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Abstract：High computing cost restricts the application of phase field models in 21 

geotechnical engineering (e.g., in blasting, oil and gas exploration, and rock landslides). 22 

To improve computational efficiency, this paper proposes an adaptive isogeometric 23 

method of the phase-field model for simulating rock fracture using a novel refinement 24 

criterion and an improved data transfer operator (HBFT). The proposed method is 25 

shown to decrease the calculation time and storage requirements by over 90% compared 26 

to the uniform refinement in most cases, and the computing time of incorporating non-27 

equal order cells is 35.23% less than that of the equal order case. Notably: (1) the 28 

proposed refinement criterion is simple and efficient, and relies only on the 1D knot 29 

vector of the IGA to guarantee the hierarchical difference of adjacent cells.(2) the 30 

proposed HBFT only transfers the history variables in the local region to be refined, 31 

while keeping the variables in other regions unchanged; additionally, compared with 32 

the global and cell-by-cell versions in the traditional BFT, the proposed HBFT not only 33 

has the potential to avoid solving large-scale linear equations of the global version, but 34 

also alleviates, to a certain extent, the requirement of the cell-by-cell version for the full 35 

integration cell.  36 

Keywords: Rock fracture, Phase-field model, Adaptivity, Hierarchical splines, 37 

Isogeometric analysis. 38 

 39 
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1. Introduction 40 

Many geotechnical problems on Earth are associated to rock fractures, such as 41 

blasting (Zhu and Zhao, 2021), oil and gas exploration (Aimene et al., 2019), and rock 42 

landslides (Cheng et al., 2021; Gong et al., 2021; Li et al., 2019; van derBeek, 2021). 43 

Generally, crack initiation and propagation are the main influencing factors in these 44 

engineering problems (Goswami et al., 2020a; Wu et al., 2019). However, due to its 45 

complex mechanisms and numerous influencing factors (Ambati et al., 2014), rock 46 

fracture is usually difficult to predict accurately and often causes serious damage to 47 

property and life safety. It is thus clear that the research on rock fractures is of great 48 

significance in geotechnical engineering. 49 

In addition to experimental studies and theoretical analyses, numerical methods are 50 

an effective means to study rock fractures, especially for those expensive or unfeasible 51 

full-scale experiments. Generally, popular approaches include, but not restricted to, 52 

discrete element method (Camones et al., 2013; Gaume et al., 2015), peridynamics 53 

(Oterkus et al., 2017; Rabczuk and Ren, 2017; Song and Silling, 2020; Zhu and Zhao, 54 

2021), extend finite element method (Cruz et al., 2019, 2018), meshless method 55 

(Zhuang et al., 2014, 2012), and phase-field model (Borden et al., 2014; Bourdin et al., 56 

2000; Spetz et al., 2021). Notably, (Ren et al., 2017, 2016) developed a dual-horizon 57 

peridynamics (DH-PD) formulation that not only naturally includes varying horizon 58 

sizes and completely solves the ‘ghost force’ issue, but it also allows for simulations 59 

with dual-horizon with minimal spurious wave reflection. Later on, (Rabczuk and Ren, 60 
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2017) extended it to fracture issues in granular and rock-like materials. It can simulate 61 

crack branching and coalescence without ad-hoc criteria. More information can be 62 

found in (Ren, 2021). A comparison of these methods can be found in (Wu et al., 2019). 63 

Among the aforementioned methods, the phase-field model has attracted considerable 64 

scholarly attention in recent years and is widely applied in geological engineering. For 65 

instance, zhou et al. (Zhou et al., 2018a) developed a phase-field approach for 66 

poroelastic media to simulate hydraulic fracture in the geological field. Fei and Choo 67 

(Fei and Choo, 2020) developed a modified phase field model for a common geologic 68 

shear fracture in onshore and offshore landslides. Hu et al (Hu et al., 2022) combined 69 

the material point method and the phase-field model to study slope stability under finite 70 

deformation. 71 

However, the phase-field model also faces a series of tough challenges, such as 72 

inaccurate location of the crack tip and high computational costs (Wu et al., 2019). In 73 

this paper, we mainly focus on the latter issue. Currently, the most efficient solutions 74 

include, but are not restricted to, parallel computing (Samaniego et al., 2021), double 75 

mesh techniques (Goswami et al., 2019; Zhu et al., 2022), and adaptive remeshing 76 

technique (Goswami et al., 2020b; Li et al., 2022). 77 

 In light of the above, and inspired by the pioneering work of (Garau and Vázquez, 78 

2018; Goswami et al., 2020b, 2019; Hennig et al., 2018) et al., this study develops an 79 

adaptive isogeometric method of the fourth-order phase field model for simulating rock 80 

fracture using a novel refinement criterion and an improved data transfer operator. 81 

Notably, the proposed adaptive phase-field method, although implemented in simple 82 
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hierarchical splines (i.e., SHB-splines), can be directly extended to all kinds of 83 

hierarchical splines that conform to the definition in (Giannelli et al., 2014), e.g., 84 

standard hierarchical splines (Vuong et al., 2011) and truncated hierarchical splines (i.e., 85 

THB-splines) (Giannelli et al., 2012). In brief, the contribution of this work can be 86 

summarized in the following three points: 87 

(1) An adaptive isogeometric method of the fourth-order phase-field model is 88 

developed for simulating rock fracture in geotechnical engineering. The proposed 89 

method is shown to reduce the computing time and storage requirements by more 90 

than 90% compared to the uniform refinement in most cases.  91 

(2) A novel refinement criterion, termed as the cling film refinement criterion, is 92 

proposed. The proposed criterion is easy to implement and reduces the number of 93 

computing cells.  94 

(3) An improved data transfer operator, denoted as HBFT, is proposed for history 95 

variables at integration points. Compared with the global and cell-by-cell versions 96 

in the traditional BFT, HBFT not only has the potential to avoid solving large-scale 97 

linear equations of the global version, but also alleviates, to a certian extent, the 98 

requirement of the cell-by-cell version for the full integration cell. Additionally, 99 

HBFT only transfers the history variables in the local region to be refined, while 100 

keeping those within the remaining regions unchanged, as displayed in Fig. 8. 101 

The remaining sections are organized as follows. In Section 2, we present the 102 

concepts of the phase-field model. In Section 3, we provide the implementation details 103 

of the proposed adaptive phase-field approach. Additionally, this section also presents 104 



