
Royal Aeronautical Society Applied Aerodynamics Conference 2022 1

Bespoke Stability Analysis Tool in
Next-Generation Computational
Fluid Dynamics Solver
U S Vevek, Jelle Houtman and Sebastian Timme

School of Engineering
University of Liverpool
Liverpool, England L69 3GH, United Kingdom

ABSTRACT
This paper presents some of the first results of linearised stability analyses performed using
a bespoke eigensolver that has been recently implemented in the next generation flow solver
framework CODA. The eigensolver benefits from the automatic differentiation capability of
CODA that allows computation of the exact product of the Jacobian matrix with an arbitrary
complex vector. It implements the Krylov–Schur algorithm for solving the eigenvalue prob-
lem. The bespoke tool has been validated for the case of laminar flow past a circular cylinder
with numerical results computed using the TAU code and those reported in the literature. It
has been applied with both second-order finite volume and high-order discontinuous Galerkin
schemes for the case of laminar flow past a square cylinder. It has been demonstrated that
using high-order schemes on coarser grids leads to well-converged eigenmodes with a shorter
computation time compared to using second-order schemes on finer grids.

.

2

1.0 Introduction
Stability analysis of numerical steady-state solutions plays an important role in our under-
standing of the onset and dynamics of self-sustained unsteadiness in aerodynamic and aeroe-
lastic applications (1,2). The large but sparse eigenvalue problem formulated on the discretised
governing equations is typically solved for the leading and physically-relevant modes, i.e. the
few eigenvalues with the largest real part. Knowledge of these modes is useful for identifying
the physical mechanisms responsible for the amplification of small-amplitude perturbations
and, consequently, for designing effective control strategies. At the same time, considering
the high dimensional system involved when simulating unsteady non-linear aerodynamics,
the extraction of dominant modal features can aid in constructing low dimensional models
and/or can avoid the long time-integration of the original system.

While the stability analysis of flow, and modal analysis in general, has a long-standing
history, it remains a very active topic in fluid mechanics. The focus herein is on the con-
tinued development of operator-based modal identification using computational fluid dynam-
ics (CFD). On the one hand, high-performance computing has seen remarkable progress in
efficiency and scalability with heterogeneous computing that combines distributed memory
message passing interface (MPI) parallelisation and shared memory OpenMP/GPU paralleli-
sation. On the other hand, advanced numerical schemes and physical models have improved
the modelling accuracy of CFD simulations. These include high-order schemes, advanced
turbulence models (such as Reynolds stress models) and transition models. Despite these
profound advances, current generation CFD tools predominantly use simple models such as
the one-equation Spalart–Allmaras turbulence model and, relating to the stability analysis,
often rely on older-generation eigensolver libraries, such as ARPACK (3), that are limited to
homogeneous MPI parallelisation only.

The next generation flow solver CODA (4,5) is being developed to take advantage of emerg-
ing computing capabilities to eliminate limitations faced by current generation codes. The
newly incorporated automatic differentiation (AD) capability allows matrix-vector products
with the Jacobian operator to be evaluated accurately (and matrix-free for reduced memory
footprints) regardless of the complexity of the underlying discretisation schemes and physical
models. This is an important step forward from computing the Jacobian matrix by hand-
differentiation (or finite-differencing) which becomes cumbersome (and inaccurate) for com-
plex models. The exactness of the matrix-vector product operation is crucial for the iterative
Krylov subspace methods used in linearised stability analysis for large problems of engineer-
ing relevance. The linear systems in CODA are solved using preconditioned Krylov subspace
solvers that are available in CODA’s sparse linear algebra library SPLISS (6). SPLISS operates
on two levels of parallelism with partitioning across MPI processes as well as OpenMP/GPU
threads for enhanced scalability. This allows for more effective preconditioning with full par-
allelisation at the shared memory level while maintaining a strict block-Jacobi type approach
(i.e. no parallel communication) at the distributed memory level.

The focus of this work is the Krylov–Schur algorithm (7) for solving large-scale eigenvalue
problems that has been implemented in CODA to benefit from the latest capabilities in both
CODA and SPLISS. It extends upon the linear frequency domain solver that has been success-
fully implemented in CODA earlier (8). The paper continues with a discussion of the relevant
theory, including the Krylov–Schur method, in Sec. 2, before outlining the numerical method-
ology in Sec. 3. Results for two test cases, specifically the laminar flow at Reynolds number
Re = 50 around the circular and square cylinders, are presented in Sec. 4.

U S Vevek et al. Bespoke Stability Analysis Tool in Next-Gen CFD 3

2.0 Theory
2.1 Basics

To derive the eigenvalue problem for linearised stability analysis, we begin with the unsteady
Navier–Stokes equations written in a semi-discrete form

dW
dt
+ R (W) = 0, (1)

where W =
[
ρ, ρu, ρE, . . .

