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Abstract 10 

Reasonable modeling of non-Gaussian system inputs from limited observations and efficient propagation of system 11 
response are of great significance in uncertain analysis of real engineering problems. In this paper, we develop a new 12 
method for the construction of non-Gaussian random model and associated propagation of response under limited 13 
observations. Our method firstly develops a new kernel density estimation-based (KDE-based) random model based 14 
on Karhunen-Loeve (KL) expansion of observations of uncertain parameters. By further implementing the arbitrary 15 
polynomial chaos (aPC) formulation on KL vector with dependent measure, the associated aPC-based response 16 
propagation is then developed. In our method, the developed KDE-based model can accurately represent the input 17 
parameters from limited observations as the new KDE of KL vector can incorporate the inherent relation between 18 
marginals of input parameters and distribution of univariate KL variables. In addition, the aPC formulation can be 19 
effectively determined for uncertain analysis by virtue of the mixture representation of the developed KDE of KL 20 
vector. Furthermore, the system response can be propagated in a stable and accurate way with the developed D-21 
optimal weighted regression method by the equivalence between the distribution of underlying aPC variables and 22 
that of KL vector. In this way, the current work provides an effective framework for the reasonable stochastic 23 
modeling and efficient response propagation of real-life engineering systems with limited observations. Two 24 
numerical examples, including the analysis of structures subjected to random seismic ground motion, are presented 25 
to highlight the effectiveness of the proposed method. 26 

Keywords: Uncertain analysis; Random field modelling; PC-based response propagation; Limited observations; Kernel 27 
density estimation. 28 
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List of acronyms and abbreviations 

aPC arbitrary polynomial chaos  KDE kernel density estimation 

CDF cumulative density function  KL Karhunen-Loeve 

DOF degree of freedom  MCMC Markov chain Monte Carlo 

ED experimental design  MCS Monte Carlo simulation 

IQR interquartile range  PC polynomial chaos 

ISDE Itô stochastic differential equation  PDF probability density function 



 

 

1. Introduction 31 
In stochastic engineering problems, the proper consideration of uncertain input parameters is crucial to obtain 32 

an accurate and reliable solution [1-3]. Uncertain inputs are ubiquitous in engineering applications and include 33 
uncertainty in system parameters, material properties, source and interaction terms, boundary and initial conditions, 34 
etc [4-6]. A large number of practical problems involves uncertain input quantities with inherent spatio-temporal 35 
variability, and in such cases, random fields are commonly used for modelling spatial fluctuations as observed in 36 
various disciplines, for example, soil parameters and groundwater heights in geotechnical engineering, wind loads 37 
and earthquake excitations in structural engineering, and the amount of precipitation and evaporation in hydrology 38 
[7-12]. In real applications, it will often be the case that very few realizations are available regarding the uncertain 39 
input parameters, and only limited measurements can be obtained owing to limited storage capability of sensors or 40 
prohibitive cost in increasing observations, etc [13-16]. In this context, the Gaussian simplification is often made on 41 
the fields to empower their numerical simulation with any practical use owing to the fact that Gaussian fields are 42 
completely described by their second-order statistics. In fact, it has been evidenced by an ever-growing number of 43 
experimental databases that many physical phenomena are not Gaussian, and significant differences may arise in the 44 
estimation of system response if a Gaussian field is assumed. Although clearly more realistic in most instances, non-45 
Gaussian models have had to contend with the scarcity of consistent mathematical theories for describing general 46 
infinite-dimensional probability measures [17-20]. More than ever, the goal then becomes to reasonably represent 47 
non-Gaussian input parameters from limited observations and to propagate the input uncertainty to satisfactorily 48 
quantify the effects on quantities of interest.  49 

The problem of representing and propagating of non-Gaussian random inputs from the available observations 50 
to the desired results has attracted significant interest in the last decade. This research has spawned the development 51 
of two basic categories of methods. A first class of methods seeks to produce sample functions of the target non-52 
Gaussian field according to its limited observations, and then to estimate random response of systems with Monte 53 
Carlo simulation (MCS). In this regard, Beer and Kougioumtzoglou reconstructed (spatio-)temporal non-Gaussian 54 
random model by recovering their (joint) power spectrum from limited measured data [11, 13, 21-23]. Wang et al. 55 
modeled uncertain input parameters from limited data by Karhunen-Loeve (KL) expansion in conjunction with 56 
Bayesian compressive sensing [24, 25]. While it provides an effective tool for reconstructing non-Gaussian fields 57 
through limited observations, this is the method of last resort since the attendant computational burden can be 58 
prohibitive for large-scale problems, and thereby rules out the method to be applicable in a wide range of engineering 59 
systems. As a promising alternative to sample-based method, the class of polynomial chaos-based (PC-based) 60 
methods has received increasing attention. The basic idea is firstly to synthesize the non-Gaussian field from limited 61 
data by KL expansion, and then to represent KL variables by PC expansion. By further using the well-established 62 
PC-based solution technique, the probabilistic information is efficiently propagated regarding the input parameters 63 
to the associated response of systems. The benefits of this class of method lies in the ability of PC expansion to 64 
characterize the non-Gaussian probabilistic behavior under limited measurements. In addition, as the capacity of PC 65 
expansion for the efficient propagation of uncertainty is naturally inherited, this class of method has the potential for 66 
addressing complex issues of general engineering interest.  67 

While elegant, the utilization of the PC representation together with KL expansion poses a number of additional 68 
challenges in real applications. A first challenging issue is recognized as the reconstruction of PC-based model for 69 
faithfully representing non-Gaussian input parameters from limited data. This is because the joint probability density 70 



 

 

function (PDF) recovery of KL vector, which significantly affects the accuracy of input model, is quite challenging 71 
due to the nonlinear dependence of the non-Gaussian KL variables. Another aspect which deserves more attention is 72 
the fact that determination of the associated PC formulation is even further complicated, as a great number of high-73 
dimensional integrals are involved in the multidimensional nonlinear transformation from KL variables to the 74 
underlying PC variables. In order to overcome these two difficulties, various efforts have been made in the last ten 75 
years. An early attempt is to pose the independent assumption on uncorrelated KL variables so that one-dimensional 76 
PC can be readily used to represent KL variables [26-29]. Although the above-mentioned two difficulties can be 77 
simultaneously circumvented, this scheme may lead to grossly inaccurate PC-based model of input field due to the 78 
ignorance of nonlinear dependence between KL variables. No wonder, the associated propagation of the system 79 
response would not have any significant meaning without an accurate input model. In order to capture the dependence 80 
of KL variables, the moment-constrained maximum entropy procedure was developed for estimating PDF of KL 81 
variable, Rosenblatt transformation was then employed for constructing the Hermite PC representation of KL 82 
variables [30]. However, since a large number of multivariate integrations have to be solved in both the maximization 83 
of entropy and Rosenblatt transformation, the computational cost of the method becomes intractable with respect to 84 
the number of KL variables. Although the histogram estimator was subsequently developed to convert the 85 
multivariate integrations in [30] to a set of univariate integrations by slicing the multivariate conditional PDFs in 86 
Rosenblatt transformation, the number of slices expands exponentially with the KL variables [31]. In fact, the 87 
integration scheme in [31] is equivalent to the tensor product quadrature to some extent, and thereby the method still 88 
suffers the curse of dimensionality. This is why the use of the methods in [30] and [31] has been limited to problems 89 
with low random dimensionalities. Very recently, [32] employed kernel density estimator (KDE) to recover PDF of 90 
KL variables, and then determined the PC coefficients of KL variables by MC integration, in which a new Ito 91 
stochastic differential equation (ISDE)-based sampler was developed to generate the MC integral points. Since KDE 92 
can be straightforwardly extended to high-dimensional cases without enormous computational burden, the curse of 93 
dimensionality encountered in above mentioned density estimators can be greatly alleviated [33]. Nevertheless, the 94 
use of multidimensional Silverman bandwidth in KDE inevitably results in an evident deviation in the estimation of 95 
marginal distribution of non-Gaussian KL variables, and thereby lead to an inappropriate PC-based input model. In 96 
addition, since the ISDE-based sampler is essentially a type of Markov Chain Monte Carlo (MCMC) sampler, the 97 
inherent deficiencies of MCMC, i.e., the autocorrelations of MCMC samples as well as the repeated evaluations of 98 
PDF of variables, severely decrease the efficiency for determining the PC formulation of KL variables [34].  99 

