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Abstract

To address the uncertainty of renewable energy in unit commitment, an ad-
justable uncertainty set of renewable energy is introduced and unit commit-
ment is scheduled to guarantee the safe operation of the power system in
this set. However, the operational risk arises when renewable energy falls
out of the adjustable uncertainty set and this risk should be evaluated to
determine the adjustable uncertainty set. In this paper, a distributional-
ly robust optimization approach is proposed to calculate the risks of load
shedding and renewable energy curtailment at the lower and upper bounds
of the adjustable uncertainty set. After the evaluation of the operational
risk, the day-ahead unit commitment with the adjustable uncertainty set is
determined together with the demand response reserve in the reduction of
the operational risk. In real time, the dynamic demand response is proposed
to further reduce the operational risk. The proposed distributionally robust
method with the dynamic demand response for dealing with the uncertainty
of renewable energy is verified on the IEEE 6-bus, 30-bus, and 118-bus sys-
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tems. Simulation results show that the proposed method reduces the cost of
the unit commitment and the operational risk.

Keywords: Adjustable uncertainty set, demand response, unit
commitment, renewable energy, dynamic scheduling

Nomenclature

Indices:

i Index of each subinterval.

j Index of piece cost coefficient.

t Index of each time slot.

b Index of each bus.

g Index of each unit.

l Index of each transmission line.

r Index of renewable energy (RE).

d Index of demand response (DR).

Parameters:

T Set of all time slots.

B Set of all buses.

Gb Set of all units at bus b.

L Set of all lines.

R Set of all REs.

D Set of all DRs.

pi Probability of RE in the ith subinterval.
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Fls(·)/Frc(·) Function of operational risk of load shedding/RE curtail-
ment.

F b
g (·) Function of generation cost of the unit g at bus b.

f jb
g,0/f

jb
g,1 jth piece cost coefficients of the unit g at bus b.

P ls
t /Prc

t Ambiguity set of probability distribution (PD) of RE for
calculating the risk of load shedding/RE curtailment.

wb
t,min/wb

t,max Lower/upper bound of power output of RE at bus b in time
slot t.

wb
t/ŵb

t Actual/forecast power output of RE at bus b in time slot t.

Cls/Crc Penalty price for load shedding/RE curtailment.

Cld/Cli Incentive price for load decrease/increase in DR.

T Unit commitment (UC) scheduling horizon.

LR
d

max/LR
d
max Maximum load increase/decrease of DR at bus d.

βd Capacity of load change of DR at bus d.

SU b
g/SDb

g Start-up/shut-down cost of the unit g at bus b.

MU b
g/MDb

g Minimum on-time/off-time of the unit g at bus b.

ICb
g Minimum time of the unit g at bus b in the initial on/off

state.

URb
g/DRb

g Ramp-up/ramp-down rate limit of the unit g at bus b.

UR
b

g/DR
b

g Start-up/shut-down rate limit of the unit g at bus b.

Lb
g/U b

g Lower/upper bound of the power output of the unit g at
bus b.

ε̂bt Forecast load at bus b in time slot t.

Cl Capacity of transmission line l.
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Kb
l Load shift factor from bus b to line l.

Kr
l Load shift factor from RE at bus r to line l.

Kd
l Load shift factor from DR at bus d to line l.

δ
b

t/δ
b
t Unit deviation of RE at bus b in time slot t.

N Division number of the adjustable uncertainty set of RE.

Decision variables:

wb
t/wb

t Upper/lower bound of adjustable uncertainty set at bus b
in time slot t.

M
b

t/M
b
t Deviation number of upper/lower bound of adjustable un-

certainty set at bus b in time slot t.

LR
d

t/LR
d
t Load increase/decrease of DR at bus d in time slot t.

LRd
t Actual usage of DR reserve at bus d in time slot t.

REr
t Power generation change of RE at bus r caused by the par-

ticipation of DR reserve in time slot t.

Riskb
t Operational risk at bus b in time slot t.

ub
gt Binary decision variable: "1" if unit g at bus b is started up

in time slot t; "0" otherwise.

vbgt Binary decision variable: "1" if unit g at bus b is shut down
in time slot t; "0" otherwise.

ybgt Binary decision variable: "1" if unit g at bus b is on in time
slot t; "0" otherwise.

xb
gt Pre-scheduled power output of the unit g at bus b in time

slot t.

abgt Participation factor of the unit g at bus b in time slot t.

λi/α Auxiliary variables.
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vbtn/sbgtn Auxiliary variables.

V b
t/S

b
gt Auxiliary variables.

1. Introduction

In order to reduce the emission of greenhouse gases and achieve a clean
environment, more and more renewable energy (RE) has been integrated
into the power system in recent years [1]. However, the intermittency and
uncertainty of RE bring lots of challenges to the safe and economic operation
of power systems [2]. To meet these challenges, various methods have been
proposed to deal with the uncertainty of RE in power systems [3].

Stochastic optimization approach (SOA) [4] and robust optimization ap-
proach (ROA) [5] are commonly adopted to deal with the uncertainty of RE
in power systems. SOA generates scenarios of RE based on the predefined
probability distribution (PD) of RE, and these scenarios are taken into ac-
count in the energy scheduling of power systems [6]. Different probability
distributions (PDs), such as normal distribution [7], Weibull distribution [8],
and truncated versatile distribution [9], are adopted to describe the uncer-
tainty of RE in SOA. In [10], a two-stage model is proposed to minimize the
expected cost of unit commitment (UC) with the uncertainty of wind power
based on the Weibull distribution. However, it is usually difficult to obtain
the accurate PD of RE in practice [11], and the performance of the SOA will
be affected when the RE deviates from the predefined PD [12]. In comparison
with the SOA, the ROA does not rely on the PD [13]. It uses a determin-
istic uncertainty set, which can be constructed based on historical data in
practice, to describe the uncertainty of RE [14]. The ROA can guarantee the
feasibility of the solution for all realizations in the uncertainty set since it
has taken into account the worst scenario [15]. Jiang et al. [16] minimize the
cost of UC under the worst wind power output scenario within its maximum
uncertainty set. Due to the use of the maximum uncertainty set to describe
the uncertainty of RE and the consideration of the worst-case scenario, the
solution obtained by the ROA is conservative with more economic cost to
guarantee its feasibility in the maximum uncertainty set [17].

