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 1 
Abstract— First order cutaneous neurons allow object 2 

recognition, texture discrimination, and sensorimotor 3 
feedback. Their function is well-investigated under passive 4 
stimulation while their role during active touch or 5 
sensorimotor control is understudied. To understand how 6 
human perception and sensorimotor controlling strategy 7 
depend on cutaneous neural signals under active tactile 8 
exploration, the finite element (FE) hand and Izhikevich 9 
neural dynamic model were combined to predict the 10 
cutaneous neural dynamics and the resulting perception 11 
during a discrimination test. Using in-vivo microneurography 12 
generated single afferent recordings, 75% of the data was 13 
applied for the model optimization and another 25% was 14 
used for validation. By using this integrated numerical model, 15 
the predicted tactile neural signals of the single afferent fibers 16 
agreed well with the microneurography test results, achieving 17 
the out-of-sample values of 0.94 and 0.82 for slowly adapting 18 
type I (SAI) and fast adapting type I unit (FAI) respectively. 19 
Similar discriminating capability with the human subject was 20 
achieved based on this computational model. Comparable 21 
performance with the published numerical model on 22 
predicting the cutaneous neural response under passive 23 
stimuli was also presented, ensuring the potential 24 
applicability of this multi-level numerical model in studying 25 
the human tactile sensing mechanisms during active touch. 26 
The predicted population-level 1st order afferent neural 27 
signals under active touch suggest that different coding 28 
strategies might be applied to the afferent neural signals 29 
elicited from different cutaneous neurons simultaneously. 30 

 31 
Index Terms—Neurophysiological, skin mechanics, FE 32 

Human hand, neural coding, active touch. 33 

I. INTRODUCTION 34 

Our ability to perceive and manipulate objects relies 35 

fundamentally on subclasses of primary mechanosensory 36 

neurons in the glabrous skin of the hand. They provide 37 

tactile feedback enabling our somatosensory system to 38 

inform the sensorimotor control loop and build the 39 

interface between the world and the somatosensory cortex. 40 

The closed-loop control allows us to voluntarily perceive 41 

and manipulate objects during active touch, acquiring the 42 

information based on perception. The typical case of 43 

sensorimotor control is the reflex caused between 44 

cutaneous mechanoreceptors and the efferent motor neuron 45 

modulating muscle forces [1, 2]. The external stimuli are 46 

encoded by cutaneous receptors as 1st order afferent neural 47 

signals and then transmitted to the spinal cord and higher 48 

central nervous system (CNS) for further processing and 49 

decoding [3].  50 

Over the past decades, research has focused on capturing 51 

the single-fiber afferent signals from the peripheral neural 52 

system [4, 5] using the technique of microneurography, 53 

applying numerical models to understand the neural 54 

dynamics and the mechanoelectrical mechanisms of the 55 

cutaneous receptors under different stimulus conditions. 56 

Quantifying the relationships between the stimuli and the 57 

state of stress/strain at the site of mechanoreceptors. In 58 

2003, Dandekar et al. showed that the strain energy density 59 

can be quantitatively related with the membrane current 60 

through the cutaneous receptor and then applied this for 61 

predicting neural dynamics [6]. Another study was 62 

conducted by delivering passive stimuli to the finite 63 

element (FE) model, strain energy density (SED) was 64 

extracted for evaluating the afferent neural signals and 65 

validated against the microneurography results [7]. Similar 66 

numerical models based on continuum mechanics have 67 

also been applied to simulate population-level afferent 68 

signals under passive stimulation using model parameters 69 

derived from afferent spiking data in monkey glabrous skin 70 

[8]. However, previous numerical models did not 71 

incorporate the lateral sliding, realistic skin contact 72 

mechanism, or the hyper-elastic material properties of soft 73 

tissues. Also, muscle actuated active touch was not 74 

integrated with the numerical model, only passive stimuli 75 
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were simulated with the simplified FE finger-tip model [7, 76 

9]. It has been shown that different skin mechanics and 77 

neural responses during active touch could be altered from 78 

those evoked by passive stimuli [10-12]. However, the 79 

neural dynamics under muscle-driven active touch are 80 

difficult to capture using microneurography since the 81 

subject needs to be restrained and have relaxed muscles 82 

since electromyography signals may mask the afferent 83 

signals [13]. Therefore, the neural response or the 84 

mechanoelectrical properties of cutaneous neurons under 85 

active touch still remains unknown [8, 14] warranting 86 

being explicitly studied through the muscle-driven FE hand 87 

model. 88 

Tactile perception is based on the integrated and 89 

processed population-level afferent signals from 1st order 90 

low threshold mechanoreceptors (LTM) in the skin, relays 91 

in the dorsal column nuclei and then via the thalamus to the 92 

somatosensory cortex. Research has shown that the 93 

collection of the group responses from 1st order cutaneous 94 

neurons is critical for understanding the tactile neural 95 

coding and the sensorimotor mechanism [2, 14].  Therefore, 96 

the second step of neural coding after the 1st order 97 

cutaneous mechanoreceptors is to understand how 98 

perception depends on these population-level afferent 99 

dynamics [3], the external stimuli should be related to the 100 

final human percept across the intact afferent transduction 101 

path under the active touch. The relationship between 102 

perception and afferent dynamics has been studied using 103 

in-vivo neural microstimulation of single peripheral 104 

afferents and the somatosensory cortex in awake subjects. 105 

Electrical stimulation of single afferent fibers in awake 106 

humans through a microneurography recording electrode, a 107 

technique termed intra-neural microsimulation, first 108 

reported by Ochoa et al [15], indicating that activity in a 109 

single afferent fiber could be perceived with perceptual 110 

qualities that depend upon the afferent type. A series of 111 

in-vivo tests conducted by stimulating area 3b to study 112 

temporal coding mechanisms in non-human primates [16] 113 

showed that the frequency discrimination of the subjects 114 

may depend on temporal coding and is more general than 115 

rate coding. However, recording afferent dynamics from 116 

population-level afferent fibers is technically demanding, 117 

and the invasive experiment on living subjects cannot be 118 

avoided [17, 18]. Implementation of the numerical model 119 

might be an effective method to obtain the fairly accurate 120 

population-level cutaneous signals and study the coding 121 

mechanism across the intact somatosensory path from the 122 

external stimuli to the final perception. Also, this study 123 

presents the possibility of using FE based integrated 124 

numerical model  as a novel method to investigate the 125 

human sensorimotor mechanisms. 126 

 127 

II. METHODOLOGY 128 

 
Fig. 1.  Main procedure of this research. From the development of the FE human hand model to the predictions of the tactile neural signals. At the first step (Skin 