Another significant challenge in the PC-based approach is the efficiency of the propagation of the response. This 100 
is clearly an important aspect, which affects the applicability of the method, i.e., its efficiency versus other types of 101 
propagation methods. It is acknowledged that the use of Hermite polynomials as PC bases may lead to optimum 102 
convergence for the Gaussian distributed input parameter. While for inputs with other common distribution types, 103 
Wiener-Askey orthogonal polynomials can also be used as PC bases to achieve the same convergence [35]. However, 104 
in the context of limited observations, the non-Gaussian KL variables may have broader distributions outside the 105 
Wiener–Askey family. In this case, the use of Wiener–Askey scheme may lead to a substantially slow convergence 106 
of PC expansion of system response, and the huge computational burden in response propagation prevents the 107 
application of the method in large-scale engineering problems. Therefore, the construction of proper PC basis is of 108 
crucial importance for the applicability of the method with respect to an optimal convergence purpose. On the other 109 
hand, given the optimal PC bases for uncertainty propagation, the determination of associated PC approximation of 110 



 

 

system response still remains to be a significant challenge due to the dependence of underlying PC variables. In fact, 111 
when the underlying PC variables are mutually independent, existing well-established methods can be readily used 112 
for response propagation, while there exists a dearth of algorithmic options for approximation of system response 113 
under dependent underlying PC variables [36, 37]. For this line of approach to be attractive in practice, two important 114 
objectives should be reached. Firstly, accurate construction of PC-based input model from limited observations 115 
should be able to achieved. This would be essential for faithfully capturing the non-Gaussian probabilistic behavior 116 
of input parameters, and would be particularly beneficial for constructing a general formulation for PC-based 117 
response analysis. Secondly, the associated response propagation should be suitable and efficient for high-118 
dimensional and large-scale problems in terms of the computational demand so that the method can cover a wide 119 
range of applicability for a general purpose implementation. 120 

The goal of this paper is to develop a new PC-based method for reasonably modeling of non-Gaussian system 121 
inputs as well as efficient propagation of associated system response under limited observations. Firstly, the limited 122 
observations of non-Gaussian uncertain input parameters are represented by KL expansion, resulting in a set of 123 
eigenpairs and corresponding KL random vector, followed by the development of a novel KDE for estimating the 124 
joint distribution of KL vector from their realizations, leading to the KDE-based random model of uncertain input 125 
parameters. In order to achieve the optimal convergence of associated response propagation, the aPC-based input 126 
model is then constructed by representing KL variables with aPC expansion weighted by their joint PDF. With the 127 
aPC representation of input parameters, we further develop a D-optimal weighted regression method for robust and 128 
accurate aPC approximation of system response. In our method, by incorporating the inherent relation between 129 
marginals of input field and distribution of univariate KL variables into the new KDE of KL vector, the developed 130 
KDE-based random model can accurately represent the input field from limited observations in terms of 131 
simultaneously reconstructing its marginals and second-order correlations. Furthermore, with the aid of the mixture 132 
representation of the developed KDE of KL vector, a new sample generator is developed for efficiently generating 133 
independent samples from KL vector, so that the enormous computational burden caused by repeated density 134 
evaluations as well as the inherent autocorrelations of generated samples in MCMC can be circumvented, and as a 135 
result, the aPC formulation of input parameters and stochastic system responses can be effectively determined. On 136 
the other hand, by virtue of the equivalence between the distribution of underlying aPC variables and that of KL 137 
vector, samples of underlying aPC variables are readily generated by the developed sampler for KL vector. With these 138 
samples, well-established PC-based solution techniques under independent PC variables are straightforwardly 139 
extended for the aPC-based response propagation by the developed D-optimal weighted regression method. In this 140 
way, the response is propagated in a robust and accurate way. With the reasonable stochastic modelling and efficient 141 
response propagation, the current work provides an effective framework for the stochastic analysis of practical 142 
engineering systems with limited observations. 143 

The remainder of this paper is organized as follows. the novel KDE-based model construction technique for 144 
random field input parameter under limited observations is developed in Section 2. In Section 3, the associated aPC-145 
based response propagation is developed. Two numerical examples are investigated to validate the effectiveness of 146 
proposed KDE-based model construction and aPC-based response propagation in Section 4. 147 

2. A novel random field model of non-Gaussian input parameter with limited observations 148 
Accurate representation of the non-Gaussian structural input parameters is the first essential step of the stochastic 149 

structural analysis with limited observations. As mentioned earlier, although various methods have been developed 150 



 

 

for this purpose, the KDE-based modelling technique is the most promising one among others because it permits to 151 
estimate multi-dimensional PDF of KL variables with reasonable computational demand. The main drawback of this 152 
method is that the resulting marginals may deviate from the true one due to the choice of bandwidth in KDE. This 153 
may lead to an inaccurate input model and thereby the untrustworthy estimation of its impact on engineering systems. 154 
In this section, we develop a new KDE-based model for accurately characterizing the non-Gaussian behavior of input 155 
parameters, and the KDE-based model in [32] is also presented for completeness.  156 

2.1. Karhunen-Loeve expansion of non-Gaussian input parameter from limited observations 157 
Consider a sequence of measurements of ( ),w x θ   at M   locations over coordinates 1 2, , , Mx x x  , named158 

( , )iw x θ  , 1,2, ,i M=    and there exists N   independent observations of random variables ( ),iw x θ   in each 159 

location. The observations of ( ),w x θ   can be summarized in an N M×   matrix { }( , )i jw x θ=W  , 1, ,i M=   , 160 

1, ,j N=  .  161 

For the random field ( ) { }( , )iw x θθ =W , the truncated KL expansion of the original observations yields the 162 

following approximation 163 

 ( ) ( )
1

ˆ
m

i i i
i

θ λ φ ξ θ
=

= +∑W W  (1) 164 

where 1[ , , ]MW W=W   is the mean of ( )θW , m is the truncation order related to the ratio of retained energies. 165 

Accordingly, the pairs{ },i iλ φ are the first m eigenvalues and eigenvectors of the covariance matrix WC  of the field 166 

( )θW . Generally, the number of retained terms is adopted such that 
1 1

1M M
i im i
λ λ

+ =∑ ∑  . The second-order KL 167 

vector ( ) ( ) ( ) T
1[ , , ]mθ ξ θ ξ θ=ξ   has zero mean and unit covariance matrix, i.e., 168 

 ( ) ( ) ( )E , E T
mθ θ θ = =    ξ 0 ξ ξ I  (2) 169 

where mI   is an m m×   identity matrix. In the context of limited observations, the mean ( )
1

,1 N

i j
j

iW
N

w x θ
=
∑  , 170 

1, ,i M=   and the covariance matrix WC  can be estimated as  171 
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where U is an N-dimensional vector whose entries are all one, and the KL variables ( )iξ θ  are characterized by their 173 

limited realizations as 174 

 obs 1/2
ij i j iiWλ φ−  Ξ = − W  (4) 175 

for 1, ,i m=  , 1, ,j N=  , where ( ) ( )1[ , , , , ]j M jj w x w xθ θ=W  , { }iλ  and { }iφ  are the first m eigenvalues and 176 

eigenvectors of matrix ˆ
WC , respectively. 177 

It is known that, if the random field is Gaussian distributed, then ( )iξ θ , 1, ,i m=   are independent standard 178 

