
Pure-Circuit:
Strong Inapproximability for PPAD

Argyrios Deligkas
Royal Holloway, UK

argyrios.deligkas@rhul.ac.uk

John Fearnley
University of Liverpool, UK

john.fearnley@liverpool.ac.uk

Alexandros Hollender
University of Oxford, UK

alexandros.hollender@cs.ox.ac.uk

Themistoklis Melissourgos
University of Essex, UK

themistoklis.melissourgos@essex.ac.uk

Abstract—The current state-of-the-art methods for showing
inapproximability in PPAD arise from the ε-Generalized-Circuit
(ε-GCIRCUIT) problem. Rubinstein (2018) showed that there
exists a small unknown constant ε for which ε-GCIRCUIT is
PPAD-hard, and subsequent work has shown hardness results
for other problems in PPAD by using ε-GCIRCUIT as an
intermediate problem.

We introduce PURE-CIRCUIT, a new intermediate problem for
PPAD, which can be thought of as ε-GCIRCUIT pushed to the
limit as ε → 1, and we show that the problem is PPAD-complete.
We then prove that ε-GCIRCUIT is PPAD-hard for all ε < 0.1
by a reduction from PURE-CIRCUIT, and thus strengthen all
prior work that has used GCIRCUIT as an intermediate problem
from the existential-constant regime to the large-constant regime.

We show that stronger inapproximability results can be de-
rived by a direct reduction from PURE-CIRCUIT. In particular,
we prove that finding an ε-well-supported Nash equilibrium in
a polymatrix game is PPAD-hard for all ε < 1/3, and that this
result is tight for two-action games.

Index Terms—TFNP, PPAD, approximation, Nash equilibrium,
polymatrix games, generalized circuit

I. INTRODUCTION

The complexity class PPAD has played a central role in
determining the computational complexity of many problems
arising in game theory and economics [Pap94]. The celebrated
results of Daskalakis, Goldberg, and Papadimitriou [DGP09]
and Chen, Deng, and Teng [CDT09] established that finding a
Nash equilibrium in a strategic form game is PPAD-complete,
and subsequent to this breakthrough many other PPAD-
completeness results have been shown [CSVY08], [CDDT09],
[VY11], [DQS12], [Das13], [KPR+13], [CDO15], [CPY17],
[SSB17], [Meh18], [Rub18], [DFS20], [CKK21a], [CKK21b],
[PP21], [GH21], [FRGH+21], [DSZ21], [CCPY22].

These celebrated results not only showed that it is PPAD-
hard to find an exact equilibrium, but also that finding ap-
proximate solutions is PPAD-hard. The result of Daskalakis,
Goldberg, and Papadimitriou [DGP09] showed that finding an
ε-Nash equilibrium is PPAD-complete when ε is exponentially
small, while the result of Chen, Deng, and Teng [CDT09]
improved this to show hardness for polynomially small ε. This

The second author was supported by EPSRC grant EP/W014750/1 “New
Techniques for Resolving Boundary Problems in Total Search”.

lower bound is strong enough to rule out the existence of an
FPTAS for the problem.

The main open question following these results was whether
equilibrium computation problems in PPAD were hard for
constant ε, which would also rule out the existence of a
PTAS. Here one must be careful, because some problems do in
fact admit approximation schemes. For example, in the case
of two-player strategic-form games, a quasipolynomial-time
approximation scheme is known [LMM03], meaning that the
problem cannot be hard for a constant ε unless every problem
in PPAD can be solved in quasipolynomial time. But for
other types of game such results are not known. This includes
polymatrix games, which are n-player games with succinct
representation [Jan68].

In another breakthrough result, Rubinstein [Rub18] devel-
oped techniques for showing constant inapproximability within
PPAD, by proving that there exists a constant ε such that
finding an ε-well-supported Nash equilibrium in a polymatrix
game is PPAD-complete. This lower bound is obtained by
first showing constant inapproximability for the ε-Generalized-
Circuit (ε-GCIRCUIT) problem introduced by Chen, Deng, and
Teng [CDT09], and then utilizing the known reduction from
GCIRCUIT to polymatrix games [DGP09].

Rubinstein’s lower bound has since been used to show con-
stant inapproximability for other problems. Rubinstein himself
showed constant inapproximability for finding Bayesian Nash
equilibria, relative approximate Nash equilibria, and approxi-
mate Nash equilibria in non-monotone markets [Rub18]. Sub-
sequent work has shown constant inapproximability for finding
clearing payments in financial networks with credit default
swaps [SSB17], finding equilibria in first-price auctions with
subjective priors [FRGH+21], finding throttling equilibria in
auction markets [CKK21b], finding equilibria in public goods
games on directed networks [PP21], and finding consensus-
halving solutions in fair division [FRFGZ18], [GHI+22].

Rubinstein’s lower bound is an existential-constant result,
meaning that it shows that there exists some constant ε below
which the problem becomes PPAD-hard. The fact that such a
constant exists is important, since it rules out a PTAS. On the
other hand, Rubinstein does not give any concrete lower bound

on the size of the constant (understandably so, since this was
not the purpose of his work). One could of course deduce such
a lower bound by a careful examination of his reduction, but it
is clear that this would yield an extremely small constant. Due
to this, all of the other results that have utilized Rubinstein’s
lower bound are likewise existential-constant results, which
rule out PTASs but do not give any concrete lower bounds.

Ultimately, this means that existing work does not rule out
an efficient algorithm that finds, say, a 0.001-approximate
solution for any of these problems, which would likely be
more than enough for most practical needs. Arguably, a player
would be more than happy to know that her strategy is an
optimal best-response, up to a loss of at most 0.001 in her
utility value. Moreover, the existing work gives us no clue
as to where the threshold for hardness may actually lie. To
address these questions one would need to prove a large-
constant inapproximability result, giving hardness for a known
substantial constant.

Rubinstein’s lower bound is the ultimate source of all
of the recent existential-constant lower bounds, so if one
seeks a large-constant lower bound, then Rubinstein’s result is
the bottleneck. Attempting to directly strengthen or optimize
Rubinstein’s result does not seem like a promising direction.
His proof, while ingenious, is very involved, and does not lend
itself to easy optimization. Furthermore, it consists of many
moving parts, so that even if one was able to optimize each
module, the resulting constant would still be very small.

Our contribution. In this paper we introduce the techniques
needed to show large-constant inapproximability results for
problems in PPAD. Our key technical innovation is the intro-
duction of a new intermediate problem, called PURE-CIRCUIT,
which we show to be PPAD-complete.

Then, by reducing onwards from PURE-CIRCUIT, we show
large-constant inapproximability results for a variety of prob-
lems in PPAD. In this sense, PURE-CIRCUIT now takes on the
role that ε-GCIRCUIT has taken in the past, as an important
intermediate problem from which all other results of this type
are derived.

The PURE-CIRCUIT problem itself can be thought of as
a version of ε-GCIRCUIT that is taken to its limits, and
also dramatically simplified. In fact, the problem has only
two gates (or, in a different formulation, three gates), which
should be compared to ε-GCIRCUIT, which has nine distinct
gates. Perhaps more importantly, the gates in PURE-CIRCUIT
have very weak constraints on their outputs: the gates can be
thought of as taking inputs in [0, 1], and producing outputs
in [0, 1], but the gates themselves essentially only care about
the values 0 and 1, with all other values being considered
to be “bad” or “garbage” values (which we will later simply
denote by “⊥”, instead of using values in (0, 1)). This should
be compared to ε-GCIRCUIT gates, where, for example, one
must output a value in [0, 1] that is within ε of the sum of two
inputs.

Combined, these properties make PURE-CIRCUIT a very
attractive problem to reduce from when showing a hardness

result, since one only has to implement two (or three) gates,
and the constraints that one must simulate are very loose,
making them easy to implement. We formally introduce PURE-
CIRCUIT, and compare it to ε-GCIRCUIT, in Section II.

Our main result is to show that the PURE-CIRCUIT problem
is PPAD-complete. It is worth noting that there is no ε in this
result, and in fact the PURE-CIRCUIT problem does not even
take a parameter ε in its definition. This is because, in some
sense, the PURE-CIRCUIT problem can be viewed as a variant
of ε-GCIRCUIT in which we have taken the limit ε → 1. We
give further justification of this idea in Section II, but at a
high level, this means that there is no loss of ε in our main
hardness result, with the only losses coming when one reduces
onwards from PURE-CIRCUIT. The proof of our main result
is presented in Section III, but we present a brief exposition
of the main ideas in Section I-A.