mechanics model), the SED during active touch was extracted at the site of mechanoreceptors as input of the membrane transduction model of step 2 (Predicting neural 
signals of the single afferent fiber). The neural signals from a single afferent tactile fiber were predicted and validated against microneurography results, this procedure 

was duplicated in step 3 (Predicting neural signals of the population-level afferent fibers) to derive the population-level afferent tactile neural signals. The signal 

detection theory was employed to correlate the computed neural signals with predicted human perception or the hit rate in step 4 (human tactile perception). The 
predicted hit rate was validated with the results of the in-vivo discrimination test.  
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The integrated numerical model was developed, 129 

optimized and validated on three different levels (see Fig. 130 

1): A) Skin mechanics (strain/stress environment at the site 131 

of the cutaneous mechanoreceptors). B) To give the 132 

explicit transformation between skin mechanics and neural 133 

activity. (Predicted neural action potentials of a signal 134 

tactile fiber were optimized and validated against the 135 

results of microneurography). C) Population-level neural 136 

signals to human perception. (Predicted population-level 137 

tactile neural signals were compared with the in-vivo 138 

experimental results, signal detection theory was used to 139 

make the decision). This research began with finding the 140 

parameter to link the skin mechanics with the transduction 141 

membrane current across cutaneous neurons. The SED and 142 

other stress/strain values were compared with the 143 

experimental results of microneurography, and it was 144 

found that SED achieved the most accurate representation 145 

of cutaneous neuron dynamics. The neural signal of a 146 

single tactile afferent fiber was predicted as follows: The 147 

3D FE human hand was used to simulate the procedure of 148 

active touch as skin mechanics model, the SED was chosen 149 

among the stress/strain related values and transferred into 150 

membrane current flowing over the mechanoreceptors by 151 

using the mechanoelectrical transduction model. The 152 

Izhikevich neural model was applied to generate the action 153 

potentials based on the predicted membrane current. The 154 

population-level afferent tactile signals were computed 155 

over the fingertips by duplicating the procedure of 156 

converting SED to neural dynamics for the single tactile 157 

afferent fiber. At the same time, the published numerical 158 

model  ‘TouchSim’ [8] was employed as the benchmark to 159 

compute neural response under passive stimuli and 160 

compare with the performance of the multi-level numerical 161 

model developed in this research. 162 

A. Skin mechanics model-FE human hand  163 

A subject-specific FE human hand model [19] (see Fig. 164 

2(a)) was developed to obtain the propagation of 165 

stress/strain during the procedure of active touch. The FE 166 

model includes the geometry of the epidermis, dermis, 167 

 
Fig. 2.  The skin mechanics model (a). The FE human hand model. (b). The 

four-layered structure was modelled for extracting proper SED during the 

active touch including bones, subcutaneous tissue, dermis and epidermis 
from inside to outside. (c). The cross-sectional view of the index finger. 

The locations for extracting strain energy density of SAI/FAI 

mechanoreceptor. The SED of SAI was extracted at the top point of the 
tetrahedral element at the boundary between the epidermis and dermis 

while for FAI unit, the SED was computed at the bottom points of the 

elements on the epidermis-dermis boundary. 
 

  

 
Fig. 3. The Microneurography test and the corresponding FE simulations. (a) 
Tungsten electrode (FHC Inc. Bowdoin, ME USA ) was inserted into median 

nerve,  capturing the single-afferent neural signals. (b). The Robotic Tactile 

Stimulator (RTS) (Dancer Design Inc. Merseyside, UK) was used to deliver the 
stimuli onto the receptive field of a tactile unit. The RTS delivered a sweeping 

motion across the receptive field of the tactile unit with a specified contact 

force. (c) The FE simulation of the experiment. (d) The locations of the SAI and 
FAI tactile unit captured during microneurography which are highlighted with 

yellow and red dot respectively on the FE hand. 
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subcutaneous tissue (see Fig. 2(b)), and the bones 168 

reconstructed based on the MR and CT images taken from 169 

a 23-year-old male subject. The material properties of soft 170 

tissues were defined as isotropic hyper-elastic, and the 171 

bones were assigned with the isotropic linear elastic 172 

material. 173 

The mesh size of the epidermis and dermis was set to be 174 

0.1mm, 0.7mm-mesh size was assigned for subcutaneous 175 

tissue and the bones. 1,002,915 C3D8H elements were 176 

meshed onto this FE hand model. Three grasping (cylinder 177 

grasping, spherical grasping, and precision gripping) were 178 

performed. The predicted results agreed well with the 179 

in-vivo experiment in terms of contact pressure and contact 180 

area and the relative differences between the two results are 181 

below 20%. The predicted contact area and contact 182 

pressure can provide the bulk mechanical response of the 183 

tissue layers [19, 20]. The detailed process for developing 184 

and validating the FE human hand can be found in our 185 

previous study [19]. Therefore, this FE human hand model 186 

is employed to produce the stress/strain related quantities 187 

as the skin mechanics model.  188 

B. Predicting tactile signals of the single afferent neural 189 

fiber  190 

1) The combined transduction and neural dynamic model 191 

for predicting cutaneous neural signals  192 

The mechanoelectrical transduction function was firstly 193 

applied on the hair cell to explain the transducer adapting 194 

property [21]. Researchers also used these transduction 195 

functions to describe the mechanoelectrical transaction 196 

properties of the cutaneous mechanoreceptors and gained a 197 

good accuracy [7, 9, 22]. The SED at the site of the 198 

mechanoreceptor (see Fig. 2(c)) was extracted from the FE 199 

human hand and transformed to membrane current using 200 

the transduction function (equation 1). 𝛼 ,  𝛾 , 𝜆  are the 201 

 
Fig. 4. The flow chart of the gradient sum approach for the population-level validation. Six convex with different radius were discriminated from the flat plate. First, 
the random noise is added through multiplying the neural action potential or the first spike latency of the tactile units by a pair of random variables with a mean 

