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We describe the characterisation of a variable number tandem repeat (VNTR)

domain within intron 1 of the amyotrophic lateral sclerosis (ALS) risk gene

CFAP410 (Cilia and flagella associated protein 410) (previously known as

C21orf2), providing insight into how this domain could support di�erential

gene expression and thus be a modulator of ALS progression or risk. We

demonstrated the VNTR was functional in a reporter gene assay in the

HEK293 cell line, exhibiting both the properties of an activator domain and

a transcriptional start site, and that the di�erential expression was directed by

distinct repeat number in the VNTR. These properties embedded in the VNTR

demonstrated the potential for this VNTR to modulate CFAP410 expression.

We extrapolated these findings in silico by utilisation of tagging SNPs for the

two most common VNTR alleles to establish a correlation with endogenous

gene expression. Consistent with in vitro data, CFAP410 isoform expression

was found to be variable in the brain. Furthermore, although the number of

matched controls was low, there was evidence for one specific isoform being

correlated with lower expression in those with ALS. To address if the genotype

of the VNTR was associated with ALS risk, we characterised the variation of

the CFAP410 VNTR in ALS cases and matched controls by PCR analysis of

the VNTR length, defining eight alleles of the VNTR. No significant di�erence

was observed between cases and controls, we noted, however, the cohort

was unlikely to contain su�cient power to enable any firm conclusion to be

drawn from this analysis. This data demonstrated that the VNTR domain has
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the potential to modulate CFAP410 expression as a regulatory element that

could play a role in its tissue-specific and stimulus-inducible regulation that

could impact the mechanism by which CFAP410 is involved in ALS.

KEYWORDS

CFAP410, ALS, VNTR, gene expression, transcriptional regulation

Introduction

Amyotrophic lateral sclerosis (ALS) is a fatal

neurodegenerative disease primarily of the motor system,

characterised by upper and lower motor neuron death, muscle

atrophy and paralysis (Hardiman et al., 2017). ALS heritability

has previously been estimated to be as high as 61%, indicating a

significant genetic contribution to the variation in ALS risk and

susceptibility (Al-Chalabi et al., 2010; Hardiman et al., 2017),

and now there are over 40 genes associated with the disease, of

varying effect sizes (Wroe et al., 2009; Abel et al., 2012; Shatunov

and Al-Chalabi, 2021). Occasionally, patients can harbour

multiple mutations, highlighting that ALS is a complex disease

(van Blitterswijk et al., 2012a,b; Al-Chalabi and Visscher, 2014;

Cady et al., 2015; Bury et al., 2016; Zou et al., 2017; Nguyen

et al., 2018; Goldstein et al., 2019; Yilmaz et al., 2022). There

is also evidence that ALS pathogenesis is a multistep process,

with both genetic and environmental risk factors working

in concert via gene–environment interaction (Al-Chalabi

et al., 2014; Chio et al., 2018; Vucic et al., 2019; Garton et al.,

2021). While genome-wide association studies have helped to

uncover regions associated with ALS, it has been shown that

single nucleotide polymorphisms (SNPs) only account for a

small fraction of ALS heritability (van Rheenen et al., 2016).

Furthermore, it has been shown that structural variants could

be a key source of this missing heritability (Theunissen et al.,

2020), with the hexameric repeat expansion in the first intron

of the C9orf72 gene the most commonly reported mutation in

European ALS patients (Zou et al., 2017). Since the discovery of

the C9orf72 repeat expansion, there have been numerous studies

investigating tandem repeat DNA and structural variation in

ALS (DeJesus-Hernandez et al., 2011; Renton et al., 2011; Blauw

et al., 2012; Lattante et al., 2018; Tazelaar et al., 2019, 2020;

Course et al., 2020; Al Khleifat et al., 2022).

Abbreviations: ALS, Amyotrophic lateral sclerosis; ENCODE, The

Encyclopaedia of DNA Elements; CFAP410, Cilia and flagella associated

protein 410; MAF, Minor allele frequency; MND, Motor neuron disease;

NNC, Non-neurological controls; NYGC ALS, New York Genome Centre

Consortium Target ALS; SNP, Single nucleotide polymorphism; UCSC,

University of California, Santa Cruz; VNTR, Variable number tandem

repeat.

Tandem repeats are DNA sequence motifs that are recurrent

and found contiguously in a region of the genome. Such tandem

repeats constitute ∼3% of the human genome (Bakhtiari et al.,

2018; Hannan, 2018). They are often found to be polymorphic

in the general population and are thus termed variable number

tandem repeats (VNTRs); furthermore, specific alleles can be

risk factors for diseases, which are often neurological in nature

(Lam et al., 2018; Roeck et al., 2018; Pacheco et al., 2019).

