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Abstract
Late, repetitive or chronic remote ischaemic conditioning (CRIC) is a potential cardioprotective strategy against adverse 
remodelling following ST-segment elevation myocardial infarction (STEMI). In the randomised Daily Remote Ischaemic 
Conditioning Following Acute Myocardial Infarction (DREAM) trial, CRIC following primary percutaneous coronary 
intervention (P-PCI) did not improve global left ventricular (LV) systolic function. A post-hoc analysis was performed to 
determine whether CRIC improved regional strain. All 73 patients completing the original trial were studied (38 receiving 
4 weeks’ daily CRIC, 35 controls receiving sham conditioning). Patients underwent cardiovascular magnetic resonance at 
baseline (5–7 days post-STEMI) and after 4 months, with assessment of LV systolic function, infarct size and strain (longitu-
dinal/circumferential, in infarct-related and remote territories). At both timepoints, there were no significant between-group 
differences in global indices (LV ejection fraction, infarct size, longitudinal/circumferential strain). However, regional analysis 
revealed a significant improvement in longitudinal strain in the infarcted segments of the CRIC group (from − 16.2 ± 5.2 at 
baseline to − 18.7 ± 6.3 at follow up, p = 0.0006) but not in corresponding segments of the control group (from − 15.5 ± 4.0 
to − 15.2 ± 4.7, p = 0.81; for change: − 2.5 ± 3.6 versus + 0.3 ± 5.6, respectively, p = 0.027). In remote territories, there was a 
lower increment in subendocardial circumferential strain in the CRIC group than in controls (− 1.2 ± 4.4 versus − 2.5 ± 4.0, 
p = 0.038). In summary, CRIC following P-PCI for STEMI is associated with improved longitudinal strain in infarct-related 
segments, and an attenuated increase in circumferential strain in remote segments. Further work is needed to establish whether 
these changes may translate into a reduced incidence of adverse remodelling and clinical events. Clinical Trial Registration: 
http:// clini caltr ials. gov/ show/ NCT01 664611.
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Introduction

The decline in mortality following ST-segment elevation 
myocardial infarction (STEMI) is mirrored by an increas-
ing number of survivors with residual heart failure, a 
condition whose prognosis has not improved significantly 
in the last two decades [43, 57]. Therefore, key goals in 
combating ischaemic heart failure include (1) the early 
identification of at-risk individuals and (2) the develop-
ment of effective strategies to limit adverse left ventricular 
(LV) remodelling.

Remote ischaemic conditioning (RIC) is a non-invasive 
cardioprotective strategy delivered through serial, short-
lived periods of ischaemia–reperfusion in a tissue bed 
remote from the heart [19, 22, 40]. In some previous stud-
ies undertaken during the acute phase of STEMI, adjunc-
tive RIC (with primary percutaneous coronary interven-
tion [P-PCI]) attenuated infarct size and/or reduced the 
incidence of LV systolic dysfunction and major adverse 
cardiac events, albeit not consistently [1, 5, 9, 14, 31, 32, 
42, 56, 60]. However, in the largest-scale randomised trial 
(CONDI-2/ERIC-PPCI, n = 5401), RIC failed to reduce 
infarct size or improve 12 month clinical outcomes (car-
diac mortality/heart failure hospitalisation) [13, 18].

It has been suggested that a multi-targeted approach 
combining RIC with postconditioning immediately 
after stenting may afford greater cardioprotection [6, 8, 
50]. Animal studies have also shown that late, repeti-
tive ‘chronic’ remote ischaemic conditioning (CRIC) 
may mitigate against adverse LV remodelling [55]. We 
carried out the first randomised clinical trial evaluating 
CRIC (commencing on the third day following successful 
P-PCI and administered daily for 4 weeks) [51]. However, 
cardiovascular magnetic resonance (CMR) demonstrated 
no effect of CRIC on infarct size or global volumetric indi-
ces. Although CRIC commenced late after infarction may 
not be expected to impact infarct size, it may influence 
cardiac remodelling: hence, in this post-hoc analysis, we 
evaluated regional cardiac function as determined by myo-
cardial strain imaging.