value µ=1 and the standard deviation σ varied between 0.015 and 0.085. Second, the gradient sum of the elements is calculated by summing the gradients of all 100 

elements together (100 SAI mechanoreceptors (elements) distributing over 1𝑐𝑚2 area on the finger pad. Third, the first and second steps are repeated 100 times for 

all the 6 convex resulting in 600 gradient sums totally,100 pairs of µ2, σ2 are derived for each convex. Fourthly, two pairs of (µ2, σ2) from the plate and convex were 
randomly selected. The signal detection theory (SDT) was used to judge whether the FE hand can differentiate the convex from the flat plate. This procedure is 

repeated for 100 times and the 100 discrimination accuracies or hit rates (HR) were computed for discriminating each convex surface. 
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parameters determined through model fitting when the 202 

difference between predicted values and results of 203 

microneurography test are minimized.  204 

𝐼(𝑆𝐸𝐷) = 𝛼
1

1+𝑒𝛾(𝜆−𝑆𝐸𝐷)………………… (1) 205 

The cutaneous LTMs found in the glabrous skin of the 206 

human hand have distal axons that branch in the skin with 207 

irregularly spaced  transduction sites [23, 24]. The spatially 208 

complex and overlapped receptive fields of the cutaneous 209 

neurons and the distance between the interdigitating 210 

subfields might determine the limit of the spatial resolution 211 

of human [25]. For this multi-level numerical model, each 212 

cutaneous tactile neuron is assumed to branch into 16 213 

sensory organs according to the literature [26-30], echoing 214 

the fact that the first-order tactile neurons innervate on the 215 

order of ten mechanoreceptors. To simulate the 216 

heterogeneous receptive fields with highly sensitive zones 217 

of the branched axons, the SED was randomly selected at 218 

the nodes in the circular area with a diameter of 3mm [31]. 219 

At the same time, the SED was also extracted from the 220 

evenly distributed nodes for comparison and evaluating the 221 

effects of the non-uniformly distributed receptive fields of 222 

cutaneous neurons on tactile performance as is shown in 223 

Fig. S1. The neural responses were then computed based 224 

on the SED extracted from these nodes under the two 225 

different distribution patterns.  226 

To mimic the biological neural dynamics of the tactile 227 

mechanoreceptor, the Izhikevich neural dynamic model 228 

was applied [32]. This neural dynamic model has been 229 

found to be able to reproduce the spiking, bursting response 230 

and the adaptation properties of the cutaneous 231 

mechanoreceptors [9, 22]. Among the four major types of 232 

low-threshold mechanoreceptors in the human hand, the 233 

SAI and FAI units were modelled to investigate the human 234 

sensing mechanism during spatial discrimination or active 235 

exploration in this study. Because the responses of SAI and 236 

FAI are critical to detailed feature discrimination [30, 33, 237 

34] and sensorimotor control [35] which enables the 238 

explorative role of the hand. The responses of SAII and 239 

FAII units play a minor role in feature discrimination [34] 240 

which were not included in this numerical model. 241 

The dynamic of the membrane potentials of SAI and FAI 242 

are defined as follows: 243 

SAI:  
𝑑𝑣(𝑡)

𝑑𝑡
= 0.04𝑣(𝑡)2 + 5𝑣(𝑡) + 140 − 𝑢(𝑡) +

𝐾1

𝐶𝑚
𝐼(𝑡) 244 

(2) 245 
𝑑𝑢(𝑡)

𝑑𝑡
= 𝑎(𝑏𝑣(𝑡) − 𝑢(𝑡)) ……………….…… (3) 246 

FAI: 
𝑑𝑣(𝑡)

𝑑𝑡
= 0.04𝑣(𝑡)2 + 5𝑣(𝑡) + 140 − 𝑢(𝑡) +

𝐾2

𝐶𝑚

𝑑𝐼(𝑡)

𝑑𝑡
  247 

(4) 248 
𝑑𝑢(𝑡)