6 

 

the novel refinement criterion and the improved data transfer operator. Section 4 then 105 

illustrates the performance of the proposed method by numerical examples. The final 106 

conclusions are given in Section 5. 107 

2. Phase-field modelling for fracture 108 

The phase-field model seeks to simultaneously solve for the elastic field and crack 109 

region by energy minimization, thereby eliminating ad-hoc criteria and avoiding the 110 

capture of fracture surface topology. In brief, The total energy 𝛷 of the phase field 111 

model can be denoted as 112 

𝛷:= 𝛷𝑏 + 𝛷𝑐 −𝛷𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 (1) 113 

Where 𝛷𝑏  is the volume energy, 𝛷𝑐  is the fracture energy, and 𝛷𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙  is the 114 

external potential energy. Among then, 𝛷𝑏 and 𝛷𝑐 can be formulated as 115 

𝛷c = ∫𝐺𝑐
𝛺

𝛤𝜙,4𝑑𝛺 (2) 116 

𝛷b = ∫𝑔2(𝜙)
𝛺

𝛷𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑑𝛺 (3) 117 

where 𝐺C is the critical energy release rate, 𝜙 is the damage variable (or phase field), 118 

and 𝛷𝑒𝑙𝑎𝑠𝑡𝑖𝑐 is the elastic strain energy density. Besides, the fourth-order crack surface 119 

density functional 𝛤𝜙,4 (Borden et al., 2014) and the second-order stress degradation 120 

function 𝑔2(𝜙) can be written as follows: 121 

𝛤ϕ,4 =
𝜙2

2𝐿c
+
𝐿c
4
(∇ (𝜙))

2
+
𝐿c
3

32
(∆ 𝜙)2 (4) 122 

𝑔2(𝜙) = (1 − 𝜙)
2 (5) 123 
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where 𝐿c is the length-scale parameter . As 𝐿c infinitely approximates to 0, a sharp 124 

cracked surface will be regained. Fig. 1 presents a schematic diagram of a diffuse crack 125 

obtained using the phase-field model 126 

 127 

 128 

Fig. 1. Schematic diagram of diffuse cracks   129 

 130 

2.1 Energy decomposition 131 

To address the potential unphysical crack patterns in compression stress, a common 132 

solution (Miehe et al., 2010) is to split the elastic strain energy density 𝛷𝑒𝑙𝑎𝑠𝑡𝑖𝑐 into a 133 

corresponding tension component 𝛷𝑒𝑙𝑎𝑠𝑡𝑖𝑐
+ and a compression component 𝛷𝑒𝑙𝑎𝑠𝑡𝑖𝑐

−. 134 

𝛷𝑒𝑙𝑎𝑠𝑡𝑖𝑐
± =

𝜆〈𝑡 𝑟 [𝜺]〉±
2

2
+ 𝜇𝑡𝑟[𝜺±

2 ] (6) 135 

where 𝜆 and 𝜇 are the 𝑙𝑎𝑚�́� coefficients, and 𝜺± can be defined as 136 

𝜺± =∑〈휀𝐼〉±

3

𝐼=1

𝒏𝐼⊗𝒏𝐼 (7) 137 

where 휀𝐼and 𝒏𝐼 are the eigenvalues and eigenvectors of the strain tensor, respectively, 138 

and the operator 〈𝑥〉± can be formulated as  139 
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〈𝑥〉±: =
(𝑥 ± |𝑥|)

2
(8) 140 

Hence, the stored bulk energy 𝛷𝑏, i.e., Eq. (3), can be reformulated as 141 

𝛷𝑏 = ∫(𝑔2  (𝜙) 𝛷𝑒𝑙𝑎𝑠𝑡𝑖𝑐
+  + 𝛷𝑒𝑙𝑎𝑠𝑡𝑖𝑐

−)
𝛺

𝑑𝛺 (9) 142 

As seen, 𝑔2(𝜙)  acts only on 𝛷𝑒𝑙𝑎𝑠𝑡𝑖𝑐
+  in Eq. (9), which indicates that only the 143 

tension component is degraded, while the compression component is kept invariant. 144 

2.2 Hybrid model and staggered scheme 145 

Simulating crack propagation using the phase-field model involves solving for the 146 

vector-valued displacement field 𝒖  and the scalar-valued damage field 𝜙 . The 147 

commonly used method is the staggered scheme. Although it is capable of handling 148 

unstable fracture extension, it is computationally expensive. Ambati et al. (Ambati et 149 

al., 2014) therefore proposed a hybrid-staggered scheme, which dramatically reduces 150 

the calculation costs with the same robustness.                                                                                                                                                                                                                                                                                                                                    151 

In the hybrid-staggered scheme, the displacement field is free from energy 152 

decomposition, meaning that 𝛷𝑒𝑙𝑎𝑠𝑡𝑖𝑐
− = 0 , 𝛷𝑒𝑙𝑎𝑠𝑡𝑖𝑐 = 𝛷𝑒𝑙𝑎𝑠𝑡𝑖𝑐

+ , and Eq. (9) is 153 

rewritten as 𝛷𝑏 = ∫ 𝑔2(𝜙)𝛷𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝛺
𝑑𝛺, thus the equilibrium equation is formulated as 154 

follows   155 

−∇ ⋅ 𝑔2(𝜙)𝝈 = 𝒇 (10) 156 

where 𝝈 =
∂𝛷𝑒𝑙𝑎𝑠𝑡𝑖𝑐(𝜺)

∂𝜺
. And the evolution equation for the damage field 𝜙 is written 157 

as   158 

𝐺c [
𝜙
𝐿c
 − 
𝐿c
2
 |∇ 𝜙|2  + 

𝐿c
3

16
 △2  𝜙] = −𝑔2

′(𝜙)𝐻(𝒙 , 𝑡) (11) 159 
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where 𝐻(𝒙 , 𝑡) = max
𝑡∈[𝑡0,𝑡𝑛]

𝛷𝑒𝑙𝑎𝑠𝑡𝑖𝑐
+(𝜺 (𝒙 , 𝑡)) is the history field variable for preventing 160 

crack healing.  161 

  162 

3. Adaptive phase-field approach with simplified hierarchical splines 163 

3.1 Simplified hierarchical splines 164 

To define the simplified hierarchical splines (Garau and Vázquez, 2018), we first 165 

consider a given sequence B-spline space {𝒮𝑙}𝑙∈ℕ0  of depth 𝑛 such that 166 

 𝒮0 ⊂ 𝒮1 ⊂ 𝒮2. . . ⊂ 𝒮𝑛 (1) 167 

which are defined by knot vectors and orders. For any spline space 𝒮𝑙, ℬ𝑙 denotes its 168 

B-spline basis, 𝑁𝑙 indicates its space dimension, and 𝒬𝑙 represents its Cartesian mesh 169 

in parametric space. If 𝑄𝑙 ∈ 𝒬𝑙 , then 𝑄𝑙  is a cell of level 𝑙 . Additionally, for any 170 

𝑄𝑙+1 ∈ 𝒬𝑙+1, if 𝑄𝑙+1 ⊂ 𝑄𝑙, we say that 𝑄𝑙 is a parent of 𝑄𝑙+1, and abbreviate it as  171 

𝑄𝑙 = 𝒫(𝑄𝑙+1), 𝑖𝑓𝑄𝑙+1 ⊂ 𝑄𝑙 (13) 172 

Notably, in achieving local refinement, a frequently utilized property is the two-scale 173 

relation as illustrated in Eq. (14), i.e., B-splines of level 𝑙 can be expressed as a linear 174 

combination of B-splines of level 𝑙 + 1  together with non-negative coefficients 175 

