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Abstract: As an output-to-output dynamical representation of engineering structures, the 15 

transmissibility function (TF) has been widely reported to be a damage-sensitive but excitation-16 

insensitive damage feature. However, most TF-based novelty detection approaches fail to 17 

accommodate various uncertainties with a proper probabilistic model. Making full use of the 18 

complex Gaussian ratio probabilistic model of raw scalar TFs, a data-driven structural novelty 19 

detection technology is proposed by integrating the closed-form approximation of the 20 

Bhattacharyya distance of TFs and the Bayesian resampling scheme. A closed-form 21 

approximation of the Bhattacharyya distance is efficiently derived by applying the Laplace 22 

method of asymptotic expansion to provide a probabilistic metric of the dissimilarity between 23 

distributions of TFs under different states without resorting to time-consuming numerical 24 
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integration. A Bayesian resampling scheme is adopted to accommodate the variability of the 1 

statistical parameters involved in the probabilistic model of TFs. Based on the Laplace 2 

asymptotic expansion of the Bhattacharyya distance and Bayesian resampling scheme, two state 3 

discrimination techniques including Gaussian mixture model (GMM) clustering method and 4 

threshold method are utilized to detect the existence of damage. Two case studies, including a 5 

laboratory model test as well as a field test of a bridge, are carried out to verify the accuracy 6 

and efficiency of the proposed algorithm. The results demonstrate that, compared with the 7 

Mahalanobis distance-based method with the implicit assumption of Gaussian distribution for 8 

TFs, the Bhattacharyya distance-driven algorithm can achieve better performance and 9 

robustness due to properly considering the deviations in TFs not following the Gaussian 10 

distribution. 11 

Keywords: Transmissibility; Novelty detection; Bhattacharyya distance; Bayesian inference; 12 

Clustering.  13 
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1. Introduction 1 

The service life of engineering structures decreases due to complex environmental and 2 

operational conditions, which may lead to unanticipated structural failure and cause serious 3 

property loss and casualties. As a result, much effort has been devoted to preventing disaster. 4 

Structural health monitoring (SHM), which uses periodically sampled response measurements 5 

to monitor changes of engineering structures, is viewed as one of the most cost-effective 6 

methods [1].  7 

Among different types of SHM systems, NDE-based methods and vibration-based 8 

techniques have attracted increasing attention over the past few decades [1, 2]. The NDE 9 

techniques such as acoustic or ultrasonic methods offer high sensitivity to small structural 10 

changes and their implementation normally involves high frequency excitation and actuator to 11 

achieve the sensitivity [2]. Though NDE approaches pose significant potential and have shown 12 

full-fledged applications, vibration-based methods are still required for many cases due to their 13 

unique advantages. NDE techniques are often restricted to damage detection on or near the 14 

surface of the structure, which limits their application to small-scale structures [3-5]. Therefore, 15 

NDE methods are capable for ‘‘local’’ inspection while structural damage identification through 16 

changes in vibration-based health index provide “global’’ evaluation for the structural state [6], 17 

which makes them a better choice for large-scale infrastructures. Unfortunately, structural 18 

dynamic properties have often been reported to be insensitive to damage [7], which motivates 19 

researchers to find new vibration-based features more sensitive to damage. The transmissibility 20 

function (TF) has been widely viewed as a good candidate [8, 9] due to the following 21 

advantages: (i) Compared with dynamic properties, TF is more sensitive to structural damage; 22 
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(ii) TF-based novelty detection suits the situation in which the excitation is inaccessible, and it 1 

is more robust to natural excitation; (iii) Neither modal identification nor a numeric model of 2 

the structure is required for TF-based novelty detection [10]; (iv) By making full use of a wide 3 

frequency band, TF contains more information in addition to modal properties.  4 

TF was first proposed as a SHM feature by Chen et al. [11]. Since then, a considerable 5 

amount of research has been conducted on TF-based novelty detection. A major milestone was 6 

reached when a research group at NASA proposed the use of the integral over a frequency band 7 

of the difference between two TFs corresponding to the control (healthy) and the possibly 8 

damaged states as a damage indicator for structural anomaly detection [12]. This method has 9 

since been adopted and further developed in [13, 14]. Cheng and Cigada [15] proposed an 10 

analytical perspective of TFs between two consecutive masses based on the motion equation of 11 

the multiple-degree-of-freedom (MDOF) mass-spring-damper model, the feasibility of which 12 

for damage identification has been validated via simulation and experimental studies. Farrar 13 

and Worden [1, 16] pointed out that a data-driven approach based statistical pattern recognition 14 

was the best framework for state discrimination in SHM. Taking this viewpoint, many novel 15 

data-driven novelty detection algorithms have been proposed and applied to SHM [17]. Worden 16 

and his colleagues [18, 19] proposed substantial TF-based indices through a combination of 17 

pattern recognition with machine learning techniques for novelty detection to diagnose damage. 18 

The feasibility and performance were validated using dynamic responses of various engineering 19 

structures in [20]. Clustering techniques have been widely reported to be good candidates for 20 

novelty detection under unknown sources of variability [21].  Zhou et al. [22] adopted clustering 21 

and Mahalanobis distance to distinguish damaged patterns from undamaged ones.  22 
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Despite excellent achievements in TF-based novelty detection, most existing methods are 1 

incapable of modelling uncertainties stemming from the nature of stochastic vibration, 2 

quantization and estimation error, noise originating from the acquisition configuration, the 3 

variability of environmental and operational conditions, and so on [7]. A pioneering work on 4 

accommodating the uncertainties of TF in novelty detection was carried out by Mao and Todd 5 

[23, 24], in which a statistical model quantifying the uncertainty of the magnitude of TFs was 6 

established based on power spectral density (PSD). The probability density function (PDF) was 7 

subsequently employed to examine statistical damage significance under a certain confidence 8 

level. Poulimenos and Sakellariou [25] proposed a cross spectral density (CSD) based 9 

uncertainty quantification method by adopting statistical hypothesis testing procedures with the 10 

likelihood ratio (LR) test for novelty detection.  11 

In this work, a data-driven novelty detection technology is developed by accommodating 12 

the variability of frequency responses based on the theoretical findings of the probability 13 

distribution of raw TFs [26, 27]. The underlying premise of this study is the hypothesis that 14 

structural damage can be detected by adopting a damage indicator capable of accurately 15 

identifying the difference between TFs under two states. The Bhattacharyya distance ( BD ) in 16 

statistics is a probability distance, and it is one of the most widely adopted metrics of the 17 

similarity between two probability distributions. Though the potential of BD   for feature 18 

extraction and selection has been demonstrated in many studies [28, 29], it has rarely been 19 

applied in novelty detection. In this study, BD  is used to measure the difference between two 20 

probability distributions of TFs under the healthy state (baseline condition) and the possibly 21 

damaged state. An efficient algorithm based on the Laplace asymptotic expansion is proposed 22 
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to calculate the closed-form approximation of BD  between two PDFs of TFs. Based on the 1 

analytical solution of BD , a damage indicator is proposed to measure the structural condition. 2 

