
Gender Bias in Meta-Embeddings

Masahiro Kaneko1 Danushka Bollegala2,3∗ Naoaki Okazaki1
1Tokyo Institute of Technology 2University of Liverpool 3Amazon

masahiro.kaneko@nlp.c.titech.ac.jp
danushka@liverpool.ac.uk okazaki@c.titech.ac.jp

Abstract

Different methods have been proposed to de-
velop meta-embeddings from a given set of
source embeddings. However, the source em-
beddings can contain unfair gender-related
biases, and how these influence the meta-
embeddings has not been studied yet. We
study the gender bias in meta-embeddings
created under three different settings: (1)
meta-embedding multiple sources without per-
forming any debiasing (Multi-Source No-
Debiasing), (2) meta-embedding multiple
sources debiased by a single method (Multi-
Source Single-Debiasing), and (3) meta-
embedding a single source debiased by differ-
ent methods (Single-Source Multi-Debiasing).
Our experimental results show that meta-
embedding amplifies the gender biases com-
pared to input source embeddings. We find that
debiasing not only the sources but also their
meta-embedding is needed to mitigate those
biases. Moreover, we propose a novel debias-
ing method based on meta-embedding learning
where we use multiple debiasing methods on
a single source embedding and then create a
single unbiased meta-embedding.

1 Introduction

Various pre-trained word embeddings have been
successfully used as features for representing in-
put texts in many NLP tasks (Dhillon et al., 2015;
Mnih and Hinton, 2009; Collobert et al., 2011;
Huang et al., 2012; Mikolov et al., 2013a; Pen-
nington et al., 2014a). Combining multiple word
embeddings leads to more accurate and exhaustive
meta-embeddings in terms of vocabulary, learned
expressions etc (Yin and Schütze, 2016). For ex-
ample, there are meta-embedding methods that
use the average of multiple embeddings (Coates
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and Bollegala, 2018), concatenate multiple embed-
dings (Bollegala, 2022), use locally-linear (Bolle-
gala et al., 2018) or global (Yin and Schütze, 2016)
projections, or use autoencoders (Bao and Bolle-
gala, 2018).

However, the source embeddings can contain
unfair gender-related biases (Barrett et al., 2019;
Xie et al., 2017; Elazar and Goldberg, 2018; Li
et al., 2018). To address these drawbacks, various
debiasing methods have been proposed in the litera-
ture. For example, many projection-based methods
have been proposed to eliminate biases in static
word embeddings (Zhao et al., 2018; Kaneko and
Bollegala, 2019; Wang et al., 2020). Bolukbasi
et al. (2016) proposed a hard-debiasing (HARD)
method that projects gender-neutral words into a
subspace, which is orthogonal to the gender dimen-
sion defined by a list of gender-definitional words.
Ravfogel et al. (2020) proposed iterative Null-space
Projection (INLP) debiasing. They found that itera-
tively projecting word embeddings to the null space
of the gender direction improves the debiasing per-
formance. Kaneko and Bollegala (2021b) proposed
dict-debiasing (DICT) – a method for removing
biases from pre-trained word embeddings using
dictionaries, without requiring access to the origi-
nal training resources or any knowledge regarding
the word embedding algorithms used.

On the other hand, to the best of our knowledge,
the effect on gender bias due to meta-embedding
that uses multiple sources has not been investigated.
Even if we had perfectly debiased the individual
source embeddings, some meta-embedding meth-
ods such as averaging do not guarantee debiased
meta-embeddings as we prove in §4. In this study,
we classify meta-embeddings into the following
three types from the viewpoint of debiasing and
analyze them: (1) Multi-Source No-Debiasing:
meta-embeddings created from multiple source
embeddings without any debiasing; (2) Multi-
Source Single-Debiasing: meta-embeddings cre-



Figure 1: We investigate the bias in three types of meta-embeddings: Multi-Source No-Debiasing, Multi-Source
Single-Debiasing and Single-Source Multi-Debiasing. Src denotes the source embeddings and the boxes represent
target of debiasing. pre, post, and both indicate as to what stage the debiasing is performed.

ated from multiple source embeddings debiased
by a single debiasing method; (3) Single-Source
Multi-Debiasing: meta-embedding from the same
source embedding, debiased using different debi-
asing methods.1 Multi-Source Single-Debiasings
were examined by debiasing: each source embed-
dings (pre), the learned meta-embeddings (post),
and both source embeddings and meta-embeddings
(both). Figure 1 shows how a meta-embedding is
learned for those methods.

These methods are agnostic to types of meta-
embedding learning algorithms and demonstrate
different aspects of debiasing effects. We use
Multi-Source No-Debiasings to investigate bias
in meta-embeddings learned using existing ap-
proaches. The purpose of Multi-Source Single-
Debiasing is to investigate how to effectively debias
existing meta-embeddings. In Single-Source Multi-
Debiasing, we combine the same embeddings de-
biased by different methods to investigate whether
debiasing methods can complement each other’s
strengths and weaknesses to obtain more effective
debiased embeddings. To the best of our knowl-
edge, no studies have been proposed that combine
multiple debiasing methods.

We use three debiasing methods and five meta-
embeddings in our study. We focus on gender bias,
since there are several methods (Bolukbasi et al.,
2016; Ravfogel et al., 2020; Kaneko and Bollegala,
2021b) that can be used to combine debiasing meth-

1It is also possible to adapt multiple debiasing methods to
multiple source embeddings and learn meta-embedding from
them, but this is not the focus of this study because it would
increase the vector size (total dimensionality of source embed-
dings × number of debiasing methods) and computation cost
tremendously. For example, in this case, there are four 300-
dimensional word embeddings and three debiasing methods,
so (4 × 300) × 3 results in a 3600-dimensional vector.

ods and datasets (Caliskan et al., 2017; Zhao et al.,
2018; Du et al., 2019) that can be examined in dif-
ferent ways. Experimental results show that the
gender bias is amplified by meta-embedding meth-
ods without any treatment for debiasing. Moreover,
the gender bias increases with the number of source
embeddings used in the meta-embedding.

