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ABSTRACT
Aerodynamic data required in aircraft high-value design and performance analysis are
mainly acquired through wind tunnel testing and numerical analysis. Data acquisi-
tion can be expensive and is subject to multiple sources of uncertainty. Previously, the
multifidelity data fusion framework introduced by Lam, Allaire and Willcox (2015) has
been adapted to enable its application to large and high-dimensional datasets involved
in surface flow analysis of a large aircraft wing model. Pressure coefficient distribu-
tions on the upper surface of the wing from static pressure tapping and time-averaged
dynamic pressure sensitive paint as well as complementary numerical simulations were
exploited. The data fusion approach relies on the construction of intermediate surro-
gate models for all information sources with Gaussian process regression and fusion of
the latter using a variance-weighted combination. The data fusion does not consider
an absolute hierarchy in terms of accuracy between the information sources. The con-
fidence in an information source over the design space is defined through a fidelity
function tailored to each intermediate model. The work presented herein focuses on
improving the intermediate model design through an adaptive choice of the covari-
ance function and on defining a fidelity function for each information source that is
grounded in practical and physical considerations.

.
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1.0 Introduction

Aerodynamic data are crucial for the design and development of an aircraft and the
analysis of its performance. Physical flight and wind tunnel testing and computa-
tional fluid dynamics (CFD) simulations are routinely carried out to understand the
aircraft aerodynamic characteristics for different flight conditions to ensure its safe op-
eration within its nominal flight envelope. These investigations are typically carried
out to examine the forces and moments and/or the pressure distribution exerted on its
surface. Deterministic numerical simulations have benefited from the ever-increasing
computing power and advances in modern CFD codes to become a must in aero-
dynamics. However, different types of uncertainties, often associated with physical
modelling approximations as well as discretisation and iterative errors, prevent nu-
merical methods from being fully trusted when dealing with complex configurations
and phenomena. To complement CFD results and to make sure the physics involved
especially in edge-of-the-envelope aerodynamic flows is understood, it is essential to
carry out physical wind tunnel experiments. Wind tunnel testing can be expensive
and, just like numerical analysis, is subject to multiple sources of uncertainty.

Multifidelity data fusion aims to leverage information from the different aerody-
namic data sources to provide a merged, robust and reliable surrogate model. His-
torically, methodologies based on multiple sources of varying fidelity used to a large
extent a method called kriging (1), also known as Gaussian process regression. The
most common incarnation when applying Gaussian processes in a data-fusion context
is hierarchical kriging, often called co-kriging. Co-kriging is a multifidelity methodol-
ogy that combines data from two or more models to train a single Gaussian process
surrogate model (2,3,4). For instance, these ideas were applied within the Schur com-
plement eigenvalue framework to study transonic flutter instability while looking into
aerodynamic models of varying fidelity (5). A kriging-based function was also used to
correct low-fidelity models with sparse high-fidelity data from an experimental design
to study wing optimisation (6). More recently, other popular data fusion methods in-
volve a dimensionality reduction technique, called proper orthogonal decomposition,
for multifidelity surrogate modelling of velocity or pressure fields (7,8,9).

This paper follows the work carried out in Anhichem et al. (10) where a non-
hierarchical multifidelity framework previously discussed in Lam et al. (11) and Feld-
stein et al. (12) was revisited. The choice of this framework is motivated by its use of
Gaussian processes, as it is a flexible tool for modelling complex, multidimensional sur-
faces that accounts for the correlation of the data in the design space while providing
a measure of confidence in their prediction (13). In addition, it is non-hierarchical; each
information source is considered independently of the others and the fidelity in the
model hierarchy varies over the input space. In contrast, most data fusion approaches
available in the literature define a fixed hierarchical relationship between information
sources which is not always appropriate. The chosen approach is composed of three
main ingredients; (i) the intermediate surrogate models obtained from Gaussian pro-
cess regression on each information source, (ii) the definition of fidelity functions over
the input space for each information source and (iii) the fidelity-weighted combina-
tion of all intermediate models. It allows the associated framework to be flexible on
the number of information sources and to benefit from each model’s strengths. A
limitation in the choice of this framework was associated with the prohibitive com-
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putational cost of Gaussian process regression for sources with many thousand data
points. Indeed, its associated cubic complexity and quadratic storage requirements
restricts its application to relatively small data sets such as information on forces or
sparse pressure data over the design space. In Anhichem et al. (10), a method based
on stochastic variational inference developed in Hensman et al. (14) has been adopted
alongside the use of graphics processing unit architecture to enable the application of
the data fusion framework on large data sets and therefore the application to aircraft
wing pressure distributions. To advance the application of the data fusion framework,
herein we focus on two aspects; the modelling of an individual information source using
Gaussian process regression and the definition of the fidelity function over the design
space. The first aspect addresses the design of a Gaussian process model through
its covariance function that is tailored to the structure contained in the aerodynamic
data. A procedure for automatic model search is explored to improve the construc-
tion of intermediate models (15,16,17). For the second aspect, we reflect on the fidelity
function that must be grounded in practical and physical considerations.
Section 2 describes the different elements forming the multifidelity data fusion ap-