Finally, in Section IV we present a number of new large-
constant hardness results for problems in PPAD, all of which
are shown via reductions from PURE-CIRCUIT. We begin by
showing that ε-GCIRCUIT is PPAD-hard for all ε < 0.1,
giving a direct strengthening of Rubinstein’s lower bound.
This also implies large-constant inapproximability results for
all of the problems that currently have existential-constant
lower bounds proved via GCIRCUIT. However, to determine
the constant, one would need to determine the amount of ε that
is lost in each of the onward reductions, and these reductions
often did not optimize this, since they were proving existential-
constant lower bounds.

We argue that the way forward now is providing direct re-
ductions from PURE-CIRCUIT in order to get the best possible
hardness results. As evidence of this, we present the first tight
inapproximability result for additive approximate equilibria
in polymatrix games. Via a direct reduction from PURE-
CIRCUIT, we show that finding an ε-well-supported Nash
equilibrium in a polymatrix game (POLYMATRIXWSNE) is
PPAD-hard for all ε < 1/3, even when every player only
has two actions. This is much stronger than the lower bound
of 0.05 that we would have obtained by a reduction from
our lower bound for GCIRCUIT. It is also a tight result
for two-action games: we give a polynomial-time algorithm
for finding a 1/3-well-supported Nash equilibrium, and so
our lower bound completely characterizes the computational
complexity of approximate well-supported equilibria in two-
action polymatrix games.

Due to space constraints, the formal statements and proofs
of our results for polymatrix games are omitted, but they
can be found in the full version. The full version also con-
tains further large-constant inapproximability results obtained
through a direct reduction from PURE-CIRCUIT, such as for
computing ε-Nash equilibria in polymatrix games and for
finding approximate equilibria in threshold games [PP21].

A. Proof Overview for Our Main Result

We begin this proof overview by defining a very weak ver-
sion of PURE-CIRCUIT. An instance of the problem consists
of a Boolean circuit using the standard gates NOT, AND,

and OR, but with the following tweak: the circuit is allowed
to have cycles. A solution to the problem is an assignment
of values to each node of the circuit, so that all gates are
satisfied. If we are only allowed to assign values in {0, 1} to
the nodes, then it is easy to see that the problem is not a total
search problem, i.e., some instances do not have a solution.
For example, there is no way to assign consistent values to a
cycle of three consecutive NOT gates.

In order to ensure that the problem is total (and can thus
be used to prove PPAD-hardness results), we make the value
space continuous by extending it to [0, 1]. We extend the
definition of the logical gates NOT, AND, and OR to non-
Boolean inputs in the most permissive way: if at least one
input to the gate is not a pure bit (i.e., not in {0, 1}), then
the gate is allowed to output any value in [0, 1]. The attentive
reader might observe that this problem is now trivial to solve:
just assign arbitrary values in (0, 1) to all the gates.

It is thus clear that the definition of the problem needs to be
extended, by adding extra gates or by strengthening existing
gates, so that the problem becomes PPAD-hard. However,
in order to discover the least amount of additional structure
needed to make the problem hard, it is instructive to proceed
with this definition for now, and attempt to prove hardness.

In order to prove the PPAD-hardness of the problem, we
cannot follow Rubinstein’s approach, which goes through
the construction of a continuous Brouwer function, because
PURE-CIRCUIT only offers very weak gates. Instead, we
proceed via a direct reduction from the STRONGSPERNER
problem, a discrete problem that is a computational version
of Sperner’s Lemma. The problem was shown to be PPAD-
hard by Daskalakis, Skoulakis, and Zampetakis [DSZ21] (who
called it the HIGHD-BISPERNER problem), and is the “PPAD-
analogue” of the STRONGTUCKER problem which was re-
cently used to prove PPA-hardness results [DFHM22]. This
approach completely bypasses the continuous aspect of all
such existing hardness reductions and enables us to work with
the very weak gates that PURE-CIRCUIT offers.

At a high level, our hardness construction works as follows:
the PURE-CIRCUIT instance implements the evaluation of the
STRONGSPERNER labeling on some input point x (represented
in unary by multiple nodes) and then uses a feedback mech-
anism to ensure that the circuit is only satisfied if x is a
solution to the STRONGSPERNER instance. The full reduction
is presented in Section III, but we mention here the two main
obstacles when trying to implement this idea, and how to
overcome them.
1. The input point x might not be represented by a

valid bitstring. Indeed, since the gates take values in
[0, 1] (and values in (0, 1) essentially do not carry any
information), there is no guarantee that the input x will
be represented by bits {0, 1}. But then the implementation
of the STRONGSPERNER labeling (which is given as a
Boolean circuit) will also fail. To resolve this issue, we
introduce a new gate, the PURIFY gate, which, on any
input, outputs two values, with the guarantee that at least
one of them is a “pure” bit, i.e., 0 or 1. If the input is

already a pure bit, then both outputs are guaranteed to be
copies of the input. Using a binary tree of PURIFY gates,
we can now create many copies of x, such that most of
them consist only of pure bits, and then use the logical
gates to compute the STRONGSPERNER labeling correctly
on these good copies.

2. How to implement the feedback mechanism? Given the
outputs of the STRONGSPERNER labeling at all the copies
of x, we now need to provide some kind of feedback to
x, so that x is forced to change if it is not a solution
of STRONGSPERNER. It turns out that this step can be
performed if we have access to sorting: given a list of values
in [0, 1], sort them from smallest to largest. Unfortunately,
this is impossible to achieve with the gates at our disposal,
namely standard logical gates and the PURIFY gate. We
circumvent this obstacle by observing that: (i) it is sufficient
to be able to perform some kind of “weak sorting” (essen-
tially, we only care about pure bits being sorted correctly),
and (ii) this weak sorting can be achieved if we make our
logical gates robust. For example, the robust version of the
AND gate outputs 0, whenever at least one of its inputs is
0, irrespective of whether the other input is a pure bit or
not.

With these two extensions in hand—namely, the PURIFY gate
and the robustness of the logical gates— it is now possible to
prove PPAD-hardness of the problem. A very natural question
to ask is: Is it really necessary to add both extensions for the
problem to be hard? In Appendix A we show that any attempt
to weaken the gate-constraints makes the problem polynomial-
time solvable. In particular, the introduction of the PURIFY
gate is not enough by itself to make the problem PPAD-hard;
the robustness of the logical gates is also needed.

The robustness of, say, the AND gate seems like a very
natural constraint to impose. It is consistent with the meaning
of the logical AND operation, but we also observe in our appli-
cations that this “robustness” seems to always be automatically
satisfied in all simulations of the AND gate. On the other hand,
the PURIFY gate, which might look a bit unnatural or artificial
at first, actually corresponds to the simplest possible version of
a bit decoder, a crucial tool in all prior works. As mentioned
above, we show in Appendix A that these are the minimal
gate-constraints that are needed for the problem to be PPAD-
hard. In that sense, we argue that PURE-CIRCUIT captures the
essence of PPAD-hardness: it consists of the minimal set of
ingredients that are needed for a problem to be PPAD-hard.

The attentive reader might have noticed that our gates do not
distinguish between different values in (0, 1). For this reason,
it will be more convenient to use a single symbol to denote
such values in the definition of PURE-CIRCUIT (Section II)
and in the rest of this paper. As explained in more detail
in Section II, the symbol “⊥” will be used to denote these
“garbage” values. In other words, the nodes of the circuit will
take values in {0, 1,⊥} instead of [0, 1].

II. THE PURE-CIRCUIT PROBLEM

In this section we define our new problem PURE-CIRCUIT
and state our main result, namely its PPAD-completeness.
Before defining PURE-CIRCUIT, we begin by explaining the
intuition behind its definition, and how it relates to the
Generalized-Circuit (GCIRCUIT) problem.

The Generalized-Circuit problem. In the Generalized-Circuit
(GCIRCUIT) problem (formally defined in Section IV-A) we
are given a circuit and the goal is to assign a value to each
node of the circuit so that each gate is computed correctly.
Importantly, the circuit is a generalized circuit, meaning that
cycles are allowed. If cycles were not allowed, then it would
be easy to find values satisfying all gates: just pick arbitrary
values for the input gates, and then evaluate the circuit on
those inputs.

Every node of GCIRCUIT must be assigned a value in
[0, 1], and the gates are arithmetic gates, such as addition,
subtraction, multiplication by a constant (with output truncated
to lie in [0, 1]), and suitably defined logical gates. Reducing
from GCIRCUIT is very useful for obtaining hardness of
approximation results, because the problem remains PPAD-
hard, even when we allow some error at every gate. In the
ε-GCIRCUIT problem, the goal is to assign a value in [0, 1]
to each node of the circuit, so that each gate is computed
correctly, up to an additive error of ±ε.