Gaussian variables [38]. While for non-Gaussian field ( )θW , the associated KL variables ( )iξ θ , 1, ,i m=   are 179 

not Gaussian and hence not independent, and in this case, joint density of ( )iξ θ  , 1, ,i m=    has to be 180 
reconstructed from their limited realizations in Eq. (4) to capture the nonlinear dependence of KL variables. In [32], 181 
the KDE is used to estimate the distribution of KL vector ( )θξ  as 182 
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K Ξ I  denotes an m-dimensional normal distribution with mean obsˆ
j

s
s
Ξ  and covariance matrix 184 

2ˆ ms I  , s is a multidimensional Silverman bandwidth defined by ( ){ } ( )1 4
4 2

m
s N m

+
= +    , ŝ   is a positive 185 

parameter adopting as ( )2ˆ 1 /s s s N N= + −  , and ob bo s sb s o
1[ ], ,j mjj Ξ Ξ=Ξ   . Once the joint distribution of KL 186 

variables has been estimated by Eq. (5), the model of random field ( )θW  can then be readily approximated by Eq. 187 
(1). Compared with other types of density estimator, e.g. maximum entropy or histogram estimator, since the KDE 188 
in Eq. (5) can be straightforwardly extended to high-dimensional cases without enormous computational burden, it 189 
provides an general scheme for KL-based random field reconstruction from limited observations [33]. Unfortunately, 190 
the choice of multi-dimensional Silverman bandwidth s in Eq. (5) inevitably leads to the deviation of the marginals 191 
of non-Gaussian fields, and as a result, the model in [32] is incapable of accurately capturing the non-Gaussian 192 
features of input parameters. This challenge regarding the accuracy of model of input parameters significantly hinders 193 
the practical application of the method.  194 

2.2. A novel KDE-based random model of input parameters 195 
In order to accurately model the non-Gaussian input parameters from limited observations, we develop a novel 196 

KDE for estimating the joint PDF of KL variables so that the most two critical statistics of a general non-Gaussian 197 
input field, i.e., marginal distribution as well as second-order correlations, can be simultaneously reconstructed. For 198 
the purpose of matching marginals of input parameters, we firstly choose the bandwidth s  according to univariate 199 

KDE, rather than the multi-dimensional case as in [32]. This is because marginal of ( )θW  is actually synthesized 200 

by the linear combination of the associated univariate KL variables ( )iξ θ , 1, ,i m=  , whose distribution can be 201 

obtained by marginalizing the distribution of KL vector ( )θξ  as 202 

 ( ) ( )1

obs 2
1 1 1 1

1

ˆ1ˆ ˆ ˆ,
mi

N

i i i m ijR
j

sp d d d d K sp
N s
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∑∫ Ξ ξ    (6) 203 

In this way, the capacity of the KDE-based model for modelling marginals of ( )θW  is essentially improved, when 204 
compared with that in [32]. In the context of the developed univariate KDE, we further determine the univariate 205 
bandwidth as 206 

 ( ) { } 1 50.9min , IQR /1.34 , 1, ,i
i is N i mσ −= =   (7) 207 

instead of Silverman bandwidth in [32], where IQR i   is the interquartile range (IQR) of realizations 208 

{ }obs obs
1 , ,i ii NΞ Ξ=Ξ  . This is because the Silverman bandwidth works well only when the underlying density to be 209 

estimated is normally distributed. While for non-Gaussian variables, especially for those following long-tailed and 210 
skew distribution or multimodal distribution, the use of Silverman bandwidth may lead to an oversmoothed 211 
estimation. It is known that the KL variables of the random field model are commonly far from Gaussian under 212 
limited observations and thereby outliers are prone to be occurred in the realizations iΞ . Since the IQR is more 213 

insensitive to outliers of samples of non-Gaussian KL variables, the incorporation of the interquartile range into Eq. 214 

(7) can produce a more robust estimate of the bandwidth ( )is  when compared with the use of Silverman bandwidth. 215 
As a direct consequence, the non-Gaussianality of each KL variable can be effectively captured, and thereby the 216 
resulted input model can accurately characterize the non-Gaussian behavior. Note that since the IQR i  in Eq. (7) 217 

generally produces different bandwidths ( )is  , 1i m=    for the associated KL variables, the resulting 218 
computational complexity may significantly decrease the efficiency for the construction of KDE-based model. In 219 
order to decrease the computational complexity, we further suggest that all KL variables share the same bandwidth 220 

shs  as 221 
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,
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−

=
=

= =∑ ∑  (8) 222 

where iw  is the weight of bandwidth ( )is . As shown in Eq. (7), the value of iw  decreases with the index i of KL 223 

variables, indicating that the ( )is  with smaller i contributes more to the proposed bandwidth shs . This is consistent 224 

with the fact that the KL variable with larger eigenvalue contributes more to the marginals of a random field [39]. In 225 
this sense, the shared bandwidth in Eq. (8) would be particularly beneficial in terms of the computational demand in 226 
KDE with reasonable accuracy.  227 

Based on the bandwidth shs  determined by Eq. (7) and Eq. (8), a new KDE is developed for estimating the 228 

joint distribution of ( )θξ  as 229 
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∑Ξ ξ Ξ I  (9) 230 

where positive parameter is adopted as ( )2
sh sh shˆ 1s s s N N= + − . Once the KL variables have been determined by 231 

Eq. (9), the non-Gaussian model of input field ( ),w x θ  can be accordingly synthesized with the KL expansion in 232 
Eq. (1). 233 

2.2.1. Properties of the developed KDE-based model 234 
It is acknowledged that marginal distributions as well as the second-order correlations are the two most 235 

concerned probabilistic characteristics of a general non-Gaussian random field. In the following, these two properties 236 
of the new KDE-based non-Gaussian model are investigated. 237 

By using the relation between a random field ( )θW  and its associated KL variables ( )θξ , the characteristic 238 

function of the marginal, ( )ˆ
kW θ , 1, ,k M=   of developed KDE-based model is formulated as 239 
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Based on the property of multivariate normal distribution ( ),m ⋅ ⋅K , Eq. (10) is rewritten as 241 

 ( ) obs 2 2 2sh
ˆ sh

1 1 1sh

ˆ1 1 ˆexp
2k

N m m

k j jk lj j jkW
l j j

su iu W u s
N s

ϕ λ φ λ φ
= = =

  
= + Ξ −  

   
∑ ∑ ∑  (11) 242 

With the derived characteristic function ( )ˆ
kW uϕ  in Eq. (11), the mean and variance of ( )ˆ

kW θ  are respectively 243 

calculated as 244 
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 (12) 245 

The results in Eq. (12) are consistent with the counterparts of truncated random field ( )ˆ θW , implying the capacity 246 

of the developed KDE-based model for reconstructing the first two order statistics of marginals of the field ( )θW . 247 

By further taking the Fourier transform on characteristic function ( )ˆ
kW uϕ , the PDF of ( )ˆ

kW θ  is readily obtained 248 



 

 

as 249 
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ˆ 1 sh
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Since the positive parameter shŝ  in Eq. (9) is adopted as ( )2
sh sh shˆ 1s s s N N= + − , relation sh shˆ 1s s →  holds as 251 

N → +∞ . Given the consistency of KDE, it is natural that the PDF of ( )ˆ
kW θ  in Eq.(13) converges to the true 252 

marginal density ( )ˆ
kp W  in probability as N → +∞  [33]. Therefore, the developed KDE-based model is capable 253 

of accurately reconstructing marginals of the field ( )θW . 254 

In order to further determine second-order correlation of the developed KDE-based model, second-order 255 
properties of the KL variables in Eq. (9) is firstly investigated. 256 
Proposition 1. The set of random variables ( )θξ  with the joint distribution defined by Eq. (9) are uncorrelated, 257 

and have zero means and unit variances, i.e., E[ ] =ξ 0 , TE[ ] m=ξξ I . 258 

Proof. By using the properties of KDE, the joint distribution of ( )θξ  in Eq. (9) is rewritten as 259 
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Thus, for 1, ,k m=  , the mean of ( )kξ θ  is readily calculated as 261 
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Since the relation obs
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Ξ =∑   holds for all k, we have [ ]E =ξ 0  . Further, [ ]E k lξ ξ  , 1 ,k l m≤ ≤   can be 263 

formulated as 264 
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For k l= , we have 266 
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While for k l≠ , we have 268 
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With the relation ( )obs obs