Non-coding VNTRs can be functional in a number of ways:

they can act as transcription factor binding sites (Hsieh et al.,

2007; Ali et al., 2010; Zukic et al., 2010), drive gene expression

on the basis of repeat number (Warburton et al., 2015), work

in concert with other genetic variants to induce combinatorial

regulation (Warburton et al., 2016), regulate splicing (Roeck

et al., 2018) andmodulate gene expression and CpGmethylation

levels at the genome-wide level (Gymrek et al., 2016; Quilez

et al., 2016). Thus, VNTRs are key transcriptional regulatory

domains within the human genome, with repeat copy numbers

driving differential gene expression profiles, altering affinity

for transcription factors at gene promoters and modifying the

secondary structure of DNA, all of which would modify gene

expression both in a tissue specific and stimulus inducible

manner (Marshall, 2021).

To date, five genes linked to ALS have been identified

to contain tandem repeat domains (C9orf72, ATXN1, ATXN2,

NIPA1 and WDR7) demonstrating that VNTRs are a strong

candidate for genetic risk for this disease (Sproviero et al.,

2017; Iacoangeli et al., 2019; Tazelaar et al., 2019, 2020; Course

et al., 2020). More recent global analysis to prioritise causal

genes within ALS-risk loci has utilised not only rare pathogenic

variants but also analysis of short tandem repeat domains

of six bases or less (van Rheenen et al., 2021). This study

highlighted the association of SNP rs75087725 within Cilia

and flagella-associated protein 410 (CFAP410) as a missense

variant associated with ALS but found no evidence for other

variants including short-tandem repeat expansions within this

locus associated with ALS. However, the bioinformatic pipelines

used would not be able to accurately address larger VNTRs.

Our analysis of transcriptional regulation of the CFAP410 gene

highlighted six tandem repeats at this locus, five of which were

not variable in repeat copy number. However, there was a VNTR

in intron 1 of CFAP410 with a complex repeat domain of 22 bp

or 35 bp extending to 500–600+bp in length (Marshall, 2021)
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(Figure 1, Supplementary Figure 2B). We therefore tested the

hypothesis that the CFAP410 VNTR within intron 1 of the most

5’ transcriptional start site is a transcriptional regulatory domain

and that tandem repeat variation could be associated with both

differential gene expression of CFAP410 and risk for ALS.

Materials and methods

ALS cohort used for PCR genotyping of
CFAP410 VNTR

Genomic DNA purified from the blood of ALS cases and

controls was obtained from the UK Motor Neuron Disease

(MND) Collection DNA and Cell Bank, which was used for

PCR-based genotyping of the CFAP410 VNTR. A total of 500

ALS samples were provided, 456 from people fulfilling the El

Escorial criteria, 21 with progressive muscular atrophy, 12 with

ALS restricted to progressive bulbar palsy and 11 with primary

lateral sclerosis. A total of 333 people with ALS were male and

167 were female, with an age range of 24–91 years old and a

disease age of onset range of 23–88 years old. A panel of 499

controls was also obtained: 188 were male and 311 were female

with an age range of 27–84 years old. The genotyping analysis

was performed using this gender ratio because this was the total

cohort size available to us in this database. We therefore did not

generate a gender risk bias on the VNTR.

Identification of the CFAP410 VNTR

Tandem repeats in the CFAP410 locus were identified

on UCSC HG19 (https://genome.ucsc.edu/) using the Simple

Tandem Repeats track from Tandem Repeat Finder (https://

tandem.bu.edu/trf/trf.submit.options.html) (Benson, 1999). A

total of six distinct tandem repeats were identified over this

locus; we focused on the repeat within intron 1, which is the only

one we found to be variable in repeat number.

Genotyping the CFAP410 VNTR

The VNTR was amplified by PCR, forward 5
′

AACCCCAGACAACAGACCC 3
′

and reverse 5
′

CTGACGCGGAAGATGGTTC 3
′
primers were designed to

amplify the full-length VNTR sequence (584bp). Amplification

reactions used KOD Hot Start DNA polymerase (Merck)

with 1× hot start buffer and the recommended protocol.

The products were analysed on 2% agarose gels stained

with ethidium bromide. Association analysis was performed

comparing allele frequencies between controls and ALS

cases using the software programme CLUMP with 100,000

simulations (Sham and Curtis, 1995).

Cell culture

The human embryonic kidney cell line, HEK293 (ATCC R©

CRL-1573TM), was cultured in the Dulbecco’s Modified Eagle’s

Media (DMEM) (Gibco) containing 4.5 g/L D-glucose and

200mM L-glutamine (Gibco), supplemented with 10% foetal

bovine serum (Gibco), penicillin/streptomycin (100 U/ml, 100

mg/ml; Sigma) and 1% (v/v) 100mM sodium pyruvate (Sigma).

Cells were incubated at 37◦C in 5% CO2.