The problem was first defined by Chen et al. [CDT09], who
proved that it is PPAD-hard for inverse polynomial ε, and who
used it to prove PPAD-hardness of finding Nash equilibria in
bimatrix games. Prior to that, Daskalakis et al. [DGP09] had
implicitly proved that it is PPAD-hard for inverse exponential
ε. Rubinstein’s [Rub18] breakthrough result proved that there
exists some constant ε > 0 such that ε-GCIRCUIT remains
PPAD-hard.

Taking the limit ε → 1. In order to get strong inapprox-
imability results, it seems necessary to prove hardness of ε-
GCIRCUIT for large, explicit, values of ε. Ideally, we would
like to obtain hardness for the largest possible ε. While it is
unclear what that value is for GCIRCUIT, in theory, as long
as ε < 1 the output of a gate still carries some information.
Namely a gate whose actual output should be 0 cannot take
the value 1.

This observation leads us to define a problem to essentially
capture the setting ε → 1. In that case, a node carries
information only if its value is 0 or 1. Otherwise, its value
is irrelevant. As a result, the natural operations to consider
in this setting are simple Boolean operations, such as NOT,
AND, OR, NAND, and NOR. We only require these gates to
output the correct result when their input is relevant, i.e., 0 or
1. For example, the NOT gate should output 1 on input 0, and
output 0 on input 1, but there is no constraint on its output
when the input lies in (0, 1).

Since values in (0, 1) do not carry any information, and are
as such interchangeable (e.g., a value 1/2 can be replaced by
1/3 without impacting any of the gates), we will instead use
the symbol “⊥” to denote any and all values in (0, 1). In other

words, instead of assigning a value in [0, 1] to each gate, we
will assign a value in {0, 1,⊥}, where ⊥ is interpreted as a
“garbage” value, i.e., not corresponding to a pure bit value 0
or 1. With this new notation, the updated description of the
NOT gate would be that it must output 1 on input 0, it must
output 0 on input 1, and it can output anything (namely, 0, 1,
or ⊥) on input ⊥.

Unfortunately, if we only allow these logical gates, then the
problem is trivial to solve: assigning the “garbage” value ⊥
(or any value in (0, 1) if we use the old notation) to every
node will satisfy all gates. Thus, we need a gate that makes
this impossible.

The PURIFY gate. To achieve this, we introduce the PURIFY
gate: a gate with one input and two outputs, which, intuitively,
“purifies” its input. When fed with an actual pure bit, the
PURIFY gate outputs two copies of the input bit. However,
when the input is not a pure bit, the gate still ensures that at
least one of its two outputs is a pure bit. In more detail:

• If the input is 0, then both outputs are 0.
• If the input is 1, then both outputs are 1.
• If the input is ⊥, then at least one of the outputs is a pure

bit, i.e., 0 or 1.
Note that the gate is quite “under-defined”. For example, we
do not specify which pure bit the gate should output when
the input is ⊥, nor do we specify the output on which this
bit appears. This is actually an advantage, because it makes it
easier to reduce from the problem, since the less constrained
the gates are, the easier it is to simulate them in the target
application problem.

Robustness of the logical gates. The introduction of the
PURIFY gate makes the problem non-trivial: if a PURIFY
gate appears in the circuit, then assigning the “garbage” value
⊥ to all nodes is no longer a solution. However, it turns out
that one more modification is needed to make the problem
PPAD-hard: we have to make the logical gates robust. For the
AND gate, this means the following: if one of its two inputs
is 0, then the output is 0, no matter what the other input is
(even if it is not a pure bit, i.e., if it is ⊥). Similarly, for the
OR gate we require that the output be 1 when at least one
of the two inputs is 1. Robustness is defined analogously for
NAND and NOR.

We show that introducing the PURIFY gate and making the
logical gates robust is enough to make the problem PPAD-
complete. Next, we define the problem formally and state our
main result.

Formal definition. In the definition below, we use the PU-
RIFY and NOR gates, because these two gates are enough
for the problem to already be PPAD-complete. However, the
problem remains hard for various other combinations of gates
and restrictions on the interactions between nodes, as we detail
in Corollaries II.2 and II.3. In Appendix A we discuss the
definition in more detail, and explain why any attempt at
relaxing the definition (in particular, removing the robustness)
makes the problem polynomial-time solvable.

Definition 1 (PURE-CIRCUIT). An instance of PURE-
CIRCUIT is given by a vertex set V = [n] and a set G of
gate-constraints (or just gates). Each gate g ∈ G is of the
form g = (T, u, v, w) where u, v, w ∈ V are distinct nodes
and T ∈ {NOR,PURIFY} is the type of the gate, with the
following interpretation.

• If T = NOR, then u and v are the inputs of the gate,
and w is its output.

• If T = PURIFY, then u is the input of the gate, and v
and w are its outputs.

We require that each node is the output of exactly one gate.
A solution to instance (V,G) is an assignment x : V →

{0, 1,⊥} that satisfies all the gates, i.e., for each gate g =
(T, u, v, w) ∈ G we have:
• if T = NOR, then x satisfies (top: mathematically; bottom:

truth table)

x[u] = x[v] = 0 =⇒ x[w] = 1

(x[u] = 1) ∨ (x[v] = 1) =⇒ x[w] = 0

u v w
0 0 1
1 {0, 1,⊥} 0

{0, 1,⊥} 1 0
Else {0, 1,⊥}

• if T = PURIFY, then x satisfies

{x[v],x[w]} ∩ {0, 1} ≠ ∅
x[u] ∈ {0, 1} =⇒ x[v] = x[w] = x[u]

u v w
0 0 0
1 1 1

⊥ At least one
output in {0, 1}

The following theorem is our main technical result and is
proved in Section III.

Theorem II.1. The PURE-CIRCUIT problem is PPAD-
complete.

The most important part of this statement is of course
the PPAD-hardness of PURE-CIRCUIT, but let us briefly
discuss the other part, namely the PPAD-membership. This
is obtained as a byproduct of our results in Section IV, where
we reduce PURE-CIRCUIT to various problems that are known
to lie in PPAD. However, there is also a more direct way to
prove membership in PPAD, and in particular to establish the
existence of a solution, and we briefly sketch it here. Indeed,
the PURE-CIRCUIT problem can be reduced to the problem
of finding a Brouwer fixed point of a continuous function F ,
a problem known to lie in PPAD [Pap94], [EY10]. Given
an instance of PURE-CIRCUIT with n nodes, the function
F : [0, 1]n → [0, 1]n is constructed by letting x ∈ [0, 1]n

represent an assignment of values to the n nodes, and by
defining Fi(x) ∈ [0, 1] as a continuous function that outputs a

valid value for the ith node, given that the other nodes have
values according to assignment x (where any value in (0, 1)
is interpreted as “⊥”). For every type of gate, it is not hard to
construct a continuous piecewise-linear function Fi (or, in the
case of PURIFY, two such functions Fi and Fj) that satisfies
the constraints of that type of gate.

A. Alternative Gates and Further Restrictions

In this section, we present various versions of the problem
that remain PPAD-complete, in particular versions that use
alternative gates and have additional restrictions.

More gates. We define the following additional gates.
• If T = COPY in g = (T, u, v), then x satisfies

x[u] = 0 =⇒ x[v] = 0

x[u] = 1 =⇒ x[v] = 1

u v
0 0
1 1
⊥ {0, 1,⊥}

• If T = NOT in g = (T, u, v), then x satisfies

x[u] = 0 =⇒ x[v] = 1

x[u] = 1 =⇒ x[v] = 0

u v
0 1
1 0
⊥ {0, 1,⊥}

• If T = OR in g = (T, u, v, w), then x satisfies

x[u] = x[v] = 0 =⇒ x[w] = 0

(x[u] = 1) ∨ (x[v] = 1) =⇒ x[w] = 1

u v w
0 0 0
1 {0, 1,⊥} 1

{0, 1,⊥} 1 1
Else {0, 1,⊥}

• If T = AND in g = (T, u, v, w), then x satisfies

x[u] = x[v] = 1 =⇒ x[w] = 1

(x[u] = 0) ∨ (x[v] = 0) =⇒ x[w] = 0

u v w
1 1 1
0 {0, 1,⊥} 0

{0, 1,⊥} 0 0
Else {0, 1,⊥}

• If T = NAND in g = (T, u, v, w), then x satisfies

x[u] = x[v] = 1 =⇒ x[w] = 0

(x[u] = 0) ∨ (x[v] = 0) =⇒ x[w] = 1

u v w
1 1 0
0 {0, 1,⊥} 1

{0, 1,⊥} 0 1
Else {0, 1,⊥}

Corollary II.2. The PURE-CIRCUIT problem is PPAD-
complete, for any of the following choices of gate types:

• PURIFY and at least one of {NOR,NAND};
• PURIFY, NOT, and at least one of {OR,AND}.