1

1
1

N
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jN

δ
=

Ξ Ξ =
− ∑ , it is easy to verify TE m  = ξξ I  by following Eq. (17) and Eq. (18).  270 

This completes the proof. 271 
With the first two order properties of KL variables in Proposition 1, the second-order correlation of the developed 272 

KDE-based model is immediately calculated as 273 
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As shown in Eq.(19), the optimal approximation of correlations of the field ( )θW  in mean-square sense can be 275 

achieved since KL variables are uncorrelated [4]. In this way, the developed KDE-based model is capable of 276 
simultaneously reconstructing both the non-Gaussian marginals and the second-order correlations of the field ( )θW  277 

from limited observations. Therefore, the developed new KDE-based model can accurately characterize the non-278 
Gaussian behavior of input parameters. 279 

2.2.2. Example  280 
In this section, an illustrative example is presented to demonstrate the capacity of the developed KDE-based 281 

model for accurately modelling non-Gaussian input field with limited observations. Without loss of generality, let 282 
( ),a x θ  , ( )0.5 0.5x∈ − ,   be a spatial/temporal uncertain parameter of a practical engineering system. The field 283 

( ),a x θ  can be the conductivity in diffusion problems, Young’s modulus of materials in mechanical problems, etc. 284 

In practice, it is impossible to get access to the complete probabilistic characteristics of field ( ),a x θ  , and the 285 
available information can only be a set of nodal realizations on the spatial/temporal domain, which is directly or 286 
indirectly identified from limited specimens. Since the aim of this section is to investigate the capacity of the 287 
developed KDE-based model with limited observations, rather than identification techniques, the limited 288 
observations of ( ),a x θ  are artificially generated from Algorithm 1. With the obtained limited observations of field 289 

( ),a x θ , the performance of proposed KDE-based model is examined through comparing with the conventional 290 
KDE model in section 2.1. The accuracy of these two models is assessed by comparing with observations of the field 291 
( ),a x θ .  292 

Algorithm 1 The artificial generation of sample realizations A of random conductivity parameter ( ),a x θ . 

1: 
Select a total of 21N =   observation points equidistantly in the definition domain of ( ),a x θ  , i.e., 

{ }1 2 210.5, 0.45, , 0.5X X X= = − = − =X  . 

2: 
Calculate the N N×  symmetric positive matrix GC  by ( ) ( ), expG i jC i j X X= − − , ,i jX X ⊂ X  on the 

observed points, and decompose matrix GC  into N eigenvalues and corresponding eigenvectors 1{ }G N
i iφ = .  

3: 
Generate samples iΨ , 1, ,i N=   of N mutual independent standard normal variables, and the samples size 
of each iΨ  is 250M = . 

4: Calculate the G by 1

N G G
i i ii
λ φ

=
=∑G Ψ . 

5: Synthesize the realizations A of ( ),a x θ  by ( )exp k= +A G , where 6k = . 

Fig.1 shows the eigenvalues 21
1{ }i iλ =  of covariance matrix AC  of the observations A. The truncated parameter 293 

m in Eq. (1) is adopted as 8m =  such that a total of 97.74%  energy are retained. Fig. 2 depicts the relative errors 294 
between the original covariance matrix AC  and the predicted covariance matrices from conventional KDE model 295 

and the proposed model. It is clear that the covariance matrices obtained from both conventional KDE model and 296 
proposed model are in good accordance with that of observations. Fig. 3 displays the marginal cumulative density 297 
functions (CDFs) of field ( ),a x θ   at 0.5x = −  , 0x =   and 0.5x =  . Evidently, the marginals generated by 298 

conventional KDE model deviate from the observations, this is because the conventional KDE model does not 299 



 

 

incorporate the inherent relation between marginals of input field and distribution of univariate KL variables. In 300 
contrast, the marginal distributions from proposed model agrees well with the observations, indicating the 301 
effectiveness of proposed model for accurately reconstructing the field ( ),a x θ  from limited observations in terms 302 

of simultaneously reconstructing its marginals and second-order correlations. 303 

3. Arbitrary polynomial chaos-based system response analysis with the developed KDE-based 304 
model 305 

The second step in the analysis of uncertain systems under limited observation is the propagation of uncertainty 306 
through the system and the assessment of its stochastic response. As mentioned earlier, although the PC-based 307 
methods have been developed for this purpose, the use of Wiener-Askey scheme may lead to a low computational 308 
efficiency especially in the case of high dimensionality, which significantly hinder the application of the method for 309 
practical engineering systems of interest. In this section, we develop an aPC-based propagation method for efficient 310 
stochastic response analysis by constructing aPC bases according to the KL variables in KDE-based model. The 311 
general form of the existing PC-based uncertain analysis framework is also reviewed [40]. 312 

 
Figure 1: The eigenvalues of covariance matrix AC . 

  
Figure. 2: Relative errors between the original covariance matrix AC  and the predicted covariance matrices (Left: Conventional 

KDE model; right: Proposed model). 

   
Figure. 3: The marginal distributions of observations at 0.5x = − , 0x =  and 0.5x = . 

3.1. Framework of PC-based uncertain analysis  313 
In the framework of PC-based stochastic analysis, system response is generally projected into the same PC 314 

subspace as the uncertain input parameters. In the context of KL-based representation of input parameters, the PC 315 
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expansion of the KL variable is generally formulated as 316 

 ( ) ( )
0

[ ], 1 ,0
P

i ij j
j

i m j Pξ θ α θ
=

= Ψ ≤ ≤ ≤ ≤∑ η  (20) 317 

where ( )θη   are m-dimensional underlying variables of PC expansion, P   is the number of truncated terms, 318 

calculated as ( ) ( )1 ! ! !P m p m p+ = +  , p   is the order of m-dimensional normalized orthogonal polynomials 319 

[ ]jΨ ⋅ , and ijα  are the PC coefficients to be determined. By virtue of the orthogonality of [ ]jΨ ⋅ , ijα  in Eq. (20) 320 

are calculated by  321 

 
[ ]
[ ]

( ) [ ] ( )2

E

E
i j

ij i j
j

G p d
ξ

α
 Ψ = = Ψ
 Ψ 

∫ ΗΗ

η
η η η η

η
 (21) 322 

for 1 i m≤ ≤  , 0 j P≤ ≤  , where ( )pΗ η   is the density of ( )θη  , and ( ) ( ) ( )( )1 mG G= =ξ G η η η， ,   can be 323 

determined by following Rosenblatt transformation [8,30,31] 324 
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( )
1 1

1 1

1
1 1

1
1 1 , 2, ,

i i ii i i

P P

P P i m

η ξ

η ξ ξ ξ
−
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 (22) 325 

where 1[ ]
i

P−
Η ⋅  is the inverse CDF of the PC variable iη . ( )

1 1 1 1i i i iP ξ ξ ξ
− −Ξ Ξ Ξ  , 1 i m≤ ≤  is the conditional CDF 326 

of ( )iξ θ . With the PC representation of KL variables ( )iξ θ , the PC-based representation of non-Gaussian input 327 
field can be constructed by substituting Eq. (20) into Eq. (1), 328 

 ( ) ( )
1 0

ˆ
m P

i i ij j
i j

θ λ φα θ
= =

= + Ψ   ∑∑W W η  (23) 329 

Given the PC representation of stochastic input ( )ˆ θW  of an engineering system, the stochastic system response 330 

( )Y θ   can be projected into the same PC subspace ( ) 1{ [ ]}j jθ ∞
=Ψ η  , yielding the identical PC representation of 331 

( )Y θ  , i.e., ( )Y η  . For practical implementation, system response ( )Y η   is generally approximated by the 332 
truncated PC expansion as 333 

 ( ) ( )
0

P

k k
k

Y α
=

Ψ∑η η  (24) 334 

which can also be written using a vector notation as ( ) ( )TY η α Ψ η .  335 

3.2. Construction of arbitrary PC bases for uncertain system analysis  336 
Although various types of PC approximation in Eq. (24) enable the stochastic response converge to the true 337 

one as P →∞ , the convergent rate and thereby the efficiency of the propagation heavily depends on the choice of 338 