To deal with the conservativeness of the ROA, Zhao et al. [18] propose to
combine the SOA and the ROA to schedule the UC. It introduces a weight
between the expected operation cost of the SOA and the worst-case opera-
tion cost of the ROA, and the normal distribution is assumed to describe the
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uncertainty of RE. Besides, a distributionally robust optimization approach
(DROA) which considers both the probabilistic information and the range
of the uncertainty set is proposed [19]. The DROA usually constructs an
ambiguity set to describe the uncertainty and immunizes the energy schedul-
ing strategies of the power system against all PDs in the ambiguity set. In
contrast with the need of an accurate PD in the SOA, the ambiguity set in
the DROA can be constructed by the statistical properties of historical data,
such as mean and variance [20]. In the work of Zheng et al. [21], DROA
constructs a PD set based on the moment information of historical data of
wind power, and the UC cost is minimized under the worst-case PD. Xiong
et al. [22] propose a two-stage optimization model to schedule the UC con-
sidering the wind power uncertainty, and it demonstrates that the DROA is
less conservative than the ROA.

To reduce the conservativeness of ROA while present an interval of RE
in which the safe operation of power system is guaranteed, an adjustable
uncertainty set is introduced to address the uncertainty of RE in UC and
it is a subset of the maximum uncertainty set of RE [23]. Wang et al. [24]
determine the energy scheduling of UC and the adjustable uncertainty set
with the constraints that the safety of the system operation is guaranteed
within this set. However, the approach of adjustable uncertainty set brings
the operational risks of load shedding and RE curtailment when the RE falls
out of the adjustable uncertainty set. This risk should be taken into account
when determining the adjustable uncertainty set [25]. In [26], the adjustable
uncertainty set is optimized to make a trade-off between the reduction of the
conservativeness of ROA and the increase of the operational risk, and it is
proved that the adjustable uncertainty set helps reduce the cost of UC.

While RE is largely integrated into the power system and brings great
challenges to the system, different technologies, such as the energy storage
[27], power to power [28], and demand response (DR) [29], can also be used
to deal with this problem. Pozo et al. [30] propose to install battery storages
as reserve devices for the compensation of the wind power uncertainty in
UC. In our previous work [31], a static DR program and the adjustable
uncertainty set are combined to tackle the uncertainty of RE. The operational
risk corresponding to the adjustable uncertainty set is taken into account and
the DR reserve is scheduled to reduce this operational risk.

In this paper, a UC scheduling with the adjustable uncertainty set and
the dynamic DR program is proposed to reduce the conservativeness of the
ROA and improve the economy of the power system. The uncertainty of RE
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is described by an adjustable uncertainty to reduce the conservativeness of
using the maximum uncertainty set. In comparison with current research
work that the DROA is applied directly in minimization of UC cost [32], a
DROA is proposed to evaluate the operational risk of the adjustable uncer-
tainty set in this paper. Instead of using a static DR program in our previous
paper [31], a dynamic DR program that can fully utilize the capacity of the
DR is proposed to reduce the operational risk of the adjustable uncertainty
set. The day-ahead UC scheduling and the dynamic DR dispatch are for-
mulated as a mixed integer nonlinear programming (MINLP) problem and
the linear programming (LP) problem, respectively. Various algorithms are
proposed to solve the MINLP problem, such as heuristic algorithms [33] in-
cluding genetic algorithm [34], particle swarm optimization algorithm [35],
lightning search algorithm [36] and bacterial foraging optimization algorith-
m [37], and mathematical programming including lagrangian relaxation [38],
column-and-constraint generation method [39] and benders decomposition
[40]. In this paper, auxiliary variables and constraints are introduced to
transform the original MINLP problem into a mixed integer linear program-
ming (MILP) problem. Finally, the MILP problem and the LP problem are
solved by the Gurobi solver [41]. In summary, the major contributions of
this paper are listed below:

1) Based on the historical data of RE, the DROA is proposed to evaluate
the operational risk of the adjustable uncertainty set. The DROA con-
structs an ambiguity set of PDs of RE and calculates the operational
risk under the worst-case PD. Based on the operational risk of a series
of bounds of the adjustable uncertainty set, the operational risk curves
are obtained by the piecewise linearization method.

2) The UC problem with the consideration of the adjustable uncertainty
set and the DR program is formulated to reduce the operation cost
and the operational risk. In this UC problem, the safe operation of
the power system is guaranteed within the adjustable uncertainty set,
and the operational risk caused by the introduction of the adjustable
uncertainty set is evaluated by the operational risk curves.

3) A dynamic scheduling model of the DR reserve is proposed in real-time
operation to reduce the operational risk brought by the introduction of
the adjustable uncertainty set. Specifically, the remaining capacity of
the DR reserve is updated based on the actual usage of the DR reserve
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at each time slot, and the DR reserve is rescheduled for the following
time slots. In this way, the DR reserve can be effectively utilized to
reduce the operational risk.

The rest of this paper is organized as follows. The proposed DROA
for the calculation of the operational risk is presented in Section 2. The
problem of UC with the consideration of the adjustable uncertainty set and
the dynamic DR program is formulated in Section 3. Section 4 gives the
solution methodology. Simulation results are presented in Section 5 and
conclusions are drawn in Section 6.

2. Operational risk based on a distributionally robust approach

In order to address the uncertainty of RE in UC, an adjustable uncer-
tainty set is introduced in this paper. This set is a subset of the maximum
uncertainty set of RE and the safe operation of the power system is guaran-
teed in this adjustable uncertainty set. The constraints for the safe operation
of the power system will be introduced in the next section. As shown in Fig.
1, [wb

t , w
b
t ] denotes the adjustable uncertainty set and [wb

t,min, w
b
t,max] denotes

the maximum uncertainty set of RE. wb
t,min and wb

t,max represent the minimum
and maximum power outputs of RE, respectively. ŵb

t denotes the forecast
value of RE generation with wb

t ≤ ŵb
t ≤ wb

t . Since the adjustable uncer-
tainty set is a subset of the maximum uncertainty set, the operational risks
of load shedding and RE curtailment will appear when RE falls out of the
adjustable uncertainty set, i.e. falls in [wb

t,min, w
b
t ] and [wb

t , w
b
t,max]. In this sec-

tion, a DROA that considers the worst-case PD of RE is proposed to evaluate
the operational risk. Firstly, the ambiguity set of PDs of RE is construct-
ed based on historical data. With the ambiguity set, mathematical models
of the operational risks at the bounds of the adjustable uncertainty set are
formulated. Then, the dualization and linearization of these mathematical
models are introduced to calculate the operational risks at the bounds of the
adjustable uncertainty set.

Adjustable uncertainty set

Maximum uncertainty set

 !,"#$
%

 !,"&'
% !