𝑐𝑘,𝑙+1 ⩾ 0.  176 

𝛽𝑖,𝑙 = ∑ 𝑐𝑘,𝑙+1

𝑁𝑙+1

𝑘=1

(𝛽𝑖,𝑙)𝛽𝑘,𝑙+1, ∀𝛽𝑖,𝑙 ∈ ℬ𝑙, (14) 177 

However, due to the local support of the B-splines, there are only a small number of 178 

coefficients in Eq. (14) that satisfy 𝑐𝑘,𝑙+1 ≠ 0 . If 𝑐𝑘,𝑙+1(𝛽𝑖,𝑙) ≠ 0 , then its 179 

corresponding function, 𝛽𝑘,𝑙+1, is termed as a child of 𝛽𝑖,𝑙, and the set of children of 180 
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𝛽𝑖,𝑙 is denoted by 𝒞𝑓𝑢𝑛(𝛽𝑖,𝑙) ⊂ ℬ𝑙+1. And, further, the B-splines of two adjacent levels 181 

have the following relationship 182 

ℬ𝑙 = 𝐶𝑙
𝑙+1ℬ𝑙+1 (15) 183 

where the matrix 𝐶𝑙
𝑙+1 has the following form 184 

(𝐶𝑙
𝑙+1)

𝑘𝑖
= 𝑐𝑘,𝑙+1(𝛽𝑖,𝑙),   𝑓𝑜𝑟 𝑖 = 1,… ,𝑁𝑙, 𝑘 = 1, … , 𝑁𝑙+1 (16) 185 

And the B-splines of any two levels can be associated by applying the matrix 𝐶𝑙
𝑙+1 186 

successively, i.e., via 𝐶𝑙
𝑙+𝑚 = 𝐶𝑙+𝑚−1

𝑙+𝑚 ⋯𝐶𝑙+1
𝑙+2𝐶𝑙

𝑙+1 . In addition, we define the set 187 

𝛀𝑛: = {Ω0  , Ω1  , Ω2  , . . . , Ω𝑛} as a hierarchical subdomain of depth 𝑛 if 188 

�̂� = 𝛺0 ⊃ ⋯ ⊃ 𝛺𝑛−1 ⊃ 𝛺𝑛 = ∅, (17) 189 

and each subdomain Ω𝑙 is the union of cells of level 𝑙 − 1.  190 

According to the above defined {𝒮𝑙}𝑙∈ℕ0 , {ℬ𝑙}𝑙∈ℕ0  and 𝛀𝑛 , the simplified 191 

hierarchical basis ℋ̃: = ℋ̃𝑛−1 proposed in (Buffa and Garau, 2017) can be derived 192 

from the following recursive formulation (18). 193 

{
 
 

 
 ℋ̃0 ≔ ℬ0

ℋ̃𝑙+1 ≔ {𝛽 ∈ ℋ̃𝑙
 ∣ 𝑠 𝑢 𝑝 𝑝 𝛽 ⊄ 𝛺𝑙+1} ∪ ⋃ 𝒞(𝛽), 𝑙 = 0,… , 𝑛 − 2.

𝛽∈ℋ̃𝑙

𝑠𝑢𝑝𝑝𝛽⊂𝛺𝑙+1

 (18) 194 

And the underlying hierarchical mesh 𝒬 corresponding to the hierarchical basis 195 

ℋ̃ can be obtained from Eq. (19). 196 

𝒬:=⋃{𝑄 ∈ 𝒬𝑙  ∣ 𝑄 ⊂ 𝛺𝑙  ∧ 𝑄 ⊄ 𝛺𝑙+1}

𝑛−1

𝑙=0

. (19) 197 

In addition, Fig. 2 provides an example of quadratic simplified hierarchical splines 198 

containing two levels of subdomains. 199 
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 200 

Fig. 2. An example of quadratic simplified hierarchical splines where the subdomain 201 

hierarchy consists of two levels. 202 

3.2 Spatial discretization and matrix assembly   203 

The variational formulation of the phase-field model is written as: 204 

∫{𝝈 𝛿 𝜺 − 𝒃 ⋅ 𝛿 𝒖}
𝛺

𝑑𝛺 −∫ 𝒕N ⋅
∂𝛺N

𝛿𝒖𝑑𝛺N = 0 (20) 205 

∫ 𝐺c [
1
𝐿c
 𝜙 𝛿 𝜙 + 

𝐿c
2
 ∇ 𝜙 ⋅ ∇ 𝛿 𝜙 + 

𝐿c
3

16
 △ 𝜙 ⋅ △ 𝛿 𝜙]

𝛺

+ 𝑔′(𝜙)𝐻(𝑥 , 𝑡)𝛿𝜙𝑑𝛺 = 0 (21) 206 

Utilizing the simplified hierarchical basis 𝛽 ∈ ℋ̃𝑙, the displacement increment 𝒖 and 207 

the damage increment 𝜙 can be represented as    208 

𝒖 =∑𝛽𝑖
𝐮

𝑚

𝑖=1

𝒖𝒊, 𝜙 =∑𝛽𝑗
ϕ

𝑛

𝑗=1

𝜙𝑗 (22) 209 

where 𝛽𝑖
𝐮 and 𝒖𝒊 can be denoted as 210 

𝛽𝑖
𝐮 = [

𝛽𝑖 0

0 𝛽𝑖
],    𝒖𝒊 = [

𝑢𝑥
𝑢𝑦
] (23) 211 
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Finally, the following linear equations can be obtained after applying the Newton-212 

Raphson method 213 

[
𝐾𝑢𝑢 0
0 𝐾𝜙𝜙

] {
∆𝒖
∆𝜙
} = {

𝐹𝑢

𝐹𝜙
} (24) 214 

Among them, 𝐾𝑢𝑢 and 𝐾𝜙𝜙 are written as follows: 215 

𝐾𝑖𝑟
𝑢𝑢 = ∫ 𝑔(𝜙)(𝐵𝑖

𝑢)T𝐶e𝛺
𝐵𝑟
𝑢𝑑𝛺 (25) 216 

𝐾𝑗𝑠
𝜙𝜙

= ∫ {𝐺c  [(
1
𝐿c
 + 2 𝐻 (𝑥 , 𝑡)) 𝛽𝑗  𝛽𝑠  + 

𝐿c
2
 (𝐵𝑗

ϕ
)
T  𝐵𝑠

ϕ  + 
𝐿c
3

16
 𝐷𝑗
ϕ  𝐷𝑠

ϕ
]}

𝛺

𝑑𝛺 (26) 217 

where 𝐶e is the elastic stiffness matrix, and 𝐵𝑖
𝑢, 𝐵𝑗

ϕ
 and 𝐷𝑗

ϕ
 respectively have the 218 

following forms  219 

𝑩𝑖
𝐮 = [

𝛽𝑖,𝑥 0

0 𝛽𝑖,𝑦

𝛽𝑖,𝑦 𝛽𝑖,𝑥

] ,   𝑩𝑗
ϕ
= [

𝛽𝑗,𝑥

𝛽𝑗,𝑦
] ,   𝑫𝑗

ϕ
= 𝛽𝑗,𝑥𝑥 + 𝛽𝑗,𝑦𝑦 (27) 220 

 221 

 222 

Fig. 3. Shape functions acting on elements of different levels 223 
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As illustrated in Fig. 3, the shape functions acting on the element are likely to be 224 

from different levels, and the number of shape functions for each element is not constant. 225 