Proof. This follows from Theorem II.1 by observing that a
NOR gate can always be simulated with the given set of gates.
Clearly, NOR can be simulated by first using an OR gate and
then a NOT gate. Furthermore, OR can be simulated by NOT
and AND by applying De Morgan’s laws. Finally, AND can
easily be obtained from NOT and NAND, and NOT can be
obtained from NAND and PURIFY as follows: first apply a
PURIFY gate, and then use its two outputs as the two inputs
to a NAND gate.

More structure. The hardness result is also robust with
respect to restrictions applied to the interaction graph. This
graph is constructed on the vertex set V = [n] by adding a
directed edge from node u to node v whenever v is the output
of a gate with input u. For example, a NOR gate with inputs
u, v and output w yields the two edges (u,w) and (v, w). On
the other hand, a PURIFY gate with input u and outputs v, w
gives the edges (u, v) and (u,w). Since any given node is the
output of at most one gate, it immediately follows that the
in-degree of every node is at most 2. However, the out-degree
of a node can a priori be arbitrarily large. It is quite easy to
show that the problem remains PPAD-complete, even if we
severely restrict the interaction graph.

Corollary II.3. The PURE-CIRCUIT problem remains PPAD-
complete, for any choice of gates {PURIFY,X,Y}, where
(X,Y) ∈ {NOT} × {OR,AND,NOR,NAND} or (X,Y) ∈
{COPY}×{NOR,NAND} and even if we also simultaneously
have all of the following restrictions.

1) Every node is the input of exactly one gate.
2) In the interaction graph, the total degree of every node

is at most 3. More specifically, for every node, the in-
and out-degrees, din and dout, satisfy (din, dout) ∈
{(1, 1), (2, 1), (1, 2)}.

3) The interaction graph is bipartite.

The proof of this corollary is again quite simple, and it can
be found in the full version.
Remark 1. Using Corollary II.3, it is also possible to show
that PURE-CIRCUIT with only two gates (namely, PURIFY
and one of {NOR,NAND}) remains PPAD-complete even if
the total degree of every node is at most 4 in the interaction
graph. Indeed, NOT gates can be implemented by first using
a PURIFY gate and then a NOR/NAND gate. The structural
properties of Corollary II.3 ensure that this yields an interac-
tion graph where the total degree is at most 4 for each node.

This can be further reduced to degree 3, if one modifies the
definition of PURE-CIRCUIT (Definition 1) so that the two
inputs to a NOR/NAND gate are no longer required to be two
distinct nodes u and v, but can possibly be the same node
u = v. However, if the definition is modified in that way, then
one must be careful when reducing from PURE-CIRCUIT to
make sure to take into account the possibility that u = v when
constructing the gadget for a NOR/NAND gate.

III. PPAD-COMPLETENESS OF PURE-CIRCUIT

This section proves our main technical result, namely that
PURE-CIRCUIT is PPAD-complete (Theorem II.1). We note
that membership in PPAD follows immediately from the re-
duction of the problem to GCIRCUIT in Section IV-A. In order
to establish the PPAD-hardness, we present a polynomial-time
reduction from a PPAD-complete problem to PURE-CIRCUIT.
The canonical PPAD-complete problem is the END-OF-LINE
problem, but, as is usually the case, we do not reduce directly
from END-OF-LINE, but from a problem with topological
structure instead, which we introduce next.

A. The STRONGSPERNER Problem

We will reduce from the STRONGSPERNER problem, which
is based on a variant of Sperner’s lemma [Spe28]. This prob-
lem is in essence the same as the HIGHD-BISPERNER prob-
lem defined by Daskalakis et al. [DSZ21] and used to prove
PPAD-hardness of a problem related to constrained min-max
optimization. Furthermore, the corresponding “strong” variant
of Tucker’s lemma was used by Deligkas et al. [DFHM22]
to provide improved PPA-hardness results for the consensus-
halving problem in fair division.

Definition 2. The STRONGSPERNER problem:
Input: A Boolean circuit computing a labeling λ : [M]N →

{−1,+1}N satisfying the following boundary conditions
for every i ∈ [N]:
• if xi = 1, then [λ(x)]i = +1;
• if xi = M , then [λ(x)]i = −1.

Output: Points x(1), . . . , x(N) ∈ [M]N that satisfy ∥x(i) −
x(j)∥∞ ≤ 1 for all i, j ∈ [N], and such that
λ(x(1)), . . . , λ(x(N)) cover all labels, i.e., for all i ∈ [N]
and ℓ ∈ {−1,+1} there exists j ∈ [N] with [λ(x(j))]i =
ℓ.

Note that the requirement that a solution should consist
of exactly N points is without loss of generality. If we find
less than N points that cover all labels, then we can simply
re-use the same points multiple times to obtain a list of N
points that cover all labels (there is no requirement on them
being distinct). If we find more than N points that cover all
labels, then it is easy to see that we can extract a subset of N
points that still cover all labels in polynomial time [DFHM22,
Lemma 3.1].

Theorem III.1 ([DSZ21]). STRONGSPERNER is PPAD-hard,
even when M is only polynomially large (i.e., given in unary
in the input).

Remark 2. This was proven by Daskalakis et al. [DSZ21]
by reducing from the SUCCINCTBROUWER problem, which
had been proven PPAD-hard by Rubinstein [Rub16]. The
PPAD-hardness can also be proved by a more direct reduction
from END-OF-LINE. Indeed, END-OF-LINE can be reduced
to STRONGSPERNER with N = 2 and exponentially large M
by using the techniques of Chen and Deng [CD09]. Then,
a snake embedding technique [CDT09], [DFHM22] can be
used to obtain hardness for the high-dimensional version with
small M , in fact, even for constant M . For our purposes, the
hardness for polynomially large M is sufficient.

B. Reduction from STRONGSPERNER to PURE-CIRCUIT

Consider an instance λ : [M]N → {−1,+1}N of
STRONGSPERNER, where λ is given as a Boolean circuit and
M is only polynomially large (i.e., given in unary). We will
now show how to construct an instance of PURE-CIRCUIT
in polynomial time such that from any correct assignment to
the nodes, we can extract a solution to the STRONGSPERNER
instance in polynomial time. We will make use of the gates
PURIFY, AND, OR, NOT, COPY. All these gates can easily
be simulated using the two gates PURIFY and NOR, by the
arguments in the proof of Corollary II.2.

We begin the construction of the PURE-CIRCUIT instance
by creating nodes ui,1, . . . , ui,M for each i ∈ [N]. We call
these nodes the original inputs, and we think of ui,1, . . . , ui,M

as being the unary representation of an element in [M].
Of course, this only makes sense when all these nodes are
assigned pure bit values, i.e., 0 or 1. In general, this will not
be the case. The rest of the instance can be divided into four
parts: the purification stage, the circuit stage, the sorting stage,
and the selection stage.

We begin with a brief overview of the purpose of each
stage and how they interact with each other. The purification
stage uses the PURIFY gate to create multiple “copies” of
the original ui,j nodes, while ensuring that most of the copies
have pure bit values (Purification Lemma, Lemma III.2). Then,
the circuit stage evaluates the circuit λ on these copies of
the original inputs. Since the purification stage ensures that
most copies have pure bits, the circuit stage outputs the correct
labels for most copies, and, in particular, most outputs are pure
bits (Circuit Lemma, Lemma III.3). Next, for each i ∈ [N], the
sorting stage “sorts” the list of all ith output values computed
in the circuit stage (Sorting Lemma, Lemma III.4). Since most
of the ith output values are pure bits, the sorting stage ensures
that all non-pure values are close to each other in the sorted
list. The selection stage then proceeds to select M values from
the sorted list, but in a careful way, namely such that they are
all far away from each other. This ensures that at most one of
the M selected values is not a pure bit. The M selected values
are then fed back into the original inputs ui,1, . . . , ui,M . As a
result, the original input ui,1, . . . , ui,M contains at most one
non-pure bit, and thus the purification stage ensures that all the
(pure) copies of ui,1, . . . , ui,M correspond to unary numbers
that differ by at most 1. This means that these copies represent
points in the STRONGSPERNER domain that are within ℓ∞-

distance 1 (Selection Lemma, Lemma III.5). Finally, using
the boundary conditions of the STRONGSPERNER instance,
we argue that these points must cover all the labels (Solution
Lemma, Lemma III.6).

We now describe each of the stages in more detail. We let K
denote the number of copies that we make. It will be enough
to pick K = 3NM2. In what follows, x always denotes an
arbitrary solution to the PURE-CIRCUIT instance we construct.
Step 1: Purification stage. For each (i, j) ∈ [N] × [M], we
construct a binary tree of PURIFY gates that is rooted at ui,j

and has leaves u
(1)
i,j , . . . , u

(K)
i,j .