𝑑𝑡
= 𝑎(𝑏𝑣(𝑡) − 𝑢(𝑡)) ………..….…….… (5) 249 

The auxiliary function is defined as followed: 250 

If 𝑣 ≥ 30𝑚𝑣 {
𝑣 ← 𝑐

𝑢 ← 𝑢 + 𝑑
……………….… (6) 251 

Where a,b,c,d are neuron parameters, u is the membrane 252 

recovery variable , 𝑣 is the membrane potential. 253 

2) In-vivo microneurography test  254 

The subject gave informed consent to participate in the 255 

microneurography recording, which was approved by the 256 

Liverpool John Moores University Research Ethics 257 

Committee.  258 

To optimize and validate the predicted afferent neural 259 

signals, microneurography was carried out. We have found 260 

that the spiking features and the selective response property 261 

of the same type of tactile units located at fingertips are 262 

similar to each other according to our microneurography 263 

results and the literature [36-38]. Therefore, the response of 264 

a single SAI/FAI tactile unit was recorded and used for 265 

developing the integrated numerical model. The same 266 

subject involved in developing the FE hand was recruited 267 

again for microneurography. The subject was required to 268 

lie on a medical chair with the forearm restrained. A 269 

tungsten microelectrode (FHC Inc. Bowdoin, US) was 270 

inserted into the skin at the wrist and electrical stimulation 271 

was delivered through the electrode to roughly determine 272 

its position in relation to the median nerve (see Fig. 3(a)). 273 

After locating and entering the nerve, the electrode was 274 

adjusted manually to search for tactile units. The action 275 

potentials were amplified and visualized by Neuro Amp 276 

EX and physiological data analysis software LabChart 277 

(ADInstruments Ltd. Oxford, UK) respectively. The 278 

receptive field was stimulated by the rotatory tactile 279 

stimulator (RTS) (Dancer Design Inc. Merseyside, UK) 280 

with varying forces (ranging from 0.2 to 2.4N with an 281 

increment of 0.2N). The stimulator delivered a ‘sweep’ 282 

stimulus onto the marked receptive field of the afferent 283 

tactile fiber as are shown in Figure 3(b) and the 284 

corresponding FE simulation is presented in Figure 3(c). 285 

The locations of the SAI (yellow dot) and FAI  (red dot) 286 

tactile units captured during microneurography are shown 287 

in Figure 3(d). The spiking rates were derived for each 288 

second, resulting in 121 data points for the SAI unit under 289 

five stimulating forces (0.6, 1.0, 1.4, 1.8, 2.4N) while 131 290 

data points were obtained for the FAI unit under six 291 

stimulating forces (0.4, 0.8, 1.2, 1.6, 2.0, 2.4N). The firing 292 

rate was calculated by taking the average of the reciprocal 293 

inter-spike intervals (ISI): 294 

 

 
Fig. 5. In-vivo differentiation test and the corresponding simulation with the FE 
human hand (a). The in-vivo discrimination test. The subject was blind-folded and 

asked to differentiate two convex with different radius only through tactile 

perception. The markers were used to capture the hand kinematics during active 
touch using the Vicon System (Oxford Metrics Ltd., Bilston, UK). The Delsys 

Trigno (Delsys Inc., Boston, US) was applied to record EMG signal of the muscle. 

(b) The FE simulation of the discrimination test.  
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𝐼𝑆𝐼𝐼 = 𝑡𝑖 − 𝑡𝑖−1…………………………… (7) 295 