Thus, one key issue to be addressed when implementing local refinement using 226 

simplified hierarchical splines is matrix assembly. The authors adopted the method 227 

proposed in (Bornemann and Cirak, 2013; Schillinger et al., 2012), which is widely 228 

used, as in (Garau and Vázquez, 2018; Hennig et al., 2016). For convenience, we take 229 

the first term in Eq. (26), i.e., 𝐾𝑡𝑒𝑟𝑚1 = ∫ [𝐺c  (
1

𝐿c

 + 2 𝐻 (𝑥 , 𝑡)) 𝛽𝑗  𝛽𝑠]𝛺
𝑑𝛺, as an example 230 

to introduce this method. 231 

First, assume that the simplified hierarchical spline basis ℋ̃ is: 232 

ℋ̃ = {𝛽1  , 𝛽2,  ⋯ , 𝛽𝑛} (28) 233 

For any 𝑚, 1 ⩽ 𝑚 ⩽ 𝑛, a unique integer 𝑘𝑚 and 𝑙𝑚 exists such that 𝛽𝑚 = 𝛽𝑘𝑚,𝑙𝑚. 234 

We similarly assume that the functions in ℋ̃ are firstly ordered by level and secondly 235 

in each level with the same ordering as ℬ𝑙. Then, a component of the matrix 𝐾𝑡𝑒𝑟𝑚1 236 

are expressed as 237 

𝐾𝑗𝑠
𝑡𝑒𝑟𝑚1 = ∫𝐴𝑔𝑎𝑢𝑠𝑠𝛽𝑗

𝛺

𝛽𝑠 = ∫ 𝐴𝑔𝑎𝑢𝑠𝑠𝛽𝑗
𝑞∈𝑄

𝛽𝑠 = ∑ ∑ ∫ 𝐴𝑔𝑎𝑢𝑠𝑠𝛽𝑗
𝑞𝑙

𝛽𝑠
𝑞𝑙∈(𝑄𝑙  ∩  𝑄)

𝑛−1

𝑙=max{𝑙𝑗,  𝑙𝑠}

𝑑𝛺 (29) 238 

where 𝐴𝑗𝑠 is 239 

𝐴𝑔𝑎𝑢𝑠𝑠 = 𝐺c (
1
𝐿c
 + 2 𝐻 (𝑥 , 𝑡)) (30) 240 

According to the two-scale relation in Eq. (14), i.e., for any 𝛽𝑙𝑚 with 𝑙𝑚 < 𝑙, it can 241 

eventually be expressed as a linear combination of 𝑙-level B-splines. Thus, Eq. (29) 242 

can be rewritten as 243 
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𝐾𝑗𝑠
𝑡𝑒𝑟𝑚1 = ∑ ∑ ∑ 𝑐𝑤𝑗

𝑙

𝑁𝑙

𝑤′=1

𝑁𝑙

𝑤=1

( ∑ ∫ 𝐴𝑔𝑎𝑢𝑠𝑠𝛽𝑤,𝑙
𝑞𝑙

𝛽𝑤′,𝑙

𝑞𝑙∈(𝑄𝑙  ∩  𝑄)

)𝑐𝑤′𝑠
𝑙

𝑛−1

𝑙=max{𝑙𝑗,  𝑙𝑠}

𝑑𝛺 (31) 244 

In matrix form, Eq. (31) can be formulated as 245 

𝐾𝑗𝑠
𝑡𝑒𝑟𝑚1 = ∑ (�̂�𝑗

𝑙)
𝑇

𝑛−1

𝑙=max{𝑙𝑗,  𝑙𝑠}

𝐾𝑙
𝑡𝑒𝑟𝑚1�̂�𝑠

𝑙 (32) 246 

where �̂�𝑗
𝑙 and 𝐾𝑙

𝑡𝑒𝑟𝑚1 are, respectively, 247 

�̂�𝑗
𝑙: = [𝑐1,𝑗

𝑙  , 𝑐2,𝑗
𝑙  , ⋯ , 𝑐𝑁𝑙,𝑗

𝑙 ]
𝑇

(33) 248 

(𝐾𝑙
𝑡𝑒𝑟𝑚1)𝑤𝑤′ = ∑ ∫ (𝐴𝑔𝑎𝑢𝑠𝑠  𝛽𝑤,𝑙  𝛽𝑤′,𝑙)

𝑞𝑙𝑞𝑙∈(𝑄𝑙  ∩  𝑄)

𝑑𝑞𝑙 (34) 249 

Further, we can get the global matrix in the following form 250 

𝐾𝑡𝑒𝑟𝑚1 =∑[�̂�𝑙   𝟎]
𝑇

𝑛−1

𝑙=0

𝐾𝑙[�̂�𝑙   𝟎] (35) 251 

where �̂�𝑙 is obtained from the following recursive formula 252 

{
�̂�0 = 𝐽0,

�̂�𝑙+1 = [𝐶𝑙
𝑙+1  �̂�𝑙  ,  𝐽𝑙+1], 𝑓𝑜𝑟 𝑙 = 0,… , 𝑛 − 2.

(36) 253 

where 𝐽𝑙+1 refers to the inclusion of ℋ𝑙
𝐴: = {𝛽𝑖  |𝛽𝑖  ∈ （ ℋ̃  ∩ ℬ𝑙+1  ）} into the tensor 254 

basis of the 𝑙 + 1 level, i.e., ℬ𝑙+1,. For more details, please refer to (Bornemann and 255 

Cirak, 2013; Hennig et al., 2016; Schillinger et al., 2012) and the references therein. 256 

3.3 Adaptive h-refinement scheme 257 

As with adaptive FEA, the adaptive isogeometric analysis of the phase-field model 258 

mainly includes the following three steps in any one iteration of each incremental step. 259 

a) Solve the boundary value problem. 260 

b) Mark elements according to the solution in (a) and the adopted refinement criterion. 261 
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c) Generate the refined hierachical mesh 𝒬 and refined hierarchical basis ℋ̃ using 262 

the marked elements in (b), and perform data transfer between the old and new 263 

meshes. 264 

Among them, the refinement criterion and data transfer operator are crucial aspects in 265 

adaptive analysis. Therefore, these contents will be further explained in the remainder 266 

of this section.   267 

3.3.1 A novel refinement criterion 268 

 269 

Fig. 4. A qualified hierarchical mesh with three levels (the level difference between 270 

adjacent cells is less than or equal to 1) 271 

The commonly used refinement criteria in adaptive phase-field analysis include, 272 

but are not limited to, physics based refinement criteria (Hirshikesh et al., 2021) and 273 

damage variables 𝜙 (Goswami et al., 2019), etc. Among them, the damage variable 𝜙 274 

is widely used due to its simplicity. However, this criterion fails to ensure that the 275 
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hierarchical difference between adjacent cells is less than or equal to 1, thus potentially 276 

producing unphysical numerical results, as depicted in Figs. 19 and 20. (As seen in 277 