In addition, to properly accommodate the variability of model parameters of the probability 3 

model of TFs stemming from multiple uncertainties, a Bayesian inference-based resampling 4 

method is proposed to enhance the robustness. Two state discrimination methods, namely 5 

Gaussian mixture model (GMM) clustering method and threshold method, are utilized to detect 6 

the existence of damage. Two case studies are adopted to validate the feasibility and efficiency 7 

of this methodology.  8 

A schematic view of the new method proposed in this study is shown in Fig. 1. In Section 9 

2, the Bhattacharyya Distance ( BD ) between PDFs of TFs under different structural states is 10 

adopted to indicate the occurrence of damage. Meanwhile, a closed-form approximation of BD  11 

is proposed based on Laplace asymptotic expansion to reduce the computational cost of 12 

numerical integration. Then in Section 3, a damage indicator is constructed using the 13 

approximated BD   over a specific frequency band, and two methods including a GMM 14 

clustering method as well as a threshold value are adopted for state discrimination in 15 

combination with a Bayesian resampling scheme. Section 4 outlines the procedures of the 16 

structural novelty detection method. Two case studies including a laboratory experiment and a 17 

field test are used to verify the feasibility and efficiency of the proposed method in Section 5, 18 

while conclusions are drawn in Section 6. 19 
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 1 

Figure 1. Schematic view of the methodology proposed in this study.  2 

2. Closed-Form Approximation of Bhattacharyya Distance between TFs 3 

2.1 Bhattacharyya distance 4 

Bhattacharyya distance is a probabilistic metric that measures the difference between two 5 

probability distributions [30], and it has been widely applied in stochastic model updating as an 6 

uncertainty quantification (UQ) metric. By comparing the performance of the traditional 7 

Euclidian distance and the Bhattacharyya distance, it has been demonstrated that BD   could 8 

capture a higher level of statistical information from the investigating variables and is more 9 

comprehensive for dealing with uncertainty [31, 32]. For two probability distributions p  and 10 

q  over the same domain Θ , the Bhattacharyya distance is defined as: 11 

( ) ( )( ), ln ,BD p q BC p q= −  (1) 

where ( , )BC p q   refers to the Bhattacharyya coefficient. For discrete and continuous 12 

probability distributions, the Bhattacharyya coefficient can be expressed in the continuous and 13 

discrete forms: 14 
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( ) ( ) ( ),
x

BC p q p x q x
∈Θ

= ∑  (2a) 

( ) ( ) ( ),BC p q p x q x dx= ∫  (2b) 

2.2 Probabilistic model of TF 1 

Consider a set of dynamic responses in time domain { }1 2( ) ( ), ( ), , ( )
ont y t y t y t=y  for on  2 

degree-of-freedoms (DOFs) of a linear system under a stationary excitation. The frequency 3 

domain responses of ( )ty   is denoted by ik k k
ℜ ℑ= +Y Y Y  . k

ℜY   and k
ℑY   refer to the real and 4 

imaginary parts of kY  , respectively. It is worth noting that all “ k  ” in the subscript or the 5 

superscript denote the frequency line kω  in this work. The scalar TF is defined as ,

,

i kk
ij

j k

Y
T

Y
= , 6 

where ,i kY  and ,j kY  denote the responses corresponding to the i th and j th DOF. For an output 7 

vector { }, ,,
T

k j k i kY Y=Y , it has been proved that the mean of kY  is approximately zero and its 8 

covariance matrix equals the expected value of the PSD matrix at the same frequency line kS  9 

[33, 34]: 10 

( )
( )

2

2*

k k k k
i ij i jk

ij k
k k k k

ij i j j

σ ρ σ σ

ρ σ σ σ

 
 = =
 
  

Σ S  (3) 

where k
iσ   and k

jσ   denote the variances of ,i kY   and ,j kY  , respectively; k
ijρ   denotes the 11 

complex correlation coefficient between ,i kY   and ,j kY  , and is given by , ,ik k k
ij ij ijρ ρ ρℜ ℑ= +  , 12 

where ,k
ijρ ℜ  and ,k

ijρ ℑ  refer to the real and imaginary parts of k
ijρ , respectively.  According to 13 

Yan et al. [26, 35], the TF follows a circularly-symmetric complex Gaussian ratio distribution 14 

with the PDF shown as follows:  15 
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( )
( ) ( ) ( ) ( )

2
1

1

π det

k
ij Tk k

ij ij

P
Σ Σ −

=
 
  

U

u
u

u
 (4) 

where { }1,
Tk k

ij iju=u   and k
iju   denotes the value of transmissibility between ,j kY   and ,i kY  . The 1 

marginal PDF of the real and the imaginary parts of the TF ( ,k
iju ℜ  and ,k

iju ℑ ) can be derived [26]:  2 

( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( ){ }

4 22

,

33 4 2 2 2 2, , , ,

1

22 1

k k k
ij j i

k
ij

k k k k k k k k k
j i ij ij j ij j i ij

p u
u u

ρ σ σ

σ σ ρ σ σ σ ρ

ℜ

ℜ ℜ ℜ ℑ

−
=

 − + + −  

 (5a) 

( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( ){ }

4 22

,

33 4 2 2 2 2, , , ,

1

22 1

k k k
ij j i

k
ij

k k k k k k k k k
j i ij ij j ij j i ij

p u
u u

ρ σ σ

σ σ ρ σ σ σ ρ

−
=

 + + −  

I

I I I R

 (5b) 

Eq. (5) will be used to compute Bhattacharyya distance with a view towards novelty detection.  3 

2.3 Bhattacharyya distance between TFs under two structural states 4 

As previously mentioned, the occurrence of damage will change TFs, and such alteration 5 

could be captured via BD  between TFs under the healthy state and the possibly damaged state 6 

for novelty detection. For the healthy state, the PDFs of the real and imaginary parts of TFs 7 

between two arbitrary responses, ( ),k
ijp u ℜ  and ( ),k

ijp u ℑ , can be calculated using Eq. (5). To 8 

avoid confusion, the real and imaginary parts under the possibly damaged state are denoted by 9 

( ),d k
ijp u ℜ   and ( ),d k

ijp u ℑ  , and the covariance matrix of the Fast Fourier Transform (FFT) 10 

coefficients { }, ,,d d
j k i kY Y  is expressed as:  11 

( )
( )

2

2*

k k k k
j ij j i

k k k k
ij j i i

σ ρ σ σ

ρ σ σ σ

 
 =
 
  