Interestingly, we can successfully debias meta-
embeddings without losing their superiority of the
performance improvements in two out of three
word embedding benchmarks. The Multi-Source
Single-Debiasing results indicate that debiasing
both source embeddings and meta-embeddings is
the best practice in two out of three bias evalua-
tion benchmarks. We also demonstrate that Single-
Source Multi-Debiasing performs better than using
only one debiasing method in all three bias eval-
uation benchmarks. It can be seen as a debiasing
method that uses an ensemble of existing debias-
ing methods via a meta-embedding framework to
create more reliable unbiased embeddings than if
we had used a single debiasing method. This is
an important result given that there exists a broad
range of debiasing methods proposed in the NLP
community based on different principles and com-
plementary strengths, yet no single best method
exist (Meade et al., 2022; Czarnowska et al., 2021).

2 Meta-Embedding Learning Methods

Depending on whether debiasing methods are
applied on source embeddings or their meta-
embedding, three variants can be identified:
Multi-Source No-Debiasing, Multi-Source Single-
Debiasing and Single-Source Multi-Debiasing. To
explain these settings further, let us consider a set
of N source word embeddings s1, s2, . . . , sN re-



spectively covering vocabularies (i.e. sets of words)
V1,V2, . . . ,VN . The embedding of a word w in sj
is denoted by sj(w) ∈ Rdj , where dj is the di-
mensionality of sj . In Multi-Source No-Debiasing,
meta-embedding mMSND(w) for word w is com-
puted from s1(w), s2(w), . . . , sN (w) using some
meta-embedding learning method, where MSND
represents Multi-Source No-Debiasing. Multi-
Source Single-Debiasing and Single-Source Multi-
Debiasing are obtained by applying debiasing
methods described in § 3. Let us denote debias-
ing for word embedding sj(w) as d(sj(w)). In
Multi-Source Single-Debiasing, there are three
types of debiasing possibilities: pre, post, and
both. In pre, the debiased source embeddings
d(s1(w)),d(s2(w)), . . . ,d(sN (w)) are used to
computed mMSSDpre(w), where MSSD represents
Multi-Source Single-Debiasing. In post, debiasing
is performed on the learned meta-embeddings as
in mMSSDpost(w) = d(mMSND(w)). In both, de-
biasing is performed for both pre and post, as in
mMSSDboth(w) = d(mMSSDpre(w)). In Single-
Source Multi-Debiasing, we use different debias-
ing methods for the same source embedding as
in d1(sj(w)),d2(sj(w)), . . . ,dM (sj(w)) to learn
meta-embedding mSSMD(w). Here, M is the num-
ber of debiasing methods and SSMD represents
Single-Source Multi-Debiasing.

The source word embeddings, in general, do not
have to cover the same set of words. Much prior
work in meta-embedding learning assume a com-
mon vocabulary over all source embeddings for
simplicity. If a particular word is not covered by a
source embedding, it can be assigned a zero vec-
tor, a randomly initialised vector or we could learn
a regression model to predict the missing source
embeddings (Yin and Schütze, 2016). Without loss
of generality, we will assume that all words for
evaluation are covered by a meta-embedding vo-
cabulary V , which is composed by each source
embedding’s vocabulary Vj , after applying any one
of the above-mentioned methods. Here j represents
the j-th source embedding’s vocabulary. Each word
w is assumed to be included in at least one of the
vocabularies Vj , and zero embeddings are assigned
for w /∈ Vj .

We consider five previously proposed meta-
embedding learning methods for static word
embeddings in this study to learn m(w) for
Multi-Source No-Debiasing, Multi-Source Single-
Debiasing and Single-Source Multi-Debiasing

as follows: concatenation (CONC Bollegala,
2022), averaging (AVG Coates and Bollegala,
2018), globally-linear meta-embedding (GLE
Yin and Schütze, 2016), locally-linear meta-
embedding (LLE Bollegala et al., 2018), and aver-
aged autoencoded meta-embeddings (AEME Bao
and Bollegala, 2018). According to Bollegala and
O’Neill (2022), these are the most widely-used
meta-embedding learning methods. They methods
are described in detail in Appendix §1.

3 Debiasing Methods for Static Word
Embeddings

Different methods have been proposed in prior
work for debiasing static word embeddings. We
consider the following three popular debiasing
methods in this study: (1) hard-debiasing (HARD
Bolukbasi et al., 2016), (2) Iterative Null Space
Projection (INLP Ravfogel et al., 2020), and (3)
dictionary-based debiasing (DICT Kaneko and
Bollegala, 2021b). Due to space constraints, we
describe those methods in detail in Appendix §2.
By adapting these debiasing methods to the meta-
embeddings described in §2, we investigate Multi-
Source Single-Debiasing and Single-Source Multi-
Debiasing.

4 AVG does not Protect HARD Debiasing

In general, it is difficult to mathematically analyze
the gender bias in debiased source embeddings
when they are meta-embedded using a particular
meta-embedding learning method. However, such
an analysis is possible in the special case of the
HARD debiasing for CONC and AVG, and shows
that even if all source embeddings are debiased
their meta-embedding might not always remain
debiased.

Let us consider applying HARD to debias two
sources s1, s2 independently and create their meta-
embeddings separately using CONC and AVG.
To simplify the discussion, let us assume that
both s1 and s2 to be k-dimensional and having
bias vector sets respectively {b(1)1 , . . . , b

(1)
k } and

{b(2)1 , . . . , b
(2)
k }. We debias the source embeddings

of a word w using HARD and obtain d1(w) and
d2(w), given respectively by (1) and (2).

d1(w) =
s1(w)−w1,B

||s1(w)−w1,B||
(1)



d2(w) =
s2(w)−w2,B

||s2(w)−w2,B||
(2)

Here, w1,B and w2,B denote the projected source
embeddings of w onto the gender subspaces in
each source embedding spaces s1 and s2. Let
us denote the concatenated meta-embedding of
d1(w) and d2(w) by mconc(w). Consider the
bias vector b

(1)
j ⊕ b

(2)
j . Because the inner-

product decomposes over the individual compo-
nents under vector concatenation we can simplify
⟨mconc(w), b

(1)
j ⊕ b

(2)
j ⟩ as follows:

⟨d1(w), b
(1)
j ⟩+ ⟨d2(w), b

(2)
j ⟩ (3)

Each term in (3) are separately zero because the
debiased embeddings are orthogonal to the bias
vectors by construction in each source. Therefore,
concatenated meta-embedding preserves the debi-
asing result under HARD debiasing.

However, this is not true for other meta-
embedding methods such as averaging. To see this,
consider ⟨d1(w) + d2(w), b

(1)
j + b

(2)
j ⟩, which re-

sults in four terms as in (4).