Fig. 4, the number 1 in the upper left corner of 𝛺1 0
𝜙

 represents the first time local 278 

refinement. However, it is often ignored (i.e., 𝛺0
𝜙

) when representing the current local 279 

refinement, as long as it does not cause confusion.) A feasible and frequently applied 280 

technique is: for any 𝜙 -marked cell 𝑄𝑖𝑙𝑒𝑣𝑒𝑙
𝜙

∈ 𝒬𝑖𝑙𝑒𝑣𝑒𝑙
𝜙

  (i.e., 𝒬𝑖𝑙𝑒𝑣𝑒𝑙
𝜙

=281 

{𝑄 |𝑄 ∈ 𝒬 ∧ 𝑄 ⊂ 𝛺𝑖𝑙𝑒𝑣𝑒𝑙
𝜙

}) in level 𝑖𝑙𝑒𝑣𝑒𝑙, first calculate its parent cell 𝒫(𝑄𝑖𝑙𝑒𝑣𝑒𝑙
𝜙

) in level 282 

𝑖𝑙𝑒𝑣𝑒𝑙 − 1 ; secondly, in the tensor mesh of level 𝑖𝑙𝑒𝑣𝑒𝑙 − 1 , check whether the 283 

adjacent cells of that parent cell are active cells. If they are active cells, then mark them 284 

as cells to be refined in level 𝑖𝑙𝑒𝑣𝑒𝑙 − 1. Although the method is concise, it requires 285 

checking each cell in a level-by-level, cell-by-cell manner, even for a qualified 286 

hierarchical mesh as illustrated in Fig. 4. As a result, the method is bound to waste a 287 

certain amount of computing resources, especially in 3D problems.  288 
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 289 

Fig. 5. A hierarchical mesh containing three levels for illustrating the cling film 290 

refinement criterion 291 
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 292 

Fig. 6. Flow chart of the cling film method 293 
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Based on this, this manuscript proposes a novel refinement criterion, termed the 294 

cling film criterion. As seen in Figs. 5 and 6, the cling film criterion consists of two 295 

parts. The first part still utilizes the damage variable 𝜙 to mark the crack path region 296 

𝛺𝑖𝑙𝑒𝑣𝑒𝑙
𝜙

. And the second part is to mark the refinement region 𝛺𝑖𝑙𝑒𝑣𝑒𝑙−1
𝑐𝑙𝑖𝑛𝑔𝐹𝑖𝑙𝑚

 with the aid of 297 

the proposed i-j algorithm (please see the source code in Appendix A) for guaranteeing 298 

the hierarchical difference of adjacent cells, and the entire process can be summarized 299 

as follows: (1) the i-j algorithm is employed to determine the marked region 𝛺𝑖𝑙𝑒𝑣𝑒𝑙
𝑖𝑗𝐴𝑙𝑔𝑜

 300 

of level 𝑖𝑙𝑒𝑣𝑒𝑙 ; (2) If the region 𝛺𝑖𝑙𝑒𝑣𝑒𝑙
𝑖𝑗𝐴𝑙𝑔𝑜

  is empty, it goes to the next level, and 301 

conversely marks its parent cell as the region 𝛺𝑖𝑙𝑒𝑣𝑒𝑙−1
𝑐𝑙𝑖𝑛𝑔𝐹𝑖𝑙𝑚

  to be refined in level 302 

𝑖𝑙𝑒𝑣𝑒𝑙 − 1. As depicted in the gray area 𝛺1
𝑖𝑗𝐴𝑙𝑔𝑜2  and aqua green area 𝛺1

𝑟𝑒𝑓𝑖𝑛𝑒𝑑2  in 303 

the upper right corner of Fig. 5, the cling film method only requires dealing with the 304 

cells in gray area, i.e.,  {𝑄 |𝑄 ∈ 𝒬𝑙  ∧ 𝑄 ⊂ 𝛺1
𝑖𝑗𝐴𝑙𝑔𝑜2 }, thus reducing a certain number of 305 

computational cells compared to {𝑄 |𝑄 ∈ 𝒬𝑙  ∧ 𝑄 ⊂ 𝛺1
𝑟𝑒𝑓𝑖𝑛𝑒𝑑2 } ( aqua green area) of the 306 

traditional method, especially in the fine mesh of the phase-field model. Besides, the 307 

effectiveness of the proposed criterion is also directly demonstrated by the hierarchical 308 

meshes in Fig. 5 in comparison with Fig. 7. Notably, whether in 2D or 3D, the 309 

proposed criterion only requires a simple addition or subtraction operation on the 1D 310 

knot vector of the IGA for determining 𝛺𝑖𝑙𝑒𝑣𝑒𝑙
𝑖𝑗𝐴𝑙𝑔𝑜

 (as demonstrated in Appendix A), thus 311 

further reducing the computing cost to a certain extent.  312 

 313 

 314 



20 

 

 315 

Fig. 7. Hierarchical meshes obtained by using damage variable 𝜙 as the refinement 316 

criterion 317 

3.3.2 An improved data transfer operator 318 

In adaptive analysis, the data transfer between meshes can be roughly divided into 319 

two categories: one for field variables located at nodes (or control points in IGA), e.g., 320 

damage variables 𝜙  or node displacements 𝒖 , and the other for history variables 321 

located at integration points, e.g., 𝐻(𝒙 , 𝑡) in phase field models and plastic strains 𝜺𝑝 322 

in inelastic materials.  323 

For the first category, the authors utilize the approach of (Garau and Vázquez, 324 

2018), i.e., Eq. (37) below, to transfer node variables. 325 

 𝒖𝑘+1 = 𝑲 𝒖𝑘  (2) 326 

where the elements in 𝐾 can be found in (Garau and Vázquez, 2018). Notably, due to 327 

the structured and nested nature of the hierarchical splines, this data transfer process is 328 

error-free. 329 



21 

 

 And for the second category, such as 𝐻(𝒙 , 𝑡) , the common used data transfer 330 

operators are, but not limited to, Closest Point Transfer (CPT) and Basis Function 331 

Transfer (BFT). For the CPT method, the history variable at the new integration point 332 

is directly taken from the nearest old integration point, which makes it efficient and 333 

simple to implement. However, this is also the main reason for its poor transfer accuracy. 334 

And for the BFT method, as its name suggests, the data transfer between meshes is 335 

achieved with the aid of nodes and basis functions on the old and new meshes, and the 336 

implementation of its global version can be summarized in the following three steps: 337 