Σ
  



   

 (6) 

Based on Eq. (5), ( ),d k
ijp u ℜ  and ( ),d k

ijp u ℑ  can be expressed as Eq. (7): 12 
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( ) ( ) ( ) ( ) ( ) ( ){ }

4 22

,

33 4 2 2 2 2, , , ,

1
 

2 2 1

k k k
ij j i

d k
ij

k k k k k k k k k
j i ij ij j ij j i ij
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p u
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σ σ
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ℜ
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−
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 (7a) 

( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( ){ }
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,

33 4 2 2 2 2, , , ,

1

2 12

k k k
ij j i

d k
ij

k k k k k k k k k
j i ij ij j ij j i ij
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p u

p u u p
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−
=

 + + −  

  

      

I
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 (7b) 

According to Eq. (1) and Eq. (2b), BD  between TFs under the healthy state and the possibly 1 

damaged state are expressed as: 2 

( ) ( )( ) ( ) ( )( ), , , , ,, lnk d k k d k k
B ij ij ij ij ijD p u p u p u p u duℜ ℜ ℜ ℜ ℜ ℜ= − ∫  (8a) 

( ) ( )( ) ( ) ( )( ), , , , ,, lnk d k k d k k
B ij ij ij ij ijD p u p u p u p u duℑ ℑ ℑ ℑ ℑ ℑ= − ∫  

(8b) 

Fig. 2 presents two arbitrary PDFs of TFs and the area to be integrated in the computation of  3 

BD  between the PDFs. It can be found from Fig. 2 that the integrand of the Bhattacharyya 4 

coefficient is a unimodal function, which ensures the feasibility of Laplace’s approximation to 5 

reduce computational cost of the integral since its premise is a single maximum over the domain. 6 

Therefore, it is reasonable to employ Bhattacharyya distance as the dissimilarity metric. 7 

 8 

Figure 2. Schematic diagram of the Bhattacharyya distance ( ) ( )( ),BD p u q u  between two 9 

arbitrary PDFs of TFs. 10 
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2.4 Laplace asymptotic expansion of Bhattacharyya distance of TFs  1 

The application of Bhattacharyya distance in SHM is limited by its high computational 2 

cost and the stochastic feature of integrating the product of PDFs. To avoid the numerical 3 

integration involved in BD , a Laplace method of asymptotic expansion is adopted here to avoid 4 

time-consuming numerical integration. Consider an integral with the following form: 5 

( ) ( )dI p q= ∫ φ φ φ
Ω

 (9) 

where ( )p φ   and ( )q φ   are smooth functions for { }1 2= , , , qϕ ϕ ϕφ  and Ω   is a subregion of 6 

nℜ . Assume the integrand ( ) ( )p qφ φ  has a single maximum ∗φ  inside the domain Ω , namely 7 

the global maximum over Ω . An asymptotic approximation for the integral ( )I φ  is obtained 8 

by applying Laplace method of asymptotic expansion to it [36, 37]:  9 

( ) ( ) ( ) ( ) ( )
1
222π

q

I p q
−

≈ * * *φ φ φ H φ  (10) 

where q  is the dimension of the vector φ ; ( )H φ*  refers to the determinant of the Hessian 10 

matrix of ( ) ( )ln( )f p q = −  φ φ φ  at = ∗φ φ . The Hessian matrix is given by: 11 

( )

2 2 2

2
1 1 2 1

2 2 2

2
2 1 2 2

2 2 2

2
1 2

q

q

q q q

f f f

f f f

f f f

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ

 ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ …
∂ ∂ ∂ ∂ ∂=  
 
 
 ∂ ∂ ∂
 
∂ ∂ ∂ ∂ ∂   *

*

=



   



φ φ

H φ  (11) 

In the context of structural novelty detection, 1p  and 2p  corresponds to the square root of 12 

the real part of the PDFs of TFs under the healthy state and the possibly damaged state 13 

respectively, that is, ( ) ( ), ,
1

k k
ij ijp u p uℜ ℜ=   and ( ) ( ), ,

2
k d k
ij ijp u p uℜ ℜ=  . The real part of BD  14 

between TFs under these two states is expressed using 1p  and 2p  according to Eq. (8a):  15 
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( ) ( )( ) ( ) ( )( ), , , , ,
1 2, lnk d k k k k

B ij ij ij ij ijD p u p u p u p u duℜ ℜ ℜ ℜ ℜ ℜ= − ∫  (12) 

Based on Eq. (10), the integration can be replaced by Laplace approximation: 1 

( ) ( )( ) ( ) ( ) ( ) ( )
11

, , , * , * , * 22
1 2, ln 2πk d k k k k

B ij ij ij ij ijD p u p u p u p u H u
−

ℜ ℜ ℜ ℜ ℜ ℜ 
≈ −  

 
 (13) 

where , *k
iju ℜ   denotes the global maximum of the integral 1 2d

,k
ijp up ℜ∫  , which is also the 2 

maximizing point of the integrand 1 2p p  as well as ( ) ( ), ,k d k
ij ijp u p uℜ ℜ . For the imaginary part 3 

BD ℑ , its Laplace approximation can be derived similarly and is given by: 4 

( ) ( )( ) ( ) ( ) ( ) ( )
11

, , , * , * , * 22
1 2, ln 2πk d k k k k

B ij ij ij ij ijD p u p u p u p u H u
−

ℑ ℑ ℑ ℑ ℑ ℑ 
≈ −  

 
 (14) 

The derivation of the global maximums , *k
iju ℜ   and , *k

iju ℑ  , as well as the Hessian matrices 5 

( ), *k
ijH u ℜ   and ( ), *k

ijH u ℑ  , are presented in Appendix A and B. Based on the Laplace 6 

approximation method, BD   between two PDFs of TFs can be analytically derived without 7 

numerical integration, which significantly reduces the involved computational cost. 8 

3. Novelty Detection Integrating Bhattacharyya Distance and Bayesian Resampling  9 

3.1 Damage indicator based on Bhattacharyya distance 10 

BD  between TFs under the healthy state and the possibly damaged state can be used for 11 

novelty detection. To improve the robustness of this method, data corresponding to different 12 

measurements and frequency points can be fused together. For a structure with n  DOFs subject 13 

to arbitrary excitation under the healthy state, assume { }1 2( ) ( ), ( ), , ( )nt y t y t y t=y   denotes the 14 

response vector of the structure. Then the TF of each DOF under the same reference response 15 

( )jy t  can be expressed as a TF vector for both healthy and possibly damaged states:  16 

{ }1 2, ,...,k k k k
j j j n jT T T=Τ  (15a) 
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{ }, , , ,
1 2, ,...,d k d k d k d k

j j j n jT T T=T  (15b) 