Methods

Our study was based on a non-specified post-hoc analysis 
of 73 STEMI patients recruited in the multicentre, pro-
spective randomised Daily Remote Ischaemic Condition-
ing Following Acute Myocardial Infarction (DREAM) 
trial, assessing the impact of CRIC on LV systolic func-
tion. Trial design and methodology are as previously 
reported [51]. All subjects studied in the main trial were 

included in this post-hoc analysis. In brief, the trial com-
prised patients presenting to 4 P-PCI centres with a first 
STEMI successfully treated with P-PCI and baseline 
LVEF < 45% (determined by echocardiography). Partici-
pants were randomised in a 1:1 ratio (stratified by age, 
gender and infarct location) to 4 weeks’ duration of CRIC 
or sham treatment, beginning on the third day post-MI 
and self-administered at participants’ homes using the 
 autoRIC® Device (CellAegis Devices Inc, Toronto, Can-
ada). The device was applied to the upper arm and for 
CRIC, the device delivered four 5 min cycles of inflation 
at 200 mmHg separated by 5 min of deflation between each 
cycle [total treatment time 35 min]; in the control group, 
the sham device employed the same cycle durations with 
inflation to 10 mmHg. In both groups during inflation, the 
device made identical vibrating noises, and participants 
were not told of the level of inflation required to deliver 
active treatment and whether they were in the control 
group. Participants were instructed to apply the device at 
the same time of day and on the same arm. Participants 
were asked to keep a diary of use of the device and were 
removed from the trial if they returned an incomplete diary 
sheet, missed more than three treatment sessions or missed 
more than two consecutive days of treatments. Written 
informed consent was obtained from each patient prior to 
enrolment. The study was approved by the regional ethics 
committee (12/EM/0304) and registered with clinicaltri-
als.gov (NCT01664611). It was conducted according to 
the principles of Good Clinical Practice and according 
to the Declaration of Helsinki, under the oversight of the 
University of Leicester.

CMR imaging

Following their index presentation with STEMI, partici-
pants underwent CMR imaging at 5–7 days (baseline) and 
at 4 months (follow up, Fig. 1). CMR imaging was carried 
out on a 1.5-Tesla scanner at each of the four participating 
centres with retrospective electrocardiographic gating and 
dedicated cardiac receiver coils. Following standard pilot/
localiser images, functional cine images were acquired 
according to standard clinical protocols using a steady-state 
free precession (SSFP) pulse sequence, in the three long-
axis views and in contiguous short-axis slices covering the 
left ventricle. Late gadolinium enhancement (LGE) imaging 
was performed in the same slice positions using a segmented 
inversion-recovery gradient echo sequence.

CMR analysis was undertaken blinded to all clinical 
details, randomisation and temporal order of scans, and 
data presented according to the 17-segment American 
Heart Association segmentation model [2]. For func-
tional assessment, endocardial and epicardial borders were 
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manually contoured on contiguous short-axis LV slices, 
excluding papillary muscles and trabeculae at end-diastole 
and at end-systole, using  CVI42® (Circle Cardiovascular 
Imaging Inc. Calgary, Canada) [51]. For assessment of 
strain, SSFP cine images were analysed using feature 
tracking software (Medis Qstrain 2.0, Medis Medical 
Imaging Systems, Leiden, The Netherlands). Epicardial 
and endocardial borders were manually contoured in the 
three long-axis views and three selected short-axis views 
(basal, mid and apical). By automated propagation of con-
tours through the cardiac cycle, peak circumferential and 
longitudinal strain were derived, globally and at the seg-
mental level. The software automatically generated strain 
in endocardial, mid-myocardial and epicardial layers, 
which were averaged for transmural strain. Intraobserver 
and interobserver agreement for strain analysis in our cen-
tre are excellent as previously reported [28]. For LGE anal-
ysis, areas of hyperenhancement were quantified using the 
full-width half maximum method, expressed in grams and 
as percentage of LV mass  (CVI42®

, Circle Cardiovascular 
Imaging Inc. Calgary, Canada) [11]. Additionally, infarct 
transmurality was graded visually on a 4-point scale as 
described previously (0–no LGE, 1–1–25%, 2–26–50%, 
3–51–75%, 4–75–100%), with an LGE score being calcu-
lated as the sum of scores from all segments divided by 17 
(yielding a maximum score of 4) [29]. Segments with LGE 
on the baseline scan were classified as infarct-related, and 
those without were classified as remote.