PC bases [ ]jΨ η . It is known that, only when KL variables follow Gaussian or other common distributions, the use 339 

of Wiener–Askey scheme may provide the optimal convergence [35]. While in the context of limited observations, 340 
KL variables of the developed KDE-based model generally have much broader distributions outside the Wiener–341 
Askey scheme. In order to propagate the input uncertainty as efficiently as possible, the aPC formulation is adopted 342 
in this study. The aPC expansion is a generalization of Wiener-Askey chaos and enables to construct orthogonal PC 343 
bases with respect to arbitrary distribution [8, 41, 42]. By constructing multidimensional orthogonal polynomials 344 
weighted by the measure of KL variables in Eq. (9) as aPC bases, the optimal convergence of the system response 345 
analysis could be achieved.  346 

The construction of multidimensional orthogonal polynomials starts from specifying a set of linearly 347 
independent multi-index monomials as 348 



 

 

 ( ) ( ) ( ) 1T
0 1 1[ , , ] { },m

P m m pααϕ ϕ ξ ξ α α= = × × + + ≤φ ξ ξ ξ    (25) 349 

where ( ) ( )1 ! ! !P m p m p+ = +  . With the multivariate polynomial bases ( )φ ξ  , the multivariate orthonormal 350 

polynomials ( ) ( ) ( )( )T
0 , P= Ψ ΨΨ ξ ξ ξ，   with respect to probability measure ( )pΞ ξ   in Eq. (9) is accordingly 351 

constructed by the following Cholesky decomposition 352 
 ( ) ( ) 1−=Ψ ξ φ ξ L  (26) 353 
where L   is an upper triangular matrix from Cholesky decomposition on a P P×   matrix G  , where its ij-th 354 
element is defined as 355 

 ( ) ( ) ( ) ( ) ( )E[ ]ij i j i jG p dϕ ϕ ϕ ϕ= =∫ ΞΞ
ξ ξ ξ ξ ξ ξ  (27) 356 

Clearly, the core of constructing orthonormal polynomials ( )Ψ ξ   lies in the evaluation of the multivariate 357 
integration in Eq. (27). Different from conventional Wiener-Askey scheme, the multivariate integration in Eq. (27) 358 
can not be transformed to multiplication of univariate integrals because of the dependence of KL variables ( )θξ  in 359 
Eq. (9). As a result, MC integration has to be employed for evaluating Eq. (27) as 360 

 ( ) ( ) ( )( ) ( )( )
1

1E[ ]
K

k k
ij i j i j

k
G

K
ϕ ϕ ϕ ϕ

=

= ≈ ∑ξ ξ Ξ Ξ  (28) 361 

where ( )kΞ  is the k-th sample realizations of multi-dimensional KL vector ( )θξ . We note that the evaluation of Eq. 362 

(27) is hindered by the challenge in generating sample realizations ( )kΞ  from dependent KL variables. Although 363 
MCMC sampler has been developed for this purpose in [32], a huge number of repeated density evaluations yields 364 
enormous computational burden. Moreover, the inherent autocorrelation in the resulting MCMC samples 365 
dramatically reduces the efficiency of MC integration [34]. These two inherent deficiencies inevitably decrease the 366 
effectiveness of MCMC sampler for evaluating matrix G , especially in the case of high dimensionality. Therefore, 367 
the most challenging issue in the construction of aPC bases is the generation of samples from multi-dimensional KL 368 
variables in an effective way. 369 

3.2.1. Generator of independent samples of KL variables 370 
In order to circumvent the deficiencies encountered in MCMC sampler, we develop a new sampler for generating 371 

independent realizations from multi-dimensional KL variables, so that Eq. (27) can be accurately evaluated in an 372 
efficient way. By formulating the joint PDF in Eq.(9) as 373 

  ( ) ( ) ( )obs 2sh
sh

1 sh

ˆ1 ˆ, |
N

m i m XX
i

sp s p x p x dx
N s=

 
= = 

 
∑ ∫Ξ Ξξ K Ξ I ξ              (29) 374 

where ( ) ( )1

1 N
X i

p x x i
N

δ
=

= −∑ , and ( )δ ⋅  is Dirac delta function, joint distribution of KL variables can be further 375 

rewritten as 376 

 ( ) ( ) ( ) ( )
1

1| |
N

XX
i

p p x p x dx p X i
N=

= = =∑∫Ξ Ξ Ξξ ξ ξ  (30) 377 

where ( ) obs 2sh
sh

sh

ˆ ˆ| ~ ,m i m
sp X i s
s

 
=  

 
Ξ ξ K Ξ I   is an m-dimensional Gaussian distribution with mean obssh

sh

ˆ
i

s
s

Ξ   and 378 

covariance 2
shˆ ms I . From Eq. (30), it can be found that ( )pΞ ξ  is essentially a type of mixture of distribution, in 379 

which each component is the multivariate normal distribution. In view of this, samples of multi-dimensional KL 380 
variables can be accordingly obtained by firstly choosing ( )|p X i=Ξ ξ , 1, ,i N=   with probability 1 N , and 381 

then generating Gaussian-distributed samples from ( )|p X i=Ξ ξ . 382 

Algorithm 2 Generating samples from multi-dimensional KL variables in Eq. (9). 



 

 

Input: parameters shs , shŝ ; realizations obsΞ  ; the total number of samples K to be generated. 
Output: K samples of KL variables ( )θξ , i.e., Ξ . 

1: Define = ∅Ξ  

2: for 1k =  to K do 
3: ( )~ Uniform 1,i N  

4: 
Mix obs 2sh

sh
sh

ˆ ˆ,m i m
sK s
s

 
 
 

Ξ Ξ I  

5: Mix= ∪Ξ Ξ Ξ  
6: end for 

The resulting procedure for the generation of independent realizations from multi-dimensional KL variables 383 
( )θξ   is summarized in Algorithm 2. Since the uniformly distributed variables i in Step 3 and the normally 384 

distributed variables MixΞ  in Step 4 can both be readily generated, enormous computational burden resulting from 385 
the repeated density evaluations in MCMC sampler are no longer required. More importantly, since the independent 386 
samples of each component in mixture distribution can be generated in Step 4, samples of KL vector from Algorithm 387 
2 are mutually independent. This property would be particularly beneficial in terms of the accuracy for estimating 388 
elements of matrix G in Eq. (28), because the inherent autocorrelations in MCMC samples is bypassed. These two 389 
distinguished properties in the developed sampler in Algorithm 2 guarantee the effective evaluation of matrix G, and 390 
as a result, the aPC bases ( )Ψ ξ  can be readily constructed.  391 

It should be noted that, since the KL vector ( )θξ  admits E[ ] =ξ 0 , TE[ ] m=ξξ I  as proved in Proposition 1, 392 

the first 1m +   elements of aPC bases ( )Ψ ξ   are then ( ) ( ){ } { }0 1, 1, , ,m mξ ξΨ Ψ =ξ ξ ,  . Therefore, PC 393 

coefficients ijα  of input fields in Eq. (23) become one for 1, ,i j m= =  , and the remaining coefficients ijα  394 
reduce to zero. 395 

3.3. Arbitrary Polynomial chaos expansion of system responses 396 
With the aPC representation of input parameters, the next step is to approximate the system response Y  by 397 

determining the aPC coefficients ijα   in Eq. (24). Although various intrusive and non-intrusive methods can be 398 

employed for this purpose, regression-based method is adopted in this study as it allows to use the third party software 399 
in a black-box fashion [43, 44]. It is known that accuracy and stability of this type of method heavily depends on the 400 
choice of collocation points, i.e., experimental design (ED) of underlying PC variables. In fact, most available ED 401 
schemes are evolved from the crude MC sampling, regardless of the dependence of PC variables [36]. This is why 402 
the ED schemes of independent PC variables have been quite well-established, while there exists a dearth of 403 
algorithmic options for ED of dependent PC variables. In this sense, the most critical issue in the aPC-based response 404 
analysis is the sample generation of dependent aPC variables so that the according ED of aPC variables can be further 405 
developed to achieve an accurate response propagation. 406 