]
denotes the vector of conservative variables (depending on the

chosen flow model which can include additional equations for modelling turbulence and tran-
sition) and R(W) denotes the corresponding non-linear residual vector in discretised form.
Linearising Eq. (1) about a steady-state solution W, while assuming small-amplitude pertur-
bations of the form Ŵ exp(λJt), yields the eigenvalue problem

JŴ = λJŴ, (2)

where J = −∂R/∂W is the Jacobian operator, Ŵ is the eigenvector and λJ is the eigenvalue.
The imaginary part of λJ corresponds to the frequency of the oscillations, while the real part
of λJ indicates if the oscillation amplitude grows (Re (λJ) > 0) or decays (Re (λJ) < 0) with
time. The adjoint eigenvalue problem is similarly defined as

J†Ŵ+ = λ∗JŴ+, (3)

where the adjoint Jacobian operator J† satisfies the duality relation ⟨a, Jb⟩ = ⟨J†a, b⟩ (with
a suitable inner product defined as ⟨a, b⟩ = aH Mb for arbitrary vectors a and b and a pos-
itive definite weight matrix M), and Ŵ+ is its corresponding adjoint eigenvector with the
eigenvalue λ∗J which is the complex-conjugate of λJ . Both J and J† have the same set of
eigenvalues λJ . The adjoint Jacobian operator can be explicitly given as J† = M−1JT M. The
weight matrix M is the diagonal matrix of cell volumes for the finite volume (FV) scheme
and it is simply the identity matrix for the discontinuous Galerkin (DG) schemes as the DG
schemes in CODA use an orthonormal polynomial basis.

To compute the relevant eigenvalues of the Jacobian operator J (or its adjoint) close to
a given complex shift σ, often available from engineering insight, we apply the shift-invert
spectral transformation such that A = (J − σI)−1 and cast the problem into the form

AŴ = λAŴ, (4)

where λA = (λJ − σ)−1 is the transformed eigenvalue. The eigenvector Ŵ is unchanged by the
transformation. The closer an eigenvalue λJ is to the shift σ, the greater the absolute value of
the transformed eigenvalue λA, which is beneficial for many iterative solution schemes such as
the Krylov–Schur algorithm because desired eigenvalues are amplified. The drawback is that
each application of A is a costly operation that involves solving a large, sparse linear problem
with the coefficient matrix A−1 = (J − σI).

2.2 Krylov–Schur algorithm

The Krylov–Schur algorithm (7,9) is a Krylov subspace method that can be used to determine a
small number of eigenvalue-eigenvector pairs (eigenpairs) of a large sparse linear operator A.

4

Since the Krylov subspace cannot be extended indefinitely due to memory constraints and
the cost of orthogonalisation over a large subspace, a suitable restart technique is needed to
filter the existing subspace to preserve the relevant information. The Krylov–Schur algorithm
improves upon the implicitly restarted Arnoldi algorithm (10) by proposing a simple but robust
restarting technique.

The key to the restarting technique is the Schur form

AQk = Qk+1

[
S k

bH
k

]
= Qk+1S̃ k, (5)

where Qk+1 =
[
Qk qk+1

]
is an orthogonal matrix with Q1 =

[
q1
]
, S k is a k× k upper-triangular

matrix and bH
k is a 1×k row vector. The eigenvalues of S k, which are found along its diagonal,

are good approximations to the exterior/largest eigenvalues of A, i.e. the wanted eigenvalues
of J after shift-invert transformation.

It is possible to split the Schur form into two parts, one consisting of the first m columns
and the other consisting of the remaining (k − m) columns, such that

A
[
Qm Qk−m

]
=
[
Qm Qk−m qk+1

] S m S m,k−m

0 S k−m

bH
m bH

k−m

 . (6)

The restart technique simply involves discarding the last (k−m) columns of Qk and S k yielding
a contracted Schur form

AQm =
[
Qm qm+1

] [S m

bH
m

]
= Qm+1S̃ m. (7)

Note that vector qk+1 is retained and re-labelled as qm+1 to be consistent with the Schur form
notation. The contraction procedure from S k to S m is shown schematically in Fig. 1 for k = 5
and m = 3. It was previously shown (7) that this restart technique is equivalent to applying a
polynomial filter, p(t) = (t − sm+1) × · · · × (t − sk) where s j is the jth diagonal element in S k.
If the diagonal elements of S k had been arranged such that the last (k −m) elements belonged
to the unwanted part of the spectrum, then the contraction procedure effectively purges the
decomposition of the unwanted part of the spectrum.

It is evident from the preceding discussion that it is crucial to maintain (or, at least, to be
able to return to) the Schur form to benefit from the simple restarting technique. In the present
implementation, the Schur form is preserved at the end of each Krylov–Schur iteration. The
dense matrix operations required to do so are relatively inexpensive compared to the applica-
tion of the linear operator A which involves solving a large linear problem. Let us assume that
we begin with the Schur form given in Eq. (5). Performing an Arnoldi iteration on vector qk+1
results in

AQk+1 = Qk+2

S k fk

bH
k g

h

 = Qk+1Tk+1 + hqk+2eT
k+1, (8)

where the k × 1 column vector fk and the scalars g and h are obtained by orthogonalising
Aqk+1 over Qk+1. Since the Arnoldi iteration has disrupted the Schur form, we must per-
form a series of orthogonal similarity transformations to bring Tk+1 back to the Schur form.
First, Tk+1 is brought into the upper-Hessenberg form Hk+1 = V1Tk+1VH