We say that k ∈ [K] is a good copy, if x[u
(k)
i,j] is a pure

bit for all (i, j) ∈ [N] × [M]. We denote the set of all good
copies by G, i.e.,

G :=
{
k ∈ [K] : x[u

(k)
i,j] ∈ {0, 1} ∀(i, j) ∈ [N]× [M]

}
.

For a good copy k ∈ G and any i ∈ [N], we can interpret the
bitstring (x[u

(k)
i,j])j∈[M] ∈ {0, 1}M as representing a number

in [M] in unary, which we denote by u
(k)
i ∈ [M]. In other

words, u(k)
i corresponds to the number of 1’s in the bit-string

(x[u
(k)
i,j])j∈[M]. For notational convenience we let the all-zero

bit string 0M correspond to 1 as well, i.e., if x[u
(k)
i,j] = 0 for

all j ∈ [M], then u
(k)
i = 1. (Alternatively, we could also use

M−1 bits instead of M .) Finally, we let u(k) ∈ [M]N denote
the vector (u(k)

1 , . . . , u
(k)
N).

Lemma III.2 (Purification Lemma). The following hold.
1) There are at least K − NM good copies, i.e., |G| ≥

K −NM .
2) If for some (i, j) ∈ [N]× [M] the original input x[ui,j]

is a pure bit, then all copies have that same bit, i.e.,
x[u

(k)
i,j] = x[ui,j] for all k ∈ [K].

Proof. Observe that in a binary tree of PURIFY gates, if
some node has some pure value b ∈ {0, 1}, then all nodes in
the subtree rooted at this node also have value b. Applying
this observation at the root of the tree rooted at ui,j , we
immediately obtain part 2 of the statement.

For part 1, note that for any (i, j) ∈ [N] × [M], in the
binary tree of PURIFY gates rooted at ui,j , all leaves, except
at most one, have a pure bit value. This follows from the
definition of the PURIFY gate and the observation about
subtrees made in the previous paragraph. As a result, all
values (x[u

(k)
i,j])(i,j,k)∈[N]×[M]×[K] are pure bits, except for

at most NM of them. But this means that there are at least
K −NM values of k ∈ [K] such that x[u(k)

i,j] ∈ {0, 1} for all
∀(i, j) ∈ [N]× [M]. In other words, |G| ≥ K −NM .

Step 2: Circuit stage. We assume, without loss of generality,
that λ is given as a Boolean circuit C : ({0, 1}M)N → {0, 1}N
using gates AND, OR, NOT, and, on input z ∈ ({0, 1}M)N :

• For each i ∈ [N], the ith block of input bits zi ∈ {0, 1}M
is interpreted by C as representing a number zi ∈ [M] in
unary, in the exact same way as u

(k)
i ∈ [M] is obtained

from the bitstring (x[u
(k)
i,j])j∈[M].

• The circuit C outputs λ(z1, . . . , zN) ∈ {−1,+1}N ,
where a −1 output is represented by a 0, and a +1 output
by a 1. To keep things simple, in the rest of this exposition
we will abuse notation and think of λ as outputting labels
in {0, 1}N .

If the circuit is not originally in this form, then it can be
brought in this form in polynomial time.

In the circuit stage, we construct K separate copies
of the circuit C, using the AND, OR, and NOT gates.
For each k ∈ [K], the kth copy Ck takes as input the
nodes (u

(k)
i,j)(i,j)∈[N]×[M] and we denote its output nodes by

v
(k)
1 , . . . , v

(k)
N . Since the gates always have correct output when

the inputs are pure bits, we immediately obtain the following.

Lemma III.3 (Circuit Lemma). For all good copies k ∈ G,
the output of circuit Ck is correct, i.e., x[v(k)i] = [λ(u(k))]i
for all i ∈ [N].

Step 3: Sorting stage. In this stage, for each i ∈ [N], we
would like to have a gadget that takes as input the list of
nodes v

(1)
i , . . . , v

(K)
i (namely, the list of ith outputs of the

circuits C1, . . . , CK) and outputs the nodes w
(1)
i , . . . , w

(K)
i ,

such that these output nodes are a sorted list of the values of
the input nodes (where we think of the values as being ordered
0 < ⊥ < 1). Unfortunately, this is not possible given the gates
we have at our disposal. However, it turns out that we can do
some kind of “weak” sorting by using the robustness of the
AND and OR gates (i.e., the fact that AND on input 0 and s,
always outputs 0, no matter what s ∈ {0, 1,⊥} is).

For now assume that we consider values in [0, 1] (instead
of {0, 1,⊥}) and that we have access to a comparator gate
that takes two inputs s1 and s2 and outputs t1 and t2, such
that t1, t2 is the sorted list s1, s2. Formally, we can write
this as t1 := min{s1, s2} and t2 := max{s1, s2}. Using
comparator gates, it is easy to construct a circuit that takes
K inputs and outputs them in sorted order. Indeed, we can
directly implement a sorting network [Knu98], for example.
Even a very naive approach will yield such a circuit of poly-
nomial size, which is all we need. We implement this circuit
with inputs v

(1)
i , . . . , v

(K)
i and outputs w

(1)
i , . . . , w

(K)
i in our

PURE-CIRCUIT instance, by replacing every comparator gate
by AND and OR gates. Namely, to implement a comparator
gate with inputs s1, s2 and outputs t1, t2, we use an AND gate
with inputs s1, s2 and output t1, and an OR gate with inputs
s1, s2 and output t2. The robustness of the AND and OR gates
allows us to prove that this sorting gadget sorts the pure bit
values correctly, in the following sense.

Lemma III.4 (Sorting Lemma). Let K0 and K1 denote the
number of zeroes and ones that the ith sorting gadget gets
as input, i.e., Kb := |{k ∈ [K] : x[v

(k)
i] = b}|. Then, the

first K0 outputs of the gadget are zeroes, and the last K1

outputs are ones. Formally, x[w(k)
i] = 0 for all k ∈ [K0], and

x[w
(K+1−k)
i] = 1 for all k ∈ [K1].

Proof. Consider the ideal sorting circuit (that uses comparator
gates) with input f(x[v(1)i]), . . . , f(x[v

(K)
i]), where f maps 0

to 0, 1 to 1, and ⊥ to 1/2. In other words, we imagine running
the comparator circuit on our list of values, except that the
“garbage” value ⊥ is replaced by 1/2. Since the comparator
circuit correctly sorts the list, its output satisfies the desired
property: the first K0 outputs are 0, and the last K1 outputs
are 1. Thus, in order to prove the lemma, it suffices to prove
the following claim: if a node in the ideal circuit has a pure bit
value b ∈ {0, 1}, then the corresponding node in our PURE-
CIRCUIT instance must also have value b.

We prove the claim by induction. Clearly, all input nodes
satisfy the claim. Now consider some node t1 that is the min-
output of a comparator gate with inputs s1 and s2, that both
satisfy the claim. Recall that this gate will be implemented in
the PURE-CIRCUIT by an AND gate with inputs s1, s2 and
output t1. If the ideal circuit assigns value 1/2 to t1, then the
claim trivially holds for t1. If the ideal circuit assigns value
1 to t1, then both s1 and s2 must have value 1 in the ideal
circuit. Since the claim holds for s1 and s2, they also have
value 1 in PURE-CIRCUIT, and so the AND gate will ensure
that t1 also has value 1, thus satisfying the claim. Finally, if
the ideal circuit assigns value 0 to t1, then it must also have
assigned value 0 to at least one of s1 or s2. But then, by the
claim, PURE-CIRCUIT also assigns value 0 to at least one of
s1 or s2, and the robustness of the AND gate ensures that t1
also has value 0. The same argument also works with max
and OR instead.

Note that Lemma III.4 only guarantees a “weak” type of
sorting: some parts of the output list might not be correctly
ordered, and the list of output values might not be a permuta-
tion of the input values (namely, it can happen that there are
more 0’s and/or 1’s in the output list than in the input list).
However, this “weak” sorting will be enough for our needs as
we will see below.
Step 4: Selection stage. Since the list w(1)

i , . . . , w
(K)
i , is now

“sorted”, we can select M nodes from it in such a way that
at most one node does not have a pure value. Indeed, this can
be achieved by selecting nodes that are sufficiently far apart
from each other. We thus select the nodes (w

(j·2NM)
i)j∈[M]

and copy their values onto the original input nodes (ui,j)j∈[M].
Namely, for each j ∈ [M] we introduce a COPY gate with
input w(j·2NM)

i and output ui,j . Recall that K = 3NM2 ≥
M · 2NM , so this is well defined. This selection procedure
has the following nice properties.