One can calculate the values of BD  between each pair of TFs in the vector under the healthy 1 

state and the possibly damaged state, and the mean of these BD  values represent the BD  at the 2 

frequency kω  . Furthermore, it is common to select TFs within a frequency band 1 2,ω ω  3 

instead of at a single frequency point to formulate the damage indicator [7]. The damage 4 

indicator is obtained by averaging the values of BD  over the frequency band: 5 

( ) ( ) ( )( )
2

1

, , ,

1,

1 ,
1 ij

k n
k k d k

B B ij ij
k k j j i

DI D p u p u
n nω

ℜ ℜ ℜ ℜ

= = ≠

=
− ∑ ∑  (16a) 

( ) ( ) ( )( )
2

1

, , ,

1,

1 ,
1 ij

k n
k k d k

B B ij ij
k k j j i

DI D p u p u
n nω

ℑ ℑ ℑ ℑ

= = ≠

=
− ∑ ∑  (16b) 

where nω  refers to the total number of frequency points within the frequency band 1 2,ω ω   , 6 

and 2 1n k kω = −  ; ,
ij

k
BD ℜ   and ,

ij

k
BD ℑ   denote the real and imaginary parts of BD   between k

ijT  7 

and ,d k
ijT  . The damage indicator will be further employed for novelty detection in the next 8 

section in tandem with the state discrimination methods.  9 

3.2 Bayesian resampling-assisted novelty detection  10 

State discrimination is a crucial step in structural novelty detection to determine whether 11 

each sample comes from the healthy state or the damaged state when given a set of damage 12 

indicator samples. In this study, two commonly used methods including the GMM clustering 13 

method as well as the threshold method will be utilized for state discrimination. It is worth 14 

noting that, the BDI  -based state discrimination would be affected by the variability of the 15 

model parameters kΘ  involved in the complex-Gaussian ratio distribution, which represents 16 

the unresolved uncertainty given measured data and model assumptions. To accommodate the 17 
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variability of the statistical model parameters kΘ , a Bayesian resampling scheme is proposed 1 

to achieve the posterior distribution of the model parameters kΘ . Monte Carlo simulation can 2 

be performed to generate samples from the Gaussian distribution of  kΘ , which will be used to 3 

calculate the corresponding samples of damage indicator shown in Eq. (16). As a result, these 4 

BDI  samples will be used to conduct GMM clustering and compared with the threshold value 5 

for state discrimination.  6 

3.2.1 Bayesian resampling scheme  7 

The Bayesian resampling scheme is composed of two steps. First, Bayesian inference is 8 

performed for the parameters of the probabilistic model of TF, kΘ  , to accommodate their 9 

variability due to measurement noise and modelling error. It can be proved that kΘ  can be 10 

approximated by a Gaussian PDF. Second, Monte Carlo simulation is performed to generate 11 

samplings from the Gaussian distribution of  kΘ .  12 

Conditioned on N   sets of TF measurements within the frequency band 13 

1 2, ,k kω ω∆ ∆  Ψ = , which is denoted by ( ){ }1 1 21 2 1, , , , ; , , ,k
ij n

u n N k k k k= = +Φ =   , the 14 

statistical parameters formulating the PDFs of each TF shown in Eq. (5) are denoted by 15 

{ } [ ], ,
1 2, , , , ,k k k k

k i j ij ij k k kσ σ ρ ρℜ ℑ= ∈Θ . According to Bayes’ theorem, the posterior probability of 16 

the statistical parameters kΘ  given Φ  can be calculated as:  17 

( ) ( ) ( )k o k kp c p p=Θ Φ Θ Φ Θ  (17) 

where oc  is a normalized constant; ( )kp Θ  refers to the prior probability of kΘ ; and ( )kp Φ Θ  18 

is the likelihood function given by:  19 

( ) ( )( ) ( )( ), ,

1

N
k k

k ij k ij kn n
n

p p u p uℜ ℑ

=

=∏Φ Θ Θ Θ  (18) 
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The posterior distribution of kΘ   is proportional to the likelihood function when a non-1 

informative prior is used [33]: 2 

( ) ( )( )expk kp χ∝ −Θ Φ Θ  (19) 

where ( )kχ Θ  denotes the negative log-likelihood function (NLLF) and is given by: 3 

( ) ( ) ( ) ( )( ) ( )( ), ,

1 1

ln ln
N N

k k
k k k ij k ij kn n

n n

p u p uχ χ χℜ ℑ ℜ ℑ

= =

   = + = +   ∑ ∑Θ Θ Θ Θ Θ  (20) 

Assume     { }, ,
, , ,

k k k k
k i j ij ijσ σ ρ ρ

ℜ ℑ
=Θ   denotes the most probable values of the statistical 4 

parameters and ( )kH Θ  denotes the Hessian matrix of ( )kχ Θ  at the most probable value  kΘ . 5 

The posterior probability ( )kp Θ Φ   can be well approximated by a multivariate Gaussian 6 

distribution [38] with mean  kΘ   and covariance matrix ( )1
kH − Θ  , based upon which the 7 

statistical parameters can be acquired by random sample generation, and the variability of 8 

statistical parameters of the probabilistic model of TF can be accommodated. In the procedure 9 

of novelty detection, the Bayesian resampling scheme would be used to generate samples of  10 

kΘ   and compute BDI   samples to improve the robustness of the proposed method against 11 

uncertainties. 12 

3.2.2 Novelty detection based on GMM clustering  13 

GMM clustering is one of the most commonly employed clustering approaches in damage 14 

detection [21, 39, 40]. Their work shows that the GMM-based method outperforms some classic 15 

damage detection methods on the standard dataset [21, 39, 40]. In this work, the BDI  samples 16 

are divided into two clusters via GMM clustering with one representing the healthy state and 17 

the other denoting the damaged state. It has been reported that the performance of GMM could 18 

be affected by the initial guess of centroids of the two clusters [41]. To overcome the limitation 19 
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of conventional method by assigning the values randomly, the initial centroids of the two 1 

clusters in GMM clustering in this study are determined via a Monte Carlo discordancy testing 2 

by accommodating the uncertainties involved in the statistical parameters of PDF of TFs (i.e., 3 

kΘ ). The main procedures of novelty detection based on Bayesian resampling scheme-assisted 4 

GMM clustering are outlined as follows:  5 

(i) Based on the Bayesian resampling scheme, one can obtain the posterior distribution of the 6 

model parameters kΘ   using the measurements under the normal condition according to 7 

Section 3.2.1;  8 

(ii) Generate the samples according to the Gaussian distribution of kΘ   over the selected 9 

frequency band;  10 

(iii) BDI  values are calculated for all the samples of kΘ  in the baseline condition using Eq. 11 