1 using Householder

U S Vevek et al. Bespoke Stability Analysis Tool in Next-Gen CFD 5

Figure 1. Schematic of S̃ k during a restart for k = 5 and m = 3.

reflections. Then, Hk+1 is brought into the complex Schur form S ′k+1 = V2Hk+1VH
2 using

the shifted QR algorithm (11,12). Finally, the diagonal elements of the upper-triangular ma-
trix S ′k+1 are reordered in descending order of their absolute values using special orthogonal
matrices (see Appendix) which yields the ordered Schur form S k+1 = V3S ′k+1VH

3 . The reorder-
ing is necessary so that the restart discards information about the eigenvalues farthest away
from σ. The combined effect of these three operations can be represented by a single similar-
ity transformation S k+1 = VTk+1VH where V = V3V2V1 is an orthogonal matrix. Substituting
Tk+1 = VHS k+1V into Eq. (8) results in

AQk+1 = Qk+1

(
VHS k+1V

)
+ hqk+2eT

k+1. (9)

Multiplying both sides of the latter equation by VH from the right and setting Q′k+1 = Qk+1VH

and bH
k+1 = heT

k+1VH results in

AQ′k+1 = Q′k+1S k+1 + qk+2bH
k+1 (10)

which is the sought-after Schur form. The expansion from S k to S k+1 during the Krylov–
Schur iteration for k = 3 is shown schematically in Fig. 2. Last but not least, we observe
that the Arnoldi iteration is equivalent to a Krylov–Schur iteration for k = 0. Starting from a
random unit vector q1, we perform an Arnoldi iteration to obtain

AQ1 =
[
Q1 q2

] [S 1
bH

1

]
, (11)

where S 1 and bH
1 are just scalars and Q1 =

[
q1
]
. Nonetheless, it can be seen that Eq. (11) is

in the Schur form.
The sought eigenvectors of A can be approximated from the Schur form as

Wk = QkPk, (12)

where matrix Wk =
[
Ŵ1 . . . Ŵk

]
contains the approximate eigenvectors (Ritz vectors) of A

and Pk =
[
p1 . . . pk

]
is a k × k matrix whose columns are the eigenvectors of S k. The

6

Figure 2. Schematic of S̃ k during a Krylov-Schur iteration for k = 3.

eigenvectors pj for j = 1 . . . k can be computed from the relationship S k pj = s j pj combined
with the fact that both S k and Pk are upper-triangular.

The error in the jth eigenvector approximation can be computed as

ε j = ∥AŴ j − s jŴ j∥2. (13)

Substituting Ŵ j = Qk pj and s j pj = S k pj into Eq. (13) leads to

ε j = ∥(AQk − QkS k) pj∥2 = ∥qk+1bH
k pj∥2 = ∥bH

k pj∥2. (14)

The second equality arises from the Schur form itself and the last equality is due to qk+1
having unit norm. The approximation errors are computed at the end of each Krylov–Schur
iteration. Once the jth error norm has dropped below a prescribed threshold value (e.g. 10−10),
the eigenpair is deemed to have converged and is locked by setting the jth component of bH

k
to zero. Subsequent transformations on S k are only applied from the (j+1)th row and column
leaving the top-left j× j part of S j and the first j columns of Qk unchanged. The computation
is terminated when the last desired eigenpair has converged.

3.0 Methodology
3.1 Non-linear steady-state problem

The steady-state problem R(W) = 0 was solved first since the Jacobian operator J = −∂R/∂W
for the eigenvalue problem must be computed about a suitable reference state W. The non-
linear flow solutions were computed in CODA using the implicit backward Euler scheme
with local time stepping until the density residual norm dropped by ten orders of magnitude.
Courant-Friedrich-Levy (CFL) number ramping of the local time steps was employed to ac-
celerate non-linear convergence. The linear system at each outer iteration was solved using a
generalized minimum residual (GMRES) solver (13) until the linear residual norm dropped by
one order of magnitude. The solver used a maximum of 100 Krylov vectors with a maximum
of nine restarts and 50 iterations of a block-Jacobi solver as preconditioner. The GMRES
solver utilises a matrix-free approach using AD to compute the matrix-vector products Jx
exactly for a real or complex vector x. The preconditioner, on the other hand, uses an explicit
matrix whose block-diagonal is factorised using LU decomposition. The explicit matrix is
formed with the help of AD as well using compact stencils. The compact stencil for a cell

U S Vevek et al. Bespoke Stability Analysis Tool in Next-Gen CFD 7

consists of the cell and its immediate face-neighbours only. Since DG schemes use compact
stencils, the explicit matrix is exact. For the FV scheme, which relies on extended stencils, the
explicit matrix is approximate and essentially only first-order accurate. However, this is not a
severe disadvantage. In fact, the approximate matrix is more diagonally dominant leading to
improved stability of the preconditioner (14).