Lemma III.5 (Selection Lemma). We have:
1) All good copies are close to each other: ∥u(k) −

u(k′)∥∞ ≤ 1 for all k, k′ ∈ G.
2) If all good copies agree that the ith output is b ∈ {0, 1},

i.e., x[v(k)i] = b for all k ∈ G, then the original input
satisfies x[ui,j] = b for all j ∈ [M].

Proof. We begin by proving part 1 of the statement. First of
all, note that it suffices to show that, for all i ∈ [N], at most
one of the original inputs x[ui,1], . . . ,x[ui,M] is not a pure
bit. Indeed, in that case, by part 2 of the Purification Lemma
(Lemma III.2), it follows that for any i ∈ [N] and any k, k′ ∈

G, the bitstrings (x[u
(k)
i,j])j∈[M] and (x[u

(k′)
i,j])j∈[M] differ in

at most one bit. But this implies that |u(k)
i −u

(k′)
i | ≤ 1 for all

i ∈ [N], and thus ∥u(k) − u(k′)∥∞ ≤ 1.
Now consider any i ∈ [N]. By part 1 of the Purifica-

tion Lemma (Lemma III.2), we have that the number of
good copies |G| ≥ K − NM . By the Circuit Lemma
(Lemma III.3) we know that the corresponding outputs are
pure bits, i.e., x[v

(k)
i] ∈ {0, 1} for all k ∈ G. Thus, the

list x[v(1)i], . . . ,x[v
(K)
i] contains at least K −NM pure bits.

Using the notation from the Sorting Lemma (Lemma III.4),
this means that K0 + K1 ≥ K − NM . As a result, by
applying the Sorting Lemma, it follows that in the list obtained
after sorting, x[w

(1)
i], . . . ,x[w

(K)
i], all the non-pure bits are

contained in an interval of length NM . Since the selected
nodes (w

(j·2NM)
i)j∈[M] are sufficiently far apart (namely

2NM), at most one such node can fall in the “bad” interval.
This means that all selected nodes, except at most one, are
pure bits, and since the selected nodes are copied into the
original inputs, this also holds for them.

It remains to prove part 2 of the statement. If for some
i ∈ [N], x[v

(k)
i] = 0 for all k ∈ G, then this means that

K0 ≥ |G| ≥ K−NM . By the Sorting Lemma (Lemma III.4),
it follows that x[w(k)

i] = 0 for all k ∈ [K−NM]. In particular,
since K−NM = 3NM2−NM ≥ M ·2NM , this means that
for all j ∈ [M], x[w(j·2NM)

i] = 0. But these are the nodes we
select, and we copy their value into the original inputs, so the
statement follows. The case where x[v

(k)
i] = 1 for all k ∈ G

is handled analogously.

Correctness. The description of the reduction is now com-
plete. We have constructed a valid instance of PURE-CIRCUIT
in polynomial time. In particular, note that every node is the
output of exactly one gate. To complete the proof, it remains
to prove that from any solution of the PURE-CIRCUIT instance
we can extract a solution to STRONGSPERNER in polynomial
time. We do this in the following final lemma.

Lemma III.6 (Solution Lemma). The points {u(k) : k ∈ G} ⊆
[M]N yield a solution to the STRONGSPERNER instance λ.

Proof. First of all, by part 1 of the Selection Lemma
(Lemma III.5), we know that the points u(k), k ∈ G, are all
within ℓ∞-distance 1. Thus, it suffices to prove that they cover
all labels with respect to λ. Note that we can efficiently extract
these points from a solution x, since, for each k ∈ [K], we
can easily decide whether k lies in G or not, and then extract
the point u(k).

We prove by contradiction that the points u(k), k ∈ G,
must cover all labels. Assume, on the contrary, that there
exists i ∈ [N] and b ∈ {0, 1} such that [λ(u(k))]i = b for
all k ∈ G. Then, by the Circuit Lemma (Lemma III.3), all the
corresponding circuits must output b, i.e., x[v(k)i] = b for all
k ∈ G. By part 2 of the Selection Lemma (Lemma III.5),
it follows that the original input satisfies x[ui,j] = b for
all j ∈ [M]. Finally, by part 2 of the Purification Lemma
(Lemma III.2), it must be that for all copies k ∈ G, all M

bits x[u
(k)
i,1], . . . ,x[u

(k)
i,M] are equal to b. Now, if b = 1, then

this means that u(k)
i = M , and thus [λ(u(k))]i = 0 ̸= b by the

STRONGSPERNER boundary conditions, which contradicts the
original assumption. Similarly, if b = 0, then u

(k)
i = 1, and

thus [λ(u(k))]i = 1 ̸= b by the STRONGSPERNER boundary
conditions, which is again a contradiction. (We recall here that
we have renamed the labels {−1,+1} to {0, 1}, respectively,
for the purpose of this proof.)

IV. APPLICATIONS

In this section, we derive strong inapproximability lower
bounds for PPAD-complete problems, by reducing from
PURE-CIRCUIT.

A. Generalized Circuit

The ε-GCIRCUIT problem was introduced by Chen, Deng,
and Teng [CDT09]. In this section, we show that ε-GCIRCUIT
is PPAD-hard for all ε < 0.1.

The ε-GCIRCUIT problem. The problem is defined as fol-
lows.

Definition 3 (Generalized Circuit [CDT09]). A general-
ized circuit is a tuple (V, T), where V is a set of nodes,
and T is a set of gates. Each gate t ∈ T is a five-
tuple (G, u, v, w, c), where G is a gate type from the set
{Gc, G×c, G=, G+, G−, G<, G∨, G∧, G¬}, u, v ∈ V ∪ {nil}
are input variables, w ∈ V is an output variable, and
c ∈ [0, 1] ∪ {nil} is a rational constant.

The following requirements must be satisfied for each gate
(G, u, v, w, c) ∈ T .

• Gc gates take no input variables and use a constant in [0, 1].
So u = v = nil and c ∈ [0, 1] whenever G = Gc.

• G×c gates take one input variable and a constant. So u ∈ V ,
v = nil, and c ∈ [0, 1] whenever G = G×c.

• G= and G¬ gates take one input variable and do not use a
constant. So u ∈ V , v = c = nil, whenever G ∈ {G=, G¬}.

• All other gates take two input variables and do not use a
constant. So u ∈ V , v ∈ V , and c = nil whenever G /∈
{Gc, G×c, G=, G¬}.

• Every variable in V is the output variable for exactly one
gate. More formally, for each variable w ∈ V , there is
exactly one gate t ∈ T such that t = (G, u, v, w, c).

The ε-GCIRCUIT problem is defined as follows. Given a
generalized circuit (V, T), find a vector x ∈ [0, 1]|V | such that
for each gate in T the following constraints are satisfied.

Gate Constraint
(Gc, nil, nil, w, c) x[w] = c± ε
(G×c, u, nil, w, c) x[w] = x[u] · c± ε
(G=, u, nil, w, nil) x[w] = x[u]± ε
(G+, u, v, w, nil) x[w] = min(x[u] + x[v], 1)± ε
(G−, u, v, w, nil) x[w] = max(x[u]− x[v], 0)± ε

(G<, u, v, w, nil) x[w] =

{
1± ε if x[u] < x[v]− ε

0± ε if x[u] > x[v] + ε

(G∨, u, v, w, nil) x[w] =

1± ε if x[u] ≥ 1− ε

or x[v] ≥ 1− ε

0± ε if x[u] ≤ ε and x[v] ≤ ε

(G∧, u, v, w, nil) x[w] =

1± ε if x[u] ≥ 1− ε

and x[v] ≥ 1− ε

0± ε if x[u] ≤ ε or x[v] ≤ ε

(G¬, u, nil, w, nil) x[w] =

{
1± ε if x[u] ≤ ε

0± ε if x[u] ≥ 1− ε

Here the notation a = b ± ε is used as a shorthand for
a ∈ [b − ε, b + ε]. We will also make use of gates of type
(G>, u, v, w,nil) which enforce the constraint

x[w] =

{
0± ε if x[u] < x[v]− ε

1± ε if x[u] > x[v] + ε

Gates of type G> can be easily built by using a G¬ gate to
negate the output of a G< gate.

In the remainder of this section, we prove the following
result.

Theorem IV.1. ε-GCIRCUIT is PPAD-hard for every ε < 0.1.

Proof. We will reduce from the PURE-CIRCUIT problem that
uses the gates NOR and PURIFY, which we showed to be
PPAD-hard in Theorem II.1. We will encode 0 values in
the PURE-CIRCUIT problem as values in the range [0, ε] in
GCIRCUIT, while 1 values will be encoded as values in the
range [1 − ε, 1]. Then, each gate from PURE-CIRCUIT will
be simulated by a combination of gates in the GCIRCUIT
instance.