proach. The RBC12 half wing-fuselage configuration (18) and the data sources con-
sidered and data sets prepared for the study are introduced in Section 3. Section 4
presents the results of an application on a one-dimensional chordwise pressure dis-
tribution. Fidelity function definitions are given in Section 5 and used to apply the
multifidelity data fusion framework on a four-dimensional input space.

2.0 Multifidelity Surrogate based on Gaussian Processes
2.1 Gaussian process regression

Gaussian processes (13) represent distributions over functions written as f : x ∈ D 7−→
f(x) ∈ R which associate an input vector x ∈ D on the design space D ⊆ Rd of
dimension d with a scalar quantity. Noisy observations are often considered and
written as y(x) = f(x)+ε with the noise being an independent identically distributed
Gaussian variable ε with zero mean and variance τ2. Let X = [x1 x2 ... xN ] be
the matrix of N training points xj ∈ D and f = f(X) = [f1, f2, ..., fN ]⊤, the latent
variable vector containing the values fj = f(xj). The observable variable vector is
defined in the same way by y = y(X) = [y1, y2, ..., yN ]⊤. The main idea behind
Gaussian processes is that the values of y are jointly Gaussian with mean m(X) and
covariance k(X,X) where m is the mean function and k is the covariance function.
The notations m(X) and k(X,X) generalise the component-wise evaluation of X by m
and k, e.g. m(X) = [m(x1) m(x2) ... m(xN )].
A Gaussian process can be characterised and written as GP(m(x), k(x,x′)) (13).

Since it holds for any set on the design space, it includes the set containing the
training points X and a test point x∗. Then, f(x∗) can be inferred by manipulating
the joint Gaussian distribution. With additional test points, the Gaussian process
prior, p(y, f∗), can be written as a joint normal distribution over the random variable
vectors y and f∗ = f(X∗) where X∗ represents the matrix of testing points in D,

p(y, f∗) = N

([
m(X)
m(X∗)

]
,

[
k(X,X) + τ2I k(X,X∗)
k(X,X∗)⊤ k(X∗,X∗)

])
(1)
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To make predictions of the function outputs, f(X∗) = f∗, the posterior distribution
p(f∗|X∗,X,y) can be derived by applying the multivariate Gaussian conditional rule
which gives p(f∗|X∗,X,y) = N (f∗|µGP (X

∗), σGP (X
∗)) with posterior mean µGP (x)

and posterior standard deviation σGP (x) defined as

µGP (X
∗) = m(X∗) + k(X,X∗)⊤

[
k(X,X) + τ2I

]−1 (
y−m(X)

)
(2)

σGP (X
∗) = k(X∗,X∗)− k(X,X∗)⊤

[
k(X,X) + τ2I

]−1
k(X,X∗) (3)