Spatial discretisation was performed herein using both FV and DG methods. In the FV
method, the solution is computed as the cell averages of the conservative variables, i.e. each
cell represents one degree of freedom (DOF) per variable. In the DG method, each variable is
represented as an nth order polynomial in three dimensions where we limit our interest herein
to n ∈ [2, . . . , 8]. Therefore, each cell represents nC3 = n(n+1)(n+2)/6 DOF for each variable
and nCk is the binomial coefficient. For the two-dimensional cases considered in this study, the
DOF per cell can be significantly reduced (only nC2) since the third dimension is redundant.
However, as CODA does not currently support such a two-dimensional DG formulation, the
full three-dimensional formulation was used despite the redundancy.

The inviscid fluxes were computed using the Roe scheme with no entropy fix based on the
face values. In the FV method, the face values at the face centroids were first approximated us-
ing distance-weighted interpolation of the face-adjacent neighbours’ cell averages. Then, cell
average gradients were computed from the approximate face values using the Green–Gauss
method. The final face values were computed as a linear function of the cell average values
and gradients. In the DG method, the face values were computed by evaluating the polynomial
at the face quadrature points. The flux over each face was integrated as a weighted average
of the fluxes computed at the quadrature points. The viscous fluxes were computed based on
face gradients. In the FV method, the face gradients were computed as the distance-weighted
averages of the neighbouring cell average gradients with edge-normal augmentation (15). In
the DG method, the viscous fluxes were computed using the second approach proposed by
Bassi and Rebay known as the BR2 scheme (16).

3.2 Eigenvalue problem

Once the steady-state solution has been computed, the Krylov–Schur algorithm was used to
determine the rightmost (in the complex plane) eigenpair. Observe that the flow conditions in
this study for the chosen test cases are such that Re(λJ) > 0 for the leading eigenmode and
it describes unstable flow, specifically vortex shedding in the wake behind bluff bodies. In
the Krylov–Schur algorithm, the Krylov subspace was allowed to expand to a maximum size
of 20 before a restart. The restart truncated the size of the subspace to five. The linear system
of the form (J − σI)x = qk+1 in each Krylov–Schur iteration was solved using the GMRES
solver with the same settings as that used for the steady-state problem except that 100 block-
Jacobi iterations were used as preconditioner. The shift σ was chosen close to the unstable
eigenvalue based on the prior knowledge of the physics and numerical experiments to ensure
fast convergence. During the numerical experiments, the approximation error of a converged
eigenpair was observed to be directly dependent on the convergence of the linear solver in each
Krylov–Schur iteration. To achieve an approximation error below 10−10, the linear system in
each Krylov–Schur iteration was solved until the residual norm dropped below 10−10.

8

Figure 3. Grid used for laminar flow past circular cylinder case.

4.0 Results and Discussion
4.1 Laminar flow past circular cylinder

We first consider laminar M = 0.2 flow past a circular cylinder as a validation case, which has
been widely documented in the literature. The unstructured grid shown in Fig. 3 was used,
which includes a quasi-structured near-field region and a total of 11638 cells (corresponding
to 9743 vertices in a two-dimensional set-up). The computational domain has a radial extent
of 100D, where D = 1 is the diameter of the circular cylinder, and a unit extent in the spanwise
direction. The far-field view in Fig. 3(a) shows the wake refinement. The quasi-structured grid
around the cylinder has a first wall-normal cell spacing of D/1000 and becomes unstructured
starting at a radial distance of 4.25D from the origin as seen in Fig. 3(b).

The problem was computed at a slightly supercritical Reynolds number of Re = 50 to en-
sure the presence of an unstable mode linked to von Kármán vortex shedding. The complex
shift σ was chosen such that its imaginary part was close to the critical vortex-shedding fre-
quency and its real part was slightly positive so as to hone in on the unstable mode. No attempt
was made in this study to assess the impact of the spectral distance between shift and wanted
eigenvalue on the performance of the eigenmode solver. Both the direct eigenvalue problem
in Eq. (2) and the adjoint eigenvalue problem in Eq. (3) were solved using CODA and TAU*.
For CODA, only the FV method was used for this case. The non-dimensional eigenvalues λJ

(made non-dimensional using D and free-stream velocity U∞) of the von Kármán wake mode
computed by CODA and TAU are 4.2507e-03 + i7.2656e-01 and 1.5829e-02 + i7.3105e-01,
respectively. The positive real parts of λJ indicate that the modes are indeed unstable. Their
imaginary parts are quite close to the numerical shedding frequency of 0.732 predicted by
Crouch et al. (1) based on a similar stability analysis.

The real parts of the streamwise momentum component ρ̂u of the eigenvectors are plotted
in Fig. 4. The eigenvectors were scaled such that the maximum of the ρ̂u component has a

* The TAU code of the German Aerospace Center is an industrial second-order code with a cell-vertex finite-volume
formulation capable of dealing with complex geometries and is widely used in the European aerospace commu-
nity (17). Spatial discretisation herein uses the code’s default formulation of a central scheme with matrix artificial
dissipation for inviscid fluxes and Green–Gauss gradients for viscous terms. Its extension to solve eigenvalue prob-
lems has been detailed previously (2).