(16), while the largest and smallest values are stored;  12 

(iv) The steps of (i)-(iii) are repeated for a large number of trials to formulate an array 13 

containing the largest and smallest BDI  values corresponding to all of the trails;  14 

(v) Based on the samples of the baseline condition generated in step (iv), the initial centroids 15 

of two clusters can be determined based on the criteria that the range of the first cluster 16 

should cover most of the samples from the baseline condition while the samples exceeding 17 

the range could be predicted to belong the other cluster. The initial centroid of the first 18 

cluster and the second cluster are denoted by baselineDI   and baselineDIα  , respectively. 19 

baselineDI  is set by using the mean of the samples generated in step (iv), while the radius r  20 

of the clusters can be obtained correspondingly based on 1% tests of discordancy, which 21 

indicates that the first cluster should cover 99% BDI  samples from the baseline condition. 22 
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As a result, the initial centroid of the second cluster could be set to be the sum of baselineDI  1 

and two times of the radius (i.e., 2r  ), and α   can be determined by taking the ratio of 2 

( )+2baselineDI r  to baselineDI ;  3 

(vi) Repeat the steps of (i)-(ii) for different damage states based on their corresponding 4 

measurements to formulate a number of BDI  values under different states;  5 

(vii) Initialize GMM clustering based on the initial centroids obtained in step (v), following 6 

which the expectation maximization (EM) algorithm is conducted for BDI  values under 7 

different states (see step (vi)) to evaluate the posterior probabilities of each sample 8 

belonging to each cluster iteratively until the convergence criterion is achieved. One can 9 

refer to [42] for more details on GMM clustering; 10 

(viii) Based on the clustering result, the BDI  samples assigned to the first cluster are predicted 11 

to belong to a normal condition, while the samples assigned to the other cluster are labelled 12 

as a potential damaged state. 13 

3.2.3 Novelty detection based on threshold value  14 

A Monte Carlo discordancy testing motivated by Ref. [19] was utilized to arrive at the 15 

threshold value by properly accommodating the uncertainties involved in the statistical 16 

parameters kΘ . The major procedures are shown as follows:  17 

(i) Infer the posterior distribution of the model parameters kΘ   based on the Bayesian 18 

resampling scheme according to Section 3.2.1;  19 

(ii) Based on the Gaussian distribution of kΘ , one can generate random samples over a specific 20 

frequency band according to the Bayesian resampling scheme;  21 

(iii) BDI  values are calculated for all the samples of kΘ  using Eq. (16), while the largest values 22 
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are picked out;  1 

(iv) The steps of (i)-(iii) are repeated for a large number of times and the largest BDI   are 2 

ordered in terms of magnitude;  3 

(v) The critical value for 1% tests of discordancy is chosen as the threshold value so that a state 4 

with damage indices larger than the threshold value is suggested to be labelled as potential 5 

damage. 6 

4. Procedures of Structural Novelty Detection  7 

The novelty detection approach illustrated in Section 2 and Section 3 is summarized in Fig. 8 

3, which mainly involves the three following steps:  9 

Step (1): Bayesian resampling to generate samples of kΘ  under different states 10 

 Acquire on  response measurements of a structure under each structural state; 11 

 Infer the posterior distribution of the model parameters kΘ  in a Bayesian framework;  12 

 Perform Monte Carlo simulation to generate samples from the Gaussian distribution of kΘ .  13 

Step (2): Calculating BDI  for different samples of kΘ  under different states  14 

 Calculate the Bhattacharyya distance of transmissibility using Laplace asymptotic 15 

expansion within a frequency band 1 2,ω ω    according to Eq. (13) and (14); 16 

 Compute the damage indicator BDI  corresponding to different states based on Eq. (16); 17 

 Repeat the above steps for different samples of kΘ  to obtain a number of BDI  samples. 18 

Step (3): Novelty detection based on GMM clustering and threshold value 19 

 For the GMM-based novelty detection method: Set baselineDI  as the initial centroid of 20 

the first cluster, and set baselineDIα  as the initial centroid of the second cluster with baselineDI  21 

and α  being determined by the Monte Carlo discordancy testing according to Section 3.2.2; 22 
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Then divide the BDI  samples into 2 clusters based on GMM clustering; The BDI  samples 1 

assigned to cluster 1 are predicted to be from the normal condition, while the samples 2 

assigned to cluster 2 are predicted to be from a damaged state. 3 

 For the threshold-based novelty detection method: Construct a 1% exclusive threshold 4 

value using the Monte Carlo discordancy testing according to Section 3.2.3; Determine the 5 

damage state through checking if the damage index exceeds the threshold value or not. 6 

 7 

 8 

Figure 3. Flowchart of the structural novelty detection algorithms proposed in this study. 9 

5. Case Studies  10 
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The efficiency and accuracy of the proposed novelty detection method is investigated via 1 

two realistic case studies: a vibration test of a three-story laboratory building structure and a 2 

progressive damage test of the S101 bridge. Different scenarios concerning structural damage 3 

as well as environmental and operational variabilities (EOVs) are simulated in these case 4 

studies, so they can be regarded as representative operational conditions in real applications. 5 

The measured data are used to infer the posterior distribution of the probabilistic model of TFs, 6 

from which the statistical parameter samples are generated by the Bayesian resampling method 7 

described in Section 3.2.1. Consequently, the BDI  values can be calculated based on the BD  of 8 

TFs using Laplace asymptotic expansion. Then the GMM method and the threshold method are 9 

conducted for novelty detection on these BDI  samples. 10 

5.1 Case Study 1: A three-story building structure 11 

A benchmark dataset from a three-story laboratory building structure produced by Los 12 

Alamos National Laboratory [43] is adopted to explore the performance of the proposed method 13 

for novelty detection with the presence of EOVs. The three-story building structure is shown in 14 

Fig. 4, which is Fig. 1 in [43]. In the experimental study conducted to obtain the benchmark 15 

dataset, the base of the building structure was mounted on rails that allowed movement in the 16 

X-direction only. The structure was excited at the base via an electrodynamic shaker. Four 17 

accelerometers were mounted at the center line of the base and each floor to measure the 18 

responses, and a load cell was used to collect the signal of input. The sensors’ location as well 19 

as linear bearings were designed to minimize the torsional effect. Seventeen different states 20 

were tested in the study, the details of which are shown in Table 1.  21 
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 1 

Figure 4. The three-story building structure and shaker in the experimental study (from [43]). 2 

Table 1. Different states tested in the experimental study (reproduced from [43]) 3 