Generation of CFAP410 VNTR reporter
gene constructs

The CFAP410 VNTR was amplified from genomic DNA

by PCR using the KOD Hot Start DNA polymerase following

the recommended protocol. The VNTR was subcloned into

the intermediate Zero Blunt PCR Vector (Invitrogen). This

intermediate plasmid was then digested with restriction enzymes

and the VNTR insert was cloned within the multiple cloning site

of the reporter gene vectors either pGL3-promoter (pGL3P) or

pGL3-basic (pGL3B) (Promega) in both orientations (forward

and reverse) [restriction digests, vector maps and sequencing

available at Marshall (2021)]. In pGL3P the VNTR was located

upstream of the SV40 minimal promoter to address action as an

activator, and cloned in pGL3B to address putative function as

an inherent transcriptional start site.

Cell transfection and dual luciferase assay

HEK293 cells were seeded at approximately 100,000

cells per well in 24-well-plates. After 48 h of incubation,

cells were co-transfected with 1 µg reporter gene plasmid

(firefly luciferase) containing the VNTR sequences and

20 ng pRL control vector for normalisation (Renilla

luciferase; Novagen) using TurboFectTM transfection reagent

(ThermoScientific/Fermentas), according to the manufacturer’s

protocol. TurboFectTM was removed after 4 h of incubation

and replaced with fresh media. Luciferase activity of reporter

constructs was measured 48 h post-transfection using a dual

luciferase reporter assay system (Promega) according to the

manufacturer’s instructions.

Generation of CFAP410 VNTR tagging
SNPs

Samples from the UK MND Collections DNA bank had

previously been analysed as part of Project MinE (van der Spek

et al., 2019), and therefore, SNP genotype data were available for

individuals that were part of this study. The genotypes of SNPs

located within 500 kb of the CFAP410 gene were extracted from
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FIGURE 1

Location of multiple transcripts at the CFAP410 gene locus relative to the intron 1 VNTR. (A) The four main isoforms of CFAP410 overlaid with

the Simple Tandem Repeats track and histone marks from the ENCODE database. The ALS GWAS SNP (rs75087725) and identified tagging SNP

(rs56212056) are also shown. The VNTR identified in this study is boxed in red. (B) CFAP410 VNTR location overlaid with RefSeq genes from

NCBI and predicted transcripts from Ensembl database. (C) PCR amplification and gel electrophoresis of the VNTR within the CFAP410 locus.

This region was confirmed to be polymorphic and eight alleles were identified (numbered 1–8 to reflect increasing length). Variant 7 was found

only in a single ALS case. All samples were run at 100V on 2% agarose for 3.5 h. All samples shown are from the cohort of ALS cases and controls

that are genotyped in Table 1.

232 individuals who were either homozygous or heterozygous

for the two commonest alleles (4 and 5) of the VNTR. Analysis

was performed using plink (v1.07) (Purcell et al., 2007) to

identify SNPs in linkage disequilibrium (r2 >0.7) with alleles

4 and 5 of the VNTR.

Analysis of CFAP410 isoform expression
using NYGC ALS dataset

RNA-seq data from the Target ALS cohort obtained from

the New York Genome Centre Consortium were analysed

(https://www.targetals.org/research/resources-for-scientists/).

Data were available from different tissues of 211 people,

including 178 with ALS, 5 with other neurological diseases

(frontotemporal dementia, Alzheimer’s disease and multiple

system atrophy), 2 with other motor neuron diseases (spinal

bulbar muscular atrophy and polio) and 26 non-neurological

controls (NNC). RNA-seq data from the following tissues

(total 1,170) were included: cerebellum (161), frontal cortex

(169), medial motor cortex (148), lateral motor cortex (147),

unspecified motor cortex (9), occipital cortex (81), temporal

cortex (10), sensory cortex (2), lumbar spinal cord (147),

cervical spinal cord (161), thoracic spinal cord (76), iPS cell line

(4), motor neuron cell line (4), choroid plexus (35), medulla (1)

and liver (15) (Supplementary Table 1). Isoform quantification

of RNA-seq data was performed using the Salmon tool (https://

salmon.readthedocs.io). Salmon-generated quant files were

imported into R using the tximport function from the tximport

package of R (Soneson et al., 2015). Counts were extracted with
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TABLE 1 Allele and genotype frequencies of CFAP410 VNTR in MNDA cohort.