⟨d1(w), b
(1)
j ⟩+ ⟨d2(w), b

(2)
j ⟩

+ ⟨d1(w), b
(2)
j ⟩+ ⟨d2(w), b

(1)
j ⟩ (4)

Note that the first two terms in (4) are zero because
they are in the same vector space and the inner-
products are taken w.r.t. to the corresponding bias
vectors. However, the last two terms in (4) are not
generally zero. Therefore, AVG does not generally
preserve the HARD debiasing result.

5 Experiments

Our goal in this paper is to evaluate whether gender
bias is amplified and to what degree by the different
meta-embedding learning methods. However, this
bias amplification must be considered relative to
the accuracy of the semantic representations pro-
duced by those meta-embedding learning methods.
For example, a meta-embedding learning method
can produce perfectly unbiased representations by
mapping all words to a constant vector, which is
useless for any downstream task requiring semantic
representations of words. For this reason, we con-
duct our evaluations using two types of datasets to
evaluate gender biases in the debiased embeddings,
while preserving useful semantic information nec-
essary for downstream tasks: (a) bias evaluation
datasets covering different types of gender biases

(described in §5.1) and (b) word embedding bench-
marks related to semantic similarity prediction and
POS tagging tasks (described in §5.2).

5.1 Bias Evaluation Benchmarks
We use Word Embedding Association
Test (WEAT; Caliskan et al., 2017), Word
Association Test (WAT; Du et al., 2019) and
SemBias (SB; Zhao et al., 2018) for bias evaluation.
The closer the scores of all of these evaluations to
0, the less bias there is.

WEAT: WEAT (Caliskan et al., 2017) quantifies
various biases (e.g., gender, race, and age) using
semantic similarities between word embeddings.
It compares two same size sets of target words X
and Y (e.g. European and African names), with
two sets of attribute words A and B (e.g. pleasant
vs. unpleasant). The bias score, s(X ,Y,A,B), for
each target is calculated as follows:

s(X ,Y,A,B) =
∑
x∈X

k(x,A,B)

−
∑
y∈Y

k(y,A,B) (5)

k(t,A,B) = meana∈Af(t,a)

− meanb∈Bf(t, b) (6)

Here, f is the cosine similarity between the word
embeddings. The one-sided p-value for the permu-
tation test regarding X and Y is calculated as the
probability of s(Xi,Yi,A,B) > s(X ,Y,A,B).
The effect size is calculated as the normalised mea-
sure given by (7).

meanx∈X s(x,A,B)− meany∈Ys(y,A,B)
sdt∈X∪Ys(t,A,B)

(7)

WEAT can evaluate eight types of bias, and we
report the average absolute effect sizes for T4, T5
and T6, which are related to gender bias.

WAT: WAT2 is a method to measure gender bias
over a large set of words (Du et al., 2019). It
calculates the gender information vector for each
word in a word association graph created with
Small World of Words project (SWOWEN; Deyne
et al., 2019) by propagating information related to
masculine and feminine gender pair set (e.g. she
and he) (wi

m, wi
f ) ∈ L, using a random walk ap-

proach (Zhou et al., 2003). The gender information
2https://github.com/Yupei-Du/

bias-in-wat

https://github.com/Yupei-Du/bias-in-wat
https://github.com/Yupei-Du/bias-in-wat


is represented as a 2-dimensional vector (bm, bf ),
where bm and bf denote respectively the masculine
and feminine orientations of a word. The gender
information vectors of masculine words, feminine
words, and other words are initialised respectively
with vectors (1, 0), (0, 1), and (0, 0). The bias score
of a word is defined as log(bm/bf ). We evaluate
the gender bias of word embeddings using the Pear-
son correlation coefficient between the bias score
of each word and the score given by (8) computed
as the averaged difference of cosine similarities
between masculine and feminine words.

1

|L|

|L|∑
i=1

(
f(w,wi

m)− f(w,wi
f )
)

(8)

SB: The SB dataset (Zhao et al., 2018)3 contains
three categories of word-pairs: (1) Definition, a
gender-definition word pair (e.g. hero – heroine),
(2) Stereotype, a gender-stereotype word pair (e.g.,
manager – secretary) and (3) None, two other word-
pairs with similar meanings unrelated to gender
(e.g., jazz – blues, pencil – pen). The SB metric
uses the cosine similarity between the

# »

he− #    »

she gen-
der directional vector and a− b for each word pair
(a – b) in the above categories to measure gender
bias. SB contains 20 Stereotype word pairs and 22
Definition word pairs and uses the Cartesian prod-
uct to generate 440 instances. Zhao et al. (2018)
used a subset of 40 instances associated with two
seed word-pairs, not used in the word list for train-
ing, to evaluate the generalisability of a debiasing
method. We expect high similarity scores in the
Definition category and low similarity scores in the
Stereotype and None categories for unbiased word
embeddings. This paper reports the percentage of
times that pairs of Stereotype and None categories
had the highest similarity in the subset and this
score is expected to be low.

5.2 Word Embedding Benchmarks

We use SimLex (SL; Hill et al., 2015), MEN (Bruni
et al., 2012) and CoNLL-2003 POS tagging (POS
tagging; Zhao et al., 2018) as word embedding
benchmarks. The higher these scores, the better the
performance.

Semantic Similarity: The semantic similarity be-
tween two words is calculated as the cosine similar-
ity between their word embeddings and compared

3https://github.com/uclanlp/gn_glove

WEAT WAT SB SL MEN POS

W2V 1.31 0.47 17.0 44.2 78.2 87.8
GV 1.17 0.58 17.0 40.8 80.5 90.9
FTC 1.31 0.53 13.2 47.1 81.5 88.7
FTW 1.08 0.50 15.2 44.1 80.1 80.1
ALL 1.22 0.52 15.6 44.1 80.1 88.8

AVG 1.46 0.53 18.0 41.7 80.5 89.7
CONC 1.33 0.58 16.6 42.7 81.3 91.2
LLE 1.39 0.56 30.0 44.2 80.8 89.0
GLE 1.31 0.52 16.8 43.7 82.1 87.7
AEME 1.28 0.53 11.1 43.7 81.1 89.1

Table 1: The results of bias evaluation and word em-
bedding benchmarks for source embeddings (W2V, GV,
FTC and FTW) and meta-embeddings of Multi-Source
No-Debiasing (AVG, CONC, LLE, GLE and AEME).
ALL is the score to compare with the score of Multi-
Source No-Debiasing, which is arithmetic mean over
the score of source embeddings. Bold indicates the
results with the highest bias and performance.

against the human ratings using the Spearman cor-
relation coefficient. Following prior work, we use
SL (Hill et al., 2015) and MEN (Bruni et al., 2012)
for evaluations.