%
( !
%  !

%

Load shedding RE curtailment

Figure 1: Adjustable uncertainty set

8



2.1. Mathematical formulation of operational risk
As shown in Fig. 2, for a certain lower bound wb

t of the adjustable un-
certainty set [wb

t , w
b
t ], the maximum uncertainty set W =[wb

t,min, w
b
t,max] is

divided into m + 1 subintervals, i.e. W1,W2, . . . ,Wi, . . . ,Wm+1 with W1 ∪
W2 ∪ · · · ∪ Wm = [wb

t,min, w
b
t ] and Wm+1 = [wb

t , w
b
t,max]. Based on historical

data, the ambiguity set of PDs of RE is constructed as

P ls
t =

Pt

EPt(w
b
t ) = ŵb

t

Pt{wb
t ∈ Wi} = pi, i = 1, 2, . . . ,m,m+ 1∑m+1

i=1 pi = 1

 (1)

where pi denotes the probability of RE in the ith subinterval, and the sum
of the probabilities of m+ 1 subintervals is 1.

. . .

. . .2W mW

1p
2p

mp

m+1W

min,
b
tw max,

b
tw

m+1p

Load shedding

1W

b

tw

P
ro

b
ab

il
it

y

RE generation

Figure 2: Probabilistic information of the ambiguity set

Considering the worst-case PD in the ambiguity set, the operational risk
of load shedding at the lower bound of the adjustable uncertainty set is
calculated by

Fls(w
b
t) = max

Pt∈Pls
t

∫
W
Cls(w

b
t − wb

t )
+P(dwb

t ) (2a)
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s.t.

∫
W
IiP(dwb

t ) = pi, i = 1, 2, . . . ,m,m+ 1 (2b)∫
W
wb

tP(dwb
t ) = ŵb

t (2c)

where Cls denotes the penalty price for load shedding. (wb
t−wb

t )+ = max{wb
t−

wb
t , 0}, which means that there is a risk of load shedding when the actual pow-

er output of RE is less than the lower bound of the adjustable uncertainty
set. In equation (2b), Ii = 1 when wb

t ∈ Wi, otherwise Ii = 0. Equation (2c)
indicates that the expected value of RE is equal to the forecast value.

Similarly, based on historical data, the ambiguity set Prc
t for the cal-

culation of RE curtailment is constructed. The maximum uncertainty set
[wb

t,min, w
b
t,max] is divided into m+1 subintervals with W1 ∪W2 ∪ · · · ∪Wm =

[wb
t , w

b
t,max] and Wm+1 = [wb

t,min, w
b
t ]. The operational risk of RE curtailment

at the upper bound of the adjustable uncertainty set is formulated as

Frc(w
b
t) = max

Pt∈Prc
t

∫
W

Crc(w
b
t − wb

t)
+P(dwb

t ) (3a)

s.t.

∫
W
IiP(dwb

t ) = pi, i = 1, 2, . . . ,m,m+ 1 (3b)∫
W
wb

tP(dwb
t ) = ŵb

t (3c)

where Crc denotes the penalty price for RE curtailment. (wb
t − wb

t)
+ =

max{wb
t−wb

t , 0}, which means that there is a risk of RE curtailment when the
actual power output of RE is larger than the upper bound of the adjustable
uncertainty set.

2.2. Dualization and linearization of operational risk
Since all the distributions in the ambiguity set P ls

t are considered in
(2), it is an infinite dimensional linear optimization problem that cannot
be solved directly by existing solvers. By introducing dual variables λi, i =
1, 2, . . . ,m,m+1 and α, the optimization problem (2) is converted to a solv-
able finite dimensional linear optimization problem as follows:

Fls(w
b
t) = min

m+1∑
i=1

λipi + αŵb
t (4a)
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s.t.− Cls(w
b
t − wb

t )
+ +

m+1∑
i=1

λiIi + αwb
t ≥ 0, ∀wb

t ∈ W (4b)

Enumerating the constraints for each sub-interval Wi ⊆ W, i = 1, 2, . . . ,m+
1, the optimization problem (4) is further transformed into

Fls(w
b
t) = min

m+1∑
i=1

λipi + αŵb
t (5a)

s.t.− Cls(w
b
t − wb

t ) + λi + αwb
t ≥ 0, ∀wb

t ∈ Wi, i = 1, 2, ...,m (5b)
λi + αwb

t ≥ 0,∀wb
t ∈ Wi, i = m+ 1 (5c)

By substituting wb
t with the lower and upper bounds of the sub-interval

Wi ⊆ W, i = 1, 2, . . . ,m + 1, the optimization problem (5) can be solved
directly by linear programming (LP). With the calculation of a series of cer-
tain lower bounds of adjustable uncertainty set, the operational risk curve of
load shedding can be plotted and approximated by the piecewise linearization
method [26].

Same as the dualization of load shedding risk, the calculation of RE cur-
tailment risk is presented as follows:

Frc(w
b
t) = min

m+1∑
i=1

λipi + αŵb
t (6a)

s.t.− Crc(w
b
t − wb

t) + λi + αwb
t ≥ 0, ∀wb

t ∈ Wi, i = 1, 2, ...,m (6b)
λi + αwb

t ≥ 0,∀wb
t ∈ Wi, i = m+ 1 (6c)

After calculating the RE curtailment risks at a series of the upper bounds
of the adjustable uncertainty set, the RE curtailment risk curve is obtained
by the piecewise linearization method.

Notably, although the proposed method considers the worst-case PD in
the ambiguity set, it does not require the knowledge of the exact worst-case
PD in the evaluation of the operational risk with the dualization.

3. Unit commitment with adjustable uncertainty set and demand
response reserve

In this paper, an adjustable uncertainty set is introduced to address the
uncertainty of RE in UC. Since the adjustable uncertainty set brings the risk
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of load shedding or RE curtailment when the actual RE generation falls out
of the adjustable uncertainty set, the DR reserve is introduced to reduce the
operational risk. In this section, the problem of UC with the consideration
of adjustable uncertainty set and DR reserve is formulated.

Maximum uncertainty set

 !"

#
Load shedding RE curtailmentAdjustable uncertainty set !"

#

$",%&'
(

$",%)*
($"

(
+$"
( $"

(
$"

( -  !"
#

$"
(
.  !"