(A)

Allele

Cohort ALS cohort Control cohort Total % Difference (ALS–Control) p-value (Fisher’s exact test)

Count % Count %

1 2 0.20 5 0.51 7 −0.30 0.67

2 3 0.31 2 0.20 5 0.10 0.50

3 10 1.02 11 1.12 21 −0.10 1.00

4 224 22.86 220 22.31 444 0.54 0.93

5 730 74.49 737 74.75 1,467 −0.26 0.75

6 5 0.51 6 0.61 11 −0.10 1.00

7 1 0.10 0 0 1 0.10 0.50

8 5 0.51 5 0.51 10 0.00 0.50

Total 980 100.00 986 100.00 1,966 0.00 N/A

(B)

Genotype

Cohort
ALS cohort Control cohort Total % Difference (ALS - Control) p-value (Fisher’s exact test)

Count % Count %

1.4 1 0.20 1 0.20 2 0.00 1.00

1.5 0 0.00 4 0.81 4 −0.81 0.22

2.2 1 0.20 0 0.00 1 0.20 1.00

2.4 1 0.20 0 0.00 1 0.20 0.50

2.5 0 0.00 2 0.41 2 −0.41 0.50

3.4 1 0.20 1 0.20 2 0.00 1.00

3.5 9 1.84 10 2.03 19 −0.19 0.71

4.4 28 5.71 27 5.48 55 0.24 0.57

4.5 161 32.86 159 32.25 320 0.61 0.59

4.6 3 0.61 3 0.61 6 0.00 0.50

4.8 1 0.20 2 0.41 3 −0.20 1.00

5.5 277 56.53 278 56.39 555 0.14 0.76

5.6 2 0.41 3 0.61 5 −0.20 0.61

5.7 1 0.20 0 0.00 1 0.20 0.50

1.8 1 0.20 0 0.00 1 0.20 1.00

5.8 3 0.61 3 0.61 6 0.00 1.00

Total 490 100.00 493 100.00 983 0.00 N/A

(A) The distribution of the eight identified alleles of the CFAP410 VNTR in an ALS cohort (n= 490) and matched controls (n= 493) was analysed. Alleles 2 and 7 were the least frequent,

allele 7 being the rarest found only once in an ALS patient. There was no significant difference in allele frequency between the ALS cohort and matched controls (Fisher’s exact test). (B)

The distribution of the 12 identified genotypes of the CFAP410 VNTR in an ALS cohort and matched controls. There is no significant difference in genotype frequency between the ALS

cohort and matched controls (Fisher’s exact test).

the DESeqDataSetFromTximport function and raw counts were

normalised using the median-of-ratios method, implemented in

theDESeq2 package (Love et al., 2014). TheDESeq2 package in R

was also used to detect statistically significant differences in the

CFAP410 isoform expression profiles between different subject

groups (ALS vs. NNC). The ggplot2 package in R containing the

geom_boxplot function was used to visualise the data specifying

the stat_summary function to mean. The unpaired Wilcoxon

test was used to compare two independent groups of samples

and to demonstrate statistical significance (p-values and effect

size can be found in Supplementary Figure 2A, and a histogram

plot for the distribution of data for CFAP410 ENST00000462742

is shown in Supplementary Figure 5).

Tagging SNP analysis identified that genotypes (AA, GA

and GG) of rs56212056 are correlated with the two commonest

alleles 4 (A) and 5 (G). The association of the three different

SNP alleles with differential CFAP410 isoform expression was

analysed. The unpaired Wilcoxon test was used to compare two
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independent groups of samples and to demonstrate statistical

significance between different cases and controls and tagging

SNP genotype, respectively (p-values and effect size can be

found in Supplementary Figure 2B). LD analysis of the CFAP410

locus including the analysis of 31 SNPs from 243 individuals

within Project MinE shows no evidence for significant LD

with any of the tested SNPs across the region other than the

associations made for alleles 4 and 5 of the CFAP410 VNTR

(Supplementary Figure 3).

Results

Characterisation of isoform expression at
the CFAP410 locus

The CFAP410 gene contains an SNP (rs75087725) that is

associated with ALS risk (p = 3.08 × 10−10) (van Rheenen

et al., 2016). Analysis of the CFAP410 gene using the tandem

repeat track on UCSC (https://genome.ucsc.edu/) led to the

identification of six distinct tandem repeat domains at this locus.

We focus in this communication on the VNTR in intron 1

(Figure 1A), which was the only one that was variable in repeat

number. We noted its location relative to the transcriptional

start sites and its primary sequence had high GC content

(84%) and sequences related to those found in the C9orf72

VNTR (Supplementary Figure 1 and Figure 1B). It is difficult for

global analysis such as ChIPseq to correctly assign ENCODE

data over VNTRs themselves; however, when the VNTR was

overlaid with ENCODE data, it was found to be adjacent to the

markers H3K4Me1 (a marker of regulatory domains associated

with enhancers), H3K4Me3 (a marker of regulatory domains

associated with promoters) and H3K12Ac (a marker of active

regulatory domains associated with active enhancer elements)

(Supplementary Figure 1). On RefSeq analysis, this VNTR was

found within intron 1 of isoforms 1–3 of CFAP410 and it could

be a component of a promoter region for isoforms that initiate

3’ of the VNTR. Extending RefSeq analysis to include Ensembl

transcript data increased the number of isoforms identified

at this locus (shown in red in Figure 1A). Specifically, this

identified a predicted transcript initiating immediately 5’ of the

VNTR, Ensembl transcript (ENST00000462742), and an anti-

sense transcript relative to CFAP410, which was annotated as a

long non-coding RNA on Ensembl (ENST00000426029).