Statistical analysis

The original sample size was calculated on the basis of an 
improvement in LVEF with CRIC. For the present analy-
sis, a sample size of 35 patients per group was needed to 
afford 90% power with α level 5% to detect a 25% differ-
ence in global longitudinal strain at follow up. Normality 
was assessed using histograms and Q–Q plots. Continu-
ous data are expressed as mean (± standard deviation) or 
median (interquartile range) and compared with Student t 
tests or Mann–Whitney tests as appropriate. Binary data 
are expressed as numbers (percentages), and comparisons 
were performed with the Chi-square or Fisher exact test. For 
comparison of strain at the patient level, strain values for 
each patient were averaged in infarcted and remote segments 
respectively and compared with Mann–Whitney or Student 
t test as appropriate. To investigate whether the group dif-
ference in infarcted and remote segments varied between 
layers, we used individual segment strain values and a fitted 
linear mixed model which accounted for the dependency 
of segments from the same patients. We modelled ‘change 
from baseline’ with adjustment for baseline strains. Separate 
models were developed for longitudinal and circumferential 
strain. Given the exploratory nature of this post-hoc analy-
sis, we did not adjust for multiple testing. In addition, we 
calculated AUC (area under the ROC curve) to examine the 
efficacy of strain parameters to predict adverse remodelling 
at follow up (defined as end-diastolic volume increase ≥ 20% 
and/or end-systolic volume increase ≥ 15% with ejection 

Fig. 1  CONSORT (Consoli-
dated Standards of Reporting 
Trials) diagram illustrating 
recruitment and patient flows 
in the DREAM trial. LVEF left 
ventricular ejection fraction
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fraction ≤ 40%) [3, 4]. All statistical analyses were con-
ducted using Medcalc 9.5.2.0 and SAS 9.4. Statistical tests 
were 2-tailed, and p < 0.05 was considered significant.

Results

Study participants

As previously described, patients in the two groups (con-
trol n = 35, treatment n = 38) were well matched with 
regards to baseline demographic and clinical character-
istics (Table 1) [9]. The majority of infarcts involved the 

left anterior descending coronary artery. All participants 
received drug-eluting stents. Discharge medication was 
similar between the two groups, with high uptake of opti-
mal medical therapy. The median time between hospital 
admission and baseline CMR assessment was 4.6 days 
(3.2–5.9) in the control group and 4.5 days (3.3–4.9) in 
the treatment group (p = 0.41). Follow up imaging was 
performed at a median of 122 days (120–126) after admis-
sion in the control group and at 123 days (122–125) in the 
treatment group (p = 0.50). All CMR images were of suf-
ficient quality and no images were excluded from analysis 
(Fig. 1).

Table 1  Demographic, clinical 
and imaging parameters

Results are shown as mean (SD) or median (Q1–Q3) for continuous variables and as number of patients 
(percentage) for categorical variables
LVEDV left ventricular end-diastolic volume, LVEF left ventricular ejection fraction, LVESV left ventricu-
lar end systolic volume, LVM left ventricular mass, MVO microvascular obstruction, STEMI St-elevation 
myocardial infarction

Control Treatment p value
(n = 35) (n = 38)

Demographic
 Age (years) 58.9 (11.9) 58.7 (9.9) 0.92
 Sex (% male) 29/35 (82.9%) 31/38 (81.6%) 1
 BMI 27.6 (4.0) 27.7 (4.5) 0.88
 BSA  (m2) 2.0 (0.2) 1.9 (0.2) 0.1

Clinical characteristics
 Anterior STEMI 28/35 (80.0%) 27/38 (71.1%) 0.43
 Multiple vessel disease 5/33 (15.2%) 7/37 (18.9%) 0.76
 Baseline systolic blood pressure (mmHg) 122.7 (20.9) 120.2 (19.3) 0.59
 Baseline diastolic blood pressure (mmHg) 76.2 (15.9) 73.7 (14.1) 0.49
 Baseline heart rate (bpm) 75.8 (18.4) 76.5 (14.7) 0.85
 Follow up systolic blood pressure (mmHg) 124.0 (21.2) 122.4 (17.4) 0.73
 Follow up diastolic blood pressure (mmHg) 75.4 (14.8) 75.1 (7.3) 0.91
 Follow up heart rate (bpm) 62.3 (7.6) 61.4 (15.3) 0.75