NOR gates. A NOR gate (NOR, u, v, w) will be simulated
by GCIRCUIT gates that compute

x[u] + x[v] < 5/9,

which requires us to use G+, G< and Gc. We claim that this
gate works for any ε < 1/9.

The idea is that if both inputs lie in the range [0, ε], and
thus both inputs encode zeros in PURE-CIRCUIT, we will have
x[u] +x[v] ≤ 3ε < 3/9, where the extra ε error is introduced
by G+. The Gc gate outputting 5/9 may output a value as
small as 4/9 after the error is taken into account. Thus, the
G< gate will compare these two values, and provided that
ε < 1/9, the comparison will succeed, so the gate will output
a value greater than or equal to 1 − ε, which corresponds to
a 1 in the PURE-CIRCUIT instance, as required.

If, on the other hand, at least one input is in the range
[1−ε, 1], then we will have x[u]+x[v] ≥ 1−2ε > 7/9, where
again G+ introduces an extra ε error. The Gc gate outputting
5/9 may output a value as large as 6/9 after the error is taken

into account. Thus, the G< will compare these two values
and provided that ε < 1/9, the comparison will succeed, so
the gate will output a value less than or equal to ε, which
corresponds to a 0 in the PURE-CIRCUIT instance, which is
again as required.

PURIFY gates. A PURIFY gate (PURIFY, u, v, w) will be
simulated by two GCIRCUIT gadgets. The first will set x[v]
equal to x[u] > 0.3, while the second will set x[w] equal to
x[u] > 0.7, where Gc and G> gates are used to implement
these operations. We claim that this construction works for
any ε < 0.1.

We begin by considering the first gadget, which sets x[v]
equal to x[u] > 0.3. If x[u] ≤ ε < 0.1, then note that the
Gc gate outputting 0.3 may output a value as small as 0.2
once errors are taken into account. Thus, since ε < 0.1, the
comparison made by the G> gate will succeed, and so x[v]
will be set to a value less than or equal to ε. On the other
hand, if x[u] ≥ 0.5, then note that the Gc gate outputting 0.3
may output a value as large as 0.4 once errors are taken into
account. So, the comparison made by the G> gate will again
succeed, and x[v] will be set to a value greater than or equal
to 1− ε.

One can repeat the analysis above for the second gadget to
conclude that x[w] will be set to a value less than or equal to
ε when x[u] ≤ 0.5, and a value greater than or equal to 1− ε
when x[u] ≥ 1 − ε. So we can verify that the conditions of
the PURIFY gate are correctly simulated.

• If x[u] ≤ ε, meaning that the input encodes a zero, then
x[v] and x[w] will be set to values that are less than or
equal to ε, and so both outputs encode zeros.

• If x[u] ≥ 1 − ε, meaning that the input encodes a one,
then x[v] and x[w] will be set to values that are greater
than or equal to 1− ε, and so both outputs encode ones.

• No matter what value x[u] takes, at least one output will
be set to a value that encodes a zero or a one. Specifically,
if x[u] ≤ 0.5, then the second comparison gate will set
x[w] ≤ ε, while if x[u] ≥ 0.5, then the first comparison
gate will set x[v] ≥ 1− ε.

Thus, the construction correctly simulates a PURIFY gate.
Note that ε cannot be increased beyond 0.1 in this construc-
tion, since then there would be no guarantee that an encoding
of a zero or a one would be produced when x[u] = 0.5.

The lower bound. Given a PURE-CIRCUIT instance defined
over variables V , we produce a GCIRCUIT instance by replac-
ing each gate in the PURE-CIRCUIT with the constructions
given above. Then, given a solution x to the 0.1-GCIRCUIT
instance, we can produce a solution x′ to PURE-CIRCUIT in
the following way. For each v ∈ V

• if x[v] ≤ ε, then we set x′[v] = 0,
• if x[v] ≥ 1− ε, then we set x′[v] = 1, and
• if x[v] > ε and x[v] < 1− ε, then we set x′[v] = ⊥.

By the arguments given above, we have that x′ is indeed a
solution to PURE-CIRCUIT, and thus Theorem IV.1 is proved.

APPENDIX A
ON THE DEFINITION OF PURE-CIRCUIT

In this section, we explore different ways to weaken the
definition of PURE-CIRCUIT, and show how, in each case, the
problem is no longer PPAD-hard.

No PURIFY gate. If we allow all gates, except the PURIFY
gate (so only NOT, COPY, OR, AND, NOR, NAND), then
the problem becomes polynomial-time solvable. Indeed, it
suffices to assign value ⊥ to all the nodes.

No Negation. If we allow all gates, except the ones that
perform some kind of negation (so only PURIFY, COPY, OR,
AND), then the problem becomes polynomial-time solvable.
Indeed, assigning the value 1 to each node (or, alternatively,
the value 0 to each node) always yields a solution. More
generally, we can make the following observation: for any
set of gates that can be implemented by monotone functions,
the problem lies in the class PLS, and is thus unlikely to be
PPAD-complete. Indeed, as already mentioned in Section II,
we can view any PURE-CIRCUIT instance with n nodes as a
function F : [0, 1]n → [0, 1]n, where each gate is replaced by a
continuous function that is consistent with the gate-constraint.
Then any fixed point of F yields a solution to the PURE-
CIRCUIT instance. If each of the gates can be replaced by a
continuous monotone function, then the problem of finding a
fixed point of F is an instance of Tarski’s fixed point theorem,
which is known to lie in PLS [EPRY20].

No robustness. If we allow all gates (PURIFY, NOT, COPY,
OR, AND, NOR, NAND), but we drop the robustness require-
ment from the logical gates OR, AND, NOR, NAND, then the
problem can be solved in polynomial time.

Construct the interaction graph G of the PURE-CIRCUIT
instance, as defined in Section II-A. In the first stage of the
algorithm, as long as there exists a directed cycle in graph G,
we do the following:

1) Pick an arbitrary directed simple cycle of G.
2) For each node u on the simple cycle C, assign value ⊥

to it, i.e., x[u] := ⊥.
3) Remove all nodes on the simple cycle C from the graph

G, including all their incident edges.
At the end of this procedure, G no longer contains any cycles.
In the second stage of the algorithm we then repeat the
following, until G is empty:

1) Pick any source u of G (which must exist, since G
contains no cycles).

2) Let g be the (unique) gate that has u as output. Since u
does not have incoming edges in G, all inputs of g have
already been assigned a value. If u is the only output of
g, then assign a value to u that satisfies the gate, and
remove u and its edges from G. If the gate g also has
another output v, then g is a PURIFY gate, and there are
two cases:
• If v has not been assigned a value yet, then assign

values to both u and v such that the gate is satisfied.
Remove u and v and their edges from G.

• If v has already been assigned a value, then this
happened in the first stage of the algorithm, and both
v and the input to g were assigned value ⊥ (if v lies
on a simple cycle C, then so does the input of gate g,
because v has a single incoming edge in the original
interaction graph). In that case, we assign value 0 or 1
to u and g is satisfied. Remove u and its edges from
G (v was already removed in the first stage).

Since a node is removed from G only when it is assigned a
value, all nodes have been assigned a value at the end of the
algorithm. We argue that all gates are satisfied. Clearly, any
gate that has an output node that is still present in G after the
end of the first stage will be satisfied (by construction of the
second stage). Thus, it remains to consider any gate g such
that all its output nodes are removed in the first stage. There
are three cases:

• g is a NOT or COPY gate: if the output lies on a simple
cycle C, then so does the input. Both are thus assigned
value ⊥ and the gate is satisfied.

• g is a (non-robust) OR, AND, NOR, or NAND gate: if
the output lies on a simple cycle C, then so does at least
one of its inputs. Thus, at least one input is also assigned
value ⊥, and the gate is satisfied. Note that we crucially
used the non-robustness of the gate here.

• g is a PURIFY gate: if an output v of g lies on a simple
cycle C, then the input u of g also lies on C, and so
both are removed at the same time from G. However, the
other output w of g cannot lie on that same simple cycle
C, and after u is removed, w does not have an incoming
edge anymore and will thus not be removed in the first
stage. Thus, g cannot be a PURIFY gate.