(a) In the old mesh 𝒬𝑘 : project the history variables at the old integration points onto 338 

the old nodes (or control points in the IGA) using the basis function ℋ̃𝑘 . If the 339 

least square fitting method is employed, this process can be expressed as 340 

𝑴𝝓𝑁𝑜𝑑𝑒 = 𝒇𝑖𝑛𝑡𝑃𝑜𝑖𝑛𝑡 (38) 341 

where 𝑴 and 𝒇 can be expressed as follows, respectively 342 

𝑴𝑖,𝑗 = ∫ 𝛽𝑘 𝑖
𝛺

𝛽𝑘 𝑗𝑑𝛺 (39) 343 

(𝒇𝑖𝑛𝑡𝑃𝑜𝑖𝑛𝑡)
𝑖
= ∫ 𝛽𝑘 𝑖

𝛺

𝜙𝑖𝑛𝑡𝑃𝑜𝑖𝑛𝑡𝑑𝛺 (40) 344 

 where the basis functions �̃�
𝑘

𝑖
∈ ℋ̃𝑘 . 345 

(b) From the old mesh 𝒬𝑘  to the new mesh 𝒬𝑘+1 : project the history variables at the 346 

old nodes obtained from (a) to the new nodes, e.g., utilizing Eq.(2). 347 

(c) In the new mesh 𝒬𝑘+1 : interpolation is performed using the new node variables 348 

obtained from (b) and the basis functions �̃�
𝑘+1

𝑖
∈ ℋ̃𝑘+1  to get the history variables 349 

at the new integration points. 350 
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Although BFT obviously improves the transfer accuracy, its computational 351 

efficiency is lower than that of CPT and its implementation is complicated. Apart from 352 

that, the global version of BFT requires solving a large-scale linear system of equations, 353 

while its cell-by-cell version requires a full integration cell in order to provide a 354 

sufficient number of sample points for the least-square fitting (Hennig et al., 2018). In 355 

light of the above and inspired by the pioneering work of (Garau and Vázquez, 2018; 356 

Hennig et al., 2018), this manuscript makes certain improvements to the traditional BFT 357 

and terms the improved method as Hierarchical Basis Function Transfer, abbreviated 358 

as HBFT. As depicted in Figs. 8 and 9, a feature of HBFT is that the history variables 359 

𝐻(𝒙 , 𝑡) are transferred level by level, and the transfer steps between any adjacent levels 360 

are basically the same as those of the traditional BFT; another feature is that the basis 361 

functions and control points used in HBFT are derived from the tensor basis space ℬ 362 

instead of the hierarchical basis space ℋ̃. Based on this, the proposed HBFT can be 363 

regarded as an intermediate version. Therefore, it not only has the potential to avoid 364 

solving large-scale linear equations of the global version, but also alleviates, to a certian 365 

extent, the requirement of the cell-by-cell version for the full integration cell. 366 

Additionally, in order to reduce the computational cost and transfer errors (as depicted 367 

in Figs. 21 and 22), HBFT only transfers the history variables in the local region to be 368 

refined, while keeping those within the remaining regions unchanged, as also displayed 369 

in Fig. 8. 370 

 371 
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 372 

Fig. 8. A simple example to illustrate the proposed HBFT 373 

 374 
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 375 

Fig. 9. Algorithm flow chart of the proposed HBFT 376 
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 377 

 378 

Fig. 10. A simple comparison of the proposed HBFT and Hennig’s method 379 

 380 

Finally, it is worth mentioning that the proposed HBFT reduces the number of basis 381 

functions and control points required in the intermediate steps compared to the method 382 

in (Hennig et al., 2018), as displayed in Fig. 10. In view of the above, the authors 383 

believe that the proposed HBFT is a simple and practical transfer operator. 384 

 385 
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4. Numerical examples 386 

4.1 Single-edge notched pure shear example 387 

 388 

Fig. 11. Square specimen with a notch 389 

 390 

The first example is a single-edge notched specimen in a pure shear loading mode. 391 

The specimen and constraints are depicted in Fig. 11. The length-scale parameter is 392 

𝐿c = 0.0125 mm, and other parameters are the same as in (Zhu et al., 2022). For this 393 

example, the cell size around the crack path is taken as 𝐿h1 = 0.005mm  (i.e., 394 

𝐿c/𝐿h1 = 2.5), while the cell size far from the crack path is taken as 𝐿h2 = 0.04mm. 395 

This means that the side length of the coarse cell is 8 times longer than that of the fine 396 

cell (i.e., 𝐿h2/𝐿h1 = 8), and the area is 64 times larger. Additionally, to capture the 397 

crack paths accurately, the surrounding mesh of the initial preset crack is locally refined 398 

before the calculation, as shown in the first mesh discretization on the left in Fig.12. 399 

 400 
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As seen in Fig.12a and b, the crack paths obtained from the proposed mehtod and 401 

the uniform refinement are basically identical. The load-displacement curves in Fig. 13 402 

also show the same results. It thus clear that the results of the proposed method are 403 

reliable. Besides, the spatial discretization ( Fig. 12b) also indicates that the proposed 404 

refinement criterion is suitable for tracking crack nucleation and propagation in the 405 

fracture process. As described in Table 1, the calculation time of the proposed method 406 

is 97.17% lower than that of the uniform refinement, and the number of DOFs and cells 407 

are decreased by 91.42% and 90.69%, respectively. Additionally, Figs. 14 and 15 also 408 

further demonstrate the performance of the proposed method in terms of computing 409 

time and memory requirements. 410 

 411 

 412 

 413 
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 414 

Fig. 12. Crack propagation and spatial discretizations for (a) the uniform refinement 415 

and (b) the proposed method 416 

 417 

 418 

 419 
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 420 

Fig. 13. Load-displacement curves obtained from the proposed method and the 421 

uniform refinement 422 

 423 

Table 1 424 

Computing time, number of DOFs and number of cells for the proposed method and 425 

the uniform refinement (single-edge notched sample) 426 

Methods Computing time (h) Number of DOFs Number of cells 

The proposed method 0.2537 10506 3724 

Uniform refinement 8.972 122412 40000 

 427 
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 428 

Fig. 14. Computing time at each time step  429 

 430 

Fig. 15. Number of cells at each time step 431 
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 432 

(a) 433 

 434 

(b) 435 

Fig. 16. Different cell combinations, (a) equal order cells and (b) non-equal order cells 436 

 437 

Secondly, the authors study the influence of different cell combinations (as 438 

depicted in Fig 16) on computing efficiency and accuracy of the proposed method. 439 

Figs. 12b and 17 illustrate the final crack paths and spatial discretizations obtained 440 

using these two element combinations, whilst Fig. 18 depicts the load-displacement 441 

curves. It is shown that the simulations of the two cell combinations have the same 442 

accuracy. Table 2 then presents the calculation time and the number of cells. As detailed 443 
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in Table 2, the calculation time using non-equal order cells is 35.23% less than that of 444 

equal order cells. Therefore, if not explicitly stated, the non-equal order cells are used. 445 

   446 

 447 

Fig. 17. Final crack paths and spatial discretizations obtained using the equal order 448 

cells  449 

 450 
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Fig. 18. Load-displacement curves obtained using the uniform refinement and the 451 

proposed method combining different cell combinations 452 

 453 

Table 2 454 

Computing time for the proposed method combining different cell combinations 455 

(single-edge notched sample) 456 

cell combinations Computing time (h) Number of cells 

Equal order cells 0.3917 3697 

Non-equal order cells 0.2537 3724 

 457 
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 458 

Fig. 19. Spatial discretizations obtained using (a) the damage variable 𝜙 and (b) the 459 

proposed refinement criterion 460 
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 461 