Baseline CMR parameters
 LVEF (%) 43.7 (6.7) 43.2 (7.2) 0.75
 LVEDV (ml) 182.0 (139.4–193.8) 189.5 (158.8–218.4) 0.13
 LVESV (ml) 101.7 (87.0–108.9) 107.9 (82.4–135.9) 0.17
 Myocardial mass (g) 130.0 (110.0–147.8) 130.0 (109.6–154.3) 0.88
 Presence of MVO 31 (88.6%) 27 (71.1%) 0.09
 Infarct size (% of LV mass) 21.9 (16.9–35.4) 21.4 (13.0–32.3) 0.53
 Global longitudinal strain − 16.5 (2.3) − 16.8 (3.2) 0.71
 Global circumferential strain − 16.9 (3.4) − 16.8 (3.5) 0.91

Follow up CMR parameters LVEF
 (%) 48.3 (6.7) 48.4 (8.4) 0.94
 EDV (ml) 183.5 (36.3) 197.0 (52.2) 0.21
 ESV (ml) 96.1 (26.5) 104.5 (41.0) 0.3
 Myocardial mass (g) 108.2 (98.9–127.4) 107.0 (90.2–124.9) 0.76
 Infarct size (% of LV mass) 17.6 (13.7–22.6) 15.2 (8.5–23.3) 0.59
 Global longitudinal strain − 18.4 (3.4) − 19.2 (4.0) 0.38
 Global circumferential strain − 19.8 (3.9) − 19.0 (4.1) 0.37
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Global CMR parameters

At baseline, volumetric parameters were comparable in 
both groups (Table 1): there was no difference in LV ejec-
tion fraction at baseline or at follow up. Similarly, there 
were no differences in infarct size at either timepoint (at 
baseline, 33.5 ± 18.8 g in controls versus 32.6 ± 25.3 g 
in the treatment group, p = 0.86, and at follow up, 19.9 g 
(15.0–23.1) versus 15.2  g (7.8–29.9), respectively, 
p = 0.37). At baseline, 43.0 ± 15.2% of segments showed 
evidence of LGE in the control group and 41.0 ± 19.3% 
in the treatment group (p = 0.47), and at follow up, 
38.7 ± 13.0% and 34.2 ± 19.3%, respectively (p = 0.10). 
At both timepoints, LGE score was comparable in the 
two groups (at baseline 1.12 ± 0.53 versus 1.03 ± 0.39, 
respectively, p = 0.52, and at follow up, 0.84 ± 0.39 versus 
0.71 ± 0.27, respectively, p = 0.25). Microvascular obstruc-
tion was more prevalent in the sham group but this did not 
reach statistical significance.

Analysis of myocardial strain revealed no between-
group differences at baseline in either global longitudinal 
strain or global circumferential strain (Fig. 2). Similarly, 
at follow up, there were no differences between control 
and treatment groups (change in global longitudinal strain 

−1.9±3.1 versus −2.4±3.0, respectively, p=0.39; change 
in global circumferential strain −2.9±3.4 versus −2.2±3.1, 
p=0.40).

Patient‑level analysis myocardial strain in infarcted 
versus remote segments

Further patient-level analysis was carried out, evaluating 
infarcted (n = 73) and remote (n = 73) territories. At baseline, 
longitudinal strain was found to be lower in infarcted regions 
than in remote, with no between-group differences (Fig. 3A). 
At follow up, in the remote territories, there was a significant 
improvement in longitudinal strain relative to baseline in 
both arms (Fig. 3B, C). By contrast, in the infarct-related 
regions of the control arm, there was no improvement in 
longitudinal strain (− 15.5 ± 4.0 at baseline to − 15.2 ± 4.7 at 
follow up, p = 0.81). However, in the infarct-related regions 
of the treatment arm, there was a significant improve-
ment in longitudinal strain (from − 16.2 ± 5.2 at baseline 
to − 18.7 ± 6.3 at follow up, p = 0.0006). Consequently, at 
follow up in the treatment arm, there was no significant dis-
parity between infarcted and remote regions (− 18.7 ± 6.3 
versus − 19.5 ± 5.2, respectively, p = 0.46), i.e. there was near 
normalisation of strain within infarcted territories. However, 