POS tagging: To evaluate the performance in
a downstream task that uses word/meta embed-
dings as input representations, we evaluate the
performance of POS tagging of the model ini-
tialised by the pre-trained word embedding. We
use the CoNLL-2003 dataset (Tjong Kim Sang
and De Meulder, 2003) for training and evalu-
ating the POS tagger, implemented as a single
LSTM with a 100-dimensional hidden layer. All
the weights and biases of LSTM are initialized
from U(−

√
k,
√
k) where U is a uniform distribu-

tion and k = 1
hidden_size . We optimise the model

using SGD with a learning rate of 0.1. We set the
batch size to 32 and report results of the model
on the test data. The model with the best perfor-
mance was selected using the development data in
10 epochs. We use WEAT T4 as the development
data.

5.3 Settings

In our experiments, we use the following pub-
licly available pre-trained word embeddings as the
source embeddings: Word2Vec4 (W2V; Mikolov
et al., 2013b) is 300-dimensional embeddings
for 3M words trained on Google News corpus,

4https://code.google.com/archive/p/
word2vec/

https://github.com/uclanlp/gn_glove
https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/


num WEAT WAT SB SL MEN POS

ALL 1 1.22 0.52 15.6 44.1 80.1 88.8

AVG
2 1.32 0.51 17.3 43.0 79.9 89.1
3 1.38 0.53 17.5 42.8 80.0 89.6
4 1.46 0.53 18.0 41.7 80.5 89.7

CONC
2 1.26 0.53 16.4 43.1 80.3 90.3
3 1.30 0.57 16.5 42.2 80.6 90.8
4 1.33 0.58 16.6 42.7 81.3 91.2

LLE
2 1.25 0.52 21.7 43.3 80.3 87.9
3 1.29 0.54 25.2 43.9 80.5 88.4
4 1.39 0.56 30.0 44.2 80.8 89.0

GLE
2 1.26 0.50 16.0 43.3 81.0 87.6
3 1.29 0.50 16.3 43.5 81.3 87.6
4 1.31 0.52 16.8 43.7 82.1 87.7

AEME
2 1.24 0.52 12.0 43.3 80.5 88.9
3 1.25 0.52 12.6 43.5 80.8 89.0
4 1.28 0.53 11.1 43.7 81.1 89.1

Table 2: The results of bias evaluation and word em-
bedding of benchmarks of Multi-Source No-Debiasing
with AVG, CONC, LLE, GLE and AEME using differ-
ent number of source embeddings. This is the result of
arithmetic mean scores for each number. Here, num=1
represents the arithmetic mean of the results of all source
embeddings. Bold indicates the results with the high-
est bias and performance in num=2, 3, 4, considering
num=1, 2, 3, 4.

GloVe5 (GV; Pennington et al., 2014b) is 300-
dimensional embeddings for 2.2M words trained on
the Common Crawl and FastText6 (FTC and FCW;
Bojanowski et al., 2017) are 300-dimensional em-
beddings for 2M words trained on Common Crawl
and Wikipedia.

We used the publicly available code by the orig-
inal authors for HARD7, INLP8 and DICT9 de-
biasing methods with the default hyperparameters
and word lists for training used in the original im-
plementations. Debiasing requires less than half an
hour in all experiments on a GeForce RTX 2080 Ti
GPU.

5.4 Gender Bias in Meta-Embeddings

To study how different Multi-Source No-Debiasing
methods amplify the gender bias in the source
embeddings, in Table 1 we compare source and
meta-embeddings using the datasets described in

5https://github.com/stanfordnlp/GloVe
6https://fasttext.cc/docs/en/

english-vectors.html
7https://github.com/tolga-b/debiaswe
8https://github.com/shauli-ravfogel/

nullspace_projection
9https://github.com/kanekomasahiro/

dict-debias

Method WEAT WAT SB SL MEN POS

ALL 1.22 0.52 15.6 44.1 80.1 88.8

HARD 0.93 0.45 7.7 44.2 80.0 88.5
INLP 0.91 0.43 12.2 43.6 79.2 88.7
DICT 0.97 0.51 12.9 47.2 82.1 88.8

HARD
pre 0.93 0.48 9.7 43.2 79.5 87.1
post 0.84 0.50 9.2 42.4 79.9 87.9
both 0.86 0.40 9.1 44.1 79.7 87.7

INLP
pre 0.95 0.49 13.2 42.2 79.3 88.2
post 0.91 0.48 12.5 41.1 79.3 88.7
both 0.86 0.37 12.2 44.2 79.1 88.6

DICT
pre 1.01 0.50 14.2 46.1 84.9 89.0
post 0.97 0.51 13.8 45.3 85.2 90.1
both 0.89 0.44 14.1 46.3 84.6 89.9

Table 3: The results of bias evaluation and word em-
beddings benchmarks of source embeddings (ALL), de-
biased source embeddings (HARD, INLP, DICT) and
meta-embeddings of Multi-Source Single-Debiasing
(pre, post, both). Here, pre indicates debiasing source
embeddings then learning meta-embeddings, post in-
dicates debiasing the meta-embeddings, and both indi-
cates debiasing both source and meta-embeddings. pre,
post and both average the scores using the five meta-
embedding methods. ALL, HARD, INLP and DICT
scores are the average results of W2V, GV, FTC and
FTW. Underline represents the most debiased results
and Bold shows the highest performance.

§5. From Table 1 we see that different source em-
beddings express different levels of gender biases.
Among the source embeddings, we see that GV has
the highest bias in WEAT, WAT and SB. On the
other hand, FTC has the best performance in SL
and MEN, whereas GV has the best performance
in POS. Here, ALL is the arithmetic mean of the
scores for the four source embeddings W2V, GV,
FTC and FTW, which simulates the setting where
sources are used separately without creating any
meta-embeddings. We use ALL to compare with
the results of Multi-Source No-Debiasing.

