2µ)
[
1 − exp

(
−δ
√
π ln(2µ)

)]
. (38)

In Eq. (38), the mean zero crossing rate µ and the spread factor δ are defined
as

µ = Ts

2π

√
λ2

λ0
(− ln p)−1, (39)

and

δ =
√

1 − λ2
1

λ0λ2
, (40)

respectively. Herein, the probability p in Eq. (39) is set equal to 0.5, so that
SS(ω0, ζ0) in Eq. (37) is interpreted as the “median” pseudo-acceleration de-
sign spectrum. That is, half of the displacement response spectral ordinates
of an ensemble of stationary samples of duration Ts compatible with the
power spectrum GS(ω) lie below SS(ω0, ζ0)/ω2

0; see also Giaralis and Spanos
[2010] and Mitseas et al. [2018] for more details. Next, relying on the ap-
proximate expression [Vanmarcke, 1976]

λ0 = GS(ω0)
ω3

0

(
π

4ζ0
− 1

)
+ 1
ω4

0

∫ ωi

0
GS(ω)dω, (41)
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substituting Eq. (41) into Eq. (37), and manipulating, yields

SS(ω0, ζ0) = η2ω0G
S(ω0)

(
4 − πζ0

4ζ0

)
+ η2

∫ ωi

0
GS(ω)dω. (42)

Applying a discretization of the frequency domain into a uniform grid of M
frequency points ωi = ωl

b + (i − 0.5)∆ω, i = 1, 2, . . . ,M within the range
(ωl

b, ω
u
b ), and manipulating Eq. (42), yields [Cacciola et al., 2004]

GS(ωi) =
{ 4ζ

ωiπ−4ζ0ωi−1

(
(SS(ω0,ζ0))2

η2 − ∆ω∑i−1
q=1 G

S(ωq)
)
, ωl

b < ωi < ωu
b

0, ωi ≤ ωl
b

(43)
Eq. (43) can be recursively applied for i = 1, 2, . . . ,M to evaluate the ordi-
nates of the power spectrum GS(ω) at the M frequency points ωi lying δω
apart in the range (ωl

b, ω
u
b ).

Further, following determination of GS(ω), a k-th non-stationary acceler-
ation time-history can be generated based on spectral representation theory
(e.g., Shinozuka and Deodatis [1991], Liang et al. [2007]). That is,

a(k)
g (t) = αaR

g (t) + φ(t)
Na∑
i=1

√
4GS(i∆ω)∆ω cos

(
i∆ωt+ ϕ

(k)
i

)
, (44)

where ϕ(k)
i are independent random phases uniformly distributed in the in-

terval [0, 2π), and Na is the number of harmonics to be considered in the
summation. Clearly, the non-separable EPS Sag(ω, t) can be estimated by
various joint time-frequency analysis techniques based on statistical analy-
sis of an ensemble of realizations generated by Eq. (44) (e.g., Qian [2002],
Spanos and Failla [2004], Kougioumtzoglou et al. [2012, 2020]). Furthermore,
iterative improvement of the GS(ω) may be required for satisfying code pro-
visions. To this aim, the iterative scheme

GS(j)(ω) = GS(j−1)(ω)
(

S(ω, ζ)2

Ŝ(j−1)(ω, ζ)2

)
, (45)

can be applied, where Ŝ(j−1)(ω, ζ)2 is the mean design spectrum of the ground
acceleration ag(t) at the (j − 1)-th iteration; see also Cacciola [2010] and
references therein for more details.

Note that the approach presented succinctly in this Appendix degenerates
to the scheme in Cacciola et al. [2004] by setting α = 0 and φ(t) = 1 in
Eq. (32). In this regard, the design spectrum compatible power spectrum
becomes Sag(ω, t) = GS(ω) corresponding to the stationary process aS

g (t).
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B Eurocode 8 design spectrum
The Eurocode 8 design spectrum for peak ground acceleration 0.36g (g =
981 cm/s2) and ground type B used in the numerical example of this paper
is defined as [CEN, 2004]

S(T, ζ) = 0.432g ×


1 + T

0.15(2.5δ − 1), 0 ≤ T ≤ 0.15
2.5δ, 0.15 ≤ T ≤ 0.5
1.25δ

T
, 0.5 ≤ T ≤ 2

2.5δ
T 2 , 2 ≤ T ≤ 4

(46)

where
δ =

√
10

5 + ζ
≥ 0.55, (47)

T = 2π/ω is the natural period and ζ is the damping ratio.
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