Fig. 20. Load-displacement curves obtained using the damage variable 𝜙 , the 462 

proposed refinement criterion, and the uniform refinement, respectively 463 

 464 

Thirdly, the authors briefly discussed the proposed refinement criterion and the 465 

improved transfer operator, i.e., HBFT.  466 

For the former, as depicted in Fig. 19a, when the damage variable 𝜙 is considered 467 

as the refinement criterion, the maximum hierarchical difference between adjacent 468 

elements is up to 3, and the corresponding crack path present obvious oscillations. In 469 

contrast, the hierarchical difference of the proposed criterion is less than or equal to 1, 470 

and the crack path (Fig. 19b) obtained therefrom is consistent with the uniform 471 

refinement ( Fig. 12a). The load-displacement curves in Fig 20 also show the same 472 
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trend. These simulations preliminarily demonstrate the performance of the proposed 473 

criterion. 474 

And for the latter, i.e., the proposed HBFT, will be briefly discussed here. Notably, 475 

for most monotonic loading cases, the adaptive phase-field method can also adopt the 476 

initial strain-history function 𝐻(𝑥 , 0) instead of the data transfer operator. Therefore, 477 

this situation is also discussed here. As seen in Fig. 21, the final crack path obtained 478 

from the proposed HBFT are essentially the same as those from the uniform refinement 479 

and 𝐻(𝑥 , 0), while the crack path obtained from the global version of the traditonal 480 

transfer operator have certain deviations. This is also indicated by the spatial 481 

discretizations displayed in Fig. 21. Besides, the Load-displacement curves (as shown 482 

in Fig. 22) obtained using various data transfer operators also show the same trend, and 483 

the results of the proposed HBFT are closest to that of the uniform refinement. As for 484 

efficiency, the computational time of the proposed HBFT is reduced by 20.41% 485 

compared to 𝐻(𝑥 , 0), while it is 94.38% less than the global version of the traditional 486 

transfer operator. In light of the above and Figs. 8 and 9, the authors believe that the 487 

proposed HBFT is a simple and practical operator with certain advantages in terms of 488 

computational efficiency and accuracy. Finally, it should be noted that only a 489 

preliminary validation of the proposed HBFT has been performed in this paper. And its 490 

performance in non-monotonic loading and other complex cases will be analyzed in 491 

authors' future work.  492 

 493 
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 494 

Fig. 21. Final crack paths and spatial discretizations obtained using the uniform 495 

refinement, the global version of traditional transfer, the initial strain-history function 496 

𝐻(𝑥 , 0) and the proposed transfer operator, i.e., HBFT.  497 

 498 
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Fig. 22. Load-displacement curves obtained using the uniform refinement, the global 499 

version of traditional transfer, the initial strain-history function 𝐻(𝑥 , 0)  and the 500 

proposed transfer operator, i.e., HBFT. 501 

 502 

Fig. 23. Crack paths obtained from these three adaptive phase-field methods 503 

 504 

 Finally, the authors present a brief comparison of adaptive phase-field methods 505 

based on three different kinds of splines (i.e., SHB-splines, THB-splines, and PHT-506 

splines). The crack paths obtained from SHB-splines, THB-splines, and PHT-splines 507 

(Goswami et al., 2020c), respectively, are given in Fig. 23, and the corresponding 508 

force-displacement curves are depicted in Fig. 24. As depicted, the calculation 509 

accuracy of these three methods is basically the same. For the slight difference in the 510 

peak points, the authors believe that it may be due to the different refinement criteria 511 

(or error estimators) used in this manuscript and (Goswami et al., 2020b). Additionally, 512 

(1) the computation time of SHB-splines (0.2383h) is basically the same as that of 513 

THB-splines (0.2096h);  514 
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(2) The number of non-zero elements in the stiffness matrix of SHB-splines is 28% 515 

more than that of THB-splines. However, THB-splines requires real-time modifications 516 

of the basis functions (i.e., so-called truncation) during the adaptive process, which can 517 

cause some difficulties in assembling the stiffness matrix and transferring variables 518 

between the old and new meshes;  519 

(3) the computation time of PHT-splines (0.6952h) is higher than that of SHB-520 

splines and THB-splines. It should be noted that (Goswami et al., 2020b)'s work is 521 

outstanding and meaningful. The authors have only made a cursory comparison in a 522 

simple situation. 523 

 Taking into account the computation time and the difficulty of numerical 524 

implementation, the authors believe that the SHB-splines based adaptive phase-field 525 

method may be a suitable option. Overall, the authors provide a brief comparison of 526 

these three adaptive phase-field methods. It should be noted that there are many factors 527 

that have not yet been considered, which will be analyzed in detail in the authors' future 528 

work.  529 



40 

 

 530 

Fig. 24. Force-displacement curves obtained from these three adaptive phase-field 531 

methods 532 

 533 

4.2 Rock-like specimen including multiple fractures 534 

 535 

Fig. 25. Rock-like specimen including multiple fractures 536 
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 537 

The second example simulates multi-crack extension and coalescence in 538 

geotechnical engineering. The specimen and constraints are illustrated in Fig. 25. The 539 

length-scale parameter is 𝐿c = 1 × 10−3 mm, the cell size is 𝐿c/𝐿h = 2, and other 540 

parameters are the same as in (Zhu et al., 2022) 541 

 542 
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Fig. 26. Crack propagation and spatial discretizations for (a) the uniform refinement 543 

and (b) the proposed method 544 

 545 

Fig. 26 presents the process of crack extension obtained using the proposed 546 

method and the uniform refinement, respectively, where an excellent concordance is 547 

obtained. The load-displacement curves in Fig. 27 also demonstrate the accuracy of 548 

the proposed method. Additionally, comparing the fracture paths and meshes in Fig. 26549 

b, it is clear that the proposed method is capable of local mesh adaption along the crack 550 

extension. Table 3 below provides the computing time, number of DOFs, and number 551 

of cells for the proposed method and the uniform refinement. As detailed in Table 3, 552 

the calculation time of the proposed method is 95.82% lower than that of the uniform 553 

refinement, and the number of DOFs and cells are decreased by 84.89% and 82.57%, 554 

respectively. 555 

 556 

 557 
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Fig. 27. Load-displacement curves at (a) the right edge and (b) the top edge, 558 

respectively 559 

Table 3 560 

Calculation time and storage requirements for the proposed method and the uniform 561 

refinement (Rock-like specimens including multiple fractures) 562 

Methods Computing time (h) Number of DOFs Number of cells 

The proposed method 0.9282 18501 6970 

Uniform refinement 22.1903 122412 40000 

 563 

4.3 Brazilian disc test 564 

 565 

Fig. 28. Brazilian disc model 566 

 567 
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The third example is the Brazilian disc test (Zhou et al., 2020), which is principally 568 

used for measuring the tensile strength of rocks. The specimen and constraints are 569 

displayed in Fig. 28. Three fracture inclinations are considered, i.e., 𝛽 = 30°, 60°, and 570 

75° respectively. The length-scale parameter is 𝐿c = 2mm, the cell size is 𝐿c/𝐿h =571 