Expression of isoforms in CNS

Transcriptomic data from the Target ALS cohort was

utilised to assess the expression of CFAP410 isoforms in the

CNS. Isoform expression analysis showed that five CFAP410

isoforms are expressed in the CNS (Figure 5A). The anti-

sense transcript (ENST00000426029) relative to CFAP410

showed no expression in this RNA-seq dataset (Figure 5A).

We next analysed the differential expression of CFAP410

isoforms in case and control subjects (Figure 2). The isoform

ENST00000462742 showed significantly reduced expression

in cases compared to controls (Figure 2D). This isoform was

annotated as a non-coding retained intron transcript. The other

two predominantly expressed isoforms (ENST00000339818

and ENST00000325223) demonstrated a similar pattern of

expression to ENST00000462742; however, these associations

did not reach statistical significance (Figures 2A,B). The

remaining CFAP410 isoforms (ENST00000397956 and

ENST00000496321) showed very low expression levels,

therefore the data for these isoforms did not give us sufficient

power to identify evidence for differential expression between

case and control subjects (Figures 2C,E).

The intron 1 VNTR has a minimum of
eight distinct alleles

PCR amplification and gel electrophoresis of the VNTR

within the CFAP410 locus was performed in a subset of

the cohort from the UK MND Collection DNA Bank (n

= 983). This region was confirmed to be polymorphic

and eight alleles were identified (numbered 1–8 to reflect

increasing length) (Figure 1C). The sequence of allele 5

of the VNTR (Supplementary Figure 1B) was found to be

comprised of two distinct repeat lengths, 35 and 22bp

long, respectively. Furthermore, four alleles were sequenced

(Supplementary Figure 1B) and were found to contain the same

two repeat lengths in varying patterns. From PCR of this limited

number of genomes, the most common alleles were those

termed 4 and 5, which contained 9 and 10 repeats, respectively

(Supplementary Figure 1B).

The CFAP410 VNTR has both the
properties of an activator domain and a
transcription start site

To determine the potential ability of the CFAP410 VNTR to

regulate transcription, in vitro reporter gene assays were used.

The most common alleles (alleles 4 and 5) were cloned in both

orientations of the VNTR into the pGL3-P vector upstream

of the SV40 minimal promoter and luciferase activity was

compared to the activity of the pGL3-P vector alone. Both alleles

demonstrated transcriptional regulatory properties (Figure 3).

Alleles 4 and 5 in the endogenous orientation demonstrated

a 2.64- and 1.71-fold increase in expression of luciferase

over pGL3p alone, respectively, with both being statistically

significant (Allele 5, 1.71 ± 0.13, T-test, p = 1.08 × 10−6 and

Allele 4, 2.64 ± 0.18, T-test, p = 3.54 × 10−6). Furthermore,
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FIGURE 2

Di�erential expression of CFAP410 in Case and Controls in the CNS using the NYG transcriptomic data. Expression analysis of CFAP410 isoforms

in ALS and control subjects. RNAseq data from the NYGC ALS cohort were used to compare expression of CFAP410 isoforms ENST00000339818

(A), ENST00000325223 (B), ENST00000397956 (C), ENST00000462742 (D) and ENST00000496321 (E). Wilcoxon test was applied to demonstrate

statistical significance indicated as asterisks. **P ≤ 0.01.

there was a significant difference in luciferase activity when

cloned in this direction between alleles 4 and 5 (T-test, p =

4.39 × 10−7), with allele 4 showing a larger enhancement of

reporter gene activity. In the reverse orientation, allele 5 alone

demonstrated a mild decrease in expression compared to empty

pGL3P (0.82±0.03, T-test, p = 1.49 × 10−7), but no change

from empty pGL3P was observed for allele 4 in the reverse

orientation (1.04± 0.06, T-test, p= 3.70× 10−1).

The location of the VNTR upstream of the Ensembl

transcripts ENST00000462742 and ENS00000496321

(equivalent position to the RefSeq short isoform) and the

anti-sense transcript (ENST00000426029) (Figures 1A,B)

suggested that it could elicit promoter activity. This might be

especially true for ENST00000462742, which is directly adjacent

to the VNTR, as it has been known for some time that GC-rich

sequences can act to initiate transcription in those promoters

that lack a TATA box (Kageyama et al., 1989). The VNTR

primary sequence demonstrated high GC content (84%), which

was consistent with such a model. To address this hypothesis,

alleles 4 and 5 of the VNTR were cloned in both orientations
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FIGURE 3