The standard deviation, σGP , quantifies the uncertainty arising from the approxima-
tion process and corresponds to the uncertainty in the model prediction away from a
training point. The posterior distribution strongly depends on the formulation used
for m(x) and k(x,x′). Whereas the mean function is commonly assumed to be zero
on the design space, m(x) = 0, the covariance function incorporates the function’s
structure available under the Gaussian process prior. In other words, it determines
the properties of the obtained Gaussian process model.
A popular choice for the covariance function is the squared-exponential,

kSE(x,x
′) = σ2 exp

(
−

d∑
k=1

∥xk − x′
k∥22

2l2k

)
(4)

where σ and lk are, respectively, the output standard deviation and a length scale.
They are the model hyperparameters and are denoted by the vector θ = [σ, lk]. In
terms of function properties, the squared-exponential is related to an infinitely dif-
ferentiability expected of the modelled function. It is our working assumption that
this covariance function is not ideal and Section 4 will be dedicated to discover a co-
variance function structure appropriate to the (transonic) pressure distribution over a
wing. The popularity of the squared-exponential covariance function can also be ex-
plained by the few hyperparameters to be identified and the interpretability of those.
Indeed, in Eq. (4), the covariance function employs a length scale for each dimension
of the design space found through automatic relevance determination (19). A relatively
large length scale corresponds to relatively little variation along the dimension of the
modelled function, and vice versa.
The method often used for learning the hyperparameters is based on the evaluation

of the likelihood function p(y|θ). Using the standard form for a multivariate Gaussian
distribution, the log-likelihood function is given by

log p(y|X,θ) = −1

2
y⊤[k(X,X) + τ2I

]−1
y− 1

2
log
[
k(X,X) + τ2I

]
− N

2
log (2π) (5)

Gradient-based optimisation algorithms are routinely used to maximise the latter ex-
pression. However, it can be seen in Eqs. (2) through (5) that the regression model
involves the matrix inversion of

[
k(X,X) + τ2I

]
. The number of operations for this

matrix inversion scales with N3 operations. Considering the size of the data sets
under investigation, given in Table 1, it leads to scalability limits of the Gaussian pro-
cess regression and requires additional consideration. While comprehensive reviews
of scalable Gaussian processes are available (20), a method based on Stochastic Varia-
tional Inference (14,21) was chosen herein to enable the application to the configuration
presented in Section 3, i.e. to aircraft wing pressure distributions.
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2.2 Fidelity function

To quantify the uncertainty associated with data generated by an information source,
we use the fidelity function σf as part of the multifidelity framework (11). It is a
representation of the confidence in an information source over the design space and
can come from e.g. expert knowledge, past experience and/or empirical data. The
fidelity function is defined over the design space D and relates how the confidence one
has in the data varies within that design space. While σGP accounts for the modelling
uncertainty away from the training points, σf is an additional term of the same nature
quantifying the uncertainty in the available data itself. The resulting total variance is
stated as

σ2
t = σ2

GP + σ2
f (6)

and aims to capture both the quality of the Gaussian process model and the expert’s
confidence in the underlying data. The total variance is then incorporated in each
intermediate surrogate model. The posterior standard deviation σGP is analytically
determined by the Gaussian process regression previously described. However, the
fidelity function σf is challenging to define. Its definition is non-unique, subjective to
the user, and depends on several factors such as the method used to obtain the data
or the design space considered. Section 5 will an attempt to provide a fidelity function
definition based on the test case introduced in Section 3.

2.3 Variance-weighted combination of intermediate surrogate models

As previously presented (11,12,10), a surrogate model is built for every information
source, i.e. a Gaussian process regression model is trained from every fi(Xi) produced
by the i-th among I information sources. The resulting intermediate posterior mean
and standard deviations are denoted µGP,i and σGP,i, respectively. As defined earlier
in Eq. (6), the total variance of the i-th information source is σ2

t,i = σ2
GP,i+σ2

f,i where
σf,i is the fidelity function defined for the i-th information source. The multifidelity
fused estimation of f(x) is computed with a weighted sum of µGP,i and σGP,i. The
weighting (22) to give more importance to high-confidence models is defined by the
multifidelity mean estimate and the multifidelity total variance as

µ(x) = σ2(x)

I∑
i=1

µGP,i(x)

σ2
t,i(x)

(7)

σ2(x) =

(
I∑

i=1

1

σ2
t,i(x)

)−1

(8)

The approach combines the non-hierarchical multifidelity method to fuse disparate
data and the definition of fidelity function to quantify information source uncertainty.