#

Figure 3: Adjustable uncertainty set with DR reserve

3.1. Participation of demand response
The amount of DR reserve of load increase and load decrease is limited

at each time slot and the entire time horizon. The constraints are presented
as

0 ≤ LR
d

t ≤ LR
d

max (7a)

0 ≤ LRd
t ≤ LRd

max (7b)∑
t∈T

LR
d

t ≤ βd (7c)∑
t∈T

LRd
t ≤ βd (7d)

where inequalities (7a) and (7b) indicate the limits of DR reserve of load
increase LR

d

t and load decrease LRd
t , respectively. Inequalities (7c) and (7d)

represent the capacity limits of DR reserve during the whole horizon [42].
As shown in Fig. 1, the operational risk of the adjustable uncertainty set

without considering the DR reserve is defined as

Riskb
t = max{Fls(w

b
t), Frc(w

b
t)} (8)

Comparing Fig. 3 with Fig. 1, DR reserve can decrease the load to
reduce the risk of load shedding and increase the load to reduce the risk of
RE curtailment. The operational risk of the adjustable uncertainty set with
the consideration of DR reserve is presented as

Riskb
t = max{Fls(w

b
t − LRd

t ), Frc(w
b
t + LR

d

t )} (9)
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Users will be rewarded for participating in the DR, and this reward is
calculated by

DRcost = CldLR
d
t + CliLR

d

t (10)

where Cld and Cli are the incentive prices for load decrease and load increase
in DR reserve, respectively.

3.2. Problem formulation of unit commitment considering adjustable uncer-
tainty set and demand response reserve

In this subsection, the mathematical model of UC considering adjustable
uncertainty set and DR reserve is presented.

3.2.1. Constraints
1) States of units
The constraints for the states of units are presented as: ∀g ∈ Gb, ∀b ∈

B,∀t ∈ T

− ybg(t−1) + ybgt − ybgk ≤ 0,∀k ∈ [t+ 1,min{t+MU b
g − 1, T}] (11a)

ybg(t−1) − ybgt + ybgk ≤ 1, ∀k ∈ [t+ 1,min{t+MDb
g − 1, T}] (11b)

ybgt = ybg1, t ∈ [1, ICb
g] (11c)

− ybg(t−1) + ybgt − ub
gt ≤ 0 (11d)

ybg(t−1) − ybgt − vbgt ≤ 0 (11e)

ub
gt, v

b
gt, y

b
gt ∈ {0, 1} (11f)

where equations (11a) and (11b) indicate that the on/off states of the unit
g are constrained by the minimum on-time MU b

g and the minimum off-time
MDb

g. Equation (11c) indicates the minimum time for which units should
stay in the initial on/off states due to the minimum up/down-time of units
confined in the previous scheduling horizon. ICb

g denotes the minimum time
of the unit g at bus b in the initial on/off states. Equations (11d) and
(11e) indicate the start-up and shut-down operations of units, respectively.
Equation (11f) indicates that ub

gt, vbgt and ybgt are binary decision variables.
Binary decision variable ub

gt : "1" if unit g at bus b is started up in time slot
t; "0" otherwise. Binary decision variable vbgt : "1" if unit g at bus b is shut
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down in time slot t; "0" otherwise. Binary decision variable ybgt: "1" if unit
g at bus b is on in time slot t; "0" otherwise.

2) Power balance
Due to the advantage of computational tractability, the affinely adjustable

scheme of UC is adopted in this paper [43]. In this scheme, the actual power
outputs of the units are the affine functions of the forecast error of RE:
∀g ∈ Gb, ∀b ∈ B,∀t ∈ T ,∀wb

t ∈ [wb
t , w

b
t ]

pbgt = xb
gt + abgt

∑
b∈B

(ŵb
t − wb

t ) (12)

where xb
gt denotes the pre-scheduled power output of the unit g at bus b in

time slot t. abgt denotes the participation factor of the unit g at bus b in time
slot t. ŵb

t denotes the forecast value of RE and wb
t denotes the actual power

output of RE. Under the affinely adjustable scheme of UC, the units are
assumed to regulate their power outputs in a proportion abgt of the forecast
error of RE within the adjustable uncertainty set in real-time operation to
guarantee the power balance.

To ensure the power balance, the sum of the generator power outputs
xb
gt and the forecast RE generation ŵb

t is equal to the forecast load ε̂bt : ∀g ∈
Gb,∀b ∈ B,∀t ∈ T ∑

b∈B

∑
g∈Gb

(xb
gt − abgt

∑
b∈B

(ε̂bt − ŵb
t )) = 0 (13)

0 ≤ abgt ≤ ybgt (14)∑
b∈B

∑
g∈Gb

abgt = 1 (15)

3) Safe operation of power system
As shown in constraints (16a)-(16f), the safe operation of the power sys-

tem is guaranteed in the adjustable uncertainty set [wb
t , w

b
t ]: ∀g ∈ Gb,∀b ∈

B,∀l ∈ L, ∀t ∈ T ,∀wb
t ∈ [wb

t , w
b
t ], ∀LRd

t ∈ [−LRd
t , LR

d

t ]

pbgt − pbg(t−1) ≤ (2− ybg(t−1) − ybgt)UR
b

g + (1 + ybg(t−1) − ybgt)URb
g (16a)

pbg(t−1) − pbgt ≤ (2− ybg(t−1) − ybgt)DR
b

g + (1− ybg(t−1) + ybgt)DRb
g (16b)

pbgt − Lb
gy

b
gt ≥ 0 (16c)

14



pbgt − U b
gy

b
gt ≤ 0 (16d)∑

b∈B

Kb
l (
∑
g∈Gb

pbgt − (ε̂bt − wb
t )) +

∑
r∈R

REr
tK

r
l −

∑
d∈D

LRd
tK

d
l + Cl ≥ 0 (16e)∑

b∈B

Kb
l (
∑
g∈Gb

pbgt − (ε̂bt − wb
t )) +

∑
r∈R

REr
tK

r
l −

∑
d∈D

LRd
tK

d
l − Cl ≤ 0 (16f)

where equations (16a) and (16b) are the constraints for the ramp-up and
ramp-down rates of the units. UR

b

g and DR
b

g denote the start-up and shut-
down rate limits of the unit g at bus b, respectively. URb

g and DRb
g denote

the ramp-up and ramp-down rate limits of the unit g at bus b, respectively.
Equations (16c) and (16d) are the constraints for the power outputs of the
units. Lb

g and U b
g denote the lower and upper limits of the power output of

the unit g at bus b, respectively. With the consideration of the DR reserve,
the limits of the transmission line capacity are described in equations (16e)
and (16f). Kb

l represents the power flow transfer factor at bus b to line l. Kr
l

represents the power flow transfer factor of the power generation change of
RE at bus r to line l. Kd

l represents the power flow transfer factor of DR
reserve at bus d to line l. Since REr

t is the power generation change of RE
caused by the DR LRd

t , REr
t is equal to LRd

t .