Fig. 2  Global longitudinal and circumferential strain for control (blue) and treatment (green) groups at baseline and follow up, with absolute 
change between timepoints. Error bars showing mean standard error
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in the control arm, consistent with a lack of improvement 
in infarcted regions, there remained a significant disparity 
in longitudinal strain between these and remote regions at 
follow up (− 15.2 ± 4.7 versus − 20.5 ± 4.0, respectively, 
p < 0.0001). Examining the change in strain from baseline 
to follow up (Fig. 3C), there was a significant difference 
in the infarct-related regions of both groups (+ 0.3 ± 5.6 in 
the control group versus − 2.5 ± 3.6 in the treatment group, 
p = 0.027), with no difference in the remote regions of both 
groups (− 2.5 ± 3.5 versus − 2.4 ± 4.3, respectively, p = 0.90).

Circumferential strain at baseline was significantly lower 
in infarcted regions than in remote, with no between-group 
differences (Fig. 4A). At follow up, circumferential strain 
improved significantly from baseline in infarcted and remote 
myocardium in both arms (Fig. 4B). Although the magnitude 
of change was greater in the control group, this did not reach 
statistical significance in patient-level analysis (Fig. 4C).

Segment‑level analysis of myocardial strain 
in myocardial layers

A total of 1168 segments (475 infarcted and 693 remote) 
were available for segmental analysis with the mixed effects 
model. In remote segments, there was improvement in longi-
tudinal strain in all three myocardial layers, with no between-
group differences (Fig. 5, top left panel). By contrast, in seg-
ments with infarction, consistent with patient-level analysis, 
there were significant between-group differences in longitu-
dinal strain, apparent in all three myocardial levels (Fig. 5, 
top right panel). Specifically, whereas longitudinal strain 

improved in all three layers of the CRIC arm, in the control 
arm, there was no significant change in any layer.

When circumferential strain was assessed, in contrast 
to longitudinal strain, in the infarcted segments, there was 
significant improvement in all three layers of both groups, 
with no between-group differences (Fig. 5, bottom right 
panel). However, in remote segments, there was a significant 
between-group difference: although circumferential strain 
improved from baseline to follow up, there was a higher 
increment in the endocardial layer of the control group than 
the corresponding layer in the treatment group (i.e. an atten-
uated increase in the latter, (− 1.2 ± 4.4 versus − 2.5 ± 4.0, 
p = 0.038, Fig. 5 bottom left panel). A trend towards higher 
increment in the mid-myocardial layer of the control group 
was also apparent (p = 0.09) with no difference in the epi-
cardial layer (p = 0.32).

Strain parameters in relation to remodelling

Eight patients (11%) developed adverse remodelling at 
follow up (3 in the control group and 5 in the treatment 
group, p = 0.53). The ability of baseline infarct size to pre-
dict adverse remodelling at follow up did not reach statis-
tical significance (Table 2). However, although baseline 
GLS was not of predictive value, baseline GCS was pre-
dictive of adverse remodelling (threshold <  − 15.7, 88% 
sensitivity, 67% specificity, AUC 0.82 ± 0.06, p < 0.0001; 
p = 0.015 for difference with GLS). When examined sepa-
rately in infarcted versus remote territories, circumferential 
strain in both remained predictive of adverse remodelling. 

Fig. 3  Longitudinal strain (transmurally) for control (n = 35) and 
treatment (n = 38) groups at A baseline (leftmost panel) and B follow 
up (middle panel), with C absolute change between timepoints (right-

most panel). Blue bars denote remote regions and orange bars denote 
infarcted regions. Error bars showing mean standard error
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By contrast, with longitudinal strain, diminished strain in 
infarcted regions predicted subsequent adverse remodelling 
but strain in remote territories was not of predictive value.

On evaluation of strain parameters on the follow up scan 
in relation to remodelling, all parameters (longitudinal and 
circumferential in remote and infarcted territories) were 
associated with adverse remodelling (Table 2). Circumfer-
ential strain remained most closely correlated with adverse 
remodelling (AUC 0.96 ± 0.02, p < 0.0001, with strain val-
ues <  − 16.0 having 100% sensitivity and 91% specificity for 
identifying patients with adverse remodelling).