Label  State Condition Description 
State 1 Undamaged Baseline condition 
State 2 Undamaged Added mass (1.2 kg) at the base 
State 3 Undamaged Added mass (1.2 kg) on the first floor 
State 4 Undamaged 87.5% stiffness reduction in column 1BD 
State 5 Undamaged 87.5% stiffness reduction in column 1AD and 1BD 
State 6 Undamaged 87.5% stiffness reduction in column 2BD 
State 7 Undamaged 87.5% stiffness reduction in column 2AD and 2BD 
State 8 Undamaged 87.5% stiffness reduction in column 3BD 
State 9 Undamaged 87.5% stiffness reduction in column 3AD and 3BD 
State 10 Damaged Gap = 0.20 mm 
State 11 Damaged Gap = 0.15 mm 
State 12 Damaged Gap = 0.13 mm 
State 13 Damaged Gap = 0.10 mm 
State 14 Damaged Gap = 0.05 mm 
State 15 Damaged Gap (0.20 mm) and mass (1.2 kg) at the base 
State 16 Damaged Gap (0.20 mm) and mass (1.2 kg) on the first floor 
State 17 Damaged Gap (0.10 mm) and mass (1.2 kg) on the first floor 

As can be seen from the table, apart from the baseline condition, sixteen other states were 4 

also simulated, with eight states (states 2-9) representing EOVs and eight states (states 10-17) 5 

representing structural damage. The EOVs were simulated by changing the stiffness and mass 6 

of certain stories. Structural damage was introduced by a bumper mechanism that simulated the 7 

nonlinearity of repeated impact, and different damage extents were represented by changing the 8 

gap between the bumper and the column. The load cell and accelerometers constituted a data 9 

acquisition system with five channels. Fifty measurements were conducted in each state, with 10 
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a sampling frequency of 320Hz and a duration of 25.6s. Therefore, 8192 discretized data points 1 

were acquired in each channel for one measurement, and an overall dataset with dimensions of 2 

8192 5 850× ×  was obtained.  3 

The variation of 4 2,T
BD
ℜ

 (the BD  between 4 2,Tℜ  under different states) at each frequency point 4 

within the frequency band [0.4Hz, 100Hz] is displayed in Fig. 5(a), and the variation of PSD 5 

with frequency for state 1 is presented in Fig. 5(b). From these figures, one can conclude that 6 

the peaks of 4 2,T
BD
ℜ

  values correspond to the peaks of the PSD, indicating that the most 7 

significant variation of 4 2,T
BD
ℜ

 occurs around the resonant frequencies of the structure. 8 

 9 

Figure 5. (a) The variation of 4 2,T
BD
ℜ

 under states 1, 2, 12, 14, and 17 at different frequency 10 

points; (b) The variation of power spectral density with respect to frequency for state 1. 11 

In SHM, one hopes to build a novelty detection system sensitive to damage but insensitive 12 

to EOVs, which is usually achieved via a data normalization [44-46] or feature selection step 13 

[47-49]. In this work, the feature selection method introduced in Ref. [50] is followed to remove 14 

the sensitivity to EOVs and 50 frequency points are selected. The advantage of this method is 15 
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that it requires neither damage state data nor a complex training phase [39]. Fig. 6 presents the 1 

BDI  values under the 17 states after feature selection. It is clearly found the increase of the 2 

BDI   value when damage (nonlinearities) is introduced, demonstrating the capability of the 3 

proposed damage indicator to measure the effect of nonlinearity in combination with the feature 4 

selection method. In addition, it can be found that the BDI  values increase with the damage 5 

level, illustrating its capability of indicating the relative damage extent. 6 

 7 

Figure 6. (a) Real part of BDI  values and (b) Imaginary part of BDI  values under different 8 

states. 9 

To accommodate the uncertainties of the statistical parameters of the probabilistic model 10 

of TF, 120 BDI   samples are computed under each state based on the Bayesian resampling 11 

scheme. The total 2040 BDI   samples are divided into two clusters via GMM clustering. 12 

According to the Monte Carlo method described in Section 3.2.2, baselineDI  and α are set as 13 

0.4124 and  2.04 for the BDIℜ  based GMM clustering, while for the BDI ℑ  based GMM clustering, 14 

baselineDI   and α  are chosen as 0.4101 and 2.02, respectively. Fig. 7 presents the clustering 15 

results of the real and imaginary parts of BDI  samples, from which one can conclude that most 16 
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data points are correctly classified via the BDI -GMM method as cluster 1 denotes the normal 1 

condition and cluster 2 represents the damaged state. Then a 1% exclusive threshold of BDI  is 2 

established based on the Monte Carlo method described in 3.2.3, and the novelty detection 3 

results of this method is shown in Fig. 8. It can be found that the threshold-based method results 4 

in more false negative indications than the GMM-based method, and all false negatives occur 5 

at the lowest damage states (0.20 mm Gap). 6 

To present the novelty detection result more intuitively, the false positive and false 7 

negative rates are adopted here to quantitatively depict the performance of the proposed method: 8 

100%F
P

FPPR
TN F

= ×
+

 (21a) 

100%FNF
FN TP

NR
+

= ×  (21b) 

where FPR   and FNR   denote the false positive and false negative rates; TP  , TN  , FP  , and 9 

FN   are the number of true positives, true negatives, false positives, and false negatives, 10 

respectively. Fig. 9 presents the confusion matrices of the GMM-based method and the 11 

threshold-based method. It can be found that for the BDIℜ  -GMM method, there are 9 false 12 

positive indications and 31 false negative indications across the dataset of 2040 observations. 13 

These results correspond to a FPR  of 0.83% and a FNR  of 3.23%, giving a total accuracy of 14 

98.04%. For the BDIℜ -threshold method, there are no false positives but 286 false negatives 15 

across the dataset. The FPR  and FNR  are 0% and 29.79% respectively, giving an accuracy of 16 

85.98%. Therefore, the accuracy of the BDIℜ -GMM method is 12.06% higher than that of the 17 

BDIℜ  -threshold method. Meanwhile, for the BDI ℑ  -based novelty detection, the GMM-based 18 

method has an accuracy 13.58% higher than the threshold-based method.  19 
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 1 

Figure 7. Novelty detection result of: (a) BDIℜ -GMM method; (b) BDI ℑ -GMM method in the 2 

experimental study. 3 

 4 

Figure 8. (a) BDIℜ  values and (b) BDI ℑ  values for healthy (green) and damaged (orange) states 5 

with respect to the 1% threshold value (dashed line) established via the Monte Carlo method.  6 
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 1 

Figure 9. The confusion matrices of the novelty detection result of: (a) BDIℜ -GMM method; 2 

(b) BDI ℑ -GMM method; (c) BDIℜ -threshold method; (d) BDI ℑ -threshold method. 3 

In order to further assess the proposed novelty detection methods, a Mahalanobis squared 4 

distance (MSD) based novelty detection method is adopted on this dataset for comparison. The 5 