3.2.2. Complete model of unit commitment
To minimize the total cost of UC which includes the operation costs of

the units, the operational risks of load shedding and RE curtailment, and the
rewards for users to participate in DR [44], the UC problem is formulated as

min
u,v,y,x,a,w,r

{∑
t∈T

∑
b∈B

∑
g∈Gb

SU b
gu

b
gt + SDb

gv
b
gt + F b

g (y
b
gt, x

b
gt)︸ ︷︷ ︸

Operation costs of the units

+ Riskb
t︸ ︷︷ ︸

Operational risk

+CldLR
d
t + CliLR

d

t︸ ︷︷ ︸
Rewards for users

}
(17a)

s.t. ∀g ∈ Gb,∀b ∈ B,∀l ∈ L,∀t ∈ T ,∀wb
t ∈ [wb

t , w
b
t ], ∀LRd

t ∈ [−LRd
t , LR

d

t ]

(7a)− (7d), (9), (11a)− (16f) (17b)

where u, v, and y denote the binary decision variables of start-up, shut-down,
and on/off states of units, respectively. x, a denote the generation decisions
and participation factors of units, respectively. w denotes the vector of
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lower and upper bounds of the adjustable uncertainty set. r denotes the
day-ahead scheduling of DR reserve. SU b

g and SDb
g denote the start-up and

shut-down costs of the unit g at bus b, respectively. The generation cost
function F b

g (y
b
gt, x

b
gt) is expressed as a J-piece piecewise linear function [45],

which satisfies F b
g (y

b
gt, x

b
gt) ≥ f jb

g,0y
b
gt + f jb

g,1x
b
gt, j = 1, 2, . . . , J . f jb

g,0 and f jb
g,1

denote the jth piece cost coefficients of the unit g at bus b.

3.3. Dynamic scheduling of demand response reserve
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Figure 4: Real-time usage of DR reserve

Since day-ahead DR reserve may not be fully used in real-time operation,
the remaining DR reserve can be rescheduled in the following time slots to
further reduce the operational risk.

According to the real-time power generation of RE, the actual usage of
DR reserve is presented as

LRd
t =



−LRd
t wb

t,min ≤ wb
t ≤ wb

t − LRd
t

wb
t − wb

t wb
t − LRd

t ≤ wb
t ≤ wb

t

0 wb
t ≤ wb

t ≤ wb
t

wb
t − wb

t wb
t ≤ wb

t ≤ wb
t + LR

d

t

LR
d

t wb
t + LR

d

t ≤ wb
t ≤ wb

t,max

(18)

As shown in Fig. 4, in real-time operation, when the actual power output
of the RE is within the range of the adjustable uncertainty set [wb

t , w
b
t ], the

DR does not participate in power adjustment, i.e. LRd
t = 0; When the

actual power output of the RE is within the set of [wb
t − LRd

t , w
b
t ], the DR

will participate in power adjustment with a value of wb
t − wb

t . In this case,
LRd

t ≤ 0, which indicates the load is decreased; When the actual power
output of RE is within the set of [wb

t , w
b
t + LR

d

t ], the DR will participate in
power adjustment with a value of wb

t − wb
t . In this case, LRd

t ≥ 0, which
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indicates the load is increased; When the actual power output of RE is less
than wb

t − LRd
t or greater than wb

t + LR
d

t , the power adjustment is equal to
−LRd

t or LR
d

t respectively, which are the maximum adjustable amount of
DR at time t. Fig. 4 shows the situation when wb

t is within [wb
t − LRd

t , w
b
t ].

Since the power adjustment does not necessarily use all planned DR re-
serve in real-time operation, the dynamic scheduling of DR reserve is pro-
posed in this paper to fully utilize the capacity of DR. The dynamic schedul-
ing of DR reserve is formulated as follows:

min
LRd

t ,LR
d
t

T∑
t=τ

(Riskb
t + CldLR

d
t + CliLR

d

t ) (19a)

s.t. ∀g ∈ Gb,∀b ∈ B,∀l ∈ L, t = τ, . . . , T

T∑
t=τ

LR
d

t ≤ βd −
τ−1∑
t=1

LRd
t (19b)

T∑
t=τ

LRd
t ≤ βd +

τ−1∑
t=1

LRd
t (19c)

pbgt = xb
gt + atgt

∑
b∈B

(ŵb
t − wb

t ) (19d)

(7a)− (7b), (9), (16e)− (16f) (19e)

Constraints (19b) and (19c) indicate the capacity limits of the DR reserve,
which are updated according to the actual usage of the DR reserve before the
time slot τ . Note that the pre-scheduled power generation xb

gt, participate
factor abgt, and the lower and upper bounds of the adjustable uncertainty set,
i.e. wb

t and wb
t , have been solved in the day-ahead scheduling of UC.

The proposed method can provide guidance for system operators to sched-
ule the power system in reducing costs and improving the economy of the
power system. In practical implementation, the day-ahead UC scheduling
determines the on/off state of the generator, the power output of the gen-
erator, the participation factor of the generator, the power dispatch of the
DR reserve, and the bounds of the adjustable uncertainty set. In real-time
operation, the power output of the generator will be adjusted based on its
participation factor to maintain the power balance in the presence of RE
forecast error, and the DR reserve is re-dispatched in each time slot to fully
utilize its capacity.
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4. Solution methodology

In this section, the solution methodology is introduced to transfer the
UC model (17) into a solvable MILP problem, and the complete process and
flowchart of the proposed method are given.

4.1. Transformation of constraints with uncertainties
In this subsection, a detailed process for linearizing the nonlinear con-

straint with uncertainty is presented. It can be seen from equation (12) that
there are nonlinear terms of continuous variable abgt and uncertainty variable
wb

t ∈ [wb
t , w

b
t ]. When equation (12) is substituted into constraints (16a)-(16f),

there will be nonlinear terms in constraints (16a)-(16f), which makes (17) an
MINLP problem that cannot be solved directly by existing solvers. The lin-
earization method used in Ref. [31] is adopted in this paper to convert the
MINLP problem to a solvable MILP problem by introducing auxiliary vari-
ables and linear constraints. The linearization of constraint (16e) is taken as
an example to show the linearization process of constraints (16a)-(16f).