The CFAP410 VNTR shows functional properties in the pGL3-P vector in the HEK293 cell line. (A) Schematic for VNTR containing constructs and

pGL3 vectors (Promega) used in the luciferase assay. (B) The fold activity of alleles 4 and 5 of the CFAP410 VNTR in the endogenous (forward)

orientation within the pGL3P vector, normalised to the internal control Renilla luciferase (Biological replicate n = 3, technical replicate per assay

n = 4). The promoter-less vector (pGL3-B) was included as a negative control. T-test was used to compare VNTR-containing constructs to SV40

unmodified vector (pGL3-P) and to compare all VNTR containing constructs against each other. ***P = <0.001.

into pGL3-B (Promega) containing a firefly luciferase reporter

without a promoter, which is a well-characterised model to

test if a region of DNA can act as a transcriptional start site in

reporter gene studies. The unmodified pGL3-P vector (Figure 4)

was included in this assay as it contains the minimal SV40 early

promoter and therefore serves as a positive control for the level

of expression directed by a well-characterised promoter in this

cell line model. Both orientations of the VNTR demonstrated

promoter activity which would require these domains to act as

a transcriptional start site to allow expression of the luciferase

reporter. This was especially true in the reverse orientation;

VNTR orientations are given as endogenous and reverse to

reflect that found in relation to the CFAP410 gene. VNTR allele

4 in the endogenous orientation led to a 17.02-fold increase in

luciferase expression (17.02 ± 0.67, T-test, p = 1.81 × 10−13),

while the reverse orientation induced a 100.60-fold increase

in reporter gene activity (100.60 ± 1.83, T-test, p =2.38 ×

10−17) (Figure 4). Similarly, a 20.37-fold increase in luciferase
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FIGURE 4

The CFAP410 VNTR shows promoter activity in the pGL3-B vector in HEK293. (A) Schematic for VNTR containing constructs and pGL3 vectors

(Promega) used in luciferase assay. (B) The fold activity of the CFAP410 VNTR in the endogenous and reverse orientation within the pGL3-B

vector normalised to the internal control Renilla luciferase (Biological replicate n = 3, technical replicate per assay n = 4). The pGL3-P vector

was included as a positive control as this contains an SV40 promoter. T-test was used to compare VNTR containing constructs to each other

(allele 4 vs. allele 5) and promoterless vector alone (pGL3-B). T-test was also used to compare VNTR containing constructs to the SV40

promoter vector (pGL3-P). ***P = <0.001.

expression was observed in the allele 5 endogenous construct

(20.37±0.72, T-test, p = 4.88 × 10−14), while a 113.25-fold

increase in luciferase activity in the allele 5 reverse orientation

VNTR construct was observed (113.25 ± 4.16, T-test, p = 5.27

× 10−14). For comparison, the pGL3-P vector demonstrated

a 46.98-fold increase in luciferase expression when compared
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to empty pGL3-B (46.98±1.28, T-test, p = 1.09 × 10−15).

Thus, overall, a moderate but statistically significant increase in

luciferase activity was observed in both endogenous orientation

VNTR constructs when compared to empty pGL3-B, but this

was significantly less than the SV40 minimal promoter activity

seen with pGL3-P (T-test, p = 1.09 × 10−15). However, in the

reverse orientation, a statistically significant increase compared

to pGL3-P was observed: a 2.1- and a 2.4-fold increase in

luciferase expression by alleles 4 and 5, respectively. Overall,

both alleles of the VNTR induced a significant increase in

reporter gene expression compared to empty pGL3-B, but allele

5 drove the largest effect in this model. This data suggests the

possibility that the VNTR has promoter activity to initiate and

direct expression at the CFAP410 locus.

VNTR variation is associated with
CFAP410 gene expression in silico

We identified SNP rs56212056 to be in moderate linkage

disequilibrium (r2 = 0.75, D’ = 0.949) with the two most

common alleles (termed alleles 4 and 5) of the VNTR. It was

not possible to identify tagging SNPs for the rarer VNTR alleles

in this study given their frequency in the population and the

size of our cohort. The A allele of the SNP was found to be

correlated with allele 4 of the VNTR and the G allele with

allele 5. We used the Target ALS brain expression data to

correlate these variants with CFAP410 isoform expression. The

association of three different SNP genotypes (AA, GA and GG)

based on the correlation with allele 4 (A) or allele 5 (G) was

analysed (Figure 5). We observed differential levels of isoform

expression correlated with distinct G or A genotypes. Three

CFAP410 isoforms (ENST00000339818, ENST00000325223 and

ENST00000462742) showed significantly reduced expression

with GG genotype compared to both GA and AA genotype

(Figures 5B–E). This was in contrast with the levels of

expression of the isoform ENST00000496321 where the opposite

pattern was observed (Figure 5E). Isoform ENST00000397956

correlated with significantly reduced expression in subjects with

two copies of allele 5 (GG genotype) compared to subjects with

the GA genotype only indicating one allele 4 and one allele 5 are

present (Figure 5D). The data indicate that distinct VNTRs are

able to support differential gene expression in the brain.