2.0, and the displacement increment is ∆𝑢 = 2 × 10−5mm. Besides, other parameters 572 

are taken from (Zhou et al., 2020) 573 

 574 

 575 

Fig. 29. Final crack paths and spatial discretizations resulting from (a) the experiment 576 

(Zhou et al., 2020), (b) the uniform refinement, (c) the proposed method, and (d) the 577 

proposed method, respectively, at different crack inclinations. 578 
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 579 

Fig. 30. Load-displacement curves obtained using the proposed method and the 580 

uniform refinement, (a) 𝛽 = 30°, (b) 𝛽 = 60°, and (c) 𝛽 = 75°. 581 

 582 

Fig. 29 provides the crack propagation and spatial discretizations at three dipping 583 

angles obtained from experiments (Zhou et al., 2020), the uniform refinement and the 584 

proposed method. As seen, the fracture paths resulting from the proposed method are 585 

basically the same as those from the other two methods. The load-displacement curves 586 

depicted in Fig. 30a, b and c are also almost identical. It is thus clear that the proposed 587 

method is reliable. Table 4 below provides the computing time, number of DOFs, and 588 

number of cells obtained using the proposed method and the uniform refinement, 589 
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respectively. As shown in Table 4, the calculation time of the proposed method is 590 

92.26%, 92% and 93.28% less than the uniform refinement in the three cases, 591 

respectively, while the number of DOFs and the number of cells are reduced by more 592 

than 75% overall.  593 

 594 

Table 4 595 

Computing time, number of DOFs and number of cells for the proposed method and 596 

the uniform refinement (Brazilian disc test) 597 

Inclination 

angles 

Methods Computing time 

(h) 

Number of 

DOFs 

Number of cells 

𝛽 = 30° 

The proposed method 0.5731 16629 5608 

Uniform refinement 7.4003 75366 24336 

𝛽 = 60° 

The proposed method 0.6609 17307 5851 

Uniform refinement 8.2585 75366 24336 

𝛽 = 75° 

The proposed method 0.5516 18186 6178 

Uniform refinement 8.2141 75366 24336 

 598 
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 599 

Fig. 31. Final crack paths and spatial discretizations obtained using (a) the uniform 600 

refinement, (b) the proposed approach, and (c) the proposed approach, respectively, for 601 

different length-scale parameters.  602 

 603 

In addition, the authors also analyzed the influence of the length-scale parameter 604 

(for fixed 𝐿c/𝐿ℎ ratio) on the proposed approach. Take the Brazilian disc with β = 60º 605 

as an example. The length-scale parameters are chosen as 2.0 mm, 2.5 mm and 3.0 mm 606 

respectively, while the ratio of length-scale parameters to element sizes is held at 2.0. 607 

Fig. 31 presents the final crack paths and spatial discretizations resulting from the 608 

proposed approach and the uniform refinement for different length-scale parameters, 609 
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while Fig. 32 displays the corresponding force-displacement curves. As illustrated, the 610 

width of the crack path broadens progressively with increasing 𝐿𝑐, whereas the peak 611 

of the force-displacement curve varies in the opposite direction. 612 

 613 

 614 

(a) 615 

 616 
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 617 

(b) 618 

Fig. 32. Force-displacement curves for different length-scale parameters obtained from 619 

(a) the uniform refinement and (b) the proposed approach, respectively 620 

 621 
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4.4 Rock model including multiple fractures 622 

 623 

Fig. 33. Rock model including multiple fractures 624 

 625 

This example also simulates the multi-crack extension issue in geotechnical 626 

engineering. The specimen and constraints are depicted in Fig. 33. The length-scale 627 

parameter is 𝐿c = 0.75mm, the cell size is 𝐿c/𝐿h = 3.0, and the displacement 628 

increment is △ 𝑢 = 6 × 10−6mm . In additon, other material parameters are taken 629 

from (Zhou et al., 2018b).  630 

As shown in Figs. 34 and 35, the mesh discretization of the proposed method is 631 

capable of continuous local refinement with crack extension, and the resulting crack 632 

paths and load-displacement curves are also consistent with the results of uniform 633 

refinement. This indicates that the proposed method has the ability to simulate multi-634 
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crack extension in geotechnical engineering. For computational efficiency (Table 5), 635 

the calculation time, number of DOFs and number of cells obtained from the proposed 636 

method are 97.84%, 92.03% and 91.29% lower than those of the uniform refinement, 637 

respectively. 638 

 639 

 640 
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Fig. 34. Final crack paths and spatial discretizations resulting from (a) the uniform 641 

refinement, (b) the proposed method, respectively 642 

 643 

 644 

Fig. 35. Load-displacement curves obtained from the uniform refinement and the 645 

proposed method, respectively 646 

 647 

Table 5 648 

Computing time, number of DOFs and number of cells for the proposed method and 649 

the uniform refinement (Rock model including multiple fractures) 650 

Methods Computing time (h) Number of DOFs Number of cells 
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The proposed method 0.2472 9754 3484 

Uniform refinement 11.4302 122412 40000 

 651 

5. Conclusions 652 

Rock fracture has important effects in geotechnical engineering, such as in blasting, 653 

oil and gas exploration, and rock landslides. Based on this, this study develops an 654 

adaptive isogeometric method of the fourth-order phase field model for simulating rock 655 

fracture using a novel refinement criterion and an improved data transfer operator 656 

(HBFT). (1) The proposed refinement criterion is easy to implement and reduces the 657 

number of computing cells. Additionally, it only requires a simple addition or 658 

subtraction operation on the 1D knot vector of the IGA for guaranteeing the hierarchical 659 

difference of adjacent cells; (2) The proposed HBFT only transfers the history variables 660 

in the local region to be refined, while keeping the variables in other regions unchanged; 661 

thus it reduces the transfer errors and the number of basis functions required in the 662 

intermediate steps. Besides, compared with the global and cell-by-cell versions in the 663 

traditional BFT, the proposed HBFT not only has the potential to avoid solving large-664 

scale linear equations of the global version, but also alleviates, to a certian extent, the 665 

requirement of the cell-by-cell version for the full integration cell. 666 

The results show that the proposed adaptive phase-field method decreases the 667 

calculation time and storage requirements by over 90% compared to the uniform 668 
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refinement in the most cases, and the calculation time of incorporating non-equal order 669 

cells is 35.23% less than that of the equal order cells. 670 

Notably, to reduce computing time, this paper pre-calculates and stores the basis 671 

functions and their derivative values, and only updates the values in the region to be 672 

refined during the adaptive analysis. However, it should be noted that only a 673 

preliminary validation of HBFT has been performed in this paper. And its performance 674 

in non-monotonic loading and other complex cases will be analyzed in authors' future 675 

work. 676 
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Appendix A 677 

 678 

Fig. 36. Matlab source codes of the i-j algorithm 679 



56 

 

 680 

Fig. 37. A simple example for illustrating the i-j algorithm: solving the ij-marked 681 

area 𝛺1
𝑖𝑗𝐴𝑙𝑔𝑜2  of level 2 in the second local refinement in Fig.5. 682 
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