𝐼𝑆𝐼𝑖 =
1

𝑎−𝑏
∑ 𝐼𝑆𝐼𝑖

𝑎
𝑖=𝑏 ……………..………… (8) 296 

𝑓 =
1

𝐼𝑆𝐼𝑑
………………………………..…… (9) 297 

Where a-b= the number of ISIs. 298 

3) Parameter optimization and validation for 299 

transduction and neural dynamic model based on the 300 

subject-specific microneurography data 301 

The membrane current transduction and neural dynamic 302 

model were optimized against the results of the 303 

microneurography data by using the response surface 304 

method (RSM). Seven parameters in this integrated model 305 

were optimized against experimental results. Similar cross 306 

validation algorithm has been applied by other researchers 307 

to fit the parameters of neural dynamic model with 308 

experimental results [7].  309 

The action potential signals under the stimulating force 310 

of 2.4N for SAI and FAI unit were separated for the 311 

validation (out-of-sample validation) while the rest of the 312 

data (Stimulating forces of 0.6, 1.0, 1.4 and 1.8N for SAI 313 

and 0.4, 0.8, 1.2, 1.6, 2.0 for FAI unit) were used to fit the 314 

computational model by using the RSM algorithm. The 315 

seven parameters:𝛼, 𝛾, 𝜆 of the transduction model and a, b, 316 

c, d of the Izhikevich model were optimized. The RSM 317 

algorithm aims to derive the specific combinations of these 318 

parameters which produce the best goodness of fit. (The 319 

fractional sum of squares (FSS, see equation 10.) between 320 

our subject-specific microneurography data and the 321 

predictions were minimized). 322 

𝐹𝑆𝑆 = 1 −
∑ [(𝑒𝑥𝑝)𝑖−(𝑝𝑟𝑒)𝑖]2𝑛

𝑖=1

∑ (𝑒𝑥𝑝)𝑖
2𝑛

𝑖=1

………………… (10) 323 

Where the 𝑒𝑥𝑝 stands for the microneurography test result, 324 

𝑝𝑟𝑒 is the predictive result, n is the number of the data 325 

points. 326 

The initial parameters values are 𝛼 = 2.46 ×327 

10−5 mA,  𝛾 = 0.0046 𝑃𝑎−1 , 𝜆 = 506.74𝑃𝑎 , a = 0.02 328 

Ohm, b = 0.2, c = -65mv, d = 6mv, these values are 329 

obtained from the literature [9, 39]. The procedure of 330 

parameter optimization was carried out in 4 steps. (a) 331 

Firstly, all the seven parameters were coded with specific 332 

increments less than two orders of magnitude of the initial 333 

values. (b) Secondly, all the parameters were increased or 334 

decreased for one increment and the FSS was derived for 335 

each trial resulting in totally 27 combinations. (c) Thirdly, 336 

the relationship between the optimized parameters and the 337 

FSSs was obtained through linear regression. (d) Fourthly, 338 

the magnitude and direction in which to optimize the 339 

parameters were determined by the combinations of the 340 

variation resulting in the largest increment of FSS. (e) Step 341 

(d) was repeated several times until the FSS was no longer 342 

increased. This optimizing procedure was conducted in 343 

Design Expert (Stat-Ease, Inc. US). After optimizing the 344 

parameters by using the RSM algorithm, the predicted 345 

neural signals of the integrated model achieved a good 346 

agreement with the results of microneurography in this 347 

study.  348 

C. Predicting tactile signals of the population-level 349 

afferent neural fiber and its perception 350 

1) The gradient sum algorithm and signal detection 351 

theory for relating the population-level neural activities 352 

with human perception  353 

The psychophysical prediction is made by simulating the 354 

procedure of active touch during the discrimination test. 355 

The active touch was divided into two different 356 

procedures: ’dynamic ramp-up’ and ’static hold’, the 357 

former stands for the onset of the contact with an increased 358 

fingertip contact force and the latter represents the 359 

procedure of the stable contact with the object. The FE 360 

hand model was configured in a population density of 100 361 

and 144 receptors/𝑐𝑚2 for SAI and FAI units within the 362 

contact area of 1𝑐𝑚2 on the fingertip, discriminating the 363 

convex surfaces with different radius of curvature (RC) 364 

ranging from RC8530mm to RC48.9mm. Active touch was 365 

simulated by using the FE hand with the muscle forces and 366 

kinematics captured during the in-vivo discriminating 367 

experiment. The neural activities of the afferent tactile 368 

fibers within the contact area were computed and the 369 

Gradient Sum method [7] was used to correlate the FE 370 

hand’s population-level neural dynamic signals with the 371 

discrimination accuracy or the tactile perception. The 372 

Gradient Sum method transmits the parameters between 373 

receptors and derives the gradients of spiking rates or first 374 

 
Fig. 6. The validation results for the single SAI and FAI tactile fiber. The 
predicted neural signals of SAI and FAI unit were compared with the 

results of microneurography. 
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spike latencies from adjacent elements. The procedure of 375 

predicting the population-level tactile neural spike is 376 

shown in Figure 4(a) First, random noises were added 377 

through multiplying neural action potential and first spike 378 

latency of all units in one convex surface by a pair of 379 

random variables (µ1, σ1) with mean valueµ1=1 and the 380 

standard deviation σ varied between 0.015 and 0.085. (b) 381 

Second, the gradient sum of the elements is calculated by 382 

summing all the parameter gradients around one single 383 

element. 100 gradients were derived per convex surface 384 

since 100 SAI mechanoreceptors (element) distributing 385 

over 1𝑐𝑚2  area was configured for each finger. All the 386 

gradients were added as the gradient sum. (c) Third, steps 387 

(a) to (b) are repeated 100 times for all the 7 convex 388 

surfaces resulting in 700 gradient sums totally, each time 389 

multiplying a new pair of (µ1, σ1). The corresponding 100 390 

pairs of (µ2, σ2) are derived for each convex. (d) The signal 391 

detection theory (SDT) was used to judge whether the FE 392 

hand can differentiate the convex surface from the flat plate. 393 

For example, two pairs of (µ2, σ2) are randomly selected 394 

from RC8503mm convex surface and the flat plate as the 395 

inputs to SDT with the β=0.5. Therefore, the hit rate (HR) 396 

of convex surface RC8503mm is obtained. This procedure 397 

is repeated for 100 times to derive the 100 HR for 398 

discriminating convex surface RC8503mm. The hit rates 399 

were calculated as below: 400 

𝑑′ =
𝜇𝑠−𝜇𝑛

𝜎
………………… (11) 401 

𝑑′ = Φ−1(𝐻) −Φ−1(𝐹) ………………… (12) 402 

ln(𝛽) =
[Φ−1(𝐹)]

2
−[Φ−1(𝐻)]

2

2
………………… (13) 403 

𝑑′ is the distance between the means of the signal and noise 404 

in standard deviation unites. 𝜇𝑠 and 𝜇𝑛 are the mean values 405 

of the signal and noise, 𝜎 stands for the standard deviation 406 

of the noise. 𝛽 is the criterion value and Φ−1is the inverse 407 

‘Phi’ function of the Z distribution, the detailed 408 

information and calculation related to SDT can be found in 409 

[40].  410 

(e) Finally, the step (d) is repeated for the other 5 convex 411 

surface and generates 500 HR. The (µ3, σ3) for each 100 412 

HR of all the 6 convex surfaces are calculated. The 413 

procedure of predicting population-level neural signals of 414 

FAI units is the same with SAI.  415 

2) In-vivo discrimination test   416 

A psychophysical test of convex surface differentiation 417 

was performed to validate the predicted population-level 418 

afferent signals and study the neural coding mechanisms 419 

under the active touch. The in-vivo discrimination test was 420 

performed based on Goodwin’s research to determine the 421 

discrimination ability of humans [41].  422 

To perform the discrimination test of population-level 423 

validation of SAI afferents, six convex surfaces with radius 424 

of RC8503, RC532, RC179, RC106, RC77.7, RC48.9mm 425 

and a flat plate (RC∞) were 3D printed. The same subject 426 

of the FE human hand model was recruited for the 427 

discrimination test. The capability of the subject to 428 

discriminate surfaces during the procedure of active touch 429 

was evaluated with 6 comparisons between different 430 

convex surfaces and the flat plates conducted. The subject 431 

was blindfolded and asked to sit at a table where the convex 432 

surfaces were presented in pairs, either with the same or 433 

different radius. The subject was required to judge whether 434 

the convex surfaces were the same or not. Only the 435 

fingertip of the index was allowed to touch the convex 436 

surfaces and the finger was restricted from 437 

 

 
 

Fig. 7. Predicted neural activities of population-level  SAI (first row) and FAI (second row) tactile units on index fingertip under the contact with the convex surface 
of RC77.7 mm. The horizontal axis stands for the locations of mechanoreceptors within the areas for extracting the SED, the vertical axis is the spiking rate or first 

spike latency. The active touch was divided into two separate stages including the ‘dynamic ramp-up’ and ’static hold’. 
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adduction/abduction. The vertical distance between the 438 