Adding Constant Gates. It is a natural idea to try to add
constant gates in an attempt to make the problem hard for a set
of gates for which the problem is not PPAD-hard. By constant
gates, we mean a 0-gate which has one output and no input,
and which enforces that the value of its output node always be
0, and a 1-gate defined analogously. No matter which subset of
gates S ⊆ {PURIFY,NOT,COPY,OR,AND,NOR,NAND}
we use, adding the constant gates 0 and 1 does not change
the complexity of the problem. Indeed, it is easy to see that
the constants can be “propagated” through the circuit. If a
constant is an input to a PURIFY, NOT, or COPY gate, then
we can replace the output(s) of that gate by constants that
satisfy the gate-constraint. If a constant is an input to an X
gate, where X ∈ {OR,AND,NOR,NAND}, then there are
two cases: either we can replace the output by a constant, or
we can replace the gate by an X gate with the same input
twice (namely, the other input). In order to create a copy of
the other input, we can either use the COPY gate, or the NOT
gate, or the PURIFY gate. If none of these three gates lies in
S, then PURE-CIRCUIT with gates S ∪ {0,1} is polynomial-
time solvable, since it is polynomial-time solvable with gates
S ∪ {NOT,0,1} (by the propagation argument, and the lack
of PURIFY gate).

ACKNOWLEDGMENT

We thank the anonymous reviewers for comments and
suggestions that helped improve the presentation of the paper.

REFERENCES

[CCPY22] T. Chen, X. Chen, B. Peng, and M. Yannakakis, “Computational
hardness of the Hylland-Zeckhauser scheme,” in Proceedings
of the 33rd ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2022, pp. 2253–2268.

[CD09] X. Chen and X. Deng, “On the complexity of 2D discrete fixed
point problem,” Theoretical Computer Science, vol. 410, no. 44,
pp. 4448–4456, 2009.

[CDDT09] X. Chen, D. Dai, Y. Du, and S. Teng, “Settling the complexity
of Arrow-Debreu equilibria in markets with additively separable
utilities,” in Proceedings of the 50th IEEE Symposium on
Foundations of Computer Science (FOCS), 2009, pp. 273–282.

[CDO15] X. Chen, D. Durfee, and A. Orfanou, “On the complexity of
Nash equilibria in anonymous games,” in Proceedings of the
47th ACM Symposium on Theory of Computing (STOC), 2015,
pp. 381–390.

[CDT09] X. Chen, X. Deng, and S.-H. Teng, “Settling the complexity
of computing two-player Nash equilibria,” Journal of the ACM,
vol. 56, no. 3, pp. 14:1–14:57, 2009.

[CKK21a] X. Chen, C. Kroer, and R. Kumar, “The complexity of pacing
for second-price auctions,” in Proceedings of the 22nd ACM
Conference on Economics and Computation (EC), 2021, p. 318.

[CKK21b] ——, “Throttling equilibria in auction markets,” in Proceedings
of the 17th International Conference on Web and Internet
Economics (WINE), 2021, p. 551.

[CPY17] X. Chen, D. Paparas, and M. Yannakakis, “The complexity of
non-monotone markets,” Journal of the ACM, vol. 64, no. 3,
pp. 20:1–20:56, 2017.

[CSVY08] B. Codenotti, A. Saberi, K. Varadarajan, and Y. Ye, “The
complexity of equilibria: Hardness results for economies via
a correspondence with games,” Theoretical Computer Science,
vol. 408, no. 2–3, pp. 188–198, 2008.

[Das13] C. Daskalakis, “On the complexity of approximating a Nash
equilibrium,” ACM Transactions on Algorithms, vol. 9, no. 3,
pp. 1–35, 2013.

[DFHM22] A. Deligkas, J. Fearnley, A. Hollender, and T. Melissourgos,
“Constant inapproximability for PPA,” in Proceedings of the
54th ACM Symposium on Theory of Computing (STOC), 2022,
pp. 1010–1023.

[DFS20] A. Deligkas, J. Fearnley, and R. Savani, “Tree polymatrix games
are PPAD-hard,” in Proceedings of the 47th International Col-
loquium on Automata, Languages, and Programming (ICALP),
2020, pp. 38:1–38:14.

[DGP09] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou, “The
complexity of computing a Nash equilibrium,” SIAM Journal
on Computing, vol. 39, no. 1, pp. 195–259, 2009.

[DQS12] X. Deng, Q. Qi, and A. Saberi, “Algorithmic solutions for envy-
free cake cutting,” Operations Research, vol. 60, no. 6, pp.
1461–1476, 2012.

[DSZ21] C. Daskalakis, S. Skoulakis, and M. Zampetakis, “The com-
plexity of constrained min-max optimization,” in Proceedings
of the 53rd ACM Symposium on Theory of Computing (STOC),
2021, pp. 1466–1478.

[EPRY20] K. Etessami, C. Papadimitriou, A. Rubinstein, and M. Yan-
nakakis, “Tarski’s theorem, supermodular games, and the com-
plexity of equilibria,” in Proceedings of the 11th Innovations
in Theoretical Computer Science Conference (ITCS), 2020, pp.
18:1–18:19.

[EY10] K. Etessami and M. Yannakakis, “On the complexity of Nash
equilibria and other fixed points,” SIAM Journal on Computing,
vol. 39, no. 6, pp. 2531–2597, 2010.

[FRFGZ18] A. Filos-Ratsikas, S. K. S. Frederiksen, P. W. Goldberg, and
J. Zhang, “Hardness results for Consensus-Halving,” in Pro-
ceedings of the 43rd International Symposium on Mathematical
Foundations of Computer Science (MFCS), 2018, pp. 24:1–
24:16.

[FRGH+21] A. Filos-Ratsikas, Y. Giannakopoulos, A. Hollender, P. Lazos,
and D. Poças, “On the complexity of equilibrium computation
in first-price auctions,” in Proceedings of the 22nd ACM Confer-
ence on Economics and Computation (EC), 2021, pp. 454–476.

[GH21] P. W. Goldberg and A. Hollender, “The Hairy Ball problem is
PPAD-complete,” Journal of Computer and System Sciences,
vol. 122, pp. 34–62, 2021.

[GHI+22] P. W. Goldberg, A. Hollender, A. Igarashi, P. Manurangsi,
and W. Suksompong, “Consensus halving for sets of items,”
Mathematics of Operations Research, 2022.

[Jan68] E. Janovskaja, “Equilibrium points in polymatrix games,”
Lithuanian Mathematical Journal, vol. 8, no. 2, pp. 381–384,
1968.

[Knu98] D. E. Knuth, The Art of Computer Programming, Volume 3:
Sorting and Searching. Addison-Wesley Professional, 1998.

[KPR+13] S. Kintali, L. J. Poplawski, R. Rajaraman, R. Sundaram, and
S. Teng, “Reducibility among fractional stability problems,”
SIAM Journal on Computing, vol. 42, no. 6, pp. 2063–2113,
2013.

[LMM03] R. J. Lipton, E. Markakis, and A. Mehta, “Playing large
games using simple strategies,” in Proceedings of the 4th ACM
Conference on Electronic Commerce (EC), 2003, pp. 36–41.

[Meh18] R. Mehta, “Constant rank two-player games are PPAD-hard,”
SIAM Journal on Computing, vol. 47, no. 5, pp. 1858–1887,
2018.

[Pap94] C. H. Papadimitriou, “On the complexity of the parity argument
and other inefficient proofs of existence,” Journal of Computer
and System Sciences, vol. 48, no. 3, pp. 498–532, 1994.

[PP21] C. Papadimitriou and B. Peng, “Public goods games in directed
networks,” in Proceedings of the 22nd ACM Conference on
Economics and Computation (EC), 2021, pp. 745–762.

[Rub16] A. Rubinstein, “Settling the complexity of computing approx-
imate two-player Nash equilibria,” in Proceedings of the 57th
IEEE Symposium on Foundations of Computer Science (FOCS),
2016, pp. 258–265.

[Rub18] ——, “Inapproximability of Nash equilibrium,” SIAM Journal
on Computing, vol. 47, no. 3, pp. 917–959, 2018.

[Spe28] E. Sperner, “Neuer Beweis für die Invarianz der Dimensionszahl
und des Gebietes,” Abhandlungen aus dem Mathematischen
Seminar der Universität Hamburg, vol. 6, pp. 265–272, 1928.

[SSB17] S. Schuldenzucker, S. Seuken, and S. Battiston, “Finding clear-
ing payments in financial networks with credit default swaps
is PPAD-complete,” in Proceedings of the 8th Innovations in
Theoretical Computer Science Conference (ITCS), 2017, pp.
32:1–32:20.

[VY11] V. V. Vazirani and M. Yannakakis, “Market equilibrium under
separable, piecewise-linear, concave utilities,” Journal of the
ACM, vol. 58, no. 3, pp. 10:1–10:25, 2011.

	Introduction
	Proof Overview for Our Main Result

	The Pure-Circuit Problem
	Alternative Gates and Further Restrictions

	PPAD-completeness of Pure-Circuit
	The StrongSperner Problem
	Reduction from StrongSperner to Pure-Circuit

	Applications
	Generalized Circuit

	Appendix A: On the Definition of Pure-Circuit
	References