U S Vevek et al. Bespoke Stability Analysis Tool in Next-Gen CFD 9

Figure 4. Streamwise momentum components of unstable direct and adjoint global modes for laminar flow past
circular cylinder case.

value of 1 + i0, i.e. a maximum amplitude of one with zero phase. The direct modes exhibit
the well-known vortex shedding pattern downstream of the cylinder. The regions of high
amplitudes of the adjoint modes highlight the locations where a harmonic forcing has the
greatest effect on the global flowfield. It can be seen that the modal features agree qualitatively
between the codes and also with existing literature in the field. Obviously, the coarseness of
the chosen mesh to demonstrate the implementation of the methods would not allow a fully
mesh-converged solution to be identified. This is exemplified by the streamwise position in
the cylinder wake of the maximum cross-stream momentum component of the direct mode
found at approximately x = 14.6D for CODA and x = 10.8D for TAU. Compare these with a
maximum at approximately 25D for more mesh-converged results (18). To address this point,
the second test case of a square cylinder with a more detailed assessment is discussed next.

4.2 Laminar flow past square cylinder

We now consider the case of laminar M = 0.2 flow past a square cylinder at Re = 50, with a
special focus on the high-order DG scheme in CODA. When using high-order DG schemes,
it becomes necessary to use high-order grids to represent the curved geometries to achieve
optimal accuracy (19). However, since a square cylinder has no curves, it can be represented

10

Table 1
Degrees of freedom per equation for grids used for laminar flow past square

cylinder case. Gray colour for cases not discussed herein.

Grid
Vertices

(TAU) Cells DG2 DG3 DG4 DG5 DG6

L0 608 570 2280 5700 11400 19950 31920
L1 2356 2280 9120 22800 45600 79800 127680
L2 9920 9760 39040 97600 195200 341600 546560
L3 40300 39975 159900 399750 799500 1399125 2238600
L4 162440 161785 647140 1617850 3235700 5662475 9059960
L5 652240 650925 2603700 6509250 3018500 22782375 36451800

exactly (and easily) with linear grids. Hence, the added complexity of generating high-order
grids was avoided for this case. All CODA cases were computed on a single compute node
that comprises 384 GB of memory and two Intel Xeon Gold 6230 (Cascade Lake) CPUs
each consisting of 20 hardware cores. The cases were run using two MPI processes with 20
OpenMP threads per process.

The case was computed on six structured grids (labelled as L0 to L5) with levels of vary-
ing refinement. A systematic global refinement approach with halving the mesh spacing and
doubling the cell count in each spatial dimension was chosen. Thus, each new level has ap-
proximately four times as many cells as the previous level. The number of DOF per equation
is listed in Table 1 for the FV schemes in TAU (vertex-centered) and CODA (cell-centered)
and for the DG schemes in CODA until sixth-order. The number of DOF for DG schemes
are computed for the three-dimensional formulation including the spanwise direction which
is redundant for the two-dimensional square cylinder case. Far-field and near-field views of
grids L0 and L2 are shown in Fig. 5. The computational domain extends to a circular far-field
distance of approximately 200D where D = 1 is the length of the side of the square cylinder.
DG schemes were employed in this study on grids L0 to L2 only, which is instructive when
comparing with standard FV results. On each grid from L0 to L2, DG computations were per-
formed from second order up to the minimum order that is needed for the lift coefficient CL to
become smaller than 10−8 in magnitude. Note that the theoretical lift coefficient for this sym-
metrical case is zero. Hence, deviation from the theoretical value is indicative of the adequacy
of the spatial resolution for a given scheme.

The steady-state lift and drag coefficients for all cases computed are plotted in Fig. 6. Since
lift coefficients were sometimes negative, their magnitudes are plotted instead for visualisation
purposes. The FV scheme in CODA is slightly less accurate than that in TAU for the coarse
grids L0 to L2, but it improves from grid L3 onward until eventually it surpasses TAU on the
fine grids L4 and L5. This should be expected considering the very established inviscid flux
discretisation in TAU. The steeper slope of CODA’s FV scheme indicates that grid refinement
has a more significant effect on accuracy for CODA than TAU. Nonetheless, the FV scheme
in neither solver is able to achieve the specified tolerance of 10−8 for the lift coefficient on
the available grids, although the CODA result comes close. In contrast, a sufficiently high-
order DG scheme in CODA was able to achieve the expected accuracy requirement for the lift
coefficient on all three grids tested; a sixth-order DG scheme was required on grid L0 while
a fifth-order scheme was adequate on grids L1 and L2. The slopes for the DG curves are

U S Vevek et al. Bespoke Stability Analysis Tool in Next-Gen CFD 11

Figure 5. Grids L0 (top) and L2 (bottom) used for laminar flow past square cylinder case.

significantly steeper than those for the FV schemes indicating that, for a given problem size,
increasing the order of the DG scheme (p-refinement) results in better accuracy than using
a finer mesh (h-refinement) with FV scheme. It must be emphasised that the DG results are
plotted against the number of DOF for the three-dimensional formulation. Using the number
of DOF actually required for this purely two-dimensional problem would lead to even better
estimates for the accuracy of DG schemes as this would not only shift the curves to the right
but also increase their slopes as seen from the faint lines in Fig. 6(a). Figure 6(b) indicates that
the drag coefficient converges to a value of approximately 1.52735, judging from the results
of the FV computation in TAU on grid L5 and the fifth-order DG computation in CODA on
grid L2. Using this approximate value as a reference, it can be seen that the FV scheme in
TAU is more accurate than that in CODA on a given grid. For a given number of DOF, third-
and higher-order DG schemes are more accurate than the FV scheme in CODA.