By representing the mapping ( )=ξ G η   in Eq. (21) as ( ) 1
[ ]i i ik kk

G gξ ∞

=
= = Ψ∑η η  , and substituting this 407 

series into Eq. (21), we further reformulate aPC coefficients of input fields as 408 

 ( )
1 1

[ ] [ ]ij ik k j ik kj
k k

g p d gα δ
∞ ∞

= =

= Ψ Ψ =∑ ∑∫ ΗΗ
η η η η  (31) 409 

As mentioned above, since the relation ij ijα δ=   holds, we have ik ikg δ=  . Thus, with the constructed aPC 410 

formulation in Eqs. (25)-(27), the mapping ( )=ξ G η   reduces to [ ] [ ]1i ik k i ik
ξ δ η∞

=
= Ψ = Ψ∑ η η =  , 1 i m≤ ≤  . 411 

implying that the distribution of underlying aPC variables is equivalent to that of KL vector in Eq. (9). By this 412 
equivalence, independent samples of aPC variables can be readily generated from Algorithm 2, and as a consequence, 413 



 

 

available ED techniques under independent PC variables can be straightforwardly extended to those under dependent 414 
aPC variables. Thus, the challenge in the ED of dependent aPC variables is overcome. 415 

Based on the obtained samples of aPC variables, we further develop a D-optimal weighted regression method 416 
for a more robust and accurate aPC approximation of system responses, in which the collocation points are 417 
determined by maximizing the determinant of information matrix. 418 

We first formulate the estimation of aPC coefficients in Eq. (24) as the following weighted least squares form 419 

 
1

2
ED ED ED EDˆ

ˆ ˆarg min
PR +∈

= −
α

α V Ψ α V Y  (32) 420 

and the PC coefficients α̂  are determined by 421 
 T 2 1 T 2

ED ED ED ED ED EDˆ ( )−=α Ψ V Ψ Ψ V Y  (33) 422 

where EDΨ  is an ED ( 1)N P× +  matrix defined by ( )
ED ED( , ) ( )i

ji j = ΨΨ Ξ , ED1, ,i N=  , 0, ,j P=  , EDV  is an 423 

ED EDN N×   diagonal matrix with the i-th element iv   adopted as the root inverse of Christoffel function, i.e.,424 
( )2 1/2
ED0

[ ( )]P i
i jj

v −
=

= Ψ∑ Ξ  , and ED( )(1) T
ED ED ED[ ( ), , ( )]NY Y=Y Ξ Ξ  . ( )ED 1N r P= +   is the number of D-optimal 425 

collocation points ED( )(1)
ED ED ED[ , , ]N=Ξ Ξ Ξ  , where 1r >   is the oversampling ratio, and EDΞ   are determined by 426 

solving the following D-optimal optimization problem [45] 427 

 
( )ED ED

T
ED

dim
arg max det ( ) ( ) ( ) ( )

m N= ×
=

Ξ
Ξ V ξ Ψ ξ Ψ ξ V ξ    (34) 428 

where ED EDN N×   matrix ( ) ( ) ( ) ( )
ED

T
0[ , , , ]P N= Ψ Ψ ΨΨ ξ ξ ξ ξ

 ，   is the enrichment of ED ( 1)N P× +   matrix 429 

( )Ψ ξ   according to total-degree graded reverse lexicographic ordering such that the dimension of orthogonal 430 

polynomials increases from 1P +   to EDN  , and the entities of ED EDN N×   diagonal matrix ( )V ξ   are 431 
ED 2 ( ) 1/2

ED1
[ ( )]N i

i jj
v −

=
= Ψ∑ Ξ . Algorithm 3 describes the details of determining set ( )Ψ ξ . 432 

Algorithm 3 The determination of the set ( )Ψ ξ  in Eq. (34). 

Input: The maximum degree p of aPC bases ( )Ψ ξ ; the number of collocation points EDN ; the size ( )1P +  of 

( )Ψ ξ ; the set ( )φ ξ  in Eq. (25). 

Output: Enriched aPC bases ( )Ψ ξ . 

1: Compute the multi-index monomials set ( ) ( ) 11
1{ }mp

m
ααξ ξ+ = × ×φ ξ  , 1 1m pα α+ + = + . 

2: Impose the reverse lexicographic ordering on ( ) ( )1p+φ ξ . 

3: Create the set ( )φ ξ  by appending the first ( )ED 1N P− −  elements of ( ) ( )1p+φ ξ  to ( )φ ξ . 

4: Construct aPC bases ( )Ψ ξ  based on the set ( )φ ξ  via Eq. (28) and Eq. (26).  

Given a set of C EDN N  independent realizations of aPC variables C( )(1)
C C C[ , , ]N=Ξ Ξ Ξ  generated by Algorithm 433 

2 as the candidate pool, the optimization problem in Eq. (34) is approximated by choosing the set EDΞ  from the 434 
candidate set CΞ  via column-pivoted QR decomposition of matrix C CV Ψ , i.e., 435 

 [ ]T
C C 1 2( ) =V Ψ P Q R R  (35) 436 

where CV  is an C CN N×  diagonal matrix with i-th entities ( ) ( )ED 2 1/2
C C1

, [ ( )]N i
jj

i i −
=

= Ψ∑V Ξ , and the ij-th element of 437 

C EDN N×   matrix CΨ  is ( )
C C( , ) ( )i

ji j = ΨΨ Ξ  . Q   is an ED EDN N×   orthogonal matrix, 1R   is an ED EDN N×  438 

nonsingular upper-triangular matrix, and P   is an C CN N×   permutation matrix that permutes the columns of 439 
T

C C( )V Ψ   such that the absolute value of the diagonal entries of 1R   are in the descending order. Let 440 

[ ]T
C1, , N= ×π P   be a vector that converts the pivots encoded in matrix P to the specific rows of C CV Ψ , the 441 

collocation points can thus be determined by 442 



 

 

 ( )ED C ED ,:=Ξ Ξ π  (36) 443 

where ( )ED ED1: N=π π  is the first entities of π .  444 

With the obtained collocation points EDΞ   in Eq. (36), the aPC coefficients of the system response can be 445 
readily determined by Eq. (33). For clarity, the procedure for aPC expansion of stochastic response is summarized 446 
as follows: 447 
(a) Specify the maximum degree p  of multidimensional polynomials ( )Ψ ξ  and the oversampling ratio r , and 448 

determine the number of collocation points EDN . 449 
(b) Construct the corresponding EDN  orthonormal polynomials ( ) ( ) ( ) T

1[ , ]
EDN= Ψ ΨΨ ξ ξ ξ

，  by Algorithm 3.  450 

(c) Generate C EDN N  samples ( ) ( )C1
C C C[ , , ]N=Ξ Ξ Ξ  of KL variables by Algorithm 2 as the candidate pool, and 451 

then determine collocation points of aPC variables ED( )(1)
ED ED ED[ , , ]N=Ξ Ξ Ξ  by Eq.(35) and Eq.(36). 452 

(d) Synthesize EDN  samples of input random field ( )ˆ θW  by Eq.(1) and evaluate the deterministic model on 453 

EDN  points, and then estimate the aPC coefficients of system response by Eq. (33) and approximate system 454 
response by Eq. (24). 455 

With the aPC expansion of the system response, the PDF of system response can be accordingly obtained by the 456 
simulation of aPC approximation of response based on the aPC samples generated by Algorithm 2. 457 