peak of the convex surfaces and the index fingertip was 439 

kept the same, ensuring similar finger kinematics during 440 

touching different convex to avoid the effect of the 441 

proprioceptors located at finger joints. The test was carried 442 

out in blocks, each block contained 12 comparisons (6 pairs 443 

of flat-flat plate and 6 pairs of flat-convex, all convex 444 

surfaces were presented in each session), and the pair of 445 

surfaces varied randomly from block to block. In total, 30 446 

blocks were performed, and the probability of detection 447 

was calculated for each convex surface, the whole test was 448 

repeated 6 times to achieve generality. Before the test, a 449 

few practice blocks were performed to train the subjects 450 

and ensure the reliability of the experimental results. 451 

During the discrimination test, the hand kinematics and 452 

muscle forces were captured by using the Vicon system 453 

(Oxford Metrics Ltd., Bilston, UK) and Delsys EMG 454 

Trigno (Delsys Inc., Boston, US) respectively (see Fig. 455 

5(a)). The muscle forces were estimated based on the 456 

electromyography (EMG) signals. Before the 457 

discrimination test, maximum voluntary contraction (MVC) 458 

tests were carried out for each muscle using a Jamar 459 

dynamometer. The recorded EMG data was band-pass 460 

filtered (20–400 Hz) with a Butterworth filter and then 461 

rectified. The muscle forces were computed based on the 462 

maximum voluntary contraction forces. It was assumed 463 

that a linear relationship between the EMG signal and 464 

muscle force for isometric muscle contracting. Similar 465 

methods have been used by other researchers to calculate 466 

muscle forces under isometric contract [42-44]. These 467 

kinematic data and muscle forces were applied onto the FE 468 

human hand to simulate the discriminating experiment and 469 

then made the prediction (see Fig. 5(b)). The active touch 470 

procedure was divided into two steps: dynamic ramp-up of 471 

the contact force and static hold (Static hold procedure is 472 

not included in FAI validation since it only responds to 473 

onset and offset of the stimulation).  474 

The benchmark model ‘TouchSim’ [8] for predicting the 475 

cutaneous neural response was employed to compare with 476 

the performance of this multi-level numerical model. Only 477 

passive stimuli could be simulated by using ‘TouchSim’. 478 

 

 
Fig. 9. The validation results of the population-level FAI tactile fibers. The 
predicted discrimination accuracy based on the afferent neural signals of FAI 

units were compared with the results of the in-vivo discrimination experiment. 

 

 

 

 

 
  

 
Fig. 8. The validation results of the population-level SAI tactile fibers. The 

predicted discrimination accuracy based on the afferent neural signals of 

SAI units were compared with the results of the in-vivo discrimination 
experiment. 
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Therefore, the in-vivo discrimination test based on passive 479 