Among the Multi-Source No-Debiasing meth-
ods, we see that LLE has a lower bias on WEAT
and WAT, but its performance is considerably
worse in MEN and POS. Ideally, we would prefer
Multi-Source No-Debiasing methods that combine
the information in multiple sources, while not ag-
gregating or amplifying any gender bias present
in the source embeddings. In this regard, we can
see that AEME, which uses autoencoders to learn
meta-embeddings, has a lower bias as well as better
performance. This result aligns well with prior pro-
posals where Kaneko and Bollegala (2019) used
autoencoders to debias static word embeddings.

https://github.com/stanfordnlp/GloVe
https://fasttext.cc/docs/en/english-vectors.html
https://fasttext.cc/docs/en/english-vectors.html
https://github.com/tolga-b/debiaswe
https://github.com/shauli-ravfogel/nullspace_projection
https://github.com/shauli-ravfogel/nullspace_projection
https://github.com/kanekomasahiro/dict-debias
https://github.com/kanekomasahiro/dict-debias


Moreover, it has been shown that autoencoding im-
proves pre-trained word embeddings by making
them more isotropic (Kaneko and Bollegala, 2020),
which might explain the superior performance of
AEME as a meta-embedding learning method.

Considering that Multi-Source No-Debiasing
methods use multiple source embeddings as the
input, an interesting open question is whether more
sources result in more biased meta-embeddings. To
study this relationship empirically, in Table 2 we
use varying numbers of source embeddings and
create meta-embeddings. For example, the row cor-
responding to num=2 in Table 2 shows the setting
where we use two out of the available four source
embeddings to create meta-embeddings. This re-
sults in six (4C2) different meta-embeddings pro-
duced in num=2 setting. We evaluate each of those
meta-embeddings for the bias and semantic rep-
resentation ability and report the arithmetic mean.
Note that num=1 setting corresponds to the previ-
ously described ALL baseline, which reports the
average scores when each source embedding is
evaluated individually, without creating their meta-
embeddings. num=4 are the same as AVG, CONC,
LLE, GLE, AEME in Table 1.

From Table 2 we see that, except for AEME in
SB, the gender bias is amplified when more sources
are used in the meta-embedding process. Moreover,
the average performances of meta-embeddings in-
crease with the number of sources. In Multi-Source
No-Debiasing, we can see that increasing the num-
ber of source embeddings amplifies the bias as well
as improving the task performance.

5.5 Debiasing vs. Meta-Embedding
Next, we study the effectiveness of Multi-Source
Single-Debiasing using different debiasing meth-
ods described in § 3 for removing unfair gender
bias from Multi-Source No-Debiasing. Note that
debiasing and meta-embedding learning methods
can be applied to a given set of source embed-
dings in an arbitrary order. Here we consider three
settings: pre (first debias the sources and then
create their meta-embedding), post (first create
meta-embedding of the sources and then debias
it), and both (apply debiasing to the source as well
as meta-embeddings). For pre, post and both of
Multi-Source Single-Debiasing, we use five meta-
embedding learning methods and reported their
arithmetic mean scores.10 Table 3 shows the arith-

10If the results for each meta-embedding method are listed
in Table 3, there will be 5 rows for each of pre, post and
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Figure 2: Scores for SB and SL. SB score is horizontal
axis and SL score is vertical axis.

metic mean results of applying HARD, INLP, and
DICT-debiasing compared to all the source em-
beddings and the results of Multi-Source Single-
Debiasing. First, we see that all debiasing methods
reduce the gender bias in the source embeddings
compared to ALL. In particular, DICT-debiasing
not only debiases the source embeddings but also
improves their performance, as can be seen from
the evaluations on SL and MEN datasets.

We see that HARD, INLP and DICT debiasing
methods for a single source are still effective at
debiasing meta-embeddings created from multiple
sources. Furthermore, both outperforms pre and
post for debiasing meta-embeddings except HARD
both on WEAT, while not degrading performance
on SL, MEN and POS. Although we do not show
the individual results of meta-embedding in Table 3,
out of 45 results (i.e. 3 debiasing methods × 5
meta-embeddings × 3 test data) there are 5 cases
where both under-performs in bias evaluation to
pre or post. Moreover, the tendency for both to
obtain the best debiasing results does not depend
on the meta-embedding method used.

Because scores in Table 3 are averaged over
meta-embedding methods, to further analyse ef-
fects due to each meta-embedding method, we plot
all combinations in Figure 2, where x-axis shows
SB scores (lower values indicate debiased embed-
dings) and y-axis shows SL scores (higher values
indicate accurate embeddings). The shapes of the

both, and 9 (number of pre, post and both) × 5 (number of
meta-embedding) + 5 (rows other than pre, post and both) will
make a huge table of 50 rows, so for the reason of space, the
meta-embedding scores are averaged.



Emb. WEAT WAT SB SL MEN POS
So

ur
ce

W2V 1.31 0.47 17.0 44.2 78.2 87.8
GV 1.17 0.58 17.0 40.8 80.5 90.9
FTC 1.31 0.53 13.2 47.1 81.5 88.7
FTW 1.08 0.50 15.2 44.1 80.1 80.1

D
eb

ia
se

d W2V 1.08 0.46 11.7 44.2 80.8 90.8
GV 1.01 0.52 11.9 40.5 81.5 90.7
FTC 1.14 0.51 12.5 46.8 78.9 89.4
FTW 0.94 0.47 13.4 44.0 82.0 81.5

SS
M

D

W2V 0.98 0.44 9.8 44.3 80.7 90.5
GV 0.90 0.32 11.0 40.5 81.5 91.1
FTC 1.05 0.41 8.9 45.3 81.8 89.8
FTW 0.78 0.44 12.1 43.0 82.3 81.0

Table 4: The results of bias evaluation and word em-
bedding benchmarks of source, debiased source and
Single-Source Multi-Debiasing embeddings (SSMD).
The results of each meta-embedding learning method
are arithmetic means in SSMD. Underline represents
the most debiased results per embedding method.

points denote the meta-embedding methods: source
- star; AVG - circle; CONC - square; LLE - triangle;
GLE - pentagon; and AEME - diamond, respec-
tively. The colors indicate the debiasing methods:
No-Debiasing - orange; HARD - green; INLP - yel-
low; DICT - blue, respectively. The density of the
colours indicates pre: light, post: intermediate, and
both: dark, respectively.

Except for some results of DICT, meta-
embeddings are debiased regardless of the debi-
asing method used compared to their source em-
beddings. In most cases, CONC results in the most
debiased meta-embeddings compared to the debi-
ased source embeddings. In addition, HARD and
DICT of CONC show improved SL performance
compared to their source embeddings. The perfor-
mance of CONC is considered to be higher than
that of source embeddings because the number of
dimensions of CONC is larger and more expressive
than that of source embeddings.