Genotyping the VNTR

To assess if specific VNTRs in this region were associated

with ALS, the CFAP410 VNTR was genotyped in a cohort

of cases and controls (Table 1). The VNTR was amplified by

PCR from blood-derived genomic DNA from patients (n =

490) and controls (n = 493) and a total of eight alleles of the

CFAP410 VNTR were identified and numbered according to

increasing length. Allele 5 (reference genome variant, 584 bp)

was the most common allele and was present in 74.49% of cases

and 74.75% of controls; no significant difference in frequency

was found between the two populations (Fisher’s exact test, p

= 0.75). The next most common variant was allele 4, which

was identified in 22.86% of cases and 22.31% of controls: no

significant difference in allele frequency was observed between

the two groups (Fisher’s exact test, p = 0.93). The other six

alleles were infrequent in the population, with no statistically

significant differences being observed (Table 1). There was also

no significant difference in the allele frequencies of the eight

alleles of the CFAP410 VNTR when comparing controls and

cases using CLUMP software (T1, p= 0.91 and T4, p= 0.94).

To determine the repeat composition and length of the

VNTR alleles, the two alleles found most commonly in this

cohort (alleles 4 and 5) and two of the rare variants (alleles

2 and 8) were cloned and sequence validated. All alleles were

found to be a composite of various numbers of both a 22 bp and

35 bp repeat unit (Supplementary Figures 1A,B). The primary

sequence of the VNTR demonstrated variation in the actual

sequence of both the 22 or 35 bp repeat unit and the repeating

structure indicated a more complex evolution of variation than

simply separating into two blocks. It may be of interest to note

that the most 5’ repeat element had only 34 bp.

Discussion

We have demonstrated that the VNTR in intron 1 of the

CFAP410 gene was functional as a transcriptional regulator in

vitro. It served as a transcriptional regulatory domain in reporter

gene constructs in the HEK293 cell line and directed differential

gene expression on the basis of repeat number as both an

activator domain and transcriptional start site/promoter. These

data were extended to in silico analysis in which tagging SNP

analysis for the two most common alleles of this VNTR was

associated with differential gene expression of CFAP410 in the

brain. This VNTR was found to be highly variable in the general

population, with at least eight distinct variants, but there was

no significant association of specific genotype with ALS risk.

Nevertheless, our data indicated the regulatory properties of this

VNTR could support differential regulation of CFAP410 based

on the copy number of the repeat. The ability of the VNTR to

direct such expression could be one parameter that works in

conjunction with other mechanisms at this locus that could lead

to the progression or severity of ALS to specific challenges in

the CNS.

It has been established that VNTRs can be both biomarkers

for disease risk and also functional regulatory domains affecting

both transcription and post-transcriptional mechanisms

as reviewed recently (Marshall et al., 2021). These latter

transcriptional properties can be exhibited together for the same

VNTR as in the case of the monoamine oxidase A (MAOA) gene

(Manca et al., 2018) and a VNTR in themir137 gene (Warburton
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FIGURE 5

The expression of CFAP410 isoforms is associated with tagging the SNP rs56212056 genotype. (A) CFAP410 isoform expression using RNAseq

data from the NYGC Target ALS cohort. (B–F) Association of three di�erent SNP genotypes (AA, GA, and GG) with an expression of isoforms

ENST00000339818, ENST00000325223, ENST00000397956Q24, ENST00000462742, and ENST00000496321 was analysed based on the

correlation with allele 4 (A) or allele 5 (G) using transcriptomic data from the NYGC ALS cohort. Wilcoxon test was applied to demonstrate

statistical significance indicated as asterisks. *P = <0.05, **P = <0.01, ***P = <0.001, ****P = <0.0001, ns > 0.05.

et al., 2016). Indeed, we have previously demonstrated that a

human-specific intron 2 VNTR within the serotonin transporter

gene can direct both tissue-specific and differential levels

of reporter gene expression in a mouse transgenic model

(MacKenzie and Quinn, 1999). We hypothesise that similar

mechanisms may operate on the CFAP410 VNTR, which could

lead to distinct levels of expression from different alleles in

response to the same cellular challenge. Specifically, we theorise

that the association of the two most common alleles with

differential CFAP410 expression can be extrapolated to such

properties being embedded in the other minor VNTR alleles.