stimuli was also conducted under the instruction of [41]. 480 

The discrimination accuracy achieved by ‘TouchSim’ was 481 

then compared with the multi-level numerical model under 482 

passive stimuli together with the in-vivo experimental 483 

results in this study.  484 

III. RESULTS 485 

A. Predicted tactile signals of the single afferent neural 486 

fiber 487 

The stress/strain related quantities including maximum 488 

principal strain/stress, vertical strain etc. were correlated 489 

with the results of microneurography and the quantity 490 

achieving the best fit with the experimental results was 491 

selected to be the input of the membrane current 492 

transduction model. The stimulation onto the fingertip 493 

during microneurography was simulated by using the FE 494 

hand model. The strain energy density and other 495 

stress/strain related mechanical quantities were obtained 496 

under the stimulating force of 2N for the receptive field of 497 

SAI and FAI unit. The spatial profiles of strain energy 498 

density, maximum principal stress/strain and vertical stress 499 

were compared with the microneurography results in Fig. 500 

S2. A linear relationship between the neural action 501 

potential level and mechanical quantities was assumed in 502 

the form of:  503 

𝑁𝑖 = 𝑎𝑆𝑖 + 𝑏………………… (14) 504 

Where 𝑁𝑖  is the neural activation potential level and 𝑆𝑖 505 

stands for the simulated results. The constants a and b were 506 

derived by maximizing the FSS (equation 10) between the 507 

microneurography data and the predicted mechanical 508 

quantities. 509 

The FSS value of 1 means a perfect match between 510 

predictions and experiment results. Predictions were made 511 

based on twelve different stress/strain related quantities 512 

(see Table. S1) and it was found that strain energy density 513 

can provide the best fit with the FSS values of 0.92 and 514 

0.69 for SAI and FAI unit, respectively. This conclusion is 515 

in agreement with other researchers [22]. Therefore, the 516 

strain energy density was used to correlate the skin 517 

mechanics with neural activity for this research.  518 

The original and optimized parameters of the 519 

transduction and Izhikevich neural dynamic model were 520 

presented in Table S2 and S3. Four and six iterations of 521 

RSM were performed for SAI and FAI unit respectively, 522 

resulting in the FSS values of 0.9377 and 0.8235. 523 

The neural action potential level under the stimulating 524 

force of 2.4N for SAI and FAI unit are used as 525 

out-of-sample validation (see Fig. 6). The predicted and 526 

experimental spiking rates are close to each other for both 527 

SAI and FAI units. For the SAI unit, the predicted results 528 

got a wider range of variation than the experimental results. 529 

The FAI unit only responded to the ‘onset’ and ‘offset’ of 530 

the stimulation during the microneurography test while for 531 

the predicted results, the FAI unit still fired a few spikes at 532 

the lower frequencies.   533 

B. Predicted tactile signals of the population-level 534 

afferent neural fiber and its validation 535 

The predicted spiking rates and first spike latency in 536 

terms of the population-level afferent tactile units over the 537 

finger pad were plotted and visualized in Figure 7. The 538 

comparison between the predicted discrimination accuracy 539 

and the in-vivo psychophysical experimental results is 540 

presented in Figure 8 and 9. The active touch is divided 541 

into two stages including the dynamic ramp-up of the 542 

contact force and static hold of the finger.  543 

It can be seen from Figure 8, the predicted 544 

discrimination accuracy agreed well with the experimental 545 

results. the convex with the curvature of RC8503, RC532, 546 

RC179, RC106, RC77.7, RC48.9mm were numbered from 547 

convex 1 to 6. The hit rates are all increased with the 548 

curvature of the convex surfaces with regard to the first 549 

spike latency and the two stages of the active touch. In the 550 

case of the SAI unit, the predicted accuracies are larger 551 

than those of the human subject for discriminating the 552 

smaller curvatures (convex surface of RC8503, RC532mm 553 

differentiated from the flat plate). Whereas the curvature 554 

increases, the predicted accuracies are lower than the 555 

subject’s (hit rate was close to 100%) for the convex 556 

surface of RC77.7 and RC48.9mm. The predicted accuracy 557 

during the static hold is closer to experimental results than 558 

those in terms of the first spike latency and dynamic 559 

ramp-up. The standard deviations for the predicted and 560 

experimental results decrease with the curvature of the 561 

convex.  562 

Figure 9 shows the predictive accuracy and experimental 563 

results for the FAI unit. The static hold is not included 564 

since the FAI unit mainly responds to the dynamic 565 

stimulation. In contrast to the SAI unit, the most accurate 566 

prediction was achieved based on the first spike latency. 567 

For the procedure of ‘Dynamic ramp-up’, the predicted 568 

accuracies for discriminating convex surface with a small 569 

radius are larger than the experimental results, while in the 570 

case of discriminating convex surface with a larger radius 571 

the predicted accuracies were smaller than the 572 

experimental results. This is similar to the SAI unit. The 573 

standard deviations for predicted and experimental results 574 

are all decreased with the radius of the stimulator. The 575 

discrimination accuracy predicted based on the uniformly 576 

distributed receptive field of cutaneous neurons was 577 

compared with that of heterogeneous one (See Fig. S3 and 578 

S4). The results suggested that most of the discrimination 579 

accuracy computed based on the tactile units with 580 

heterogeneous receptive fields achieved a better agreement 581 

with the human subject than the predicted results based on 582 

the uniformly distributed receptive fields.  583 

The discrimination accuracy achieved based on the 584 

predicted afferent tactile signals through ‘TouchSim’ [8] 585 

was compared with that using the multi-level numerical 586 

model (See Fig. S5 and S6). The results showed that the 587 

predicted neural signals through ‘TouchSim’ are consistent 588 

with those based on the multi-level numerical model while 589 

the predicted discrimination accuracy of ‘TouchSim’ is 590 

slightly closer to the human subject than that of the 591 

multi-level numerical model. However, these afferent 592 
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tactile signals were computed under the condition of 593 