3.4. An efficient uncertain analysis method of engineering systems with limited observations 458 
The flowchart of the proposed method for the stochastic analysis of engineering system with limited 459 

observations of uncertain input parameters is sketched in Fig. 4. As shown in Fig. 4, steps 1 and 2 devote to construct 460 
the novel KDE-based random model for input parameters from limited observations. In order to efficiently determine 461 
the subsequent stochastic responses, KL variables in the developed model are further represented by aPC expansion 462 
in Step 3. The associated aPC-based stochastic response analysis are developed in Step 4, leading to a unified 463 
framework for stochastic modelling and the subsequent response propagation of engineering systems, in which only 464 
limited observations are available. It is worth mentioning that, by incorporating the inherent relation between 465 
marginals of input field and distribution of univariate KL variables, the new KDE of KL vector developed for 466 
modelling uncertain inputs in Step 2 can overcome the inaccurate reconstruction of marginals in conventional KDE-467 
based model and thereby can accurately capture the non-Gaussian characteristics of an input field in terms of 468 
simultaneously reconstructing its marginals and second-order correlations. In this way, the developed KDE-based 469 
random model provides an effective tool for non-Gaussian uncertain input parameters representation of general 470 
engineering interest from limited observations. We also note that, with the aid of the mixture representation of the 471 
developed KDE of KL vector in Eq. (9), a new sample generator is developed for efficiently generating independent 472 
samples from KL vector in Algorithm 2, so that the enormous computational burden caused by repeated density 473 
evaluations as well as the inherent autocorrelations of generated samples in MCMC can be circumvented. In this way, 474 
the enormous computational burden in the MC-based construction of aPC bases can be greatly alleviated, and thereby 475 
aPC formulation of input parameters and stochastic system responses can be effectively determined. In addition, by 476 
virtue of the equivalence between the distribution of underlying aPC variables and that of KL vector, we generate 477 
samples of underlying aPC variables by Algorithm 2 once again. With these samples, the challenges regarding the 478 
ED of mutually dependent aPC variables and the subsequent aPC-based response analysis can be addressed by 479 
developing a D-optimal weighted regression method. In this way, the response is propagated in a robust and accurate 480 
way. With the reasonable stochastic modelling and efficient response propagation, the current work provides an 481 
effective framework for the stochastic analysis of practical engineering systems with limited observations. 482 



 

 

 
Figure.4: Flowchart of the proposed method. 

We note that, the computational burden of proposed method is dominated by the response propagation since 483 
even the most time-consuming step in the model construction, i.e., the determination of first m<M eigenpairs of the 484 
observations W in Step 1, can be performed with low computational cost. In the developed response propagation, the 485 
total CPU running time totalT  consists of the time taken by the aPC formulation of the stochastic system, denoted by 486 

1T , and the time needed in repeated evaluations of the deterministic system, denoted by 2T . For most stochastic 487 

analysis of structures of practical interest, the majority of computational cost is expended on the repeated evaluations 488 
of deterministic structures, and the CPU time 1T  needed for aPC formulation can be negligible in comparison with 489 

2T  for performing repeated evaluations of deterministic structures, especially for large-scale engineering system.  490 

4. Numerical examples 491 
In this section, two numerical examples illustrating the application of the developed method are presented. The 492 

first example is a one-dimensional diffusion problem with random conductivity parameter, in which the realizations 493 
of random parameter are generated from Algorithm 1. Since the KDE-based model of conductivity parameter has 494 
been constructed in Section 2.2.2, the obtained results are directly applied for the associated response propagation. 495 
In example 2, a set of recorded natural ground motion time histories, which are chosen according to some site-specific 496 
criteria from the NGA strong-motion database established by the Pacific Earthquake Engineering Research Center 497 
(PEER), are investigated. The performance of proposed KDE-based model for seismic ground motion is examined 498 
in the same way as in example 1. With the random model of seismic ground motion, the response propagation of an 499 
eight degree-of freedom (DOF) linear structure and a twenty DOF nonlinear structure subjected to seismic ground 500 
motion are further performed to validate the proposed method for complex problems. In both examples, the number 501 

of samples for numerically constructing aPC bases in section 3.2 is chosen as 410K = , the oversampling ratio is 502 



 

 

adopted as 1.25r = , the number of candidate samples for performing D-optimal ED in section 3.3 is chosen as 503 
C 410N =  , and the accuracy of aPC-based response approximation is examined through comparing with the 504 

references given by 510  MCS. To implement, all computer programs have been run on a notepad (core i7-11800H 505 
CPU and 32 GB RAM). 506 

4.1. one-dimensional diffusion problem 507 
The first example considers a simple one-dimensional diffusion problem governed by  508 

 ( ) ( ) ( ), , 0, 0.5,0.5d dua x x x
dx dx

θ θ − = ∈ −  
 (37) 509 

with boundary conditions ( ) ( )0.5, 0, 0.5, 1u uθ θ− = = . With the constructed KDE-based model of field ( ),a x θ  510 
in section 2.2.2, the associated response propagation is accordingly performed to validate the accuracy of proposed 511 
method. 512 

Fig. 5 shows the aPC approximation of ( ),u x θ   with different polynomial orders at locations 0.25x = −  , 513 
0x =   and 0.25x =  . The MCS results are also given as references to check the developed aPC-based response 514 

propagation. It is evident that a high precision approximation can be reached with a quite low order, i.e., 2p = , 515 
illustrating the high accuracy of the proposed aPC-based response propagation.  516 

   
Figure.5: The stochastic response of diffusion system in Eq. (35). (Left: 0.25u = − ; middle: 0u = ; right: 0.25u = ). 

4.2. Application to linear and nonlinear structures subjected to non-Gaussian seismic ground 517 
motion 518 
In this example, the practical application of developed method for the uncertain analysis of engineering 519 

structures subjected to seismic ground motions is demonstrated. It is acknowledged that seismic ground motion is 520 
one of the typical natural hazards and should be modeled as a random process. Although a few techniques, e.g. 521 
spectral representation method, stochastic harmonic function representation, etc. provide convenient frameworks for 522 
characterizing non-Gaussian non-stationary seismic ground motions, obtained time histories cannot necessarily 523 
reconstruct all features of natural accelerograms. Although using recorded accelerograms can straightforwardly 524 
overcome this problem, the available ground motion time histories for a given scenario and site-condition are 525 
generally too limited to carry out subsequent response analysis and system assessment. In this case, the significant 526 
role of model construction consistent with limited time histories in the assessment of seismic safety of engineering 527 
structures is highlighted.  528 

Table 1 
The site-specific criteria for selecting the natural ground motion time histories. 
Earthquake magnitude Focal distance Soil type 

5 6M≤ ≤  1km 20kmD≤ ≤  Medium to hard soil with 600sV m s≥  
In this example, the natural accelerograms are selected from the NGA strong motion database with the site-529 

specific criteria in Table 1. The purpose of specifying values of M, D and sV  in Table 1 as intervals rather than 530 
deterministic values is to incorporate the uncertain and imperfect knowledge of these site-specific ground motion 531 



 

 

parameters. According to the criteria in Table 1, a total of 102 ground motion time histories are selected, and each 532 
time history of 18s is discretized into 1801 points with step size =0.01t s∆  , as shown in Fig. 6. Fig. 7 shows 533 
eigenvalues of covariance matrix of the observations, and the first fifty eigenmodes are used for model construction 534 
such that a total of 95.23%  energy is retained. 535 

 
Figure 6: A total of 102 observed time histories selecting according to the site-specific criteria in Table 1. 

 
Figure 7: The first sixty eigenvalues of time histories 

The proposed KDE-based model of seismic ground motion is constructed in only 0.71s. Fig. 8 shows the second-536 
order to sixth-order moments of the marginal distributions of the conventional KDE model and proposed model. 537 
Since the scales of moment values varies greatly in the whole time histories, only the moments from 0s to 5s are 538 
displayed for the sake of clarity. It is clear that the conventional KDE model only matches the second order moment 539 
of the observations, while the proposed model enables to reconstruct the first six-order statistics in a high precision. 540 
Fig. 9 further illustrate probabilistic characteristic of marginal distributions, in which the marginal cumulative density 541 
functions (CDFs) of selected time histories at 1.5st = , 6.5s, 11.5s and 16.5s are displayed. It is clear that, since the 542 
marginals generated by conventional KDE model evidently deviate from the observations, it is incapable of capturing 543 
the non-Gaussian features of seismic ground motion. In contrast, the marginals from proposed model agrees well 544 
with the observations, illustrating the effectiveness of the proposed method for modelling the non-Gaussian seismic 545 
ground motions. 546 
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Figure. 8: First six order statistical moments of the marginal distributions. 
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Figure. 9: The marginal CDFs of seismic ground motion at 1.5t s= , 6.5s, 11.5s and 16.5s. 