Similar to the circular cylinder case earlier, this case also possesses an unstable mode at the
chosen flow conditions. The complex shift σ for the Krylov–Schur computations was chosen
based on numerical experiments on the coarse L0 and L1 grids. Only the direct eigenvalue
problem in Eq. (2) was considered for this case. Figure 7 shows the real parts of the stream-
wise momentum component ρ̂u of the unstable mode computed on grid L0 with CODA. The
DG results were mapped on grid L4 to visualize the sub-cell variation. The results were scaled

12

Figure 6. Steady-state lift and drag coefficients for laminar flow past square cylinder case. Faint lines for lift
coefficients are plotted based on a theoretical purely two-dimensional DG formulation.

as described for the circular cylinder. It is apparent that the vortex shedding pattern becomes
better defined as the order of the DG scheme increases. Note that at nominal second order,
the DG2 formulation gives improved results compared with the FV scheme, when judging
visually from the wake structures.

The non-dimensional eigenvalues λJ for the unstable mode are plotted in Figure 8. It can
be noticed that the FV scheme in CODA does not capture the unstable mode on grids L0
to L2, as evident from the negative real parts of the eigenvalue, but the FV scheme in TAU
does so on all grids. With the exception of the second-order DG scheme on grids L0 and L1,
all the DG computations are able to capture the unstable mode. The eigenvalues appear to
be converging towards the same value with both h- and p-refinements. The closeup view in
Fig. 8(b), which shows the two (to three) most converged eigenvalues for each curve, supports
the notion that there is one true eigenvalue which can be computed with sufficient refinement.
Even though not shown herein, eigenvalues computed using seventh- and eighth-order DG
schemes on grid L0 and the FV scheme in TAU on grid L6 (roughly four times finer than
grid L5) converged towards this same true point. Since we do not know the exact eigenvalue,
we resort to measuring the convergence of the eigenvalues using relative changes in their mag-
nitudes instead. For the FV computations, the relative changes are computed over successive
grid levels (h-refinement), whereas for the DG computations, they are computed over succes-
sive orders of the DG scheme (p-refinement). Given the eigenvalues on successive refinement
levels upon h- or p-refinement, specifically, λ j

J and λ j−1
J , the relative change is defined as

∆λJ =

∣∣∣λ j
J − λ

j−1
J

∣∣∣
1
2

(∣∣∣λ j
J

∣∣∣ + ∣∣∣λ j−1
J

∣∣∣) . (15)

The non-dimensional eigenvalues λJ and their relative changes ∆λJ are given in Table 2 for
FV computations and in Tables 3 through 5 for DG computations.

As expected, the value of the relative changes in the eigenvalues decreases with refinement
in general. The eigenvalues computed using CODA’s FV scheme undergo larger changes with

U S Vevek et al. Bespoke Stability Analysis Tool in Next-Gen CFD 13

Figure 7. Streamwise momentum component of unstable direct modes computed on grid L0 with CODA.

Figure 8. Non-dimensional eigenvalues of the unstable mode for laminar flow past square cylinder case.

grid refinement than those computed using TAU’s FV scheme indicating that the eigenvalues
computed on the coarser meshes using the former solver are further away from the exact value
than those computed using the latter. Despite the initial slow convergence, FV computation on
grid L5 using CODA shows similar convergence to that of TAU with about 0.16% change in
the eigenvalue (cf. Table 2). This can also be confirmed in Fig. 8(b) in which the eigenvalues

14

Table 2
Eigenvalues for laminar flow past square cylinder case using FV schemes.

TAU CODA
λJ ∆λJ λJ ∆λJ

L0 1.9583e-02 + i5.5053e-01 — -1.3821e-01 + i5.5898e-01 —
L1 4.4385e-02 + i5.9324e-01 8.6e-02 -7.6152e-02 + i5.7223e-01 1.1e-01
L2 3.7634e-02 + i6.3509e-01 6.9e-02 -8.7558e-03 + i6.1066e-01 1.3e-01
L3 2.0590e-02 + i6.4032e-01 2.8e-02 1.2061e-02 + i6.3210e-01 4.8e-02
L4 1.6503e-02 + i6.3962e-01 6.5e-03 1.4823e-02 + i6.3792e-01 1.0e-02
L5 1.5505e-02 + i6.3935e-01 1.6e-03 1.5145e-02 + i6.3890e-01 1.6e-03

Table 3
Eigenvalues for laminar flow past square cylinder case using DG on grid L0.

λJ ∆λJ

DG2 -8.8413e-02 + i5.9145e-01 —
DG3 1.0756e-02 + i6.1276e-01 1.7e-01
DG4 1.7415e-02 + i6.3747e-01 4.1e-02
DG5 1.5754e-02 + i6.3848e-01 3.0e-03
DG6 1.5004e-02 + i6.3884e-01 1.3e-03

Table 4
Eigenvalues for laminar flow past square cylinder case using DG on grid L1.