3.0 Civil Aircraft Wing Configuration
3.1 Experimental wind-tunnel test campaign

The work presented here uses data from experiments conducted in the Aircraft Re-
search Association Transonic Wind Tunnel on the RBC12 half wing-fuselage config-
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(a) Model mounted on wind tunnel floor

1.085 m

2.68 m

Y = 574.4 mm

(b) Front, side and top views of geometry

Figure 1: Perspective of installed physical model as well as front, side and top views
of computational model.

uration with focus on transonic buffet. Nevertheless, the data considered here are
assumed to be steady in pre-buffet conditions. A more detailed description of the
experimental study can be found in our previous work (23,24,18). Figure 1 presents the
underlying wing geometry which is representative of a typical 1970s/1980s commercial
aircraft design. The wind tunnel model has been scaled down by a factor of 17.5. Its
mean aerodynamic chord is 0.279 m with a semi-span of 1.085 m, giving an aspect
ratio of 7.78 and a reference area of 0.2959 m2. The wing is twisted, tapered and swept
back with a constant quarter-chord sweep angle of 25◦. For visualisation purposes, a
dimensionless spanwise coordinate is defined as η = (Y −0.019)/1.085, derived for the
coordinate Y from which the plinth thickness (0.019 m) is subtracted.

An overview of all available data in this study is shown in Fig. 2 with details
discussed next. The chosen flow conditions follow the available data from the previ-
ous test campaign including reference Mach numbers between M = 0.7 and 0.84, a
Reynolds number (with respect to mean aerodynamic chord and reference velocity)
of approximately 3.4 × 106 to 3.7 × 106 and angles of attack approximately between
α = −1.2◦ and 8.4◦. Herein we focus on pressure features, through the pressure coef-
ficient, over the upper surface of the RBC12 wing. A large number of static pressure
taps (chosen as the first data source) were installed on the wing and the fuselage to
observe the shock movement and flow development around buffet onset with varying
Mach number and angle of attack. A total of 150 static pressure taps are located
on the upper surface of the wing. In addition, the second data source is dynamic
pressure-sensitive paint (DPSP) recorded with a high-frame-rate imaging system and
previously processed to analyse the unsteady behaviour of the shock dynamics with
plenty of detail presented in Masini et al. (18). Such an advanced optical measurement
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Table 1: Overview of different data sets.
Source Flow conditions Spatial coordinates Dataset size

Pressure tappings 183 150 27,450
DPSP 30 289,215 8,676,450
RANS 14 52,491 734,874
XFLR5 42 900 37,800

Figure 2: Available data according to Mach number and angle of attack.

technique can provide pressure information over a large region of the wing surface,
offering a significant advantage over discrete pressure measurements. For instance,
the set-up of the previous test campaign resulted in a resolution of 1.3 pixel/mm.
The idea is to exploit time-averaged DPSP measurements to benefit from its spatial
abundance and to complement scattered static pressure tap data.

3.2 Complementary numerical simulations

Figure 2 (right) shows the experimental conditions at which Reynolds-averaged
Navier–Stokes (RANS) and a three-dimensional panel method simulations have been
carried out. For RANS computations, the geometry shown in Fig. 1 was reconstructed
from the wind tunnel model using a laser-equipped scanner and an unstructured mesh
(with approximately 12.2 × 106 vertices) has previously been created following in-
dustry best-practice guidelines. The finite volume code TAU (25) was chosen for the
simulations. The convective fluxes of the mean flow equations make use of the code’s
default central scheme with scalar artificial dissipation and those of the turbulence
model (chosen to be the negative Spalart–Allmaras model) use a Roe scheme. Gradi-
ents for viscous fluxes and source terms use the Green–Gauss relation. To the extent
possible, numerical flow conditions have been matched to the available wind tunnel
experimental conditions (10).

The wing geometry has been modified to apply panel methods which solve the linear
potential flow equations. Rather than only considering the wing planform for the
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Table 2: Various basic covariance functions defined in one dimension.
Kernel name k(x, x′) Type of structure