Discussion

This post-hoc analysis of the DREAM trial reveals that 
although CRIC does not alter infarct size or global LV indi-
ces (volumetry/strain), it is associated with altered regional 
strain in infarct-related and remote territories. The use of 
CRIC was associated with improvement in longitudinal 
strain in infarcted territories and an attenuated increase 
of circumferential strain in both infarcted and remote 
territories.

It remains unclear what underlies the disappointing fail-
ure to translate promising pre-clinical/early-phase clinical 
findings into hard clinical endpoints: potential reasons are 

extensively discussed in the literature.[20, 21, 23, 30] Inter-
species differences mean that animal models may not fully 
replicate infarction in humans: whereas animal models uti-
lise young, healthy animals, human disease is characterised 
by chronic atherosclerosis and the influence of risk factors 
such as diabetes, hypertension and hyperlipidaemia. Out-
comes in clinical trials may be confounded by the influence 
of medications which can interfere with cardioprotection 
(e.g. P2Y purinoceptor 12 inhibitors or glyceryl trinitrate) 
or influence healing and remodelling independent of infarct 
size reduction (e.g. angiotensin-converting enzyme inhibi-
tors and angiotensin II-receptor blockers).[17] Furthermore, 
improvements in reperfusion therapy (producing better and 
faster recanalisation) to attenuate infarct size and adjuvant 
pharmacotherapies to limit adverse remodelling may be 
so effective that no additional intervention with RIC may 
impact clinical outcome. Pre-infarct angina may also afford 
cardioprotection through the development of coronary col-
laterals or through a preconditioning-like effect. To date, 
most clinical studies have been small-scale and statistically 
underpowered, using surrogate measures rather than hard 
clinical endpoints. Even in the CONDI-2/ERIC-PPCI trial 
(n=5401), the utility of RIC may also have been limited 
by favourable patient factors (short symptom-to-PPCI time 
[median 3 hour] and spontaneous recanalisation at admis-
sion [TIMI 2-3 flow] in approximately 20% of participants). 

Fig. 4  Circumferential strain (transmurally) for control (n = 35) and 
treatment (n = 38) at  A baseline (leftmost panel) and B follow up 
(middle panel), with C absolute change between timepoints (right-

most panel). Blue bars denote remote regions and orange bars denote 
infarcted regions. Error bars showing mean standard error
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Greater benefit may be seen with RIC in higher risk patients, 
such as those with heart failure or large anterior infarcts 
[36].Another potential confounder is variation in the condi-
tioned tissue mass: RIC administered to a leg may provide a 
greater stimulus than on a forearm: in a murine model, dual 
hindlimb RIC [with a greater mass of ischaemic/reperfused 
tissue] led to greater cardioprotection than single hindlimb 
RIC [33]. Similarly, a clinical trial utilising lower limb RIC 
demonstrated robust reduction in cardiac mortality and heart 
failure hospitalisation in contrast with many trials utilising 
forearm RIC which have failed to demonstrate clinical ben-
efit [14]. However, another murine model found that one 
and two hindlimb preconditioning were equally protective, 
and a randomised clinical trial involving lower limb remote 
ischaemic per/postconditioning in 93 patients with anterior 
STEMI demonstrated no difference in myocardial salvage 
index or infarct size [26, 53].

In the CONDI-2/ERIC-PPCI trial, remote ischaemic 
perconditioning neither reduced infarct size (as assessed by 

48-h troponin release or by CMR [n = 110]) nor improved 
the primary clinical endpoint (composite of cardiac mortal-
ity and heart failure hospitalisation at 12 months) [13, 18]. 
However, previous RIC studies have suggested the presence 
of discordant effects on infarct size and clinical outcomes. 
In the RIC-STEMI trial (n = 516), there was no reduction 
in infarct size with adjunctive RIC (based on 48 h troponin 
release) but the primary composite outcome of cardiac death 
and heart failure hospitalisation was significantly reduced 
(hazard ratio 0.35, 95% CI 0.15–0.78, median follow up 
2.1 years) [14]. Other studies indicate the potential for addi-
tional cardioprotection by extending the period of condition-
ing beyond the time of ischaemia/reperfusion. A CMR study 
of postconditioning immediately after reperfusion in PPCI-
treated STEMI patients (n = 122) showed no reduction in 
infarct size but at 1 year, adverse remodelling was reduced, 
especially in those with microvascular obstruction [50]. In 
the LIPSIA-CONDITIONING trial (n = 696), combined 
RIC and postconditioning resulted in greater myocardial 