The genomic location of the CFAP410 gene is a complex

region with multiple isoforms that can be either coding or non-

coding in nature, indeed one of the isoforms ENST00000462742
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has the hallmarks of a retained intron (Monteuuis et al.,

2019) (Figure 1). Interestingly, this isoform was significantly

downregulated in the cases relative to the controls. Notably,

retained introns have higher GC content compared to introns

that are not and this is true for the large GC-rich VNTR

found in this intron of CFAP410, similarly the difference in

the size of the VNTR and thus relative GC content could

affect the efficiency of retention. This is consistent with a

model in which the presence of RNA structures induced by the

GC-rich microsatellite expansions has an inhibitory effect on

splicing (Sznajder et al., 2018). New techniques and improved

sequencing protocols have demonstrated as much as 95% of the

genome can be transcribed, hence alternative splicing and intron

retention are emerging areas of importance for gene regulation

and disease progression (Monteuuis et al., 2019). In addition

to the aforementioned CFAP410 isoforms, there is also a non-

coding RNA that is antisense to the CFAP410 gene (Figure 1);

however, we could find no evidence for measurable levels of this

antisense message in the CNS transcriptomic data.

Genotyping the CFAP410 VNTR led to the discovery of

eight alleles in the cases and controls used for this study (n =

983) (Figure 1C). The frequencies of all alleles and genotypes

were not found to be significantly different between cases and

controls (Table 1); however, our limited cohort size would likely

to be insufficient to identify rare variants associated with ALS.

ALS is a complex disease and given the small sample size we

were unable to address many of the different metrics, which

contribute to this disease, including disease severity, the onset

of disease, disease pathology, age, ethnicity, and known ALS

genetic mutations in these patients: the VNTR in question could

be important in any one of these metrics. However, we do pose

a potential mechanism as to how such variants could contribute

to disease risk and show that tandem repeat numbers can drive

differential gene expression. Furthermore, the original CFAP410

ALS association was from a rare variant (van Rheenen et al.,

2016), so such rare VNTR variants discovered here could be part

of a yet unidentified polygenic risk score.

Unfortunately, expansion of the cohort size is both time- and

resource consuming due to the requirement for PCR analysis of

all samples. However, the properties of the VNTR to modulate

gene expression in vitro and correlation with differential

CFAP410 expression in silico allowed us to hypothesise that

this domain could regulate the expression of this locus in

response to the same challenge, which could result in distinct

levels of protein expression that could modulate risk and

progression of ALS. The primary sequence of the CFAP410

VNTR also contains consensus sequence binding sites for

proteins predicted to bind the C9ORF72 intronic VNTR

(Supplementary Figure 4), potentially inferring contribution

to the same signalling pathways. Similarly, modulation of

the levels of CFAP410 could have a significant effect on

the function of other ALS risk genes, such as functional

interactions with NEK1 (Fang et al., 2015; Watanabe et al.,

2020). These studies demonstrate the increased fusion of genetic

risk with an environmental challenge to modulate ALS risk

and progression.
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SUPPLEMENTARY FIGURE 1

(A) CFAP410 VNTR repeat unit breakdown. Number of 22 bp and 35 bp

repeat units per allele of the CFAP410 VNTR (confirmed through Sanger

sequencing). (B) CFAP410 VNTR alleles primary sequence and repeat

order. Variants 2, 4, 5 and 8 of the CFAP410 VNTR aligned and split into

respective 22 bp and 35 bp repeat units. Allele 2 = 262 bp, allele 4 = 297

bp, allele 5 = 319 bp, allele 8 = 468 bp. Boxes indicate exemplars of the

35p and 22 bp repeat unit. All repeats have been aligned by eye and are

therefore arbitrary.

SUPPLEMENTARY FIGURE 2

(A) P-values and e�ect size of analysis of CFAP410 isoform expression

using NYGC ALS dataset. (B) P-values and e�ect size of tagging SNP

analysis of CFAP410 VNTR.

SUPPLEMENTARY FIGURE 3

LD plot over CFAP410 locus. LD plot over a 45kb region using 31 SNPs

from 243 individuals from the Project MinE encompassing the CFAP410

gene. Two blocks of LD are located 5’ and 3’ of the CFAP410 gene. The ∗

indicates rs56212056 which is the SNP in moderate LD with allele 4 and

5 of the VNTR located in CFAP410. There is minimal LD between

rs56212056 and the other SNPs located in the region. Intensity of each

square represents the r2 between the two SNPs; darker the colour the

larger the r2.

SUPPLEMENTARY FIGURE 4

Alignment of CFAP410 and C9ORF72 intronic VNTRs. Both VNTR

sequences are polymorphic and contained within intron 1 of the most 5’

start site. The hexamer sequence within C9orf72 from the UCSC

browser (A) contains the sequence CCCCGG and GCCCCG identified in

red and green respectively which are also found in the CFAP410

sequence (B).

SUPPLEMENTARY FIGURE 5

Histogram plot of the distribution of data in the Target ALS cohort for

the CFAP410 ENST00000462742 transcript.

SUPPLEMENTARY TABLE 1

Available tissues from the NYGC Target ALS cohort stratified by controls

and ALS subjects.
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