5.6 The Same Source Embeddings, Different
Debiasing

In §5.5 we observed that each debiasing method
has its own strengths and weaknesses in remov-
ing bias-related information and preserving useful
semantic information in word embeddings. Mo-
tivated by this, we propose Single-Source Multi-
Debiasing – given a pre-trained source embedding,
we first apply different debiasing methods to create
multiple debiased versions of that source embed-
ding and subsequently meta-embed them. Specif-

ically, we create debiased versions of a source
embedding using HARD, INLP, and DICT de-
biasing methods separately, and then use AVG,
CONC, LLE, GLE to create corresponding meta-
embeddings.

Table 4 shows the results for the original source
embeddings (Source), debiased source embed-
dings (Debiased source) and Single-Source Multi-
Debiasing embeddings. Here, Single-Source Multi-
Debiasing shows the arithmetic mean of the scores
of the five meta-embedding learning methods.11

Moreover, debiased source shows the arithmetic
mean of the scores of adapting the three debiasing
methods separately to compare the methods using
multiple debiasing methods. We see that the bias
evaluation of all Single-Source Multi-Debiasing
is better than source and debiased source. This
indicates that Single-Source Multi-Debiasing im-
proves the overall debiasing performance by taking
into account the strengths and weaknesses of each
debiasing method. Furthermore, the highest num-
ber of scores in SL, MEN and POS indicates that
Single-Source Multi-Debiasing is able to learn the
highest quality embeddings. Although we do not
put the individual results of meta-embedding in Ta-
ble 4, out of 60 results (i.e. 4 source embeddings ×
5 meta-embeddings × 3 test data), Single-Source
Multi-Debiasing underperforms only in 4 cases
compared to the debiased sources.

6 Conclusion

We studied the gender bias due to meta-embedding
under three settings: (1) Multi-Source No-
Debiasing, (2) Multi-Source Single-Debiasing (3)
Single-Source Multi-Debiasing created from static
word embeddings as sources. Our experimental re-
sults show that although meta-embedding of Multi-
Source No-Debiasing improves performance over
the input source embeddings, at the same time, it
amplifies the unfair gender bias encoded in the
source embeddings. Furthermore, the level of gen-
der bias encoded in a meta-embedding increases
with the number of source embeddings used. We
found that Multi-Source Single-Debiasing using
previously proposed debiasing methods for static
word embeddings can be effectively used to debi-
ase meta-embeddings as well. Furthermore, we
proposed Single-Source Multi-Debiasing that com-

11If the results each meta-embedding method are listed in
Table 4, there will be 5 rows for each word embedding, and 4
× 5 + 9 will make a huge table of 29 rows, thus due to limited
space the scores are averaged.



bines the outputs from multiple debiasing methods
and then create a single embedding via a meta-
embedding learning method.

7 Limitations

In this paper, we limited our investigation to meta-
embedding learning methods applicable to static
word embeddings because they are still extensively
used in various NLP applications for input rep-
resentation, particularly in resource/energy con-
strained devices without GPUs due to their rel-
atively lightweight nature compared to contextu-
alised embeddings obtained from large-scale neural
language models (Strubell et al., 2019). However,
there has been recent work studying the gender bias
in contextualised embeddings (Zhao et al., 2019;
Vig, 2019; Bordia and Bowman, 2019; May et al.,
2019; Kaneko and Bollegala, 2021a,c; Kaneko
et al., 2022; Zhou et al., 2022; Schick et al., 2021).
On the other hand, learning meta-embeddings of
contextualised embeddings is relatively underde-
veloped (Poerner et al., 2020). Therefore, we defer
the study of gender bias in contextualised meta-
embeddings to future work. Furthermore, in future,
we plan to study other types of social biases such
as racial and religious biases in meta-embeddings.

8 Ethical Considerations

The goal of our paper was to study the gender bias
in various meta-embeddings created in three differ-
ent settings. We did not manually annotate novel
social bias datasets, proposed novel bias evaluation
measures nor debiasing methods. Therefore, we do
not see any ethical issues arising due to data anno-
tation, or via proposals of novel evaluation metrics
or debiasing methods.

The gender biases we considered in this paper
cover only binary gender. The bias evaluation
in word embeddings used in our paper can eval-
uate only binary gender. However, gender biases
have been reported related to non-binary gender as
well (Cao and Daumé III, 2020; Dev et al., 2021).
Studying the non-binary gender for debiasing meta-
embeddings is an essential next step.

This paper does not cover all debiasing methods
for word embeddings (Kaneko and Bollegala, 2019;
Wang et al., 2020) and does not guarantee results
with any given debiasing method. Furthermore, it
should be noted that there may be bias when using
debiased meta-embeddings in a downsteream task.
It is known that the results of task-independent

bias evaluation do not necessarily coincide with the
bias evaluation in the downstream task (Goldfarb-
Tarrant et al., 2021; Cao et al., 2022).
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A Meta-Embedding Learning Methods

A.1 Concatenation (CONC)
One of the simplest approaches to create a meta-
embedding under the unsupervised setting is vector
concatenation (Bao and Bollegala, 2018; Yin and
Schütze, 2016; Bollegala et al., 2018). Denoting
concatenation by ⊕, we can express the concate-
nated meta-embedding, mconc(w) ∈ Rd1+...+dN ,
of a word w ∈ V by (9).

mconc(w) = s1(w)⊕ . . .⊕ sN (w)

= ⊕N
j=1sj(w) (9)

Goikoetxea et al. (2016) showed the concatena-
tion of word embeddings learnt separately from a
corpus and the WordNet produces superior word
embeddings. However, one disadvantage of us-
ing concatenation to produce meta-embeddings is
that it increases the dimensionality of the meta-
embedding space, which is the sum of the dimen-
sionalities of the sources.

A.2 Averaging (AVG)
Source embeddings are trained independently and
can have different dimensionalities. Even when
the dimensionalities do agree, vectors that lie in
different vector spaces cannot be readily averaged.
However, rather surprisingly, Coates and Bollegala
(2018) showed that accurate meta-embeddings can
be produced by first zero-padding source embed-
dings as necessary to bring them to the same di-
mensionality and then by averaging them to create
mavg(w) as given by (10) when some orthogo-
nality conditions are satisfied by the embedding
spaces.

mavg(w) =
1

N

N∑
j=1

s∗j (w) (10)

Here, s∗j (w) is the zero-padded version of
sj(w) such that its dimensionality is equal to
max(d1, . . . , dN ). In contrast to concatenation, av-
eraging has the desirable property that the dimen-
sionality of the meta-embedding is upper-bounded
by max(d1, . . . , dN ) <

∑N
j=1 dj .