λJ ∆λJ

DG2 -1.5398e-02 + i6.0585e-01 —
DG3 1.6835e-02 + i6.3604e-01 7.1e-02
DG4 1.5345e-02 + i6.3888e-01 5.0e-03
DG5 1.5235e-02 + i6.3905e-01 3.2e-04

Table 5
Eigenvalues for laminar flow past square cylinder case using DG on grid L2.

λJ ∆λJ

DG2 1.0705e-02 + i6.2766e-01 —
DG3 1.5314e-02 + i6.3891e-01 1.9e-02
DG4 1.5217e-02 + i6.3912e-01 3.6e-04
DG5 1.5207e-02 + i6.3915e-01 5.9e-05

computed on grid L5 using the FV schemes in CODA and TAU are somewhat equidistant
from the exact value which should be in the vicinity of the eigenvalue computed using fifth
order DG scheme on grid L2. It can be seen from Table 3 that a sixth order DG scheme
on grid L0 surpasses this with only 0.13% change in the eigenvalue. The convergence of
the eigenvalues computed using DG schemes improves on grids L1 and L2 with 0.032% and
0.0059% changes observed for a fifth-order scheme, respectively.

While the advantages of DG schemes for the non-linear flow problem are often stated in the
literature in terms of computational cost, for the herein presented linearised stability analysis

U S Vevek et al. Bespoke Stability Analysis Tool in Next-Gen CFD 15

it can be said that high-order DG schemes were able to achieve a given level of convergence
(measured using ∆λJ) much faster than the FV scheme. For instance, CODA FV computation
on grid L5 and sixth order DG scheme on grid L0 both achieved the same level of convergence
but the computation time for the latter was an order of magnitude lower than the former. How-
ever, this is a rather intricate discussion; for instance, convergence can be strongly affected by
the condition number of the shift-invert matrix eigenvalue problem.

5.0 Summary
The Krylov–Schur algorithm for solving large eigenvalue problems has been implemented
within the framework of the next-generation flow solver CODA. The implementation was
validated using laminar flow past a circular cylinder case for which the eigenvalues and eigen-
vectors computed using the FV scheme in CODA were shown to agree qualitatively with those
computed using the FV scheme in TAU for both the direct and adjoint eigenvalue problems.
The case of laminar flow past a square cylinder was used to investigate the possible bene-
fits of using high-order DG schemes over FV scheme for solving the eigenvalue problem.
The results presented herein demonstrate that, unlike the FV schemes which require very fine
meshes, high-order DG schemes lead to well-converged eigensolutions on coarser meshes at
a lower computational cost.

Acknowledgements
The work leading to these results received funding through the UK project Development of
Advanced Wing Solutions (DAWS). The DAWS project is supported by the Aerospace Tech-
nology Institute (ATI) Programme, a joint government and industry investment to maintain
and grow the UK’s competitive position in civil aerospace design and manufacture. The
programme, delivered through a partnership between ATI, Department for Business, Energy
& Industrial Strategy (BEIS) and Innovate UK, addresses technology, capability and supply
chain challenges.

CODA is the computational fluid dynamics (CFD) software being developed as part of a
collaboration between the French Aerospace Lab ONERA, the German Aerospace Center
(DLR), Airbus, and their European research partners. CODA is jointly owned by ONERA,
DLR and Airbus.

We thank the University of Liverpool for computing time on the high-performance com-
puting system. The simulation data that support the findings of this study are available from
the authors upon reasonable request.

Appendix
The diagonal elements of the upper-triangular matrix S k need to be reordered using orthogonal
similarity transformations prior to the restart. Without loss of generality, let us consider a 2×2
upper-triangular matrix

S 2 =

[
a b

c

]
, (16)

to which we apply an orthogonal similarity transformation S ′2 = US 2UH which swaps the
diagonal elements a and c while keeping S ′2 upper-triangular. Let us assume that a , c since

16

if a = c, no swapping would be needed in the first place. A 2 × 2 orthogonal matrix U can be
written as

U =
[

p q
qH −pH

]
, (17)

where ppH + qqH = 1. Since we require the bottom-left element of S ′2 to be zero, we arrive at
the condition

qH
(
dpH − bqH

)
= 0, (18)

where d = c − a. Setting qH = 0 satisfies the condition but it leads to the trivial case U = I
which does not swap the diagonal elements. Therefore, the term inside the brackets must
vanish and Eq. (18) reduces to

pH

qH =
b
d
. (19)

Since a , c, the denominator does not vanish. Multiplying Eq. (19) with its complex conju-
gate and substituting qqH = 1 − ppH leads to

ppH =
bbh

bbH + ddH . (20)

We can choose p to be real and positive with a magnitude equal to the square root of the
value on the right-hand-side of Eq. (20). The value of q can be obtained from Eq. (19) as q =
pdH/bH .