Linear (Lin) σ2(x− c)(x′ − c) linear functions

Squared-exponential (SE) σ2 exp
(
− (x−x′)2

2l2

)
local variation

Periodic (Per) σ2 exp
(
− 2

l2 sin
2
(
π (x−x′)

p

))
Repeating structure

Rational quadratic (RQ) σ2
(
1 + (x−x′)2

2αl2

)−α

multiscale variation

White noise (WN) σ2δ(x− x′) uncorrelated noise

discretisation, the model geometry used in XFLR5 accounts for the main geometrical
features of the RBC12 wing, such as the aerofoil profile and the twist and dehidral
angles (going beyond the usual wing span and local chord lengths to describe the
planform). The fuselage has been replaced by a flat wing extension with the same
profile as the wing-root profile for modelling purposes. The method implemented in
XFLR5 (26) has been used to generate the pressure distribution over the model wing
computed at the centroid of each panel. Obviously, the potential flow hypothesis
lacks accuracy for the transonic Mach numbers (and viscous flow) addressed herein,
but the flexibility and execution speed justify its inclusion, while its associated fidelity
function will take its inaccuracy into account.

4.0 Data Modelling with Gaussian Processes
4.1 Covariance function structure discovery

A covariance function (also called kernel function) is a positive semi-definite function
of input pairs x and x′ (13). As mentioned earlier, it plays an essential role in the
model construction using Gaussian process regression. It includes the properties of
the function to be learnt. It can also be seen as a definition of similarity between input
points. This aspect is connected to the more general assumption in supervised learning
that nearby input points are likely to have a similar output. Therefore, a test point
should have a similar output to the nearest training points. However, the flexibility
provided by Gaussian process regression is counterbalanced by the necessity to choose
this covariance function that best suits the structure of the training data. While the
(hyper-) parameters of the covariance function can be obtained by minimising the
log-likelihood in Eq. (5), its parametric form must be chosen nevertheless. In addi-
tion, combinations of simple covariance functions through addition and multiplication
can be used to express a wide range of function structures such as additivity, symme-
try, periodicity, interactions between variables, and changepoints (16). Table 2 defines
five basic one-dimensional covariance functions and their associated structure type∗.
Each of these covariance functions entails assumptions made about the underlying

∗ The output variance σ2, the offset c, the period p and the parameter α are hyperparameters of
their respective covariance functions. The Dirac delta function δ is used for the white noise function.
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Figure 3: An example of a search tree over covariance functions defined in Table 2.
Image reproduced with permission of the author (16).

data. Thus, it is possible to build a custom covariance function with the appropriate
properties by combining basic covariance functions with known properties.
For instance, adding a linear covariance function to another covariance function in-

dicates a linear variation in the modelled data. Additivity is a popular assumption,
but multiplication can also express interesting properties. Multiplying a covariance
function by a linear covariance function illustrates a growing amplitude and by a
squared-exponential converts a global variation to a local variation. Another com-
bination of interest is the changepoint (CP) covariance function (17). It expresses a
change between structure types and is defined from two basic covariance functions
denoted k1 and k2. On a one-dimensional axis, it is defined as

k
(k1,k2)
CP (x, x′) = s(x) k1(x, x

′) s(x′) +
(
1− s(x)

)
k2(x, x

′)
(
1− s(x′)

)
(9)

with s(x) = 0.5 + 0.5 tanh(−ξ(x− x0)) parameterised by location x0 of the structure
change and steepness ξ indicating how abrupt the change is. A more complete descrip-
tion of the resulting structures and the combination rules is available in Duvenaud (16).
While a wide variety of models can thus be built, typically it is challenging to pick

the best covariance function for a given problem. With this in mind, an automatic
model construction method was developed (15,16,17) with the objective to search over a
space of covariance function structures built by combination of a small number of base
expressions. The method is essentially based on two components; (i) a procedure to
search the function space and (ii) a procedure using the marginal likelihood to com-
pare models. The space of Gaussian process regression models can be explored using
a greedy search (16). Starting with base covariance functions, the method applies op-
erations such as substitution, multiplication, addition or changepoint to a set of basic
covariance functions. At each step, the best model is selected for further operations
when proceeding to the next step. The best covariance function at a given step is
selected using the Bayesian information criterion (BIC) (27),

BIC(θ) = log p(y|θ)− 1
2nθ logN (10)
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Figure 4: Pressure coefficient on upper wing surface at η = 51%.

where nθ is the number of hyperparameters and N the number of training data. The
criterion is based on the marginal likelihood p(y|θ) penalised by the second term
representing the model complexity, i.e. the number of model parameters. The number
of steps is chosen by the user and is a trade-off between the model accuracy and its
growing complexity. The automatic model construction goals are to explore a large
number of models and to discover unexpected structure in training datasets. Source
code to perform the search is available online† and relies on the GPML toolbox (28).