Fig. 5  Mean longitudinal strain (upper two panels) and circumfer-
ential strain (lower two panels) at each timepoint depicted by myo-
cardial layer    -red denoting epicardial, yellow, mid-myocardial and 
blue, endocardial. Solid lines denote the treatment group and dashed 

lines, the control group. P values derived from mixed effects model 
accounting for differences in strain at baseline. Endo endocardial, Epi 
epicardial, Mid mid-myocardial
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salvage than conventional PPCI alone, and with extended 
follow up (median 3.6 years), a reduction in cardiac death, 
reinfarction and new congestive cardiac failure (10.2 versus 
16.9%, p = 0.04) [8, 47]. However, in this trial, postcondi-
tioning alone did not reduce MACE (14.1 versus 16.9% in 
controls, p-0.41), and other postconditioning studies have 
also reported neutral outcomes [10, 16, 46]. Nonetheless, 
taken together, these results indicate that although infarct 
size may not be reduced with RIC, the subsequent remodel-
ling process may be altered for therapeutic gain.

To our knowledge, ours is the only trial to evaluate CRIC 
post-STEMI: to date, no other clinical trial has evaluated 
late, repetitive RIC post-STEMI, though the CORIC-MI 
(n = 200) and i-RIC (n = 4700) trials will incorporate CRIC 
following STEMI (with additional per/postconditioning) 
[45, 63]. However, CRIC has been investigated in experi-
mental animal studies. In an animal model of ischaemia/
reperfusion injury, CRIC administered for 28 days resulted 
in improved LV remodelling and also survival (at 84 days), 
and, consistent with our findings, no change in infarct size 
[55]. Importantly, in our trial, CRIC was not commenced till 
day 3 post-MI. Given the critical 48 h timeframe ascribed 
for reperfusion injury when infarct size attenuation may be 

targeted therapeutically, any benefit from ‘late’ CRIC likely 
involves mechanisms distinct from infarct size reduction [34, 
62]. Previous work has shown that cardioprotection may be 
mediated by dialysable humoral factors which can circulate 
for 6 days after a RIC stimulus [24]. Our data indicate that 
the benefits of CRIC are unlikely to involve haemodynamic 
parameters, which remained comparable in both groups at 
follow up (Table 1). Although microvascular obstruction, a 
known predictor of adverse remodelling, was more prevalent 
in the sham group, this did not reach statistical significance.

Nonetheless, if CRIC is beneficial, why was there no 
observed effect on LVEF or other volumetric indices of 
remodelling? Global volumetric indices integrate the func-
tion of infarcted and remote regions, and hence may be 
insensitive to regional dysfunction, particularly if com-
pensatory mechanisms subsequently normalise global 
performance. Furthermore, gross volumetric change may 
only occur late in the remodelling process, in a maladap-
tive state beyond the point of no return. By contrast, strain 
imaging may prove more sensitive, identifying subtle, early 
and potentially reversible regional derangements in those at 
risk of at risk of adverse remodelling [37]. Impairment of 
longitudinal strain has been shown to occur early in many 
pathological disease states, preceding the onset of overt sys-
tolic dysfunction [7, 27].