Firstly, the integer variables are introduced to discrete the continuous
variables wb

t/w
b
t , which are presented as

wb
t = ŵb

t −M b
tδ

b
t (20a)

wb
t = ŵb

t +M
b

tδ
b

t (20b)

δbt = (ŵb
t − wb

t,min)/N (20c)

δ
b

t = (wb
t,max − ŵb

t )/N (20d)

where equations (20c) and (20d) indicate that [wb
t,min, ŵ

b
t ] and [ŵb

t , w
b
t,max] are

equally divided into N subintervals, respectively. Equations (20a) and (20b)
indicate that the bounds of the adjustable uncertainty set can be expressed
as positive and negative deviations from the forecast value of RE. M b

t and M
b

t

are integer decision variables with a range of [0, N ]. Therefore, the product
of two continuous variables (i.e. abgt and wb

t/wb
t) is transformed into the

product of continuous variable and integer variable (i.e. abgt and M b
t/M

b

t).
Equation (16e) is satisfied for any ∀wb

t ∈ [wb
t , w

b
t ],∀LRd

t ∈ [−LRd
t , LR

d

t ].
Since constraint (16e) is linear, the constraint will be satisfied under all
possible situations if they hold at the bounds, i.e. wb

t = wb
t/w

b
t and LRd

t =

−LRd
t /LR

d

t . The situation when wb
t = wb

t and LRd
t = −LRd

t is illustrated
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as an example to show the process of linearization. Substituting (12) and
(20a) in (16e) and considering the case of wb

t = wb
t and LRd

t = −LRd
t , the

expression (21) is obtained.∑
b∈B

Kb
l (
∑
g∈Gb

(xb
gt + abgt

∑
b∈B

M b
tδ

b
t)− ε̂bt + ŵb

t −M b
tδ

b
t)

+
∑
r∈R

REr
tK

r
l +

∑
d∈D

LRd
tK

d
l + Cl ≥ 0

(21)

Secondly, the integer variable M b
t is replaced by the sum of a N -dimensional

binary vector V b
t = (vbt1, . . . , v

b
tn, . . . , v

b
tN)

T , and the constraint (21) is trans-
formed into∑

b∈B

Kb
l (
∑
g∈Gb

(xb
gt + abgt

∑
b∈B

(
N∑

n=1

vbtn)δ
b
t)− ε̂bt + ŵb

t − (
N∑

n=1

vbtn)δ
b
t)

+
∑
r∈R

REr
tK

r
l +

∑
d∈D

LRd
tK

d
l + Cl ≥ 0

(22)

Thirdly, auxiliary variables Sb
gt = (sbgt1, . . . , s

b
gtn, . . . , s

b
gtN)

T and linear
constraints (23b)-(23e) are introduced to replace the product of binary and
continuous variables (i.e. abgt and

∑N
n=1 v

b
tn) [46], and the constraint (22) is

transformed into

∑
b∈B

Kb
l (
∑
g∈Gb

(xb
gt +

∑
b∈B

(
N∑

n=1

sbgtn)δ
b
t)− ε̂bt + ŵb

t − (
N∑

n=1

vbtn)δ
b
t)

+
∑
r∈R

REr
tK

r
l +

∑
d∈D

LRd
tK

d
l + Cl ≥ 0 (23a)

sbgtn ≤ vbtn (23b)

sbgtn ≤ abgt (23c)

sbgtn ≥ abgt − (1− vbtn) (23d)

sbgt ≥ 0 (23e)

After transformation, it can be seen that there is no nonlinear term in
(23). Linearizing the constraints (16a)-(16d) and (16f) in the same way, the
MINLP problem (17) is transformed into a deterministic MILP problem that
can be solved directly by existing solvers.
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Develop the MINLP model for the day-ahead UC scheduling 

considering the adjustable uncertainty set and the DR reserve 

(Eq. (17))

Introduce auxiliary variables and constraints into the MINLP 

model to reformulate the UC scheduling problem as an MILP 

model

Input the historical data of RE

Construct the ambiguity set of PDs of 

RE (Eq. (1))

Develop initial models to evaluate the 

operational risk of the adjustable 

uncertainty set based on the DROA  

(Eqs. (2)-(3))

Formulate the operational risk curves 

of the adjustable uncertainty set using 

the piecewise linearization method

Operational risk curves

Calculate the operational risks of a 

series of bounds of the adjustable 

uncertainty set

Dualize the initial operational risk 

evaluation models into LP models

(Eqs. (4)-(6))

Output the day-ahead UC scheduling strategy

Day-ahead UC scheduling

Develop the LP model for the real-time dynamic scheduling 

of the DR reserve in time slot t  

t < T 

Output the real-time strategy of the DR reserve in time slot tt=t+1

Real-time DR reserve scheduling

Yes

No

END

START

Figure 5: The flowchart of the optimization process
4.2. The complete process of the proposed method

The complete process of the proposed method including the evaluation of
the operational risk of the adjustable uncertainty set is summarized in Fig.
5. Firstly, the operational risk curves of the adjustable uncertainty set are
calculated by the proposed DROA based on the historical data. Secondly, the
day-ahead UC scheduling model is formulated as an MINLP problem, and
auxiliary variables and constraints are introduced to transform the original
MINLP problem into a solvable MILP problem. Thirdly, the dynamic DR
program is formulated as a solvable LP problem.

5. Simulation results

Three case studies including the IEEE 6-bus, 30-bus, and 118-bus systems
are performed to verify the effectiveness of the proposed approach. It is noted
that these systems are standard test systems for operation of power system.
All the simulations are programmed in MATLAB with YALMIP [47] as the
modelling tool and Gurobi as the solver running on a Win 7 PC with a
3.4 GHz CPU and 16 GB RAM. The MILP problem and LP problems are
solved in the Gurobi solver by the branch-and-cut algorithm [48] and simplex
algorithm [49], respectively.
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Figure 6: Diagram of 6-bus test system

5.1. Case study of a 6-bus system
Firstly, the system description of the 6-bus system is presented. Then the

operational risk curves of the adjustable uncertainty are shown to verify the
superiority of the proposed DROA-based operational risk evaluation method.
Based on the operational risk curves, simulation results of the proposed UC
with the consideration of the adjustable uncertainty set are presented. The
comparison between the proposed method and other methods is shown to
demonstrate the effectiveness of the proposed method. Finally, the sensibility
of the capacity of the DR reserve is presented to investigate the influence of
the DR reserve capacity on the proposed method.
5.1.1. System description