MSD of the real and imaginary parts of TFs is employed as the damage indicator, respectively. 6 

MSD is a normalized measure of the distance between an observation and the mean of the 7 

sample distribution and is defined as: 8 

( ) ( )-1T
MSDζ ζ ζ= −x μ x - μΣ  (22) 

where ζx  is the potential outlier datum, μ  is the mean vector of the sample observations and 9 

Σ  is the sample covariance matrix. μ  and Σ  are derived using the samples from the normal 10 

condition (states 1-9), and a 1% exclusive threshold is constructed following the Monte Carlo 11 

method described in [19] for novelty detection. It is worth noting that the dimension of 12 
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observations is determined as 50 according to the number of frequency points within the 1 

selected frequency band. Fig. 10 presents the novelty detection results of the MSD-based 2 

method, while Fig. 11 shows the corresponding confusion matrices. It can be found that the 3 

MSD-based method suffers from false negative indications with an accuracy lower than the  4 

BDI -based methods.  The reason could be that the implicit Gaussian assumption involved in 5 

MSD is not able to accommodate the statistical properties of scalar TFs appropriately, which 6 

demonstrates the advantage of adopting the probabilistic model of circularly-symmetric 7 

complex normal ratio distribution. 8 

 9 

Figure 10. Mahalanobis squared distances of (a) real part of TFs; (b) imaginary part of TFs for 10 

healthy (green) and damaged (orange) states with respect to the 1% threshold value (dashed 11 

line) established via Monte Carlo simulation. 12 
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 1 

Figure 11. The confusion matrices of the novelty detection result of (a) MSD-TFℜ  method; 2 

(b) MSD-TF ℑ  method. 3 

Then the sensitivity of the BDI  -GMM method to the choice of α   is investigated. The 4 

FPR , FNR , and accuracy of novelty detection results with respect to different levels of α  are 5 

shown in Table 2. The results show that the Monte Carlo simulation-based initialization 6 

approach leads to a more reasonable α   value with good performance for the BDI  -GMM 7 

method, while the conventional random initialization approach (randomly select two BDI  8 

samples as initial centroids) is more likely to suffer from choosing unreasonable α  values with 9 

worse novelty detection results. 10 

Table 2. Novelty detection results with respect to different levels of α  11 

 
BDIℜ -GMM BDI ℑ -GMM 

 
α  FPR  FNR  Accuracy FPR  FNR  Accuracy 
1.1 0.83% 3.23% 98.04% 1.20% 1.77% 98.53% 
1.2 0.83% 3.23% 98.04% 1.20% 1.77% 98.53% 
1.3 0.83% 3.23% 98.04% 1.20% 1.77% 98.53% 
1.5 0.83% 3.23% 98.04% 1.20% 1.77% 98.53% 
2.0 0.83% 3.23% 98.04% 1.20% 1.77% 98.53% 
2.5 0% 37.08% 82.55% 1.20% 1.77% 98.53% 
3.0 0% 37.19% 82.50% 1.20% 1.77% 98.53% 
4.0 0% 37.19% 82.50% 1.20% 1.77% 98.53% 
5.0 0% 37.19% 82.50% 0% 95.52% 55.05% 
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5.2 Case Study 2: Field test of the S101 bridge 1 

To investigate the performance of the novelty detection method for real structures, 2 

response measurements from a progressive damage test conducted on the S101 bridge are 3 

adopted for structural novelty detection. The S101 bridge was a post-tensional three-span 4 

prestressed concrete bridge located in Austria. The main span of the bridge was 32m long, 5 

whereas the two side spans were 12m long. The cross-section of the bridge was 7.2m wide and 6 

was in the form of a double-webbed T-beam with a width of 0.6m for each web. The height of 7 

the beam varied from 0.9m at the mid-span to 1.7m over the piers. 8 

Aiming to analyze the effects of slowly progressing damage on structural dynamic 9 

response, the demolition of the bridge was accompanied by a progressive damage test [51, 52]. 10 

The test was composed of two major parts: in the former part, the northwestern pier of the 11 

bridge was lowered by about 3cm stepwise, whereas in the latter part several tendons were cut 12 

to simulate the effects of local prestressing reinforcement loss. The damage actions during the 13 

test as well as their effects are shown in Table 3. For more details about the S101 bridge and 14 

the progressive damage test, refer to [51]. 15 

Table 3. Notation of consecutive damage actions acted on the S101 bridge and their effects 16 

(reproduced from Table 1 in [52]). 17 

State No. Damage action Damage effect 
A No action  Baseline 
B Begin of cutting through the north-

western pier 
 Neither extra cracking nor 

increase of existing cracks 
are observed 

C End of second cut through the pier  Formation of an extra hinge 
just above the foundation, 
which itself is equivalent to a 
constructive fixed support 

D 1st step of the pier settlement (10mm)  Moderate noise 
E 2nd step of the pier settlement (20  Horizontal cracks are found 
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mm) in neighboring pier 
F 3rd step of the pier settlement (27 

mm) 
 Settling of bridge deck until 

reaching the elastic limits, 
support is not lost completely 
due to the hydraulic jack 

G Inserting steel plates   
H Uplifting the damaged pier  Some occurred cracks are 

closed 
 The hinge caused by cutting 

remains 
I Exposing cables and cutting of 1st 

cable 
 Reduction of prestressing 

without indication of the 
change of conditions 

J Cutting through 2nd cable  No obvious influence on 
structural behavior since 
bridge is not loaded by traffic 

K Cutting through 3rd cable   
L Partly cutting of 4th cable  The extra prestressing 

reservoir is run out 

In the progressive damage test, the dynamic responses of the bridge were measured using 1 

15 sensors located on the bridge deck. The sampling frequency of these sensors was set as 2 

500Hz. Each sensor had three channels to measure the vertical, longitudinal, and transversal 3 

responses. The duration of each measurement was set as 5.5min, and a series of datasets 4 

containing 45 channels with 165000 data points in each channel were produced. It is worth 5 

noting that misty winter weather just below freezing was dominant during the measurement 6 

period [52], so environmental variability was negligible in this test.  7 

In the present study, the measured vertical responses from the progressive damage test are 8 

used to construct TFs. For the undamaged state A, the obtained dataset is divided into two 9 

groups, namely A0 and A1. The BDI  between TFs under A0 and A1 is the BDI  value under 10 

state A. The frequency band for calculating BDI   values is selected as [0.03Hz, 50Hz]. The 11 

variation of BDI  value with respect to different damage actions is shown in Fig. 12. Consistent 12 

with the first case study, it can also be found from Fig. 12 that the BDI  values increase with the 13 

damage extent. For states B and C, the damage extent increases with the cutting process, but 14 
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the support is not completely lost. Therefore, the BDI  value increases accordingly but is not 1 

much larger than the baseline. For states D to F, serious damage occurs with the settlement of 2 

the column, corresponding to rapid increase in BDI  value. For states G and H, repair work is 3 

conducted, and the BDI  value decreases to a lower level. States I to L correspond to the damage 4 

scenario induced by tendon cutting. For states I and L, BDI   values are much larger than 5 

baseline because of the reduction of prestressing, whereas for states J and K, BDI  values are 6 

only slightly higher than the baseline since the bridge is not loaded by traffic.  7 