Strain analysis may also provide pathophysiological 
insights into STEMI-induced remodelling. The myocar-
dium comprises a complex spatial orientation of fibres, 
with subendocardial fibres orientated in a right-handed helix 
and subepicardial fibres, in a left-handed helix, with mid-
myocardial fibres arranged circumferentially [15, 49]. This 
physiological arrangement is mechanically advantageous, 
providing energetic efficiency, with optimum redistribution 
of shear forces [52]. The subendocardial fibres are espe-
cially vulnerable to the effects of ischaemia, and post-MI, 
longitudinal function declines first [44, 54, 61]. This may be 
compensated by augmenting short-axis function, mediated 
by circumferential fibre shortening [54]. Clinical evidence 
suggests that whereas GLS is a better predictor of MACE 
(driven by ischaemic/scar-related events), GCS better pre-
dicts adverse remodelling [7, 25]. It is likely that circum-
ferential function initially compensates for longitudinal 
dysfunction (and restrains ventricular dilatation), but sub-
sequently may decline, with ensuing dilatation and adverse 
remodelling [48]. However, even prior to decompensation, 
augmented circumferential function may be maladaptive, 
increasing cardiac workload and shear stress in damaged 
regions. Myocardial stretching/thinning predisposes to the 
development of sphericity, which reduces mechanical advan-
tage and is associated with adverse outcome [39, 41].

Our data show increased circumferential strain in remote 
as well as in infarcted segments. Studies using CMR diffu-
sion tensor imaging have shown reorientation of fibres in 

Table 2  Receiver operative characteristic (ROC) curve analysis of 
infarct size and strain parameters in relation to adverse remodelling

AUC  area-under-curve, GCS global circumferential strain, GLS global 
longitudinal strain

AUC Standard error 95% CI p value

Baseline infarct size 0.71 0.13 0.46–0.95 0.1
GCS 0.82 0.06 0.70–0.95  < 0.0001
Circumferential 

strain-remote
0.73 0.09 0.62–0.83 0.01

Circumferential 
strain-infarct

0.75 0.08 0.60–0.90 0

GLS 0.63 0.1 0.51–0.74 0.19
Longitudinal strain-

remote
0.52 0.14 0.23–0.80 0.92

Longitudinal strain-
infarct

0.68 0.08 0.53–0.83 0.02

Follow up
 Infarct size 0.7 0.09 0.58–0.80 0.04
 GCS 0.96 0.02 0.91–1.00  < 0.0001
 Circumferential 

strain-Remote
0.87 0.06 0.74–0.99  < 0.0001

 Circumferential 
strain-Infarct

0.89 0.04 0.80–0.98  < 0.0001

GLS 0.85 0.06 0.73–0.98  < 0.0001
Longitudinal strain-

Remote
0.76 0.09 0.58–0.94 0.01

Longitudinal strain-
Infarct

0.8 0.06 0.67–0.92  < 0.0001
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remote myocardium post-MI [35, 58, 59]. Animal models 
show that local strain patterns may guide the alignment of 
collagen fibres during scar formation [12]. Hence, in the 
chronic phase post-STEMI, altered regional mechanics may 
influence the propensity to adverse remodelling. Intuitively, 
rather than augmenting a compensatory, potentially mala-
daptive mechanism, correction of the initial pathological 
derangement may be preferable. Our data indicate that CRIC 
may target the initial derangement in longitudinal function, 
minimising the disparity in longitudinal strain between 
infarcted segments and adjacent viable myocardium and 
lessening the requirement for circumferential compensa-
tion. This may prove mechanically and energetically advan-
tageous and potentially mitigate against the development of 
heart failure [38].

Study limitations

This study has several limitations. As CRIC was self-
administered in participants’ homes, it was not possible 
to objectively verify correct application of the device and 
achievement of a satisfactory postconditioning stimulus. The 
present work was a non-prespecified post-hoc analysis and 
a small number of participants were involved: hence, the 
results should be interpreted with caution. The study was 
not powered to determine potential improvements in adverse 
remodelling, as defined by global parameters. However, as a 
proof-of-concept study it serves the purpose of hypothesis 
generation. Whether the observed changes in regional strain 
translate into a reduction in adverse remodelling and altered 
clinical outcome warrants exploration in larger-scale pro-
spective studies. Our data do not elucidate the mechanisms 
underlying observed changes in strain, albeit demonstrating 
that these do not involve infarct size reduction or changes in 
haemodynamic parameters.

Conclusions

Our analysis suggests that the beneficial effects of RIC may 
involve mechanisms distinct from infarct size limitation. 
This warrants further investigation in prospective studies 
as well as in analyses of imaging datasets acquired from 
previously studied RIC cohorts. Further study is required to 
determine whether a multi-target approach combining CRIC 
with ischaemic perconditioning interventions may afford a 
more effective, synergistic cardioprotective strategy.
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