4.2 One-dimensional results for chordwise pressure distribution

In transonic flow, the presence of shock waves and separation makes it challenging
to capture the pressure changes on a wing along the chordwise direction. In the
design space considered, the pressure changes in the other dimensions (spanwise di-
rection, Mach number and angle of attack) are smoother and appropriately modelled
by standard practices. Thus, we focus the automatic covariance function search on the
pressure coefficient along the wing chord on the upper surface. As stated before, the
objective is to discover the underlying structure in the training data set and to obtain a
covariance function adapted to model transonic wing flow. In terms of the multifidelity
data fusion framework, the aim is to improve the construction of the intermediate sur-
rogate models. Figure 4 shows representative training data from pressure tappings at
a spanwise location η = 51% (Y = 574.4 mm) for case {α = 3◦, M = 0.82}, used
to demonstrate the automatic structure discovery. As the model search procedure
requires training many models, the relatively low number of data points alleviates, for
our demonstration purposes, the otherwise significant computational cost.

Only few choices have to be specified to carry out the search for function structure.
The initial covariance function is a standard squared-exponential and serves as a first
reference for model comparison. The set of covariance functions to be involved in
combinations includes the squared-exponential (SE), rational-quadratic (RQ), linear
and constant covariance functions. Combinations of those covariance functions are
trained on the reference dataset and are compared in turn to advance the search. The

† http://www.github.com/jamesrobertlloyd/gp-structure-search

http://www.github.com/jamesrobertlloyd/gp-structure-search
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Figure 5: Posterior mean for different depths of covariance search on reference dataset.

best model amongst many at each level, judged from the BIC as given in Eq. (10), for
a four-level search with increasing complexity are presented in Fig. 5. For clarity and
because the main interest is the modelling aspect, the illustrations are limited to the
posterior mean of each model.

It is observed that in the case of noise-free regression, the model with the base co-
variance function (level 0) is overfitting the data and presents some visually inaccurate
oscillation. It is due to the characteristics of the squared-exponential to model smooth
variations depending on the length scale. Some improvements are noted at level 1 of
the search by multiplying the base covariance function by a rational-quadratic. The
latter incorporates multiscale variation in the data. The multiplication by the squared-
exponential involves removing long range correlations from the model as the function
tends to zero with the increase of (x − x′)2. However, it can be seen that the shock
is poorly captured by the model. While the overfitting is less prominent, the poste-
rior mean is too smooth at the location of the shock wave. Level 2 introduces the
changepoint function which is more accurate to represent the variation of the pres-
sure coefficient around the shock discontinuity. Indeed, the changepoint represents a
change in terms of structure in the data and allows the switch between two covari-
ance functions with the expressions of level 1. Those two multiplications of covariance
functions, SE and RQ, have consequently different hyperparameter values. Level-2
posterior mean underestimates the pressure coefficient around the leading edge. This
issue is overcome in level 3 where a new change point composes the covariance func-
tion of level 2 with a squared-exponential at the location near the leading edge. The
model corresponding to level 3 appear to describe the evolution of the data well. The
shock-related changepoint around X = 390 mm seems arbitrary in the sense that it is
not certain that the location of the shock wave is exactly captured. Additional, more
refined data information would help determining the exact behaviour of the pressure
coefficient around this location. Overall, the model improves with each level, but it is
important to recall that also the complexity of the model increases, so there are more
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Figure 6: Posterior mean using base and level-3 covariance functions for different
experimental conditions.

hyperparameters to determine, which can be problematic, and this is accounted for in
the BIC with the penalty term.