To prove that the diagonal elements are indeed swapped, let us compute the top-left element
of S ′2 and show that it is equal to c;

appH + bpqH + cqqH = appH + bpqH + c
(
1 − ppH

)
= c − dppH + bpqH

= c − p������(
dpH − bqH

)
= c

The cancellation in the third line occurs due to Eq. (19). A similar computation of the bottom-
right element of S ′2 shows that it is equal to a. Alternatively, one can reason that since an
orthogonal similarity transformation preserves the eigenvalues and since the eigenvalues of
an upper-triangular matrix appear on its diagonal if the top-left element of S ′2 is c, the bottom-
right element of S ′2 must be a.

In the current implementation, the diagonal elements of S k are reordered by repeatedly
sweeping down the diagonal and swapping adjacent diagonal elements as needed until no
more swaps occur during a sweep. If we wish to swap diagonal elements s j and s j+1, the
similarity transformation matrix V can be constructed by replacing the 2 × 2 diagonal block
of a k × k identity matrix at location (j, j) with the 2 × 2 orthogonal matrix U, specifically

V =

1
. . .

p q
pH −qH

. . .

1

(21)

U S Vevek et al. Bespoke Stability Analysis Tool in Next-Gen CFD 17

References
1. J. D. Crouch, A. Garbaruk, and D. Magidov. Predicting the onset of flow unsteadiness

based on global instability. Journal of Computational Physics, 224(2):924–940, 2007.
2. S. Timme. Global instability of wing shock-buffet onset. Journal of Fluid Mechanics,

885:A37, 2020.
3. R.B. Lehoucq, D.C. Sorensen, and C. Yang. ARPACK users’ guide: solution of large-

scale eigenvalue problems with implicitly restarted Arnoldi methods. SIAM, 1998.
4. M. Wagner, J. Jägersküpper, D. Molka, and T. Gerhold. Performance analysis of com-

plex engineering frameworks, pages 123–138. Springer, Cham, 2021.
5. T. Leicht, J. Jägersküpper, D. Vollmer, A. Schwöppe, R. Hartmann, J. Fiedler, and

T. Schlauch. DLR-Project Digital-X – Next Generation CFD Solver ‘Flucs’. In
Deutscher Luft- und Raumfahrtkongress 2016, 2016.

6. M. Wagner. The CFD Solver CODA and the Sparse Linear Systems Solver Spliss:
Evaluation of Performance and Scalability. In NHR CFD Workshop Day 2021, 2021.

7. G.W. Stewart. A Krylov–Schur algorithm for large eigenproblems. SIAM Journal on
Matrix Analysis and Applications, 23(3):601–614, 2002.

8. U S Vevek, S. Timme, J. Pattinson, B. Stickan, and A. Büchner. Next-generation com-
putation fluids dynamics capabilities for aircraft aeroelasticity and loads. In 19th Inter-
national Forum on Aeroelasticity and Structural Dynamics, IFASD 2022, 2022.

9. G.W. Stewart. Addendum to “A Krylov–Schur algorithm for large eigenproblems”.
SIAM journal on matrix analysis and applications, 24(2):599–601, 2002.

10. D.C. Sorensen. Implicit application of polynomial filters in a k-step Arnoldi method.
Siam journal on matrix analysis and applications, 13(1):357–385, 1992.

11. J.G.F. Francis. The QR transformation a unitary analogue to the LR transforma-
tion—Part 1. The Computer Journal, 4(3):265–271, 1961.

12. J.G.F. Francis. The QR transformation—part 2. The Computer Journal, 4(4):332–345,
1962.

13. Y. Saad and M.H. Schultz. GMRES: A generalized minimal residual algorithm for solv-
ing nonsymmetric linear systems. SIAM Journal on scientific and statistical computing,
7(3):856–869, 1986.

14. A. McCracken, A. Da Ronch, S. Timme, and K.J. Badcock. Solution of linear systems in
fourier-based methods for aircraft applications. International Journal of Computational
Fluid Dynamics, 27(2):79–87, 2013.

15. A. Schwöppe and B. Diskin. Accuracy of the cell-centered grid metric in the DLR
TAU-code. In New Results in Numerical and Experimental Fluid Mechanics VIII, pages
429–437. Springer, 2013.

16. F. Bassi, A. Crivellini, S. Rebay, and M. Savini. Discontinuous Galerkin solution of the
Reynolds-averaged Navier–Stokes and k–ω turbulence model equations. Computers &
Fluids, 34(4-5):507–540, 2005.

17. D. Schwamborn, T. Gerhold, and R. Heinrich. The DLR TAU-code: Recent applica-
tions in research and industry. In ECCOMAS CFD 2006: Proceedings of the European
Conference on Computational Fluid Dynamics, 01 2006.

18

18. D. Sipp and A. Lebedev. Global stability of base and mean flows: a general approach
and its applications to cylinder and open cavity flows. Journal of Fluid Mechanics, 593:
333–358, 2007.

19. R. Hartmann and T. Leicht. Generation of unstructured curvilinear grids and high-order
discontinuous Galerkin discretization applied to a 3D high-lift configuration. Interna-
tional Journal for Numerical Methods in Fluids, 82(6):316–333, 2016.

	Introduction
	Theory
	Basics
	Krylov–Schur algorithm

	Methodology
	Non-linear steady-state problem
	Eigenvalue problem

	Results and Discussion
	Laminar flow past circular cylinder
	Laminar flow past square cylinder

	Summary