The diagram of the 6-bus test system is shown in Fig. 6. There is a wind
farm at bus 4 with a capacity of 40MW, and the load at bus 4 participates
in DR. Detailed network data of the 6-bus system refers to [50, 51]. The
percentage profiles of the load and the wind power output are shown in Fig.
7. The load is equal to the multiplication of the percentage and the load data
given in [51], and the wind power output is equal to the multiplication of the
percentage and the wind farm capacity. Incentive prices for DR reserve of
load decrease and load increase are both $1.1/MWh [52]. Based on Weibull
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distribution, historical data of wind power is generated, and the ambiguity
sets P ls

t and Prc
t are constructed according to the generated data. It should

be noted that the Weibull distribution is only used to generate the historical
data and the proposed method does not require the knowledge of the PD of
wind power. The penalty prices for load shedding and wind curtailment are
$500/MWh and $50/MWh [43], respectively.
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Figure 7: Data of load and wind power
5.1.2. Comparison of operational risk curves

Two different evaluation methods of operational risk are investigated in
this paper, namely the worst risk approach (WRA) in [31] and the proposed
DROA. In WRA, the operational risk is calculated by the maximum deviation
between the adjustable uncertainty set and the maximum uncertainty set, i.e.
Riskb

t = max{Cls(w
b
t − wb

t,min), Crc(w
b
t,max − wb

t)}. Two situations of DROA
with less and more probabilistic information named DROA1 and DROA2
are considered. In DROA1 and DROA2, the operational risks are calculated
by (2) and (3). The difference between DROA1 and DROA2 is that the
probabilistic information of the ambiguity set in DROA1 is more than that
in DROA2. For the load shedding risk, as shown in Fig. 2, the ambiguity set
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of DROA1 is constructed by the probabilistic information of intervals Wi, i =
1, 2, . . . ,m and [wb

t , w
b
max] while the ambiguity set of DROA2 is constructed by

the probabilistic information of only two intervals [wb
min,t, w

b
t ] and [wb

t , w
b
max].

So is the case for the RE curtailment risk.
The operational risk curves of the two methods in the first time slot are

presented in Fig. 8. The operational risks of load shedding and RE curtail-
ment in WRA are larger than that in DROA1 and DROA2. Moreover, the
DROA1 obtains smaller operational risks of load shedding and RE curtail-
ment in comparison with DROA2. It is because more probabilistic informa-
tion of RE is utilized in DROA1, and its conservativeness of the operational
risk evaluation is reduced. In conclusion, the proposed DROA1 obtains the
least conservativeness of the operational risk compared with other methods.
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Figure 8: Operational risk curves with different methods

5.1.3. Simulation results of the proposed method
It is assumed that LR4

max = LR
4

max = 3MW and β4 = 18MWh in the
6-bus system [31]. The simulation results of the 6-bus system are shown in
Figs. 9-13. Fig. 9 shows the on/off states of the generators. In Fig. 9, the
yellow color indicates that the generator is on while the green color indicates
that the generator is off. Fig. 10 and Fig. 11 show the day-ahead power
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outputs and the participation factors of the generators, respectively. In real-
time operation, the generators will adjust their power outputs according to
the participation factors shown in Fig. 11 to ensure the power balance under
the wind power uncertainty. Fig. 12 shows the day-ahead scheduling of DR
reserve. Fig. 13 shows the adjustable uncertainty set of the wind farm at
bus 4. The lower and upper bounds of the maximum uncertainty set are
obtained from historical data.
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Figure 9: On/off states of the generators
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Figure 10: Power outputs of the generators
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Figure 11: Participation factors of the generators
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Figure 12: Day-ahead scheduling of DR reserve

To verify the effectiveness of the dynamic scheduling of DR reserve, a
real-time power output of RE shown in Fig. 7 is assumed. Simulation results
of the dynamic scheduling of DR reserve and actual usage of DR reserve in
a day are shown in Fig. 14.
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Figure 13: Adjustable uncertainty set of wind farm

It can be seen from Fig. 14(b) and Fig. 12 that the actual usage of the
DR reserve is less than the pre-scheduled amount in day-ahead scheduling.
The remaining capacity of the DR reserve is rescheduled in the following time
slots. Comparing Fig. 14(a) with Fig. 12, the DR reserve of load decrease
from t = 12 to t = 15 and t = 22 is increased from 0 MW, 0 MW, 2.83
MW, 1.39 MW, and 1.83 MW in day-ahead scheduling to 0.11 MW, 0.39
MW, 3 MW, 2.78 MW, and 3 MW in dynamic scheduling. For DR reserve of
load increase in dynamic scheduling, its value at time slot t = 22 is also in-
creased from 0 MW to 1.65 MW. With the dynamic scheduling of DR reserve,
the total operational risk of the power system is decreased from $243.03 in
day-ahead scheduling to $227.83 in dynamic scheduling. In conclusion, the
dynamic scheduling of DR reserve helps reduce the operational risk of the
power system.

5.1.4. The comparison between the proposed method and other methods
The proposed method is compared with other methods to test its effec-

tiveness, and the description of these methods is shown in Table 1. Based
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Figure 14: (a) Dynamic scheduling of DR reserve (b) Actual usage of DR
reserve
on the operational risk curves shown in Fig. 8, M-DROA1 is the proposed
method with the operational risk curve of DROA1, and M-WRA adopts the
operational risk curve of WRA. M-ROA is the benchmark case, which is
based on the traditional ROA. Since M-ROA considers the maximum uncer-
tainty set of RE in UC scheduling, there is no operational risk. Simulation
results of the three methods are shown in Table 2. The objective function
value of the M-DROA1 is the smallest while the M-ROA is the largest. Since
M-ROA is based on ROA which requires all constraints to be satisfied within
the maximum uncertainty set of RE, it is the most conservative method in
comparison with other methods. Since M-WRA considers the maximum op-
erational risk of the bounds of the adjustable uncertainty set, its total cost
is the second largest.