As this best level-3 model structure has been obtained for a particular experimental
condition, it is important to query how the model generalises to other conditions where
the pressure evolution will be different. Figure 6 shows a comparison of the posterior
mean between a standard squared-exponential (base covariance function) and the best
level-3 covariance function structure (identified in Fig. 5) for four unseen pairs of angle
of attack and Mach number. For case {α = –0.24◦, M = 0.7}, the behaviour of both
model structures is similar as the evolution of the pressure coefficient is smoother,
with the exception of the leading edge where the base covariance function does not
capture the variations well. This confirms the importance for the covariance function
to have a changepoint at this location. The observations are similar for the other
cases, {α = 2.09◦, M = 0.8} and {α = 5.41◦, M = 0.82}, with the variations
clearly better captured by the level-3 covariance function. An interesting result is
that the changepoint location, i.e. the abrupt pressure change due to the shock, is
well identified during the model training. Indeed, it is a model hyperparameter and
is therefore optimised during training. The difference between the two covariance
functions is less straightforward for the final case {α = 7.33◦, M = 0.74}. While
the level-3 model is better at the leading edge, the behaviour at streamwise location
between approximately X = 290 mm and 325 mm is uncertain for both covariance
functions. The base covariance function underfits the data at this location and the
more complex model predicts a steep change in the middle of the two known data.
Additional pressure-tap data would help to discern the correct evolution better.

It can be concluded that the covariance function identified during the automatic
model search using an arbitrarily selected flow condition generalises well to other ex-
perimental conditions of the design space and provides a satisfying model for transonic
flow conditions. The key insight of this study is the powerful use of changepoints to
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incorporate the steep variations when shock waves are involved. While these results
are currently limited to a one-dimensional application and also require more scrutiny,
in future work we will explore the extension to multidimensional regression in order
to integrate them into the multidimensional multifidelity data fusion framework.

5.0 Fidelity Function Definition

In engineering design, an important and persistent challenge is to know always to
what extent one can trust the available data. Several factors must be taken into
account when quantifying this confidence. Aerodynamic studies rely to a great extent
on simulations and wind tunnel testing, which are both subject to multiple sources of
uncertainty. In the context of multifidelity data fusion, the uncertainty quantification
of an information source provides both the confidence in data obtained from it and the
relative accuracy with respect to other information sources at that point in the design
space. Indeed, the multifidelity approach considered herein is non-hierarchical and the
uncertainty has to be defined independently in the design space for each information
source. It is represented by the fidelity function defined in Eq. (6). Previously, the
data fusion framework has been applied to the RBC12 configuration, assuming the
four fidelity functions to be constant in the design space for demonstration purposes
while still representing the desired influence of each of the four information sources (10).
The objective is now to discuss a better grounded definition of the respective fidelity
functions defined on the input space. We limit the discussion to four dimensions herein,
specifically Mach number and angle of attack, and the spatial coordinates (X,Y ) in
stream- and spanwise directions, respectively.

Figure 2 shows the experimental flow conditions tested in the Aircraft Research
Association Transonic Wind Tunnel. Wind tunnel conditions aim to reproduce an
environment similar to those of the vehicle’s real flight conditions. There are several
factors why the real flight conditions cannot be reproduced perfectly. Consequently,
many wind tunnel corrections are applied by the test engineers to account e.g. for
blockage effects, buoyancy effects or flow angle divergence (18,23). In addition, mea-
surement errors can affect the data from the pressure sensor to the acquisition system.
Each wind tunnel test is unique and will lead to different uncertainties and calibra-
tions, but a reasonable estimate of experimental noise and error can be given. It
is represented herein by a constant value in the design space which means that the
confidence on the data does not vary with respect to the dimensions of the design
space. For pressure-tap data, the confidence in the absolute pressure measurement
established by experimentalists is expressed in terms of the fidelity function σ2

f,Tap.
Without going into detail concerning the DPSP data acquisition (for more information
see Masini et al. (18)), the local pressure values obtained on the wing surface result
from the varying fluorescent intensity of the paint. It requires the calibration with
scattered pressure-tap data and is hence subject to the same assumptions and uncer-
tainties mentioned before. However, thermal effects affect the paint response and lead
to a lower confidence in the DPSP data. The use of DPSP is justified by a high spatial
resolution, but the resulting data is believed to be physically less accurate compared
with taps. It is important to recall that the values chosen for the application below
are from expert opinion and case-dependent and are therefore not unique.
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(a) RANS (b) XFLR5

Figure 7: Fidelity function evolution for RANS and XFLR5 information sources over
(M,α) ∈ [0.7, 0.84]× [−2◦, 9◦] ⊂ D