A.3 Linear Projections (GLE and LLE)
In their pioneering work on meta-embedding, Yin
and Schütze (2016) proposed to project source em-
beddings to a common space via source-specific
linear transformations, which they refer to as 1TON.

They require that the meta-embedding of a word w,
m1TON(w) ∈ Rdm , to be reconstructed from each
source embedding, sj(w) of w. For that they use a
linear projection matrix, Aj ∈ Rdj×dm , from sj to
the meta-embedding space as given by (11).

ŝj(w) = Ajm1TON(w) (11)

Here, ŝj(w) is the reconstructed source embedding
of w from the meta-embedding m1TON(w). Next,
the squared Euclidean distance between the source-
and meta-embeddings is minimised over all words
in the intersection of the source vocabularies, sub-
jected to Frobenius norm regularisation as in (12).

minimise
∀N
j=1Aj

∀w∈V m1TON(w)

N∑
j=1

αj

(∑
w∈V

||ŝj(w)− sj(w)||22 + ||Aj ||2F

)

(12)

They use different weighting coefficients αj to
account for the differences in accuracies of the
sources. They determine αj using the Pearson cor-
relation coefficients computed between the human
similarity ratings and cosine similarity computed
using the each source embedding between word
pairs on the Miller and Charles (1998) dataset. The
parameters can be learnt using stochastic gradient
descent, alternating between projection matrices
and meta-embeddings.

Muromägi et al. (2017) showed that by requiring
the projection matrices to be orthogonal (corre-
sponding to the Orthogonal Procrustes Problem),
the accuracy of the learnt meta-embeddings is fur-
ther improved. However, 1TON requires all words
to be represented in all sources.

Assuming that a single global linear (GLE) pro-
jection can be learnt between the meta-embedding
space and each source embedding as done by
Yin and Schütze (2016) having all words in all
sources is a more vital requirement. Bollegala
et al. (2018) relaxed this requirement by learning
locally linear (LLE) meta-embeddings. To explain
this method further let us consider computing the
LLE-based meta-embedding, mLLE(w), of a word
w ∈ V1 ∩ V2 using two sources s1 and s2. First,
they compute the set of nearest neighbours, Nj(w),
of w in sj and represent w as the linearly-weighted
combination of its neighbours by a matrix A by



minimising (13).

minimise
A

2∑
j=1

∑
w∈V1∩V2

∣∣∣∣∣∣
∣∣∣∣∣∣sj(w)−

∑
w′∈Nj(w)

Aww′sj(w)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

(13)

They use AdaGrad to find the optimal A. Next,
meta-embeddings are learnt by minimising (14)
using the learnt neighbourhood reconstruction
weights in A are preserved in a vector space com-
mon to all source embeddings.

∑
w∈V1∩V2

∣∣∣∣∣∣
∣∣∣∣∣∣mLLE(w)−

2∑
j=1

∑
w′∈Nj(w)

Cww′mLLE(w
′)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

(14)

Here, Cww′ = Aww′
∑2

j=1 I[w′ ∈ Nj(w)], where
I is the indicator function which returns 1 if
the statement evaluated is True. Optimal meta-
embeddings can then be found by solving an eigen-
decomposition of the matrix (I−C)⊤(I−C), where
C is the matrix formed by arranging Cww′ as the
(w,w′) element. This approach has the advantage
of not requiring all words to be represented by all
sources, thereby obviating the need to predict miss-
ing source embeddings prior to meta-embedding.

A.4 Autoencoding (AEME)
Bao and Bollegala (2018) modelled meta-
embedding learning as an autoencoding problem
where information embedded in different sources
is integrated at different levels to propose Averaged
Autoencoded meta-embedding (AEME).

Consider two sources s1 and s2, which are en-
coded respectively by two encoders E1 and E2.
AEME of w is computed as the ℓ2 normalised aver-
age of the encoded source embeddings as in (15).

mAEME(w) =
E1(s1(w)) + E2(s2(w))

||E1(s1(w)) + E2(s2(w))||2
(15)

Two independent decoders, D1 and D2, are trained
to reconstruct the two sources from the meta-
embedding. E1, E2, D1 and D2 are jointly learnt
to minimise the weighted reconstruction loss given
by (16).

minimise
E1,E2,D1,D2

∑
w∈V1∩V2

(λ1 ||s1(w)−D1(E1(s1(w)))||22 +

λ2 ||s2(w)−D2(E2(s2(w)))||22)
(16)

The weighting coefficients λ1 and λ2 can be used
to assign different emphases to reconstruct the two
sources and are tuned using a validation dataset. In
comparison to methods that learn globally or lo-
cally linear transformations (Bollegala et al., 2018;
Yin and Schütze, 2016), autoencoders learn nonlin-
ear transformations.

AEME can only use two source embeddings
to learn a meta-embedding. Therefore, in cases
with more than two source embeddings, we adapt
AEME to learn meta-embeddings from meta-
embeddings created from two source embeddings
and other source embeddings.

B Debiasing Methods

B.1 Hard-debiasing

Bolukbasi et al. (2016) proposed a post-processing
approach that projects gender-neutral words to a
subspace, which is orthogonal to the gender direc-
tion defined by a list of gender-definitional words to
reduce the gender stereotypes embedded inside pre-
trained word representations. Their hard-debiasing
method computes the gender direction as the vector
difference between the embeddings of the corre-
sponding gender-definitional words. They denote
the n-dimensional pre-trained word embedding of a
word w by w ∈ Rn. W is a set of pre-trained word
embeddings w1,w2, . . .wv. Here, v is a vocabu-
lary size. To reduce the gender bias, it is assumed
that the n-dimensional basis vectors in the Rn vec-
tor space spanned by the pre-trained word embed-
dings to be b1, b2, . . . , bn. Moreover, without loss
of generality, the subspace spanned by the subset
of the first k(< n) basis vectors b1, b2, . . . , bk de-
noted to be B ⊆ Rn. The projection vB of a vector
v ∈ Rn onto B can be expressed using the basis
vectors as in (17).

vB =
k∑

j=1

(v⊤bj)bj (17)

To show that v − vB is orthogonal to vB for any
v ∈ B, v− vB is expressed using the basis vectors
as given in (18).

v − vB =

n∑
i=1

(v⊤bi)bi −
k∑

j=1

(v⊤bj)bj

=

n∑
i=k+1

(v⊤bi)bi (18)



It can be seen that there are no basis vectors in
common between the summations in (17) and (18).
Therefore, vB

⊤(v − vB) = 0 for ∀v ∈ B.
To identify gender subspace, a set of n a mas-

culine and feminine word pairs D1, D2, ..., Dn ⊂
W 2 is defined, here each pair of words indicates
gender. The average vector µ of the defining sets is
represented in (19).