 8 

Figure 12. (a) Real part of BDI  values and (b) Imaginary part of BDI  values under different 9 

damage actions in the progressive damage test. 10 

Then 100 BDI  samples under each state are computed based on Bayesian resampling to 11 

accommodate the uncertainties of the statistical parameters. The 1300 BDI  samples are divided 12 

into two clusters using GMM clustering initialized via the Monte Carlo method. Fig. 13 presents 13 

the novelty detection results of the BDI  -GMM method. Then a 1% exclusive threshold is 14 

established for novelty detection and the results are shown in Fig. 14. The confusion matrices 15 

of these novelty detection results are presented in Fig. 15. From these figures, one can conclude 16 
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that both the GMM-based method and the threshold-based method exhibit good performance 1 

in the S101 dataset with the accuracy exceeding 99.5%. All damage actions introduced in the 2 

progressive damage test are detected, which demonstrates the potential of the proposed novelty 3 

detection methods for implementing on real structures. 4 

 5 

Figure 13. Novelty detection result of: (a) BDIℜ -GMM method; (b) BDI ℑ -GMM method in the 6 

S101 case study. 7 

 8 

Figure 14. (a) BDIℜ  values and (b) BDI ℑ  values for healthy (green) and damaged (orange) 9 

states with respect to the 1% threshold value (dashed line) established via Monte Carlo 10 

simulation. 11 
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 1 

Figure 15. The confusion matrices of the novelty detection result of: (a) BDIℜ -GMM method; 2 

(b) BDI ℑ -GMM method; (c) BDIℜ -threshold method; (d) BDI ℑ -threshold method. 3 

6. Conclusion 4 

TF has been extensively adopted in SHM as a damage-sensitive and input-robust structural 5 

damage feature. However, current studies on TF normally cannot model and accommodate the 6 

uncertainties involved in novelty detection procedures. Therefore, it is reasonable to construct 7 

a TF-based damage indicator involving uncertainties to improve the performance and 8 

robustness of novelty detection. In this work, a novel damage indicator is proposed based on 9 

the probabilistic model of TFs using circularly-symmetric complex Gaussian ratio distribution 10 

and the Laplace approximation of BD . The global maximum and Hessian matrix required in 11 

the Laplace asymptotic expansion are also derived analytically. In addition, a Bayesian 12 
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resampling scheme is proposed to properly accommodate the variability of the estimation of 1 

statistical parameters involved in the probabilistic model of TFs. Two state discrimination 2 

approaches, including a GMM clustering method and a threshold method, are adopted to 3 

discriminate structural states based on the Bayesian resampling scheme. 4 

Two case studies, including a laboratory application and a field test, are used to validate 5 

the novelty detection method. It can be found that the BDI  values deviate clearly from those of 6 

the baseline structure and hence indicates the occurrence of damage. Moreover, the BDI  values 7 

increase with the damage level, indicating that the approximated Bhattacharyya distance can 8 

reflect the relative damage extent. The first case study shows that the GMM-based method 9 

exhibits better performance and higher robustness in detecting the introduced nonlinearities 10 

than the threshold-based method. In the second case study, both the GMM-based method and 11 

the threshold-based method exhibit attractive performance, demonstrating the potential of these 12 

novelty detection methods for implementing on real civil structures. Compared to the MSD-13 

threshold method, the proposed novelty detection method is more robust due to employing a 14 

more accurate statistical model of TFs and accommodating the uncertainties of the statistical 15 

parameters. However, damage localization and damage extent quantification are still not 16 

realized using the proposed novelty detection method. Therefore, these issues still need to be 17 

further investigated in the future. 18 
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Appendix A: Optimal values of , *k
iju ℜ  and , *k

iju ℑ  6 

The approximated Bhattacharyya distance is given by: 7 

( ) ( )( ) ( ) ( ) ( ) ( )
11
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The global maximum of the integrand, , *k
iju ℜ , can be derived by solving the following equation: 8 
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According to Eq. (5) and Eq. (7), the first derivatives of ( ),k
ijp u ℜ   and ( ),d k

ijp u ℜ   can be 9 

calculated by Eq. (A3): 10 
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Therefore, Eq. (A2) can be rearranged as follows: 11 
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Eq. (A4) is a cubic equation in the form of ( ) ( ), ,2, 3
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. Assume ,

3
k

iju bzℜ = − , 3 

then it has: 4 

3 0z pz q+ + =  (A5) 

where 
2 32,

3 27 3
b b bcp c q d= − = − + . The discriminant of Eq. (A5) is denoted by: 5 

2 3( ) ( )
2 3
q p
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For the complex correlation coefficient, it has ( ) ( )2 2, , 1k k
ij ijρ ρℜ ℑ+ <  . Therefore, the second 6 

derivative 
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R

 . Since the premise of the Laplace approximation 7 

algorithm is the integrand has a single maximum over its domain n∈ℜΩ  , 0∆ >  must be 8 

satisfied and thus Eq. (A5) has the only real root z∗ , which is namely the single maximum for 9 

the function ( ) 3f z z pz q= + +  over Ω  and can be calculated by: 10 



37 
 

* 3 3

2 2
q qz = − + ∆ + − − ∆  (A7) 

Then , *k
iju ℜ  can be derived accordingly: , *

3
k

iju bzℜ ∗= − . Similarly, the optimal values of the 1 

imaginary part , *k
iju ℑ  can also be derived in the same manner and the procedures are omitted 2 

here for the purpose of simplicity. 3 

 4 

Appendix B: Hessian Matrix ( ), *k
ijH u ℜ  and ( ), *k

ijH u ℑ  5 

 Since ,k
iju ℜ  is a one-dimensional variable, the Hessian matrix can be estimated as: 6 
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The second derivatives can be solved analytically based on Eq. (5), Eq. (7) and Eq. (A3): 7 
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 (B2d) 

Based on Eq. (A1)-Eq. (A7) and Eq. (B1)-Eq. (B2), the real part of BD  between TFs under two 1 

different states can be approximated using a Laplace asymptotic expansion method, which 2 

avoids direct numerical integration and thus significantly reduces computational cost and 3 

improves the efficiency. Similarly, the Laplace approximation for the imaginary part BDℑ  can 4 

also be derived analytically. 5 

 6 
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