Defining the fidelity function for numerical data sources is different. It is established
in the literature that uncertainty in numerical simulations can be divided in two types;
numerical and modelling uncertainties (29,30,31). The former is due to the nature of
the information source itself, i.e. the use of numerical methods to solve the problem,
and results from e.g. discretisation, iterative convergence and round-off errors. It
can be represented by a constant in the design space but it is difficult to quantify
exactly. The latter is associated with physical approximation errors in the modelling
of the fluid problem. For instance, turbulent flow is normally approximated by the
governing RANS equations and choice of turbulence model. It can also be linked to the
approximations made to represent the actual geometry in the simulation. Modelling
uncertainties vary with flow conditions because the leading physical phenomena can
change. For instance, shock related phenomena are more important at higher Mach
numbers or the boundary layer separation occurs at a certain angle of attack.

The fidelity function for the first numerical information source can be written as the
sum of these two terms, σf,RANS(D) = σf,numerical +σf,modelling(M,α). An expression
is derived from a validation step with experimental pressure-tap data (considered as
the most reliable source) and proposed here (for 99.7% confidence interval),

3σf,RANS = 0.008 (1 +M + 0.5α) (11)

It is defined for any (M,α) ∈ [0.7, 0.84]× [−2◦, 9◦] ⊂ D and aims to describe the con-
fidence change over the design space, particularly with the experimental conditions.
Concerning the second numerical information source, the fidelity function formulation
is similarly decomposed. However, as stated in Section 3, the potential flow hypothesis
is not appropriate for the experimental conditions considered. Also, the model geom-
etry has been simplified to match XFLR5 requirements. This leads to higher values of
the fidelity function (lower confidence in the data) which increase with the respective
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(a) Mean (b) Standard deviation

Figure 8: Multifidelity surrogate model predicted at α = 3.0◦ and M = 0.8

increase of the experimental conditions. The following expression is suggested,

3σf,XFLR5 = 0.01 (1 + e0.5α+2M ) (12)

The evolution of these fidelity functions is plotted in Fig. 7. It can be observed that
the values of fidelity function attributed to the RANS data are lower than the XFLR5
ones, which accounts for the lack confidence in the latter. The definitions proposed
in Eqs. (11) and (12) are examples and intended to demonstrate the definition of
a suitable function varying over the design space as a result of the confidence that
is placed in the information source. Other definitions are possible to quantify the
uncertainty associated with numerical simulations.
The fidelity functions defined for the four information sources are applied in the

data fusion framework on the four-dimensional design space. The multifidelity poste-
rior mean and standard deviation of the surface pressure coefficient for angle of attack
α = 3.0◦ and Mach number M = 0.8 are plotted in Fig. 8. This set of flow parameters
is chosen as it is representative of the design of experiments represented in Fig. 2.
As previously noted (10), the resulting multifidelity posterior mean has a contour with
physically coherent shape. It is thus shown that it is possible to integrate expert
knowledge into the multifidelity data fusion framework through the fidelity function
definition. As the total standard deviation influences the extent to which an informa-
tion is taken into account in the final model, the fidelity function directly allows the
user to employ their domain-specific knowledge of the information source to obtain a
physically consistent model with a quantified uncertainty.

6.0 Conclusions
A multifidelity data fusion framework previously introduced and based on a variance-
weighted combination of intermediate Gaussian process models has been further scru-
tinised herein. It has been applied to a design space with up to four dimensions with
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available data describing civil aircraft wing pressure distributions obtained from ex-
perimental and computational methods. The focus has been on the two important
aspects of building the intermediate models, specifically the covariance function, and
defining a fidelity function. Regarding the first point, an automatic model search
process has been applied to find a covariance function that best fits the evolution of
the pressure coefficient in the streamwise direction, which has led to a more complex
covariance function composed of combinations of simple expressions. In particular,
the use of changepoints has been beneficial in capturing abrupt streamwise pressure
changes related to shock waves, characteristic of transonic flow. Future work will
aim to adapt the approach to multidimensional problems. The second point explored
non-exhaustive examples of defining the fidelity function for the test case considered
here. A distinction has been made between experimental and numerical information
sources. It has been shown that expert opinion can be embedded into the data fusion
process independently for each information source. This reinforces the interest in a
non-hierarchical multifidelity data fusion framework.
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