µi :=
∑
w∈Di

w

|Di|
(19)

Let the bias subspace B be the first k rows of Sin-
gular Value Decomposition SVD (C),

C :=
n∑

i=1

∑
w∈Di

(w − µi)
⊤(w − µi)/|Di| (20)

Hard-debiasing removes the bias by zero projection
of all neutral words into the bias subspace B. Then,
debiased embedding dhard(w) is represented in
(21):

dhard(w) :=
w −wB

||w −wB||
(21)

Gonen and Goldberg (2019) showed that hard-
debiasing does not completely remove gender bi-
ases from embeddings. On the other hand, the moti-
vation of Single-Source Multi-Debiasing is to com-
plement weaknesses of each debiasing method by
combining the various debiasing methods. There-
fore, we use hard-debiasing, a method known
to produce incomplete debiasing, to investigate
whether we could overcome its limitations by meta-
embedding with source embeddings produced by
other debiasing methods.

B.2 Iterative Null-space Projection (INLP)
INLP was proposed by Ravfogel et al. (2020) to re-
move bias in pre-trained embeddings by iteratively
projecting onto null-space. They train multiple
linear classifiers to detect bias in a pre-trained em-
bedding and remove information by projecting the
embedding into the null space of the weights of
each linear classifier. By adapting multiple clas-
sifiers, it is possible to remove bias by projecting
embeddings into the null space using dozens of
directions based on the data.

First, let C be the parameter of the linear classi-
fier that detects the bias in the word embeddings.
For example, in gender bias detection, this linear
classifier will classify whether the representation is

feminine or masculine. The fact that the classifier
cannot classify the embedding as feminine or mas-
culine, as in (22), means that there is no bias in the
embedding.

C(PN(C)w) = 0 ∀w (22)

Here, W is projected to a space orthogonal to C,
i.e., null-space, so that the decision boundary of
C cannot detect the bias. The null-space at C is
defined as N(C) = {w|Cw = 0}, and the projec-
tion matrix onto N(C) is PN(C).

Relations in a multidimensional space can be
captured in multiple linear directions (hyperplanes).
Therefore, it is not sufficient to project the embed-
ding into the null space of a single linear classifier.
To solve this problem, they adapt the classifier it-
eratively. The projection matrix P is iterated m
times as P = PN(Cm)PN(Cm−1) . . . PN(C1). Ci is
learned from Wi−1 projected into the null space
of Ci−1. Debiased embedding dinlp(w) is repre-
sented in (23):

dinlp(w) := Pw (23)

B.3 Dict-debiasing

Kaneko and Bollegala (2021b) proposed dict-
debiasing – a method for debiasing pre-trained
word embeddings using dictionary definitions. This
method does not need the types of biases to be pre-
defined in the form of word lists and learns the
constraints that must be satisfied by unbiased word
embeddings automatically from dictionary defini-
tions of the words.

This method assumes that a dictionary D con-
taining the definition, g(w) of w, is given. If the
pre-trained embeddings distinguish among the dif-
ferent senses of w, then the gloss for the corre-
sponding sense of w in the dictionary can be used
as g(w). Given w, which is the word embedding
of a word w, they model the debiasing process as
the task of learning an encoder E(w;θe) that re-
turns an m(≤ n)-dimensional debiased version of
w. To preserve the dimensionality of the input
embeddings, they set m = n.

To preserve semantic information during the de-
biasing process, they decode the encoded version
of w using a decoder Dc parametrised by θc and
define Jc to be the reconstruction loss given by
(24).

Jc(w) = ||w −Dc(E(w;θe);θc)||22 (24)



To ensure that the encoded version of w is simi-
lar to g(w), g(w) is represented by a sentence em-
bedding vector g(w) ∈ Rn. For the simplicity, they
use the smoothed inverse frequency (SIF; Arora
et al., 2017) for creating g(w). SIF computes the
embedding of a sentence as the weighted average
of the pre-trained word embeddings of the words
in the sentence, where the weights are computed as
the inverse unigram probability. Next, the first prin-
cipal component vector of the sentence embeddings
is removed. The dimensionality of the sentence em-
beddings created using SIF is equal to that of the
pre-trained word embeddings used. Therefore, both
w and g(w) are in the same n-dimensional vector
space. The debiased embedding E(w;θe) of w are
decoded using a decoder Dd, parametrised by θd.
The squared ℓ2 distance between decoded embed-
ding and g(w) is computed to define an objective
Jd given by (25).

Jd(w) = ||g(w)−Dd(E(w;θe);θd)||22 (25)

To remove unfair biases from pre-trained word
embedding w of a word w, it is projected into a
subspace that is orthogonal to the dictionary defi-
nition vector g(w). This projection is denoted by
ϕ(w, g(w)) ∈ Rn. The debiased word embedding,
E(w;θe), must be orthogonal to ϕ(w, g(w)),
and this is formalised as the minimisation of the
squared inner-product given in (26).

Ja(w) =
(
E(ϕ(w, g(w));θe)

⊤E(w;θe)
)2

(26)

Note that because ϕ(w, g(w)) lives in the space
spanned by the original (prior to encoding) vec-
tor space, it must be first encoded using E before
considering the orthogonality requirement.

To derive ϕ(w, g(w)), (17) and (18) are used.
Considering that s(w) defines a direction that does
not contain any unfair biases, the vector rejection
of w on g(w) can be computed following this re-
sult.12 Specifically, by subtracting the projection
of w along the unit vector defining the direction of
g(w) to compute ϕ as in (27).

ϕ(w, s(w)) = w −w⊤g(w)
g(w)

||g(w)||
(27)

The linearly-weighted sum of the above-defined
three objective functions is considered as the total

12The rejection of a vector b by another vector a is defined
as a− (a⊤b)a.

objective function as given in (28).

J(w) = αJc(w) + βJd(w) + γJa(w) (28)

Here, α, β, γ ≥ 0 are scalar coefficients satisfying
α + β + γ = 1. Finally, debiased embedding
ddict(w) is represented in (29):

ddict(w) := E(w;θe) (29)