passive stimuli, the skin mechanics under active touch is 594 

not accessible through ‘TouchSim’ [8]. Therefore, the 595 

multi-level model developed in this research achieved 596 

comparable performance with ‘TouchSim’ on predicting 597 

the afferent tactile signals under passive stimuli but with a 598 

further capability to obtain the cutaneous neural response 599 

evoked during active touch.  600 

IV. DISCUSSION 601 

In this study an integrated numerical model was 602 

developed and validated for SAI and FAI afferent, 603 

combining the skin mechanics and neural dynamics to 604 

predict the single and population-level response of the 1st 605 

order cutaneous neurons. The model development was 606 

carried out on three levels: (A) on the skin mechanics level 607 

by using a subject-specific FE human hand model, (B) 608 

validation of the signals from single afferent fiber with the 609 

FSS of 0.94 and 0.82 for SAI and FAI unit respectively 610 

compared to the microneurography results, (C) the 611 

discrimination accuracies of two tactile units achieved the 612 

good agreement with the in-vivo discrimination test results. 613 

The model of population-level neural tactile SAI and FAI 614 

unit can differentiate the convex surface with RC8503mm 615 

from a flat plate.  616 

The FE human hand served as the skin mechanics model 617 

so that the muscle forces and kinematics of active touch can 618 

be incorporated. The transduction mechanism between the 619 

afferent neural signal and neural activation level of the 620 

muscle synergy during active touch can also be 621 

investigated. Therefore, this integrated numerical model 622 

provides the possibility and push a further step to the 623 

explicit studying of sensorimotor mechanism compared 624 

with previous studies [9, 22, 45]. The realistic contact 625 

mechanism and anatomically intact human hand model 626 

provide the actual skin mechanics for predicting neural 627 

signals, rather than using the simplified continuum model 628 

or regression algorithm [8, 41, 46]. Also, this integrated 629 

model can help to predict reliable afferent cutaneous neural 630 

signals without the need to carry out microneurography or 631 

microsimulation as done previously [15-17, 47]. The 632 

subject-specific microneurography and in-vivo 633 

psychophysical experimental data with an integrated 634 

numerical model were employed to study the tactile neural 635 

coding and human perception. The predicted 636 

population-level 1st order neural signals under active tactile 637 

exploration suggest that different coding mechanisms 638 

might be applied for the afferent tactile signals elicited 639 

from different mechanoreceptors simultaneously.  640 

Microneurography was performed on the subject of the 641 

FE hand model. Approximately 75% of the test results 642 

were applied for the optimization of the transduction and 643 

Izhikevich neural dynamic model, the other 25% of data 644 

was used for validation against the predicted results. For 645 

the validation of an SAI tactile unit the predicted firing 646 

rates varied more greatly than the experimental results, this 647 

may be due to the hyperplastic material properties defined 648 

for soft tissues in the FE model. The stress is sensitive to 649 

the strain variation resulting in large variations of SED and 650 

membrane current. In the case of the FAI unit, the predicted 651 

firing rates agreed well with the microneurography results 652 

during the ‘onset’ and ‘offset’, achieving the FSS of 0.82 653 

for all the data points. However, when the RTS was 654 

sweeping over the receptive area of the FAI unit, the 655 

receptors gave no response with the neural action potential 656 

level of 0 spikes/second while the predicted spiking rate 657 

was maintained at approximately 20 spikes/second. It can 658 

be found from the neural dynamic model for the FAI unit 659 

(see equation 4), the firing rate depends on the derivative of 660 

the membrane current on the time domain. The SED varied 661 

slightly when the stimulator was sweeping over FE hand 662 

while this variation may initiate the drifting of the 663 

predicted membrane current.  664 

The probabilistic psychophysical prediction was made 665 

by using the Gradient Sum method. The spiking rate or the 666 

first spike latency was transferred element by element 667 

throughout the population. Therefore, each convexity can 668 

be represented as a single number as the gradient sum. Here, 669 

the population responses during active touch were obtained 670 

and compared with the subject-specific discrimination 671 

results. The predicted discrimination results for both SAI 672 

and FAI units agreed well with the experimental results. 673 

During the in-vivo discrimination test, the convex surfaces 674 

with a small curvature like RC48.9mm is easy to be 675 

discriminated from flat plate for the human subject (from 676 

the subject’s personal feeling). Therefore, the experimental 677 

discrimination accuracies of population-level SAI and FAI 678 

units are smaller than the predicted ones for discriminating 679 

convex surfaces with small curvatures while in case of 680 

discriminating the convex surface with a large radius, the 681 

subject’s success rate became smaller than the simulated 682 

results. This might be affected by the subject’s human 683 

factor since a large number of comparisons need to be 684 

completed through the experiment. The two stages of 685 

active touch and the first spike latency are good candidates 686 

to make the prediction based on this multi-physics model. 687 

However, the static hold can provide the best fit for the 688 

human discrimination test results which means the 689 

perception may rely on rate coding for the signals from SAI 690 

units. Unlike the SAI units, perception may depend on the 691 

temporal coding of FAI afferents since the predicted 692 

accuracy based on first spike latency achieved the best 693 

agreement with the experimental results. These findings 694 

support the assumptions made by other researchers [48, 49] 695 

that humans may use multiple coding strategies 696 

simultaneously. The temporal coding may be used for fast 697 

identification of a stimulus and triggering the reactions 698 

while rate coding can represent the quantities of the 699 

stimulus. The similar perception was evoked based on the 700 

neural information conveyed by these two tactile afferents 701 

but relying on two different coding mechanisms, 702 

suggesting that different types of tactile neurons could be 703 

independent in haptic systems. The noise applied to the 704 

firing rates and first spike latency can affect the predicted 705 

accuracy, the effect was shown in Fig. S7. The simulation 706 

results have shown that the complex and heterogeneous 707 

distributed receptive filed of cutaneous neurons help to 708 

enhance the discrimination accuracy compared with those 709 

under the uniform distribution. These larger and more 710 
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complex overlapped receptive fields with multiple ‘hotpots’ 711 

or sensitive zones enable a higher spatial resolution which 712 

echoes the finding of other researchers [25]. However, the 713 

afferent branching mechanism through which the end 714 

organs of the cutaneous receptors are integrated to elicit the 715 

afferent neural signals is still unclear so far [29, 50]. More 716 

simulations on active touch could be conducted to study the 717 

effects of these heterogeneous receptive fields on human 718 

tactile performance after gaining a solid understanding of 719 

the branching mechanism of cutaneous receptors. 720 

The discrimination accuracy archived based on the 721 

cutaneous neural responses predicted through this 722 

multi-level model was compared with that of ‘TouchSim’ 723 

[8]. ‘TouchSim’ achieved a more human-like tactile 724 

performance than the multi-level numerical model based 725 

on the passive external stimuli. Despite the high computing 726 

efficiency and better performance of ‘TouchSim’ under 727 

passive stimuli [8], the multilevel numerical model 728 

developed in this study takes the 3D geometry of the 729 

human hand and the muscle-driven active touch into 730 

consideration while maintaining a comparable 731 

performance on predicting the afferent tactile signals with 732 

‘TouchSim’.  733 

This validated multi-level numerical model provides the 734 

possibility for pioneering research on human tactile 735 

sensing under the active touch and sensorimotor 736 

mechanism. For example, the relationship between 737 

population-level afferent signals and the neural activation 738 

level of muscle synergy could be explicitly summarized 739 

and applied to the control of bionic or prosthetic hand to 740 

restore the performance of the human hand [51, 52]. 741 

However, the FE human hand model was involved in this 742 

numerical tool, resulting in the high computational cost. 743 

The surrogate modelling based on this FE model needs to 744 

be developed to reduce the computational cost and make it 745 

user-friendly to other researchers. Also, this multi-level 746 

numerical model can only predict the neural response of 747 

two type I tactile units. The convergence of the 1st order 748 

tactile signals from the ulna and median nerve and their 749 

post-processing were not included in this research. Future 750 

work can focus on simulating the responses of the two type 751 

II mechanoreceptors and the convergent mechanism of the 752 

population-level cutaneous neural signals transferred along 753 

different nerves.  754 

V. CONCLUSION 755 

The FE human hand model was combined with 756 

mechanoelectrical transduction and neural dynamic model 757 

for predicting afferent tactile neural signals during active 758 

tactile exploration. The relationship between external 759 

stimuli and cutaneous neural activities was computed 760 

based on subject-specific microneurography data, 761 

approximately 75% of the test results was applied for the 762 

model optimization and another 25% was used for 763 

validation. Human perception during an active 764 

discriminating test was correlated with the population-level 765 

tactile neural signals achieving similar tactile 766 

discrimination abilities to the human subject. The predicted 767 

cutaneous neural signals under active touch suggest that 768 

human perception during active touch exploration may 769 

simultaneously rely on different coding mechanisms for 770 

the neural signals elicited from different classes of 771 

cutaneous receptors. It was found that the heterogeneously 772 

distributed receptive fields may help to achieve a better 773 

sensing performance than the uniformly distributed ones. 774 

Comparable discrimination accuracies are observed 775 

between this multi-level numerical model and the 776 

published benchmark model [8], while the former presents 777 

the further capability of predicting the afferent neural 778 

response under the active touch. The 3D geometry of the 779 

finger pad and hand kinematics are also involved. This 780 

integrated numerical model provides a new concept to 781 

effectively study the human tactile seeing and sensorimotor 782 

mechanism under the active touch.  783 
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