Table 1: Description of three methods
Method Operational risk curve

M-DROA1 DROA1
M-WRA WRA
M-ROA N/A
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Table 2: Comparison among three methods on the 6-bus system
Method Objective value (105 $)

M-DROA1 1.3833
M-WRA 1.3945
M-ROA 1.4093

5.1.5. Sensibility of the capacity of demand response reserve
The simulation results of different capacities of DR reserve in M-DROA1

are shown in Fig. 15. It can be observed that the total cost of the power
system decreases with the increase of DR reserve capacity. When there is no
DR reserve, i.e. LR4

max = LR4
max = β4 = 0, as shown in Table 3, the total cost

of the power system is $1.3883×105, while the total cost is $1.3833×105 when
the capacity of DR reserve is LR4

max = LR
4

max = 3MW and β4 = 18MWh. It
demonstrates that DR reserve plays an important role in reducing the total
cost.
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Figure 15: Sensibility of the capacity of DR reserve
Table 3: Comparison of objective values between situations with and without
DR reserve on 6-bus system

Objective value With DR reserve Without DR reserve
6-bus system (105 $) 1.3833 1.3883
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5.2. Case studies of 30-bus and 118-bus systems
The proposed method is tested on the 30-bus and 118-bus systems to fur-

ther verify its effectiveness. The details of the test systems refer to [51]. It is
assumed that LR7

max = LR
7

max = 3.5MW and β7 = 10MWh for 30-bus system
[31]. For 118-bus system, LR36

max = LR
36

max = LR77
max = LR

77

max = 5MW and
β36 = β77 = 20MWh. The comparison of the three methods is shown in Table
4, and the UC solution of M-DROA1 is shown in Ref. [51]. By introduc-
ing the adjustable uncertainty set and considering probabilistic information
when evaluating operational risks, the proposed M-DROA1 reduces the total
cost of UC and operational risk compared with other methods.

Table 4: Comparison of objective values among different methods on 30-bus
and 118-bus systems

Method 30-bus system (105 $) 118-bus system (106 $)
M-DROA1 1.3849 1.4042
M-WRA 1.3925 1.4054
M-ROA 1.4055 1.4067

The simulation results of the 30-bus and 118-bus systems obtained by M-
DROA1 with and without considering the DR reserve are shown in Table 5.
It can be observed from the Table 5 that the total cost of the power system
is effectively reduced by the participation of the DR reserve.

Table 5: Comparison of objective values between situations with and without
DR reserve on 30-bus and 118-bus systems

Objective value With DR reserve Without DR reserve
30-bus system (105 $) 1.3849 1.3870
118-bus system (106 $) 1.4042 1.4052

The simulation results of the day-ahead scheduling of DR reserve, dynam-
ic scheduling of DR reserve, and actual usage of DR reserve for the 30-bus
and 118-bus systems are shown in Fig. 16 and Fig. 17, respectively. It can
be seen from Fig. 16 and Fig. 17 that the dynamic DR reserve is rescheduled
in real-time operation.

For the 30-bus system, it can be seen from Fig. 16(c) that the actual
usage of the DR reserve in real-time operation is less than their pre-scheduled
amount in day-ahead scheduling. Comparing Fig. 16(a) and Fig. 16(b), the
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DR reserve of load decrease at t = 11, t = 16 and t = 22 is increased from
0 MW, 0 MW and 2.38 MW in day-ahead scheduling to 0.06 MW, 0.11
MW and 2.91 MW in dynamic scheduling. Besides, the DR reserve of load
increase at t = 16 and t = 22 is increased from 1.77 MW and 0 MW in day-
ahead scheduling to 1.97 MW and 0.77 MW in dynamic scheduling. Because
of the introduction of the dynamic DR, the operational risk of the 30-bus
system is reduced from $65.17 in day-ahead scheduling to $62.17 in dynamic
scheduling.
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Figure 16: (a) Day-ahead scheduling of DR reserve (b) Dynamic scheduling
of DR reserve (c) Actual usage of DR reserve

For the 118-bus system, it can be seen from Fig. 17(c1) and Fig. 17(c2)
that the actual usage of the DR reserve 1 and DR reserve 2 in real-time
operation is less than their pre-scheduled amount in day-ahead scheduling.
Comparing Fig. 17(a1) and Fig. 17(b1), the DR reserve 1 of load decrease
from t = 13 to t = 16, t = 18, and t = 23 is increased from 3.43 MW, 0 MW,
0.37 MW, 3.38 MW, 4.38 MW and 0 MW in day-ahead scheduling to 5 MW,
1.17 MW ,1.88 MW, 3.57 MW, 5 MW and 0.09 MW in dynamic scheduling.
The DR reserve 1 of load increase at t = 16 is increased from 4.72 MW in
day-ahead scheduling to 5 MW in dynamic scheduling. Similarly, comparing

30



Fig. 17(a2) and Fig. 17(b2), the DR reserve 2 of load decrease from t = 14 to
t = 16, t = 18, and t = 23 is increased from 0 MW, 4.93 MW, 3.38 MW, 1.27
MW and 0 MW in day-ahead scheduling to 2.14 MW, 5 MW, 4.54 MW, 2.92
MW and 2.07 MW in dynamic scheduling. The DR reserve 2 of load increase
at t = 16 and t = 23 is increased from 2.87 MW and 0 MW in day-ahead
scheduling to 5 MW and 1.58 MW in dynamic scheduling. Due to the use of
the dynamic DR, the operational risk of the 118-bus system is reduced from
$201.03 in day-ahead scheduling to $165.98 in real-time operation.

6. Conclusion

In this paper, the adjustable uncertainty set and the DR program are
combined to address the uncertainty of RE in UC. A DROA is adopted to
evaluate the operational risks of load shedding and RE curtailment that are
caused by the adjustable uncertainty set. Based on the evaluation of the
operational risk, the bounds of the adjustable uncertainty set and the day-
ahead scheduling of the DR program are determined to reduce the cost of
UC and the operational risk. This risk is further reduced by the dynamic
DR program in real-time operation. From simulation results, the following
conclusions can be drawn:

- The proposed DROA is less conservative to evaluate the operational
risk of the adjustable uncertainty set, and the conservativeness of the
evaluation of the operational risk decreases with more probabilistic in-
formation of uncertain RE taken into account.

- Based on the operational risk evaluated by the DROA, the proposed
UC scheduling with the consideration of the adjustable uncertainty set
and the DR program reduces the cost of UC in comparison with other
methods.

- By fully utilizing the capacity of DR, the dynamic DR program further
reduces the operational risk in comparison with the static DR program.

In our future work, the adjustable uncertainty set for multiple RE consid-
ering their correlations will be investigated. Moreover, the adjustable uncer-
tainty set will be generalized to the integrated energy system to investigate
the uncertainty of different energy sources.
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Figure 17: (a1) Day-ahead scheduling of DR reserve 1 (b1) Dynamic schedul-
ing of DR reserve 1 (c1) Actual usage of DR reserve 1 (a2) Day-ahead schedul-
ing of DR reserve 2 (b2) Dynamic scheduling of DR reserve 2 (c2) Actual
usage of DR reserve 2
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