In order to further validate the associated aPC-based response propagation, the stochastic response analysis of 547 
an 8-DOF linear system and a 20-DOF nonlinear shear-frame structure driven by the constructed seismic ground 548 
motions model are investigated in section 4.2.1 and section 4.2.2, respectively. 549 

4.2.1. An 8-DOF linear structure subjected to seismic ground motion 550 
The 8-DOF frame structure shown in Fig. 10 is subjected to the constructed stochastic ground motion [46]. The 551 

lumped masses from bottom to top are 3.442, 3.278, 3.056, 2.756, 2.739, 2.739, 2.739, 2.739 5( 10 )kg× , the lateral 552 

inter-story stiffness from bottom to top are 1.92, 1.85, 1.63, 1.62, 1.60, 1.60, 0.96, 0.89 8( 10 )N m× . The Rayleigh 553 

damping is adopted such that a b= +C M K , where 10.2463a s−= , 0.0071b s= . 554 

 
Figure. 10: Diagram of the shear-frame structure. 

Fig. 11 depicts the mean values and standard deviations of stochastic response of 8-th story obtained by 555 
developed one and two orders aPC expansion. The MCS results are also displayed for validating the method. In Fig. 556 
12, the probabilistic distribution of seismic response of 8-th story at typical time points, i.e., 1.5t s= , 6.5t s= , 557 

11.5t s=   and 16.5t s=   are plotted. It is evident that the one-order aPC expansion is enough to produce an 558 
excellent approximation of response. In this case, only ( )ED 1.25 50 1 64N = × + =  evaluations of the deterministic 559 
system are required, illustrating the high efficiency of developed method, as also evidenced by the CPU time of 560 
developed method depicted in Table 2. 561 

 



 

 

 

Figure. 11: The mean values and standard deviations of the stochstic response of 8-th story. 

  

  

Figure. 12: The PDF curves of the seismic response of 8-th story at some typical time points. 

 562 
Table 2 
Comparison of CPU times of the developed method and MCS. 

Methods 1T  2T  totalT  
Developed method ( 1p = ) 0.268s 0.631s 0.899s 

51 10×  MCS - 848.919s 848.919s 

4.2.2. A 20-DOF nonlinear structure subjected to seismic ground motion 563 
In this section, a 20-DOF nonlinear frame structure is further investigated. The lumped mass and corresponding 564 

inter-story stiffness of the structure are displayed in Table 3. The nonlinear behavior is described by the Bouc-Wen 565 
hysteresis model, and the governing equations are formulated as [46] 566 

 ( ) ( )1 ,gx tα α θ+ + + − = −MX CX KX KZ MI 

  (38) 567 
where X  , X   and X   are the displacement, velocity and lateral acceleration vector, respectively.568 

( )1 2 20diag , , ,m m m=M    denotes the mass matrix, K   indicates the initial stiffness matrix, and the Rayleigh 569 

damping is adopted such that a b= +C M K , where 10.2463a s−= , 0.0071b s= . ( )T
1 2 20, , ,Z Z Z=Z 

 means the 570 

hysteresis displacement. The parameters in Bouc-Wen model take the values 0.04α = , 1A = , 1n = , 0.3q = , 571 

10p = , 5dψ = , 0.5λ = , 0.05ψ = , 100β = , 180γ = , 1000dν = , 1000dη =  and 0.2ξ = .  572 



 

 

Table 3 
The values of lumped mass and inter-story stiffness of shear-frame structure in example 2. 

Story Lumped mass 5( 10 kg)×  Inter-story stiffness 8( 10 N m)×  
1-2 4.5 3.5 
3-12 4.3 3.2 
13-17 4.1 3.0 
18-20 3.9 2.8 

Fig. 13 shows the random displacements of the 15-th story at four typical time points from proposed method 573 
with one and two-order aPC expansion, the MCS results are also depicted for comparison. Different from the linear 574 
structure case in section 4.2.1, the one-order aPC is not adequately to approximate the system response due to the 575 
strong nonlinearity of the system. However, the approximation accuracy rapidly increases to a reasonable level when 576 
the order of aPC reaches to two, i.e., 2p = , as also evidenced by the probability density surface of displacement of 577 

20-th story demonstrated in Fig. 14. In this case, only ( ) ( )ED 1.25 50 2 ! 50!2! 1658N = × + =   evaluations of the 578 

deterministic hysteresis system are required. Table 4 depicts the CPU times of developed aPC-based method and 579 
MCS. Clearly, the MCS takes much more time than developed method, and this trend will be more apparent with the 580 
increasing of complexity of systems. By comparing with the results from MC method, it is clear that the proposed 581 
method enables to provide an excellent response approximation with justified computational cost, illustrating the 582 
potential of proposed method in the applications of large-scale engineering systems. 583 

  

  

Figure. 13: Random resposnes at four typical time points. 

 



 

 

 

 
Figure. 14: The contour of PDF surface. 

 584 
Table 4 
Comparison of CPU times of the developed method and MCS. 

Methods 1T  2T  totalT  
Developed method ( 2p = ) 18.322s 141.654s 159.976s 

51 10×  MCS - 7315.572s 7315.572s 

 585 

5. Conclusions 586 
This paper develops a new method for reasonably modeling of non-Gaussian system inputs as well as efficient 587 

propagation of associated system response under limited observations. The developed method firstly represents the 588 
limited non-Gaussian observations by KL expansion in terms of a set of KL variables. Followed by the development 589 
of a novel KDE for estimating the joint distribution of KL vector from their realizations, leading to the KDE-based 590 
random model of uncertain input parameters. In order to achieve the optimal convergence of associated response 591 
propagation, the aPC-based input model is further constructed by representing KL variables with aPC expansion 592 
weighted by their joint PDF. With the aPC representation of input parameters, a D-optimal weighted regression 593 
method is finally developed for robust and accurate aPC approximation of system response. In our method, by 594 
incorporating the inherent relation between marginals of input field and distribution of univariate KL variables into 595 
the new KDE of KL vector, the developed KDE-based random model can accurately represent the input field from 596 
limited observations in terms of simultaneously reconstructing its marginals and second-order correlations. 597 
Furthermore, with the aid of the mixture representation of the developed KDE of KL vector, a new sample generator 598 
is developed for efficiently generating independent samples from KL vector, so that the aPC formulation can be 599 
effectively constructed. On the other hand, by virtue of the equivalence between the distribution of underlying aPC 600 
variables and that of KL vector, samples of underlying aPC variables are readily generated by the developed sampler 601 
for KL vector. With these samples, well-established ED techniques under independent PC variables are 602 
straightforwardly extended for the estimation of aPC coefficients by further developing a D-optimal weighted 603 
regression method. In this way, the response can be propagated in a robust and accurate way. Two numerical examples, 604 
including a one-dimensional diffusion problem and the analysis of structures subjected to random seismic ground 605 



 

 

motion, have been studied to illustrate the effectiveness of developed method. In both examples, the developed KDE-606 
based random model enables to reasonably capture the probabilistic characteristics of uncertain input parameters, 607 
and the developed aPC-based response propagation can efficiently determine the stochastic response of systems. The 608 
current work provides an effective framework for the stochastic analysis of practical engineering systems with limited 609 
observations.  610 

We point out that, since the proposed model construction is based on KL expansion of one-dimensional random 611 
fields, the proposed stochastic modelling can be readily extended to the reconstruction of multidimensional and/or 612 
cross-correlated random fields with limited observations by introducing the existing generalized KL expansion for 613 
multidimensional and/or cross-correlated fields. In the future work, the current framework will be further generalized 614 
to the stochastic analyses of engineering systems involving multidimensional and/or cross-correlated random field 615 
parameters under limited observations by combining the generalized KL expansion developed by the present authors 616 
in [3]. 617 
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